1
|
Silva-Cunha M, Lacchini R, Tanus-Santos JE. Facilitating Nitrite-Derived S-Nitrosothiol Formation in the Upper Gastrointestinal Tract in the Therapy of Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:691. [PMID: 38929130 PMCID: PMC11200996 DOI: 10.3390/antiox13060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) are often associated with impaired nitric oxide (NO) bioavailability, a critical pathophysiological alteration in CVDs and an important target for therapeutic interventions. Recent studies have revealed the potential of inorganic nitrite and nitrate as sources of NO, offering promising alternatives for managing various cardiovascular conditions. It is now becoming clear that taking advantage of enzymatic pathways involved in nitrite reduction to NO is very relevant in new therapeutics. However, recent studies have shown that nitrite may be bioactivated in the acidic gastric environment, where nitrite generates NO and a variety of S-nitrosating compounds that result in increased circulating S-nitrosothiol concentrations and S-nitrosation of tissue pharmacological targets. Moreover, transnitrosation reactions may further nitrosate other targets, resulting in improved cardiovascular function in patients with CVDs. In this review, we comprehensively address the mechanisms and relevant effects of nitrate and nitrite-stimulated gastric S-nitrosothiol formation that may promote S-nitrosation of pharmacological targets in various CVDs. Recently identified interfering factors that may inhibit these mechanisms and prevent the beneficial responses to nitrate and nitrite therapy were also taken into consideration.
Collapse
Affiliation(s)
- Mila Silva-Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto 14040-902, Brazil;
| | - Jose E. Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| |
Collapse
|
2
|
Bunsawat K, Nelson MD, Hearon CM, Wray DW. Exercise intolerance in heart failure with preserved ejection fraction: Causes, consequences and the journey towards a cure. Exp Physiol 2024; 109:502-512. [PMID: 38063130 PMCID: PMC10984794 DOI: 10.1113/ep090674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/22/2023] [Indexed: 04/04/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for over 50% of all heart failure cases nationwide and continues to rise in its prevalence. The complex, multi-organ involvement of the HFpEF clinical syndrome requires clinicians and investigators to adopt an integrative approach that considers the contribution of both cardiac and non-cardiac function to HFpEF pathophysiology. Thus, this symposium review outlines the key points from presentations covering the contributions of disease-related changes in cardiac function, arterial stiffness, peripheral vascular function, and oxygen delivery and utilization to exercise tolerance in patients with HFpEF. While many aspects of HFpEF pathophysiology remain poorly understood, there is accumulating evidence for a decline in vascular health in this patient group that may be remediable through pharmacological and lifestyle interventions and could improve outcomes and clinical status in this ever-growing patient population.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical CenterSalt Lake CityUtahUSA
- Department of Internal Medicine, Division of GeriatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Michael D. Nelson
- Department of KinesiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Christopher M. Hearon
- Department of Applied Clinical ResearchThe University of Texas Southwestern Medical CenterDallasTexasUSA
| | - D. Walter Wray
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical CenterSalt Lake CityUtahUSA
- Department of Internal Medicine, Division of GeriatricsUniversity of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
3
|
Stock JM, Shenouda N, Chouramanis NV, Patik JC, Martens CR, Farquhar WB, Chirinos JA, Edwards DG. Effect of acute handgrip and aerobic exercise on wasted pressure effort and arterial wave reflections in healthy aging. Am J Physiol Heart Circ Physiol 2023; 325:H617-H628. [PMID: 37477688 PMCID: PMC10642996 DOI: 10.1152/ajpheart.00133.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Aging increases arterial stiffness and wave reflections that augment left ventricular wasted pressure effort (WPE). A single bout of exercise may be effective at acutely reducing WPE via reductions in arterial wave reflections. In young adults (YA) acute aerobic exercise decreases, whereas handgrip increases, wave reflections. Whether acute exercise mitigates or exacerbates WPE and arterial wave reflection in healthy aging warrants further examination. The purpose of this study was to determine if there are age-related differences in WPE and wave reflection during acute handgrip and aerobic exercise. When compared with baseline, WPE increased substantially in older adults (OA) during handgrip (5,219 ± 2,396 vs. 7,019 ± 2,888 mmHg·ms, P < 0.001). When compared with baseline, there was a robust reduction in WPE in OA during moderate-intensity aerobic exercise (5,428 ± 2,084 vs. 3,290 ± 1,537 mmHg·ms, P < 0.001), despite absolute WPE remaining higher in OA compared with YA during moderate-intensity aerobic exercise (OA 3,290 ± 1,537 vs. YA 1,188 ± 962 mmHg·ms, P < 0.001). There was no change in wave reflection timing indexed to ejection duration in OA during handgrip (40 ± 6 vs. 38 ± 4%, P = 0.41) or moderate-intensity aerobic exercise (40 ± 5 vs. 42 ± 8%, P = 0.99). Conversely, there was an earlier return of wave reflection in YA during handgrip (60 ± 11 vs. 52 ± 6%, P < 0.001) and moderate-intensity aerobic exercise (59 ± 7 vs. 51 ± 9%, P < 0.001). Changes in stroke volume were not different between groups during handgrip (P = 0.08) or aerobic exercise (P = 0.47). The greater increase in WPE during handgrip and decrease in WPE during aerobic exercise suggest that aortic hemodynamic responses to acute exercise are exaggerated with healthy aging without affecting stroke volume.NEW & NOTEWORTHY We demonstrated that acute aerobic exercise attenuated, whereas handgrip augmented, left ventricular hemodynamic load from wave reflections more in healthy older (OA) compared with young adults (YA) without altering stroke volume. These findings suggest an exaggerated aortic hemodynamic response to acute exercise perturbations with aging. They also highlight the importance of considering exercise modality when examining aortic hemodynamic responses to acute exercise in older adults.
Collapse
Affiliation(s)
- Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Ninette Shenouda
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Nicholas V Chouramanis
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Jordan C Patik
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Julio A Chirinos
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
4
|
Yoshida Y, Nakanishi K, Jin Z, Daimon M, Ishiwata J, Sawada N, Hirokawa M, Kaneko H, Nakao T, Mizuno Y, Morita H, Di Tullio MR, Homma S, Komuro I. Association Between Progression of Arterial Stiffness and Left Ventricular Remodeling in a Community-Based Cohort. JACC. ADVANCES 2023; 2:100409. [PMID: 38938996 PMCID: PMC11198086 DOI: 10.1016/j.jacadv.2023.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 06/29/2024]
Abstract
Background Cross sectionally measured, elevated arterial stiffness is associated with unfavorable left ventricular (LV) remodeling, suggesting its important role in the pathophysiology of heart failure. However, data linking the degree of arterial stiffness progression with LV remodeling are scarce. Objectives The purpose of this study was to investigate the association between longitudinal change in arterial stiffness and changes in LV remodeling. Methods Serial measurements of arterial stiffness by cardio-ankle vascular index (CAVI) were performed in 317 participants without cardiovascular disease and with normal arterial stiffness. LV size, mass, and function were assessed by transthoracic echocardiography and including LV global longitudinal strain (LVGLS) by speckle-tracking and tissue Doppler velocity (e') of the mitral annulus (diastolic function). Results During a median follow-up of 26.8 mo, there was a significant increase in CAVI (P < 0.001). Generalized estimating equation analyses showed that longitudinal increase in CAVI was associated with impaired LVGLS (estimate 0.46, 95% CI: 0.11-0.82; P = 0.010) after adjustment for demographics and baseline cardiovascular factors, but not with changes of LV mass index and e' velocity. When controlling for longitudinal change of covariates, CAVI progression remained associated with change in LVGLS (estimate 0.50, 95% CI: 0.16-0.85; P = 0.004). In sex stratified analysis, progression of CAVI was significantly associated with LVGLS deterioration only in women (estimate 0.92, 95% CI: 0.27-1.58; P = 0.006). Conclusions Longitudinal increase in arterial stiffness is associated with deterioration in LVGLS. Vascular-ventricular coupling plays an important role in the progressive decline in ventricular function even at an early, subclinical stage.
Collapse
Affiliation(s)
- Yuriko Yoshida
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- Department of Medicine, Columbia University, New York, New York, USA
| | - Koki Nakanishi
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Zhezhen Jin
- Department of Biostatistics, Columbia University, New York, New York, USA
| | - Masao Daimon
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Laboratory, The University of Tokyo, Tokyo, Japan
| | - Jumpei Ishiwata
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoko Sawada
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Megumi Hirokawa
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidehiro Kaneko
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoko Nakao
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Laboratory, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Mizuno
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Shunichi Homma
- Department of Medicine, Columbia University, New York, New York, USA
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Burrage MK, Lewis AJ, Miller JJJ. Functional and Metabolic Imaging in Heart Failure with Preserved Ejection Fraction: Promises, Challenges, and Clinical Utility. Cardiovasc Drugs Ther 2023; 37:379-399. [PMID: 35881280 PMCID: PMC10014679 DOI: 10.1007/s10557-022-07355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is recognised as an increasingly prevalent, morbid and burdensome condition with a poor outlook. Recent advances in both the understanding of HFpEF and the technological ability to image cardiac function and metabolism in humans have simultaneously shone a light on the molecular basis of this complex condition of diastolic dysfunction, and the inflammatory and metabolic changes that are associated with it, typically in the context of a complex patient. This review both makes the case for an integrated assessment of the condition, and highlights that metabolic alteration may be a measurable outcome for novel targeted forms of medical therapy. It furthermore highlights how recent technological advancements and advanced medical imaging techniques have enabled the characterisation of the metabolism and function of HFpEF within patients, at rest and during exercise.
Collapse
Affiliation(s)
- Matthew K Burrage
- Oxford Centre for Clinical Cardiovascular Magnetic Resonance Research (OCMR); Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Andrew J Lewis
- Oxford Centre for Clinical Cardiovascular Magnetic Resonance Research (OCMR); Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| | - Jack J J. Miller
- Oxford Centre for Clinical Cardiovascular Magnetic Resonance Research (OCMR); Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
- The PET Research Centre and The MR Research Centre, Aarhus University, Aarhus, Denmark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, UK
| |
Collapse
|
6
|
Gui XY, Rabkin SW. C-Reactive Protein, Interleukin-6, Trimethylamine-N-Oxide, Syndecan-1, Nitric Oxide, and Tumor Necrosis Factor Receptor-1 in Heart Failure with Preserved Versus Reduced Ejection Fraction: a Meta-Analysis. Curr Heart Fail Rep 2023; 20:1-11. [PMID: 36479675 DOI: 10.1007/s11897-022-00584-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review was to synthesize the evidence on non-traditional biomarkers from proteomic and metabolomic studies that may distinguish heart failure (HF) with preserved ejection fraction (HFpEF) from heart failure with reduced ejection fraction (HFrEF) and non-HF. RECENT FINDINGS Understanding the pathophysiology of HFpEF continues to be challenging. A number of inflammatory and metabolic biomarkers that have recently been suggested to be involved include C-reactive protein (CRP), interleukin-6 (IL-6), trimethylamine-N-oxide (TMAO), syndecan-1 (SDC-1), nitric oxide (NO), and tumor necrosis factor receptor-1 (TNFR-1). A systematic search was conducted using Medline, EMBASE, and Web of Science with search terms such as "HFpEF," "metabolomics," and "proteomics," and a meta-analysis was conducted. The results demonstrate significantly higher levels of TMAO, CRP, SDC-1, and IL-6 in HFpEF compared to controls without HF and significantly higher levels of TMAO and CRP in HFrEF compared to controls. The results further suggest that HFpEF might be distinguishable from HFrEF based on higher levels of IL-6 and lower levels of SDC-1 and NO. These data may reflect pathophysiological differences between HFpEF and HFrEF.
Collapse
Affiliation(s)
- Xi Yao Gui
- Department of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Simon W Rabkin
- Department of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Division of Cardiology, University of British Columbia, 9Th Floor 2775 Laurel St, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
7
|
Shenouda N, Patik JC, Edwards DG. Reflecting on the Blood Pressure Lowering Effects of Inorganic Nitrate Supplementation in Patients With Type 2 Diabetes. Am J Hypertens 2022; 35:792-794. [PMID: 35728074 DOI: 10.1093/ajh/hpac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/02/2023] Open
Affiliation(s)
- Ninette Shenouda
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Jordan C Patik
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
8
|
Levine LD, Ky B, Chirinos JA, Koshinksi J, Arany Z, Riis V, Elovitz MA, Koelper N, Lewey J. Prospective Evaluation of Cardiovascular Risk 10 Years After a Hypertensive Disorder of Pregnancy. J Am Coll Cardiol 2022; 79:2401-2411. [PMID: 35710191 DOI: 10.1016/j.jacc.2022.03.383] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) are associated with increased risk of cardiovascular disease (CVD) 20-30 years later; however, cardiovascular (CV) risk in the decade after HDP is less studied. OBJECTIVES The purpose of this study was to evaluate differences in CV risk factors as well as subclinical CVD among a well-characterized group of racially diverse patients with and without a history of HDP 10 years earlier. METHODS This is a prospective study of patients with and without a diagnosis of HDP ≥10 years earlier (2005-2007) who underwent in-person visits with echocardiography, arterial tonometry, and flow-mediated dilation of the brachial artery. RESULTS A total of 135 patients completed assessments (84 with and 51 without a history of HDP); 85% self-identified as Black. Patients with a history of HDP had a 2.4-fold increased risk of new hypertension compared with those without HDP (56.0% vs. 23.5%; adjusted relative risk: 2.4; 95% CI: 1.39-4.14) with no differences in measures of left ventricular structure, global longitudinal strain, diastolic function, arterial stiffness, or endothelial function. Patients who developed hypertension, regardless of HDP history, had greater left ventricular remodeling, including greater relative wall thickness; worse diastolic function, including lower septal and lateral e' and E/A ratio; more abnormal longitudinal strain; and higher effective arterial elastance than patients without hypertension. CONCLUSIONS We found a 2.4-fold increased risk of hypertension 10 years after HDP. Differences in noninvasive measures of CV risk were driven mostly by the hypertension diagnosis, regardless of HDP history, suggesting that the known long-term risk of CVD after HDP may primarily be a consequence of hypertension development.
Collapse
Affiliation(s)
- Lisa D Levine
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| | - Bonnie Ky
- Division of Cardiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Julio A Chirinos
- Division of Cardiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jessica Koshinksi
- Division of Cardiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zoltan Arany
- Division of Cardiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Valerie Riis
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michal A Elovitz
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nathanael Koelper
- Center for Research on Reproduction and Patient's Health, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jennifer Lewey
- Division of Cardiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Patel RB, Shah SJ. The splanchnic reservoir: an oasis for blood volume in heart failure with preserved ejection fraction? Eur J Heart Fail 2021; 23:1144-1146. [PMID: 34118181 DOI: 10.1002/ejhf.2268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ravi B Patel
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sanjiv J Shah
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
10
|
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for more than one-half of patients with heart failure. Effective treatment of HFpEF has not been established, largely because of the complexities and heterogeneity in the phenotypes of HFpEF. Categorizing patients based on clinical and pathophysiologic phenotype may provide more targeted and efficacious therapies. Despite this clinical need, there is no consensus on how to categorize patients with HFpEF into phenogroups. Possible metrics include the presence or absence of specific comorbidities that influence pathophysiology, imaging, hemodynamics, or other biomarkers. This article describes currently recognized phenotypes of HFpEF and potential treatment strategies.
Collapse
|
11
|
Bahrami LS, Arabi SM, Feizy Z, Rezvani R. The effect of beetroot inorganic nitrate supplementation on cardiovascular risk factors: A systematic review and meta-regression of randomized controlled trials. Nitric Oxide 2021; 115:8-22. [PMID: 34119659 DOI: 10.1016/j.niox.2021.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Inorganic nitrate is one of the most effective compounds in beetroot for improving cardiovascular function due to its conversion to nitric oxide in the body. This review and meta-analysis aimed to investigate the role of beetroot inorganic nitrate supplementation on adults' cardiovascular risk factors. METHODS We conducted a systematic literature review of articles published without time limitation until November 2020 in PubMed, Embase, ISI Web of Science, Scopus, Cochrane Library, and gray literature databases. We included the original randomized clinical trials (RCTs) in which the effect of beetroot inorganic nitrate supplementation on endothelial function, arterial stiffness, and blood pressure was studied. RESULTS 43 studies were included for qualitative synthesis, out of which 27 were eligible for meta-analysis. Beetroot inorganic nitrate supplementation significantly decreased Arterial Stiffness (Pulse Wave Velocity (-0.27 m/s, p = 0.04)) and increased Endothelial function (Flow Mediated Dilation: 0.62%, p = 0.002) but did not change other parameters (p > 0.05). CONCLUSION Beetroot inorganic nitrate supplementation might have a beneficial effect on cardiovascular risk factors. Further high-quality investigations will be needed to provide sufficient evidence.
Collapse
Affiliation(s)
- Leila Sadat Bahrami
- Metabolic Syndrome Research Center, Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyyed Mostafa Arabi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Zahra Feizy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX79414, USA.
| | - Reza Rezvani
- Metabolic Syndrome Research Center, Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Shannon OM, Easton C, Shepherd AI, Siervo M, Bailey SJ, Clifford T. Dietary nitrate and population health: a narrative review of the translational potential of existing laboratory studies. BMC Sports Sci Med Rehabil 2021; 13:65. [PMID: 34099037 PMCID: PMC8186051 DOI: 10.1186/s13102-021-00292-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dietary inorganic nitrate (NO3-) is a polyatomic ion, which is present in large quantities in green leafy vegetables and beetroot, and has attracted considerable attention in recent years as a potential health-promoting dietary compound. Numerous small, well-controlled laboratory studies have reported beneficial health effects of inorganic NO3- consumption on blood pressure, endothelial function, cerebrovascular blood flow, cognitive function, and exercise performance. Translating the findings from small laboratory studies into 'real-world' applications requires careful consideration. MAIN BODY This article provides a brief overview of the existing empirical evidence basis for the purported health-promoting effects of dietary NO3- consumption. Key areas for future research are then proposed to evaluate whether promising findings observed in small animal and human laboratory studies can effectively translate into clinically relevant improvements in population health. These proposals include: 1) conducting large-scale, longer duration trials with hard clinical endpoints (e.g. cardiovascular disease incidence); 2) exploring the feasibility and acceptability of different strategies to facilitate a prolonged increase in dietary NO3- intake; 3) exploitation of existing cohort studies to explore associations between NO3- intake and health outcomes, a research approach allowing larger samples sizes and longer duration follow up than is feasible in randomised controlled trials; 4) identifying factors which might account for individual differences in the response to inorganic NO3- (e.g. sex, genetics, habitual diet) and could assist with targeted/personalised nutritional interventions; 5) exploring the influence of oral health and medication on the therapeutic potential of NO3- supplementation; and 6) examining potential risk of adverse events with long term high- NO3- diets. CONCLUSION The salutary effects of dietary NO3- are well established in small, well-controlled laboratory studies. Much less is known about the feasibility and efficacy of long-term dietary NO3- enrichment for promoting health, and the factors which might explain the variable responsiveness to dietary NO3- supplementation between individuals. Future research focussing on the translation of laboratory data will provide valuable insight into the potential applications of dietary NO3- supplementation to improve population health.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, Scotland, UK
| | - Anthony I Shepherd
- School of Sport, Health & Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
13
|
Stock JM, Chirinos JA, Edwards DG. Lower-body dynamic exercise reduces wave reflection in healthy young adults. Exp Physiol 2021; 106:1720-1730. [PMID: 33999464 DOI: 10.1113/ep089581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/14/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? There is a paradoxical reduction in augmentation index during lower-body dynamic (LBD) exercise in the face of an increase in central pressure. To determine causality, the amplitudes of forward and backward pressure waves were assessed separately using wave separation analysis. What is the main finding and its importance? Reflection magnitude decreased during LBD exercise in healthy young adults and was attributable to an increased forward pressure wave amplitude and decreased backward pressure wave amplitude. This vasoactive response might limit the adverse effects of wave reflection during LBD exercise, optimizing ventricular-arterial interactions. ABSTRACT Acute lower-body dynamic (LBD) exercise decreases surrogate measures of wave reflection, such as the augmentation index. However, the augmentation index is influenced by the combined effects of wave reflection timing, magnitude and other confounding factors external to wave reflection, which make it difficult to discern the origin of changes in surrogate measures. The relative contributions of forward (Pf) and backward (Pb) pressure wave amplitudes to central pressure can be determined by wave separation analysis. Reflection magnitude (RM = Pb/Pf) and the timing of apparent wave reflection return can also be determined. We tested the hypothesis that acute LBD exercise decreases RM and reflected wave transit time (RWTT). Applanation tonometry was used to record radial artery pressure waveforms in 25 adults (24 ± 4 years of age) at baseline and during light-, moderate- and vigorous-intensity exercise. Wave separation analysis was conducted offline using a personalized physiological flow wave to determine Pf, Pb, RM and RWTT. The RM decreased during all intensities of exercise compared with baseline (all P < 0.001; baseline, 43 ± 5%; light, 33 ± 6%; moderate, 23 ± 7%; vigorous, 17 ± 5%). The reduction in RM was attributable to the combined effect of increased Pf and decreased Pb during exercise. The RWTT decreased during all intensities of exercise compared with baseline (all P < 0.04; baseline, 156 ± 17 ms; light, 144 ± 15 ms; moderate, 129 ± 16 ms; vigorous, 121 ± 17 ms). Lastly, in a stepwise multilinear regression, Pf, but not Pb and RWTT, contributed to increased central pulse pressure during LBD exercise. These data show that wave reflection decreased and that central pulse pressure is most influenced by Pf during LBD exercise.
Collapse
Affiliation(s)
- Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Julio A Chirinos
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
14
|
Zern EK, Ho JE, Panah LG, Lau ES, Liu E, Farrell R, Sbarbaro JA, Schoenike MW, Pappagianopoulos PP, Namasivayam M, Malhotra R, Nayor M, Lewis GD. Exercise Intolerance in Heart Failure With Preserved Ejection Fraction: Arterial Stiffness and Aabnormal Left Ventricular Hemodynamic Responses During Exercise. J Card Fail 2021; 27:625-634. [PMID: 33647476 PMCID: PMC8180488 DOI: 10.1016/j.cardfail.2021.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Arterial stiffness is thought to contribute to the pathophysiology of heart failure with preserved ejection fraction (HFpEF). We sought to examine arterial stiffness in HFpEF and hypertension and investigate associations of arterial and left ventricular hemodynamic responses to exercise. METHODS AND RESULTS A total of 385 symptomatic individuals with an EF of ≥50% underwent upright cardiopulmonary exercise testing with invasive hemodynamic assessment of arterial stiffness and load (aortic augmentation pressure, augmentation index, systemic vascular resistance index, total arterial compliance index, effective arterial elastance index, and pulse pressure amplification) at rest and during incremental exercise. An abnormal hemodynamic response to exercise was defined as a steep increase in pulmonary capillary wedge pressure relative to cardiac output (∆PCWP/∆CO > 2 mm Hg/L/min). We compared rest and exercise measures between HFpEF and hypertension in multivariable analyses. Among 188 participants with HFpEF (mean age 61 ± 13 years, 56% women), resting arterial stiffness parameters were worse compared with 94 hypertensive participants (mean age 55 ± 15 years, 52% women); these differences were accentuated during exercise in HFpEF (all P ≤ .0001). Among all participants, exercise measures of arterial stiffness correlated with worse ∆PCWP/∆CO. Specifically, a 1 standard deviation higher exercise augmentation pressure was associated with 2.15-fold greater odds of abnormal LV hemodynamic response (95% confidence interval 1.52-3.05; P < .001). Further, exercise measures of systemic vascular resistance index, elastance index, and pulse pressure amplification correlated with a lower peak oxygen consumption. CONCLUSIONS Exercise accentuates the increased arterial stiffness found in HFpEF, which in turn correlates with left ventricular hemodynamic responses. Unfavorable ventricular-vascular interactions during exercise in HFpEF may contribute to exertional intolerance and inform future therapeutic interventions.
Collapse
Affiliation(s)
- Emily K Zern
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Jennifer E Ho
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts.
| | - Lindsay G Panah
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Emily S Lau
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth Liu
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Robyn Farrell
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - John A Sbarbaro
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark W Schoenike
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Paul P Pappagianopoulos
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Mayooran Namasivayam
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Rajeev Malhotra
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Matthew Nayor
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Gregory D Lewis
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
15
|
Shenouda N, Stock JM, Patik JC, Chirinos JA, Edwards DG. Personalized physiologic flow waveforms improve wave reflection estimates compared to triangular flow waveforms in adults. Am J Physiol Heart Circ Physiol 2021; 320:H1802-H1812. [PMID: 33710924 DOI: 10.1152/ajpheart.00747.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Central aortic pressure waveforms contain valuable prognostic information in addition to central systolic pressure. Using pressure-flow relations, wave separation analysis can be used to decompose aortic pressure waveforms into forward- (Pf) and backward-traveling (Pb) components. Reflection magnitude, the ratio of pressure amplitudes (RM = Pb/Pf), is a predictor of heart failure and all-cause mortality. Aortic flow can be measured via Doppler echocardiography or estimated using a triangular flow waveform; however, the latter may underestimate the flow waveform convexity and overestimate Pb and RM. We sought to determine the accuracy of a personalized synthetic physiologic flow waveform, compared with triangular and measured flow waveforms, for estimating wave reflection indices in 49 healthy young (27 ± 6 yr) and 29 older adults [66 ± 6 yr; 20 healthy, 9 chronic kidney disease (CKD)]. Aortic pressure and measured flow waveforms were acquired via radial tonometry and echocardiography, respectively. Triangular and physiologic flow waveforms were constructed from aortic pressure waveforms. Compared with the measured flow waveform, the triangular waveform underestimated Pf in older, but not young, adults and overestimated Pb and RM in both groups. The physiologic waveform was equivalent to measured flow in deriving all wave reflection indices and yielded smaller mean absolute biases than the triangular waveform in all instances (P < 0.05). Lastly, central pulse pressure was associated with triangular, but not physiologic, mean biases for Pb and RM independent of age or central arterial stiffness (P < 0.05). These findings support the use of personalized physiologic flow waveforms as a more robust alternative to triangular flow waveforms when true flow cannot be measured.NEW & NOTEWORTHY We demonstrate that triangular flow waveforms overestimate wave reflection indices, particularly at higher central pulse pressures independent of age or carotid-femoral pulse wave velocity. In contrast, personalized physiologic flow waveforms provide equivalent wave reflection estimates as measured flow waveforms, thereby offering a more robust alternative to triangulation when aortic flow cannot be measured.
Collapse
Affiliation(s)
- Ninette Shenouda
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Jordan C Patik
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Julio A Chirinos
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
16
|
Stock JM, Chouramanis NV, Chirinos JA, Edwards DG. Dynamic and isometric handgrip exercise increases wave reflection in healthy young adults. J Appl Physiol (1985) 2020; 129:709-717. [PMID: 32853105 PMCID: PMC7654685 DOI: 10.1152/japplphysiol.00281.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 02/03/2023] Open
Abstract
Early return and increased magnitude of wave reflection augments pulsatile load, wastes left ventricular effort, and is associated with cardiovascular events. Acute handgrip (HG) exercise increases surrogate measures of wave reflection such as augmentation index. However, augmentation index does not allow distinguishing between timing versus magnitude of wave reflection and is affected by factors other than wave reflection per se. Wave separation analysis decomposes central pressure into relative contributions of forward (Pf) and backward (Pb) pressure wave amplitudes to calculate reflection magnitude (RM = Pb/Pf) and determine the timing of apparent wave reflection return. We tested the hypothesis that acute dynamic and isometric HG exercise increases RM and decreases reflected wave transit time (RWTT). Applanation tonometry was used to record radial artery pressure waveforms in 30 adults (25 ± 4 yr) at baseline and during dynamic and isometric HG exercise. Wave separation analysis was performed offline using a physiological flow wave to derive Pf, Pb, RM, and RWTT. We found that RM increased during dynamic and isometric HG exercise compared with baseline (P = 0.04 and P < 0.01, respectively; baseline 40 ± 5, dynamic 43 ± 6, isometric 43 ± 7%). Meanwhile, RWTT decreased during dynamic and isometric HG exercise compared with baseline (P = 0.03 and P < 0.001, respectively; baseline 164 ± 23, dynamic 155 ± 23, isometric 148 ± 20 ms). Moreover, the changes in RM and RWTT were not different between dynamic and isometric HG exercise. The present data suggest that wave reflection timing (RWTT) and magnitude (RM) are important factors that contribute to increased central blood pressure during HG exercise.NEW & NOTEWORTHY This study demonstrated that wave reflection magnitude is increased while reflected wave transit time is decreased during handgrip exercise in healthy young adults. The larger backward pressure waves and earlier return of these pressure waves were not different between dynamic and isometric handgrip exercise. These acute changes in wave reflection during handgrip exercise transiently augment pulsatile load.
Collapse
Affiliation(s)
- Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Nicholas V Chouramanis
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Julio A Chirinos
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
17
|
Teoh JP, Li X, Simoncini T, Zhu D, Fu X. Estrogen-Mediated Gaseous Signaling Molecules in Cardiovascular Disease. Trends Endocrinol Metab 2020; 31:773-784. [PMID: 32682630 DOI: 10.1016/j.tem.2020.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Gender difference is well recognized as a key risk factor for cardiovascular disease (CVD). Estrogen, the primary female sex hormone, improves cardiovascular functions through receptor (ERα, ERβ, or G protein-coupled estrogen receptor)-initiated genomic or non-genomic mechanisms. Gaseous signaling molecules, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO), are important regulators of cardiovascular function. Recent studies have demonstrated that estrogen regulates the production of these signaling molecules in cardiovascular cells to exert its cardiovascular protective effects. We discuss current understanding of gaseous signaling molecules in cardiovascular disease (CVD), the underlying mechanisms through which estrogen exerts cardiovascular protective effects by regulating these molecules, and how these findings can be translated to improve the health of postmenopausal women.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Xiaosa Li
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa 56100, Italy
| | - Dongxing Zhu
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China.
| | - Xiaodong Fu
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China.
| |
Collapse
|
18
|
Large-Artery Stiffness in Health and Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 74:1237-1263. [PMID: 31466622 DOI: 10.1016/j.jacc.2019.07.012] [Citation(s) in RCA: 507] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
A healthy aorta exerts a powerful cushioning function, which limits arterial pulsatility and protects the microvasculature from potentially harmful fluctuations in pressure and blood flow. Large-artery (aortic) stiffening, which occurs with aging and various pathologic states, impairs this cushioning function, and has important consequences on cardiovascular health, including isolated systolic hypertension, excessive penetration of pulsatile energy into the microvasculature of target organs that operate at low vascular resistance, and abnormal ventricular-arterial interactions that promote left ventricular remodeling, dysfunction, and failure. Large-artery stiffness independently predicts cardiovascular risk and represents a high-priority therapeutic target to ameliorate the global burden of cardiovascular disease. This paper provides an overview of key physiologic and biophysical principles related to arterial stiffness, the impact of aortic stiffening on target organs, noninvasive methods for the measurement of arterial stiffness, mechanisms leading to aortic stiffening, therapeutic approaches to reduce it, and clinical applications of arterial stiffness measurements.
Collapse
|
19
|
Gui Y, Chen J, Hu J, Ouyang M, Deng L, Liu L, Sun K, Tang Y, Xiang Q, Xu J, Zhu L, Peng Z, Zou P, Li B, Zheng Z, Xu D. Efficacy and Safety of Inorganic Nitrate Versus Placebo Treatment in Heart Failure with Preserved Ejection Fraction. Cardiovasc Drugs Ther 2020; 34:503-513. [DOI: 10.1007/s10557-020-06980-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Tafelmeier M, Baessler A, Wagner S, Unsoeld B, Preveden A, Barlocco F, Tomberli A, Popovic D, Brennan P, MacGowan GA, Ristic A, Velicki L, Olivotto I, Jakovljevic DG, Maier LS. Design of the SILICOFCM study: Effect of sacubitril/valsartan vs lifestyle intervention on functional capacity in patients with hypertrophic cardiomyopathy. Clin Cardiol 2020; 43:430-440. [PMID: 32125709 PMCID: PMC7244301 DOI: 10.1002/clc.23346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disease with a broad spectrum of disease severity. HCM ranges from a benign course to a progressive disorder characterized by angina, heart failure, malignant arrhythmia, syncope, or sudden cardiac death. So far, no medical treatment has reliably shown to halt or reverse progression of HCM or to alleviate its symptoms. While the angiotensin receptor neprilysin inhibitor sacubitril/valsartan has shown to reduce mortality and hospitalization in heart failure with reduced ejection fraction, data on its effect on HCM are sparse. HYPOTHESIS A 4-month pharmacological (sacubitril/valsartan) or lifestyle intervention will significantly improve exercise tolerance (ie, peak oxygen consumption) in patients with nonobstructive HCM compared to the optimal standard therapy (control group). METHODS SILICOFCM is a prospective, multicenter, open-label, randomized, controlled, three-arm clinical trial (NCT03832660) that will recruit 240 adult patients with a confirmed diagnosis of nonobstructive HCM. Eligible patients are randomized to sacubitril/valsartan, lifestyle intervention (physical activity and dietary supplementation with inorganic nitrate), or optimal standard therapy alone (control group). The primary endpoint is the change in functional capacity (ie, peak oxygen consumption). Secondary endpoints include: (a) Change in cardiac structure and function as assessed by transthoracic echocardiography and cardiac magnetic resonance (MRI imaging), (b) change in biomarkers (ie, CK, CKMB, and NT-proBNP), (c) physical activity, and (d) quality of life. RESULTS Until December 2019, a total of 41 patients were recruited into the ongoing SILICOFCM study and were allocated to the study groups and the control group. There was no significant difference in key baseline characteristics between the three groups. CONCLUSION The SILICOFCM study will provide novel evidence about the effect of sacubitril/valsartan or lifestyle intervention on functional capacity, clinical phenotype, injury and stretch activation markers, physical activity, and quality of life in patients with nonobstructive HCM.
Collapse
Affiliation(s)
- Maria Tafelmeier
- Department of Internal Medicine II (Cardiology, Pneumology, and Intensive Care)University Medical Centre RegensburgRegensburgGermany
| | - Andrea Baessler
- Department of Internal Medicine II (Cardiology, Pneumology, and Intensive Care)University Medical Centre RegensburgRegensburgGermany
| | - Stefan Wagner
- Department of Internal Medicine II (Cardiology, Pneumology, and Intensive Care)University Medical Centre RegensburgRegensburgGermany
| | - Bernhard Unsoeld
- Department of Internal Medicine II (Cardiology, Pneumology, and Intensive Care)University Medical Centre RegensburgRegensburgGermany
| | - Andrej Preveden
- Medical Faculty, University of Novi Sad, Novi SadSerbia and Institute of cardiovascular diseases of VojvodinaSremska KamenicaSerbia
| | - Fausto Barlocco
- Careggi University HospitalUniversity of FlorenceFlorenceItaly
| | | | - Dejana Popovic
- Cardiology Department, Clinical Centre of Serbia, Faculties of Medicine and PharmacyUniversity of BelgradeBelgradeSerbia
| | - Paul Brennan
- Cardiovascular Research, Clinical and Translational Research InstituteNewcastle University and Newcastle upon Tyne Hospitals NHF Foundation TrustNewcastle upon TyneUK
| | - Guy A. MacGowan
- Cardiovascular Research, Clinical and Translational Research InstituteNewcastle University and Newcastle upon Tyne Hospitals NHF Foundation TrustNewcastle upon TyneUK
| | - Arsen Ristic
- Cardiology Department, Clinical Centre of Serbia, Faculties of Medicine and PharmacyUniversity of BelgradeBelgradeSerbia
| | - Lazar Velicki
- Medical Faculty, University of Novi Sad, Novi SadSerbia and Institute of cardiovascular diseases of VojvodinaSremska KamenicaSerbia
| | - Iacopo Olivotto
- Careggi University HospitalUniversity of FlorenceFlorenceItaly
| | - Djordje G. Jakovljevic
- Cardiovascular Research, Clinical and Translational Research InstituteNewcastle University and Newcastle upon Tyne Hospitals NHF Foundation TrustNewcastle upon TyneUK
| | - Lars S. Maier
- Department of Internal Medicine II (Cardiology, Pneumology, and Intensive Care)University Medical Centre RegensburgRegensburgGermany
| |
Collapse
|
21
|
The Role of Arterial Stiffness and Central Hemodynamics in Heart Failure. ACTA ACUST UNITED AC 2020; 2:209-230. [PMID: 36262174 PMCID: PMC9536727 DOI: 10.36628/ijhf.2020.0029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Whereas traditional understanding of left ventricular afterload was focused on a steady-state circulation model with continuous pressures and flow, a more realistic concept is emerging, taking the pulsatile nature of the heart and the arterial system into account. The most simple measure of pulsatility is brachial pulse pressure, representing the pulsatility fluctuating around the mean blood pressure level. Brachial pulse pressure is widely available, fundamentally associated with the development and treatment of heart failure (HF), but its analysis is often confounded in patients with established HF. The next step of analysis consists of arterial stiffness, central (rather than brachial) pressures, and of wave reflections. The latter are closely related to left ventricular late systolic afterload, ventricular remodeling, diastolic dysfunction, exercise capacity, and, in the long term, the risk of new-onset HF. Wave reflection may also evolve as a suitable therapeutic target for HF with preserved and reduced ejection fraction. A full understanding of ventricular-arterial coupling, however, requires dedicated analysis of time-resolved pressure and flow signals. This review provides a summary of current understanding of pulsatile hemodynamics in HF.
Collapse
|
22
|
Weber T, Chirinos JA. Pulsatile arterial haemodynamics in heart failure. Eur Heart J 2019; 39:3847-3854. [PMID: 29947746 DOI: 10.1093/eurheartj/ehy346] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Due to the cyclic function of the human heart, pressure and flow in the circulation are pulsatile rather than continuous. Addressing pulsatile haemodynamics starts with the most convenient measurement, brachial pulse pressure, which is widely available, related to development and treatment of heart failure (HF), but often confounded in patients with established HF. The next level of analysis consists of central (rather than brachial) pressures and, more importantly, of wave reflections. The latter are closely related to left ventricular late systolic afterload, ventricular remodelling, diastolic dysfunction, exercise capacity, and, in the long-term, the risk of new-onset HF. Wave reflection may also represent a suitable therapeutic target. Treatments for HF with preserved and reduced ejection fraction, based on a reduction of wave reflection, are emerging. A full understanding of ventricular-arterial coupling, however, requires dedicated analysis of time-resolved pressure and flow signals, which can be readily accomplished with contemporary non-invasive imaging and modelling techniques. This review provides a summary of our current understanding of pulsatile haemodynamics in HF.
Collapse
Affiliation(s)
- Thomas Weber
- Department of Cardiology, Klinikum Wels-Grieskirchen, Austria
| | - Julio A Chirinos
- University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Leite S, Cerqueira RJ, Ibarrola J, Fontoura D, Fernández-Celis A, Zannad F, Falcão-Pires I, Paulus WJ, Leite-Moreira AF, Rossignol P, López-Andrés N, Lourenço AP. Arterial Remodeling and Dysfunction in the ZSF1 Rat Model of Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 2019; 12:e005596. [PMID: 31525070 DOI: 10.1161/circheartfailure.118.005596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The interplay between the stiffened heart and vessels has long been viewed as a core mechanism in heart failure with preserved ejection fraction, but the incremental vascular molecular remodeling mechanisms from systemic arterial hypertension to heart failure with preserved ejection fraction remain poorly investigated. Our aim was to characterize central arterial remodeling and dysfunction in ZSF1 obese rats and to compare it with hypertensive ZSF1 lean and healthy Wistar-Kyoto controls. METHODS AND RESULTS Twenty-week-old male ZSF1 obese (n=9), lean (n=9), and Wistar-Kyoto rats (n=9) underwent left ventricular pressure-volume loop evaluation and synchronous acquisition of ascending aortic flow and pressure. Aortic rings underwent functional evaluation, histology, and molecular biology studies. Although mean arterial pressure, characteristic aortic impedance, and reactivity to phenylephrine were similarly increased in hypertensive ZSF1 lean and obese, only ZSF1 obese showed impaired relaxation and upward-shifted end-diastolic pressure-volume relationships despite preserved systolic function indexes, denoting heart failure with preserved ejection fraction. ZSF1 obese phenotype further showed decreased aortic compliance, increased wave reflection, and impaired direct NO donor and endothelial-mediated vasodilation which were accompanied on structural and molecular grounds by aortic media thickening, higher collagen content and collagen/elastin ratio, increased fibronectin and α-5 integrin protein expression and upregulated TGF (transforming growth factor)-β and CTGF (connective tissue growth factor) levels. CONCLUSIONS Functional, molecular, and structural disturbances of central vessels and their potentially underlying pathways were newly characterized in experimental heart failure with preserved ejection fraction rendering the ZSF1 obese rat model suitable for preclinical testing.
Collapse
Affiliation(s)
- Sara Leite
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal (S.L., R.C., D.F., I.F.-P., A.F.L.-M., A.P.L.)
| | - Rui J Cerqueira
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal (S.L., R.C., D.F., I.F.-P., A.F.L.-M., A.P.L.).,Department of Cardiothoracic Surgery (R.C., A.F.L.-M.), São João Hospital Centre, Porto, Portugal
| | - Jaime Ibarrola
- Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (J.I., A.F.-C., N.L.-A.)
| | - Dulce Fontoura
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal (S.L., R.C., D.F., I.F.-P., A.F.L.-M., A.P.L.)
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (J.I., A.F.-C., N.L.-A.)
| | - Faiez Zannad
- INSERM, Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116 Université de Lorraine, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, Nancy, France (F.Z., P.R., N.L.-A.)
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal (S.L., R.C., D.F., I.F.-P., A.F.L.-M., A.P.L.)
| | - Walter J Paulus
- Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands (W.J.P.)
| | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal (S.L., R.C., D.F., I.F.-P., A.F.L.-M., A.P.L.).,Department of Cardiothoracic Surgery (R.C., A.F.L.-M.), São João Hospital Centre, Porto, Portugal
| | - Patrick Rossignol
- INSERM, Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116 Université de Lorraine, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, Nancy, France (F.Z., P.R., N.L.-A.)
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (J.I., A.F.-C., N.L.-A.).,INSERM, Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116 Université de Lorraine, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, Nancy, France (F.Z., P.R., N.L.-A.)
| | - André P Lourenço
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal (S.L., R.C., D.F., I.F.-P., A.F.L.-M., A.P.L.).,Department of Anesthesiology (A.P.L.), São João Hospital Centre, Porto, Portugal
| |
Collapse
|
24
|
Narvaez-Guerra O, Herrera-Enriquez K, Medina-Lezama J, Chirinos JA. Systemic Hypertension at High Altitude. Hypertension 2019; 72:567-578. [PMID: 30354760 DOI: 10.1161/hypertensionaha.118.11140] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Offdan Narvaez-Guerra
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Karela Herrera-Enriquez
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Josefina Medina-Lezama
- From the Santa María Catholic University and PREVENCION Research Institute, Arequipa, Peru (O.N.-G., K.H.-E., J.M.-L.)
| | - Julio A Chirinos
- University of Pennsylvania Perelman School of Medicine and Hospital of the University of Pennsylvania, Philadelphia (J.A.C.)
| |
Collapse
|
25
|
Mulkareddy V, Racette SB, Coggan AR, Peterson LR. Dietary nitrate's effects on exercise performance in heart failure with reduced ejection fraction (HFrEF). Biochim Biophys Acta Mol Basis Dis 2019; 1865:735-740. [PMID: 30261290 PMCID: PMC6401215 DOI: 10.1016/j.bbadis.2018.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
Heart failure with reduced ejection fraction (HFrEF) is a deadly and disabling disease. A key derangement contributing to impaired exercise performance in HFrEF is decreased nitric oxide (NO) bioavailability. Scientists recently discovered the inorganic nitrate pathway for increasing NO. This has advantages over organic nitrates and NO synthase production of NO. Small studies using beetroot juice as a source of inorganic nitrate demonstrate its power to improve exercise performance in HFrEF. A larger-scale trial is now underway to determine if inorganic nitrate may be a new arrow for physicians' quiver of HFrEF treatments.
Collapse
Affiliation(s)
- Vinaya Mulkareddy
- The Department of Medicine, 4960 Children's Place, Campus Box 8066, St. Louis, MO 63110, USA.
| | - Susan B Racette
- The Department of Medicine, 4960 Children's Place, Campus Box 8066, St. Louis, MO 63110, USA; Program in Physical Therapy, Washington University School of Medicine, Campus Box 8502, 4444 Forest Park Ave., St. Louis, MO 63108-2212, USA.
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University Purdue University Indianapolis, 901 West New York Street, Indianapolis, IN 46202, USA; Department of Cellular and Integrative Physiology, Indiana University Purdue University Indianapolis, 901 West New York Street, Indianapolis, IN 46202, USA.
| | - Linda R Peterson
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
26
|
Ikonomidis I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA, De Carlo M, Delgado V, Lancellotti P, Lekakis J, Mohty D, Nihoyannopoulos P, Parissis J, Rizzoni D, Ruschitzka F, Seferovic P, Stabile E, Tousoulis D, Vinereanu D, Vlachopoulos C, Vlastos D, Xaplanteris P, Zimlichman R, Metra M. The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur J Heart Fail 2019; 21:402-424. [PMID: 30859669 DOI: 10.1002/ejhf.1436] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Ventricular-arterial coupling (VAC) plays a major role in the physiology of cardiac and aortic mechanics, as well as in the pathophysiology of cardiac disease. VAC assessment possesses independent diagnostic and prognostic value and may be used to refine riskstratification and monitor therapeutic interventions. Traditionally, VAC is assessed by the non-invasive measurement of the ratio of arterial (Ea) to ventricular end-systolic elastance (Ees). With disease progression, both Ea and Ees may become abnormal and the Ea/Ees ratio may approximate its normal values. Therefore, the measurement of each component of this ratio or of novel more sensitive markers of myocardial (e.g. global longitudinal strain) and arterial function (e.g. pulse wave velocity) may better characterize VAC. In valvular heart disease, systemic arterial compliance and valvulo-arterial impedance have an established diagnostic and prognostic value and may monitor the effects of valve replacement on vascular and cardiac function. Treatment guided to improve VAC through improvement of both or each one of its components may delay incidence of heart failure and possibly improve prognosis in heart failure. In this consensus document, we describe the pathophysiology, the methods of assessment as well as the clinical implications of VAC in cardiac diseases and heart failure. Finally, we focus on interventions that may improve VAC and thus modify prognosis.
Collapse
Affiliation(s)
- Ignatios Ikonomidis
- Second Cardiology Department, Echocardiography Department and Laboratory of Preventive Cardiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Victor Aboyans
- Department of Cardiology, Dupuytren University Hospital, Limoges, France.,Inserm 1094, Limoges School of Medicine, Limoges, France
| | - Jacque Blacher
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Paris-Descartes University, Hôtel-Dieu Hospital, AP-HP, Paris, France
| | - Marianne Brodmann
- Division of Angiology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Dirk L Brutsaert
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Julio A Chirinos
- Perelman School of Medicine and Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco De Carlo
- Cardiac Catheterization Laboratory, Cardiothoracic and Vascular Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU SantTilman, Liège, Belgium.,Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| | - John Lekakis
- Second Cardiology Department, Echocardiography Department and Laboratory of Preventive Cardiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dania Mohty
- Department of Cardiology, Dupuytren University Hospital, Limoges, France.,Inserm 1094, Limoges School of Medicine, Limoges, France
| | - Petros Nihoyannopoulos
- NHLI - National Heart and Lung Institute, Imperial College London, London, UK.,1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - John Parissis
- Heart Failure Unit, School of Medicine and Department of Cardiology, National and Kapodistrian University of Athens, Athens University Hospital Attikon, Athens, Greece
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Frank Ruschitzka
- Department of Cardiology, University Hospital, Zurich, University Heart Center, Zurich, Switzerland
| | - Petar Seferovic
- Cardiology Department, Clinical Centre Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Eugenio Stabile
- Department of Advanced Biomedical Sciences, 'Federico II' University, Naples, Italy
| | - Dimitrios Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dragos Vinereanu
- University of Medicine and Pharmacy 'Carol Davila', and Department of Cardiology, University and Emergency Hospital, Bucharest, Romania
| | - Charalambos Vlachopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dimitrios Vlastos
- Second Cardiology Department, Echocardiography Department and Laboratory of Preventive Cardiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiotis Xaplanteris
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Reuven Zimlichman
- Department of Medicine and Hypertension Institute, Brunner Institute for Cardiovascular Research, Sackler Faculty of Medicine, The E. Wolfson Medical Center, Institute for Quality in Medicine, Israeli Medical Association, Tel Aviv University, Tel Aviv, Israel
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
27
|
Chirinos JA, Akers SR, Schelbert E, Snyder BS, Witschey WR, Jacob RM, Jamis‐Dow C, Ansari B, Lee J, Segers P, Schnall M, Cavalcante JL. Arterial Properties as Determinants of Left Ventricular Mass and Fibrosis in Severe Aortic Stenosis: Findings From ACRIN PA 4008. J Am Heart Assoc 2019; 8:e03742. [PMID: 30590991 PMCID: PMC6405727 DOI: 10.1161/jaha.118.010271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022]
Abstract
Background The role of arterial load in severe aortic stenosis is increasingly recognized. However, patterns of pulsatile load and their implications in this population are unknown. We aimed to assess the relationship between the arterial properties and both (1) left ventricular remodeling and fibrosis and (2) the clinical course of patients with severe aortic stenosis undergoing aortic valve replacement ( AVR ). Methods and Results We enrolled 38 participants with symptomatic severe aortic stenosis scheduled to undergo surgical AVR . Aortic root characteristic impedance, wave reflections parameters (reflection magnitude, reflected wave transit time), and myocardial extracellular mass were measured with cardiac magnetic resonance imaging and arterial tonometry Cardiac magnetic resonance imaging was repeated at 6 months in 30 participants. A reduction in cellular mass (133.6 versus 113.9 g; P=0.002) but not extracellular mass (42.3 versus 40.6 g; P=0.67) was seen after AVR . Participants with higher extracellular mass exhibited greater reflection magnitude (0.68 versus 0.54; P=0.006) and lower aortic root characteristic impedance (56.3 versus 96.9 dynes/s per cm5; P=0.006). Reflection magnitude was a significant predictor of smaller improvement in the quality of life (Kansas City Cardiomyopathy Questionnaire score) after AVR ( R=-0.51; P=0.0026). The 6-minute walk distance at 6 months after AVR was positively correlated with the reflected wave transit time ( R=0.52; P=0.01). Conclusions Consistent with animal studies, arterial wave reflections are associated with interstitial volume expansion in severe aortic stenosis and predict a smaller improvement in quality of life following AVR . Future trials should assess whether wave reflections represent a potential therapeutic target to mitigate myocardial interstitial remodeling and to improve the clinical status of this patient population.
Collapse
Affiliation(s)
- Julio A. Chirinos
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
| | - Scott R. Akers
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
- Department of RadiologyCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPA
| | - Erik Schelbert
- Department of Cardiovascular MedicineUniversity of Pittsburgh Medical CenterPittsburghPA
| | - Bradley S. Snyder
- Center for Statistical SciencesBrown University School of Public HealthProvidenceRI
| | - Walter R. Witschey
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
| | - Ron M. Jacob
- Department of Cardiovascular MedicineLancaster General Health, Penn MedicineLancasterPA
| | - Carlos Jamis‐Dow
- Department of Cardiovascular MedicinePenn State Milton S. Hershey Medical CenterHersheyPA
| | - Bilal Ansari
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
| | - Jonathan Lee
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
| | - Patrick Segers
- Biofluid, Tissue, and Solid Mechanics for Medical Applications, IBiTechGhent UniversityGhentBelgium
| | - Mitchell Schnall
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
| | - João L. Cavalcante
- Department of Cardiovascular MedicineUniversity of Pittsburgh Medical CenterPittsburghPA
| |
Collapse
|
28
|
Dinatolo E, Sciatti E, Anker MS, Lombardi C, Dasseni N, Metra M. Updates in heart failure: what last year brought to us. ESC Heart Fail 2018; 5:989-1007. [PMID: 30570225 PMCID: PMC6300825 DOI: 10.1002/ehf2.12385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Elisabetta Dinatolo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Edoardo Sciatti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Markus S. Anker
- Division of Cardiology and Metabolism, Department of Cardiology, Berlin‐Brandenburg Center for Regenerative Therapies (BCRT), DZHK (German Centre for Cardiovascular Research), partner site BerlinCharité—Universitätsmedizin BerlinBerlinGermany
| | - Carlo Lombardi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Nicolò Dasseni
- Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| |
Collapse
|
29
|
Clifford T, Babateen A, Shannon OM, Capper T, Ashor A, Stephan B, Robinson L, O'Hara JP, Mathers JC, Stevenson E, Siervo M. Effects of inorganic nitrate and nitrite consumption on cognitive function and cerebral blood flow: A systematic review and meta-analysis of randomized clinical trials. Crit Rev Food Sci Nutr 2018; 59:2400-2410. [PMID: 29617153 DOI: 10.1080/10408398.2018.1453779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We conducted a systematic review and meta-analysis of randomized clinical trials examining the effect of inorganic nitrate or nitrite supplementation on cognitive function (CF) and cerebral blood flow (CBF). Two databases (PubMed, Embase) were searched for articles from inception until May 2017. Inclusion criteria were: randomized clinical trials; participants >18 years old; trials comparing a nitrate/nitrite intervention with a control. Thirteen and nine trials were included in the meta-analysis to assess CF and CBF, respectively. Random-effects models were used and the effect size described as standardized mean differences (SMDs). A total of 297 participants (median of 23 per trial) were included for CF; 163 participants (median of 16 per trial) were included for CBF. Nitrate/nitrite supplementation did not influence CF (SMD +0.06, 95% CI: -0.06, 0.18, P = 0.32) or CBF under resting (SMD +0.14, 95% CI: -0.13, 0.41, P = 0.31), or stimulated conditions (SMD + 0.23, 95% CI: -0.11, 0.56, P = 0.19). The meta-regression showed an inverse association between duration of the intervention and CBF (P = 0.02) but no influence of age, BMI or dose (P < 0.05). Nitrate and nitrite supplementation did not modify CBF or CF. Further trials employing larger samples sizes and interventions with longer duration are warranted.
Collapse
Affiliation(s)
- Tom Clifford
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK
| | - Abrar Babateen
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK.,b Faculty of Applied Medical Sciences, Clinical Nutrition Department, Umm Al-Qura University , Makkah , Saudi Arabia
| | - Oliver M Shannon
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK.,c Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University , Leeds , UK
| | - Tess Capper
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK
| | - Ammar Ashor
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK.,d College of Medicine, University of Al-Mustansiriyah , Baghdad , Iraq
| | - Blossom Stephan
- e Institute of Health and Society, Newcastle University , Newcastle upon Tyne , UK
| | - Louise Robinson
- e Institute of Health and Society, Newcastle University , Newcastle upon Tyne , UK
| | - John P O'Hara
- c Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University , Leeds , UK
| | - John C Mathers
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK
| | - Emma Stevenson
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK
| | - Mario Siervo
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK
| |
Collapse
|
30
|
Does dietary nitrate say NO to cardiovascular ageing? Current evidence and implications for research. Proc Nutr Soc 2018; 77:112-123. [DOI: 10.1017/s0029665118000058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CVD are characterised by a multi-factorial pathogenesis. Key pathogenetic steps in the development of CVD are the occurrence of endothelial dysfunction and formation of atherosclerotic lesions. Reduced nitric oxide (NO) bioavailability is a primary event in the initiation of the atherosclerotic cascade. NO is a free radical with multiple physiological functions including the regulation of vascular resistance, coagulation, immunity and oxidative metabolism. The synthesis of NO proceeds via two distinct pathways identified as enzymatic and non-enzymatic. The former involves the conversion of arginine into NO by the NO synthases, whilst the latter comprises a two-step reducing process converting inorganic nitrate $({\rm NO}_3^ - )$ into nitrite and subsequently NO.Inorganic ${\rm NO}_3^ - $ is present in water and food, particularly beetroot and green leafy vegetables. Several investigations have therefore used the non-enzymatic NO pathway as a target for nutritional supplementation (${\rm NO}_3^ - $ salts) or dietary interventions (high-${\rm NO}_3^ - $ foods) to increase NO bioavailability and impact on cardiovascular outcomes. Some studies have reported positive effects of dietary ${\rm NO}_3^ - $ on systolic blood pressure and endothelial function in patients with hypertension and chronic heart failure. Nevertheless, results have been inconsistent and the size of the effect appears to be declining in older individuals. Additionally, there is a paucity of studies for disorders such as diabetes, CHD and chronic kidney failure. Thus, whilst dietary ${\rm NO}_3^ - $ supplementation could represent an effective and viable strategy for the primary and secondary prevention of age-related cardiovascular and metabolic diseases, more large-scale, robust studies are awaited to confirm or refute this notion.
Collapse
|
31
|
Londono-Hoyos F, Zamani P, Beraun M, Vasim I, Segers P, Chirinos JA. Effect of organic and inorganic nitrates on cerebrovascular pulsatile power transmission in patients with heart failure and preserved ejection fraction. Physiol Meas 2018; 39:044001. [PMID: 29488900 DOI: 10.1088/1361-6579/aab2ef] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Increased penetration of pulsatile power to the brain has been implicated in the pathogenesis of age-related cognitive dysfunction and dementia, a common comorbidity in patients with heart failure and preserved ejection fraction (HFpEF). However, there is a lack of knowledge on the effects of organic and inorganic nitrates administration in this population on the power carried by pressure and flow waves traveling through the proximal aorta and penetrating the carotid artery into the brain microvasculature. APPROACH We assessed aortic and carotid hemodynamics non-invasively in two sub-studies: (1) at baseline and after administration of 0.4 mg of sublingual nitroglycerine (an organic nitrate; n = 26); and (2) in a randomized controlled trial of placebo (PB) versus inorganic nitrate administration (beetroot-juice (BR), 12.9 mmol NO3; n = 16). MAIN RESULTS Wave and hydraulic power analysis demonstrated that NTG increased total hydraulic power (from 5.68% at baseline to 8.62%, P = 0.001) and energy penetration (from 8.69% to 11.63%; P = 0.01) from the aorta to the carotid, while inorganic nitrate administration did not induce significant changes in aortic and carotid wave power (power: 5.49%PB versus 6.25%BR, P = 0.49; energy: 8.89%PB versus 10.65%BR, P = 0.27). SIGNIFICANCE Organic nitrates, but not inorganic nitrates, increase the amount of hydraulic energy transmitted into the carotid artery in subjects with HFpEF. These findings may have implications for the adverse effect profiles of these agents (such as the differential incidence of headaches) and for the pulsatile hemodynamic stress of the brain microvasculature in this patient population.
Collapse
Affiliation(s)
- Francisco Londono-Hoyos
- University of Pennsylvania Perelman School of Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America. Institute Biomedical Technology (IBiTech)-bioMMeda Research Group-Ghent University, Ghent, Belgium. FLH and PZ contributed equally to this manuscript
| | | | | | | | | | | |
Collapse
|
32
|
Chirinos JA. The Nitrate-Nitrite-NO Pathway as a Novel Therapeutic Target in Heart Failure with Reduced Ejection Fraction. J Card Fail 2018; 24:74-77. [DOI: 10.1016/j.cardfail.2017.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 11/26/2022]
|
33
|
Metra M. November 2017 at a glance: quality of care and disease management. Eur J Heart Fail 2017; 19:1351-1352. [PMID: 29143470 DOI: 10.1002/ejhf.1074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/10/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Italy
| |
Collapse
|
34
|
Van Iterson EH, Olson TP. Therapeutic Targets for the Multi-system Pathophysiology of Heart Failure: Exercise Training. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:87. [DOI: 10.1007/s11936-017-0585-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Patel JN, Shah SJ. Inorganic vs. organic nitrates for heart failure with preserved ejection fraction: it's not all in your head! Eur J Heart Fail 2017; 19:1516-1519. [PMID: 28891242 DOI: 10.1002/ejhf.966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/23/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jay N Patel
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Peoria, IL, USA
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
36
|
Deep Phenotyping of Systemic Arterial Hemodynamics in HFpEF (Part 2): Clinical and Therapeutic Considerations. J Cardiovasc Transl Res 2017; 10:261-274. [PMID: 28401511 DOI: 10.1007/s12265-017-9736-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/30/2017] [Indexed: 01/09/2023]
Abstract
Multiple phase III trials over the last few decades have failed to demonstrate a clear benefit of various pharmacologic interventions in heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF). Therefore, a better understanding of its pathophysiology is important. An accompanying review describes key technical and physiologic aspects regarding the deep phenotyping of arterial hemodynamics in HFpEF. This review deals with the potential of this approach to enhance our clinical, translational, and therapeutic approach to HFpEF. Specifically, the role of arterial hemodynamics is discussed in relation to (1) the pathophysiology of left ventricular diastolic dysfunction, remodeling, and fibrosis, (2) impaired oxygen delivery to peripheral skeletal muscle, which affects peripheral oxygen extraction, (3) the frequent presence of comorbidities, such as renal failure and dementia in this population, and (4) the potential to enhance precision medicine approaches. A therapeutic approach to target arterial hemodynamic abnormalities that are prevalent in this population (particularly, with inorganic nitrate/nitrite) is also discussed.
Collapse
|