1
|
Chen L, Liu Y, Li H, Lin S, Wang X, Fang J, Diao X, Wang L, Yang Z, Cai Z. Size-Dependent Pulmonary Toxicity and Whole-Body Distribution of Inhaled Micro/Nanoplastic Particles in Male Mice from Chronic Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6993-7003. [PMID: 40181497 DOI: 10.1021/acs.est.4c14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The ubiquitous presence of micro/nanoplastics (MP/NP) in the atmosphere has raised significant concerns about their potential health risks through inhalation, yet the effects of natural respiratory exposure remain underexplored. This study addresses this critical knowledge void by utilizing a whole-body inhalation exposure system to investigate the distribution, accumulation, and pulmonary toxicity of polystyrene MP/NP (1.5 × 105 particles/m3) in male ICR mice (n = 16/group). Fluorescently labeled MP/NP revealed the highest particle accumulation in the lungs, followed by the bloodstream and spleen, with minimal detection in the brain. Unsurprisingly, 80 nm nanoplastics displayed greater intertissue transport efficiency than 1 μm microplastics. Chronic exposure to both microplastics and nanoplastics disrupted oxidative balance and exacerbated oxidative stress within the extracellular environment of the lungs. The impaired antioxidant defenses and disrupted intra- and extracellular metabolism led to inflammation, apoptosis, and fibrosis. Intriguingly, 1 μm microplastics induced more severe pulmonary toxicity than their smaller counterparts, promoting epithelial-mesenchymal transition and fibrosis. These findings underscore the need for a nuanced understanding of size-dependent toxicities of inhalable plastic particles and highlight the health risks posed by airborne MP/NP.
Collapse
Affiliation(s)
- Leijian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yu Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huankai Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Siyi Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiaoxiao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jiacheng Fang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xin Diao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
2
|
Yao S, Weng D, Wang Y, Zhang Y, Huang Q, Wu K, Li H, Zhang X, Yin Y, Xu W. The preprogrammed anti-inflammatory phenotypes of CD11c high macrophages by Streptococcus pneumoniae aminopeptidase N safeguard from allergic asthma. J Transl Med 2023; 21:898. [PMID: 38082290 PMCID: PMC10712085 DOI: 10.1186/s12967-023-04768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Early microbial exposure is associate with protective allergic asthma. We have previously demonstrated that Streptococcus pneumoniae aminopeptidase N (PepN), one of the pneumococcal components, inhibits ovalbumin (OVA) -induced airway inflammation in murine models of allergic asthma, but the underlying mechanism was incompletely determined. METHODS BALB/c mice were pretreated with the PepN protein and exposed intranasally to HDM allergen. The anti-inflammatory mechanisms were investigated using depletion and adoptive transfer experiments as well as transcriptome analysis and isolated lung CD11chigh macrophages. RESULTS We found pretreatment of mice with PepN promoted the proliferation of lung-resident F4/80+CD11chigh macrophages in situ but also mobilized bone marrow monocytes to infiltrate lung tissue that were then transformed into CD11high macrophages. PepN pre-programmed the macrophages during maturation to an anti-inflammatory phenotype by shaping the metabolic preference for oxidative phosphorylation (OXPHOS) and also inhibited the inflammatory response of macrophages by activating AMP-activated protein kinase. Furthermore, PepN treated macrophages also exhibited high-level costimulatory signaling molecules which directed the differentiation into Treg. CONCLUSION Our results demonstrated that the expansion of CD11chigh macrophages in lungs and the OXPHOS metabolic bias of macrophages are associated with reduced allergic airway inflammation after PepN exposure, which paves the way for its application in preventing allergic asthma.
Collapse
Affiliation(s)
- Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Laboratory Medicine, The First People's Hospital of Zunyi City (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, China
| | - Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, The First People's Hospital of Zunyi City (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, China
| | - Honghui Li
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Graf J, Trautmann-Rodriguez M, Sabnis S, Kloxin AM, Fromen CA. On the path to predicting immune responses in the lung: Modeling the pulmonary innate immune system at the air-liquid interface (ALI). Eur J Pharm Sci 2023; 191:106596. [PMID: 37770004 PMCID: PMC10658361 DOI: 10.1016/j.ejps.2023.106596] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Chronic respiratory diseases and infections are among the largest contributors to death globally, many of which still have no cure, including chronic obstructive pulmonary disorder, idiopathic pulmonary fibrosis, and respiratory syncytial virus among others. Pulmonary therapeutics afford untapped potential for treating lung infection and disease through direct delivery to the site of action. However, the ability to innovate new therapeutic paradigms for respiratory diseases will rely on modeling the human lung microenvironment and including key cellular interactions that drive disease. One key feature of the lung microenvironment is the air-liquid interface (ALI). ALI interface modeling techniques, using cell-culture inserts, organoids, microfluidics, and precision lung slices (PCLS), are rapidly developing; however, one major component of these models is lacking-innate immune cell populations. Macrophages, neutrophils, and dendritic cells, among others, represent key lung cell populations, acting as the first responders during lung infection or injury. Innate immune cells respond to and modulate stromal cells and bridge the gap between the innate and adaptive immune system, controlling the bodies response to foreign pathogens and debris. In this article, we review the current state of ALI culture systems with a focus on innate immune cells and suggest ways to build on current models to add complexity and relevant immune cell populations.
Collapse
Affiliation(s)
- Jodi Graf
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Simone Sabnis
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
4
|
Sudduth ER, Trautmann-Rodriguez M, Gill N, Bomb K, Fromen CA. Aerosol pulmonary immune engineering. Adv Drug Deliv Rev 2023; 199:114831. [PMID: 37100206 PMCID: PMC10527166 DOI: 10.1016/j.addr.2023.114831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Aerosolization of immunotherapies poses incredible potential for manipulating the local mucosal-specific microenvironment, engaging specialized pulmonary cellular defenders, and accessing mucosal associated lymphoid tissue to redirect systemic adaptive and memory responses. In this review, we breakdown key inhalable immunoengineering strategies for chronic, genetic, and infection-based inflammatory pulmonary disorders, encompassing the historic use of immunomodulatory agents, the transition to biological inspired or derived treatments, and novel approaches of complexing these materials into drug delivery vehicles for enhanced release outcomes. Alongside a brief description of key immune targets, fundamentals of aerosol drug delivery, and preclinical pulmonary models for immune response, we survey recent advances of inhaled immunotherapy platforms, ranging from small molecules and biologics to particulates and cell therapies, as well as prophylactic vaccines. In each section, we address the formulation design constraints for aerosol delivery as well as advantages for each platform in driving desirable immune modifications. Finally, prospects of clinical translation and outlook for inhaled immune engineering are discussed.
Collapse
Affiliation(s)
- Emma R Sudduth
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Nicole Gill
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kartik Bomb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
5
|
Patoine D, Bouchard K, Blais-Lecours P, Courtemanche O, Huppé CA, Marsolais D, Bissonnette EY, Lauzon-Joset JF. CD200Fc limits dendritic cell and B-cell activation during chronic allergen exposures. J Leukoc Biol 2023; 114:84-91. [PMID: 37032534 DOI: 10.1093/jleuko/qiad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 04/11/2023] Open
Abstract
Allergic asthma is a chronic inflammatory disease characterized by Th2, conventional dendritic cell, and B-cell activation. In addition to excessive inflammation, asthma pathogenesis includes dysregulation of anti-inflammatory pathways, such as the CD200/CD200R pathway. Thus, we investigated whether a CD200R agonist, CD200Fc, could disrupt the inflammatory cascade in chronic allergic asthma pathogenesis using a mice model of experimental asthma. Mice were exposed to house dust mites for 5 wk, and CD200Fc treatment was initiated after chronic inflammation was established (starting on week 4). We demonstrate that chronic house dust mite exposure altered CD200 and CD200R expression on lung immune cell populations, including upregulation of CD200 on alveolar macrophages and reduced expression of CD200 on conventional dendritic cells. CD200Fc treatment does not change bronchoalveolar cellular infiltration, but it attenuates B-cell activation and skews the circulating immunoglobulin profile toward IgG2a. This is accompanied by reduced activation of conventional dendritic cells, including lower expression of CD40, especially on conventional dendritic cell subset 2 CD200R+. Furthermore, we confirm that CD200Fc can directly modulate conventional dendritic cell activation in vitro using bone marrow-derived dendritic cells. Thus, the CD200/CD200R pathway is dysregulated during chronic asthma pathogenesis, and the CD200R agonist modulates B-cell and dendritic cell activation but, in our chronic model, is not sufficient to alter inflammation measured in bronchoalveolar lavage.
Collapse
Affiliation(s)
- Dany Patoine
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Karine Bouchard
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Pascale Blais-Lecours
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Olivier Courtemanche
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Carole-Ann Huppé
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - David Marsolais
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, 325 Rue de l'Université, Québec, QC, G1V 0A6, Canada
| | - Elyse Y Bissonnette
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, 325 Rue de l'Université, Québec, QC, G1V 0A6, Canada
| | - Jean-Francois Lauzon-Joset
- Centre de Recherche, de l'Institut de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, 325 Rue de l'Université, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
6
|
Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease. Immunity 2022; 55:1564-1580. [PMID: 36103853 DOI: 10.1016/j.immuni.2022.08.010] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
Tissue-resident alveolar and interstitial macrophages and recruited macrophages are critical players in innate immunity and maintenance of lung homeostasis. Until recently, assessing the differential functional contributions of tissue-resident versus recruited macrophages has been challenging because they share overlapping cell surface markers, making it difficult to separate them using conventional methods. This review describes how scRNA-seq and spatial transcriptomics can separate these subpopulations and help unravel the complexity of macrophage biology in homeostasis and disease. First, we provide a guide to identifying and distinguishing lung macrophages from other mononuclear phagocytes in humans and mice. Second, we outline emerging concepts related to the development and function of the various lung macrophages in the alveolar, perivascular, and interstitial niches. Finally, we describe how different tissue states profoundly alter their functions, including acute and chronic lung disease, cancer, and aging.
Collapse
Affiliation(s)
- Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
7
|
Intratracheal administration of mesenchymal stem cells modulates lung macrophage polarization and exerts anti-asthmatic effects. Sci Rep 2022; 12:11728. [PMID: 35821386 PMCID: PMC9276742 DOI: 10.1038/s41598-022-14846-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess immunomodulatory properties that have therapeutic potential for the treatment of inflammatory diseases. This study investigates the effects of direct MSC administration on asthmatic airways. Umbilical cord MSCs (ucMSCs) were intratracheally administered to six-week-old female BALB/c mice sensitized and challenged with ovalbumin; airway hyperresponsiveness (AHR), analyses of airway inflammatory cells, lung histology, flow cytometry, and quantitative real-time PCR were performed. Furthermore, ex vivo and in vitro experiments were performed to assess the effects of ucMSC on M2 activation. Intratracheally administered ucMSCs decreased degree of airway resistance and the number of inflammatory cells such as T helper 2 (Th2) cells, type 2 innate lymphoid cells (ILC2), and macrophages in the murine asthma model. Particularly, MHCII and CD86 expression diminished in dendritic cells and alveolar macrophages (AMs) following ucMSC treatment. SiglecF+CD11c+CD11b- AMs show a negative correlation with type II inflammatory cells including Th2 cells, ILC2, and eosinophils in asthmatic mice and were restored following intratracheal ucMSCs treatment. In addition, ucMSCs decreased the macrophage polarization to M2, particularly M2a. The expression levels of markers associated with M2 polarization and Th2 inflammation were also decreased. ucMSC reduced Il-12 and Tnfa expression as well as that of M2 markers such as Cd206 and Retnla ex vivo. Furthermore, the in vitro study using IL-4 treated macrophages confirmed that both direct and indirect MSC treatment significantly reduced the expression of Il-5 and Il-13. In conclusion, ucMSCs appear to suppress type II inflammation by regulating lung macrophages via soluble mediators.
Collapse
|
8
|
Weng D, Gao S, Shen H, Yao S, Huang Q, Zhang Y, Huang W, Wang Y, Zhang X, Yin Y, Xu W. CD5L attenuates allergic airway inflammation by expanding CD11c high alveolar macrophages and inhibiting NLRP3 inflammasome activation via HDAC2. Immunology 2022; 167:384-397. [PMID: 35794812 DOI: 10.1111/imm.13543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Allergic asthma is an airway inflammatory disease dominated by type 2 immune responses and there is currently no curative therapy for asthma. CD5-like antigen (CD5L) has been known to be involved in a variety of inflammatory diseases. However, the role of CD5L in allergic asthma remains unclear. In the present study, mice were treated with recombinant CD5L (rCD5L) during house dust mite (HDM) and ovalbumin (OVA) challenge to determine the role of CD5L in allergic asthma, and the underlying mechanism was further explored. Compared with PBS group, serum CD5L levels of asthmatic mice were significantly decreased, and the levels of CD5L in lung tissues and bronchoalveolar lavage fluid (BALF) were significantly increased. CD5L reduced airway inflammation and Th2 immune responses in asthmatic mice. CD5L exerted its anti-inflammatory function by increasing CD11chigh alveolar macrophages (CD11chigh AMs), and the anti-inflammatory role of CD11chigh AMs in allergic asthma was confirmed by CD11chigh AMs depletion and transfer assays. In addition, CD5L increased the CD5L+ macrophages and inhibited NLRP3 inflammasome activation by increasing HDAC2 expression in lung tissues of asthmatic mice. Hence, our study implicates that CD5L has potential usefulness for asthma treatment.
Collapse
Affiliation(s)
- Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Song Gao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, School of Laboratory Medicine, Zunyi Medical University, No. 149 Dalian Road, Zunyi, Guizhou, China
| | - Hailan Shen
- Department of laboratory medicine, the first affiliated hospital of Chongqing medical university
| | - Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenjie Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Melo EM, Oliveira VLS, Boff D, Galvão I. Pulmonary macrophages and their different roles in health and disease. Int J Biochem Cell Biol 2021; 141:106095. [PMID: 34653619 DOI: 10.1016/j.biocel.2021.106095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/20/2022]
Abstract
Macrophages are a heterogeneous population of myeloid cells with phenotype and function modulated according to the microenvironment in which they are found. The lung resident macrophages known as Alveolar Macrophages (AM) and Interstitial Macrophages (IM) are localized in two different compartments. During lung homeostasis, macrophages can remove inhaled particulates, cellular debris and contribute to some metabolic processes. Macrophages may assume a pro-inflammatory phenotype after being classically activated (M1) or anti-inflammatory when being alternatively activated (M2). M1 and M2 have different transcription profiles and act by eliminating bacteria, viruses and fungi from the host or repairing the damage triggered by inflammation, respectively. Nevertheless, macrophages also may contribute to lung damage during persistent inflammation or continuous exposure to antigens. In this review, we discuss the origin and function of pulmonary macrophages in the context of homeostasis, infectious and non-infectious lung diseases.
Collapse
Affiliation(s)
- Eliza Mathias Melo
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Louise Soares Oliveira
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daiane Boff
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Izabela Galvão
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
10
|
Bissonnette EY, Lauzon-Joset JF, Debley JS, Ziegler SF. Cross-Talk Between Alveolar Macrophages and Lung Epithelial Cells is Essential to Maintain Lung Homeostasis. Front Immunol 2020; 11:583042. [PMID: 33178214 PMCID: PMC7593577 DOI: 10.3389/fimmu.2020.583042] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
The main function of the lung is to perform gas exchange while maintaining lung homeostasis despite environmental pathogenic and non-pathogenic elements contained in inhaled air. Resident cells must keep lung homeostasis and eliminate pathogens by inducing protective immune response and silently remove innocuous particles. Which lung cell type is crucial for this function is still subject to debate, with reports favoring either alveolar macrophages (AMs) or lung epithelial cells (ECs) including airway and alveolar ECs. AMs are the main immune cells in the lung in steady-state and their function is mainly to dampen inflammatory responses. In addition, they phagocytose inhaled particles and apoptotic cells and can initiate and resolve inflammatory responses to pathogens. Although AMs release a plethora of mediators that modulate immune responses, ECs also play an essential role as they are more than just a physical barrier. They produce anti-microbial peptides and can secrete a variety of mediators that can modulate immune responses and AM functions. Furthermore, ECs can maintain AMs in a quiescent state by expressing anti-inflammatory membrane proteins such as CD200. Thus, AMs and ECs are both very important to maintain lung homeostasis and have to coordinate their action to protect the organism against infection. Thus, AMs and lung ECs communicate with each other using different mechanisms including mediators, membrane glycoproteins and their receptors, gap junction channels, and extracellular vesicles. This review will revisit characteristics and functions of AMs and lung ECs as well as different communication mechanisms these cells utilize to maintain lung immune balance and response to pathogens. A better understanding of the cross-talk between AMs and lung ECs may help develop new therapeutic strategies for lung pathogenesis.
Collapse
Affiliation(s)
- Elyse Y Bissonnette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Jean-François Lauzon-Joset
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Steven F Ziegler
- Department of Immunology, Benaroya Research Institute, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
11
|
Location, function, and ontogeny of pulmonary macrophages during the steady state. Pflugers Arch 2017; 469:561-572. [DOI: 10.1007/s00424-017-1965-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
|
12
|
Lambrecht BN, Persson EK, Hammad H. Myeloid Cells in Asthma. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mchd-0053-2016. [PMID: 28102118 PMCID: PMC11687443 DOI: 10.1128/microbiolspec.mchd-0053-2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Asthma is a heterogeneous chronic inflammatory disorder of the airways, and not surprisingly, many myeloid cells play a crucial role in pathogenesis. Antigen-presenting dendritic cells are the first to recognize the allergens, pollutants, and viruses that are implicated in asthma pathogenesis, and subsequently initiate the adaptive immune response by migrating to lymph nodes. Eosinophils are the hallmark of type 2 inflammation, releasing toxic compounds in the airways and contributing to airway remodeling. Mast cells and basophils control both the early- and late-phase allergic response and contribute to alterations in smooth muscle reactivity. Finally, relatively little is known about neutrophils and macrophages in this disease. Although many of these myeloid cells respond well to treatment with inhaled steroids, there is now an increasing armamentarium of targeted biologicals that can specifically eliminate only one myeloid cell population, like eosinophils. It is only with those new tools that we will be able to fully understand the role of myeloid cells in chronic asthma in humans.
Collapse
Affiliation(s)
- Bart N Lambrecht
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
- Department of Pulmonary Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Emma K Persson
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
- Department of Pulmonary Medicine, Ghent University Hospital, 9000 Gent, Belgium
| |
Collapse
|
13
|
Abstract
Gene therapy has been considered as the most ideal medical intervention for genetic diseases because it is intended to target the cause of diseases instead of disease symptoms. Availability of techniques for identification of genetic mutations and for in vitro manipulation of genes makes it practical and attractive. After the initial hype in 1990s and later disappointments in clinical trials for more than a decade, light has finally come into the tunnel in recent years, especially in the field of eye gene therapy where it has taken big strides. Clinical trials in gene therapy for retinal degenerative diseases such as Leber's congenital amaurosis (LCA) and choroideremia demonstrated clear therapeutic efficacies without apparent side effects. Although these successful examples are still rare and sporadic in the field, they provide the proof of concept for harnessing the power of gene therapy to treat genetic diseases and to modernize our medication. In addition, those success stories illuminate the path for the development of gene therapy treating other genetic diseases. Because of the differences in target organs and cells, distinct barriers to gene delivery exist in gene therapy for each genetic disease. It is not feasible for authors to review the current development in the entire field. Thus, in this article, we will focus on what we can learn from the current success in gene therapy for retinal degenerative diseases to speed up the gene therapy development for lung diseases, such as cystic fibrosis.
Collapse
|
14
|
Lauzon-Joset JF, Marsolais D, Langlois A, Bissonnette EY. Dysregulation of alveolar macrophages unleashes dendritic cell-mediated mechanisms of allergic airway inflammation. Mucosal Immunol 2014; 7:155-64. [PMID: 23715174 DOI: 10.1038/mi.2013.34] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/24/2013] [Indexed: 02/04/2023]
Abstract
Allergic asthma is a chronic inflammatory disorder characterized by eosinophilia and T helper type 2 (Th2) cell activation. However, little information is available on the mechanisms leading to this pathology. We previously showed that alveolar macrophages (AM) from rats with experimental asthma lose their ability to prevent asthma symptoms. To understand the implication of AM in lung immunity, we investigated the influence of AM sensitization status on lung dendritic cell (DC) activation induced by allergen challenge in vivo. Rat sensitized to ovalbumin developed airway inflammation (eosinophils and Th2 cells) and demonstrated myeloid DC (mDC) activation following allergen exposure. The replacement of AM of sensitized animals by AM from naive animals did not affect allergen-triggered eosinophilia but completely abolished lung mDC allergen capture and migration to the lymph nodes, as well as Th2 cell polarization. Moreover, immunosuppressive functions of naive AM occurred in conjunction with low engulfment of allergens but without variation of major histocompatibility complex II and CD23 expression. Interestingly, sensitized AM that were withdrawn from the inflammatory environment regained their immunosuppressive functions when transferred to sensitized rats. Thus, these are the first in vivo evidences showing that dysregulation of AM functions is sufficient to induce DC-triggered allergic response.
Collapse
Affiliation(s)
- J-F Lauzon-Joset
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Québec, Canada
| | - D Marsolais
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Québec, Canada
| | - A Langlois
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Québec, Canada
| | - E Y Bissonnette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Québec, Canada
| |
Collapse
|
15
|
Mathias LJ, Khong SML, Spyroglou L, Payne NL, Siatskas C, Thorburn AN, Boyd RL, Heng TSP. Alveolar macrophages are critical for the inhibition of allergic asthma by mesenchymal stromal cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:5914-24. [PMID: 24249728 DOI: 10.4049/jimmunol.1300667] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multipotent mesenchymal stromal cells (MSCs) possess reparative and immunoregulatory properties, making them attractive candidates for cellular therapy. However, the majority of MSCs administered i.v. encounter a pulmonary impasse and soon disappear from the lungs, raising the question of how they induce such durable immunosuppressive effects. Using a mouse model of allergic asthma, we show that administration of MSCs isolated from human bone marrow, umbilical cord, or adipose tissue provoked a pronounced increase in alveolar macrophages and inhibited hallmark features of asthma, including airway hyperresponsiveness, eosinophilic accumulation, and Th2 cytokine production. Importantly, selective depletion of this macrophage compartment reversed the therapeutic benefit of MSC treatment on airway hyperresponsiveness. Our data demonstrate that human MSCs exert cross-species immunosuppressive activity, which is mediated by alveolar macrophages in allergic asthma. As alveolar macrophages are the predominant immune effector cells at the air-tissue interface in the lungs, this study provides a compelling mechanism for durable MSC effects in the absence of sustained engraftment.
Collapse
Affiliation(s)
- Louisa J Mathias
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Park MK, NGO V, Kwon YM, Lee YT, Yoo S, Cho YH, Hong SM, Hwang HS, Ko EJ, Jung YJ, Moon DW, Jeong EJ, Kim MC, Lee YN, Jang JH, Oh JS, Kim CH, Kang SM. Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innate immunity. PLoS One 2013; 8:e75368. [PMID: 24124485 PMCID: PMC3790790 DOI: 10.1371/journal.pone.0075368] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/12/2013] [Indexed: 02/02/2023] Open
Abstract
Lactobacillus plantarum DK119 (DK119) isolated from the fermented Korean cabbage food was used as a probiotic to determine its antiviral effects on influenza virus. DK119 intranasal or oral administration conferred 100% protection against subsequent lethal infection with influenza A viruses, prevented significant weight loss, and lowered lung viral loads in a mouse model. The antiviral protective efficacy was observed in a dose and route dependent manner of DK119 administration. Mice that were treated with DK119 showed high levels of cytokines IL-12 and IFN-γ in bronchoalveolar lavage fluids, and a low degree of inflammation upon infection with influenza virus. Depletion of alveolar macrophage cells in lungs and bronchoalveolar lavages completely abrogated the DK119-mediated protection. Modulating host innate immunity of dendritic and macrophage cells, and cytokine production pattern appeared to be possible mechanisms by which DK119 exhibited antiviral effects on influenza virus infection. These results indicate that DK119 can be developed as a beneficial antiviral probiotic microorganism.
Collapse
Affiliation(s)
- Min-Kyung Park
- Department of Human Nutrition and Food Science, Chungwoon University, Namjang-Ri, Hongsung-Eup, Hongsung-Kun, Chungnam, Korea
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Vu NGO
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Sieun Yoo
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Young-Hee Cho
- Department of Animal Resource Science, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, Korea
| | - Sung-Moon Hong
- Department of Animal Resource Science, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, Korea
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Dae-Won Moon
- Tobico Inc. Chungnam Techno Park, Jiksan-Eup, Seobuk-Gu, Cheonan-Si, Chungnam, Korea
| | - Eun-Ji Jeong
- Tobico Inc. Chungnam Techno Park, Jiksan-Eup, Seobuk-Gu, Cheonan-Si, Chungnam, Korea
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Ji-Hun Jang
- Tobico Inc. Chungnam Techno Park, Jiksan-Eup, Seobuk-Gu, Cheonan-Si, Chungnam, Korea
| | - Joon-Suk Oh
- Tobico Inc. Chungnam Techno Park, Jiksan-Eup, Seobuk-Gu, Cheonan-Si, Chungnam, Korea
| | - Cheol-Hyun Kim
- Department of Animal Resource Science, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Coleman MM, Ruane D, Moran B, Dunne PJ, Keane J, Mills KHG. Alveolar macrophages contribute to respiratory tolerance by inducing FoxP3 expression in naive T cells. Am J Respir Cell Mol Biol 2013; 48:773-80. [PMID: 23492186 DOI: 10.1165/rcmb.2012-0263oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alveolar macrophages (AMs) from mice and humans have long been known to contribute to maintaining tolerance in the lung. Studies have shown that AMs can induce anergy in CD4(+) T cells. Nitric oxide, prostaglandins, and leukotrienes have been implicated in AM-mediated tolerance. However, it remains unclear what effect, if any, AMs exert on FoxP3 induction in CD4(+) T cells from mice and humans, and whether or not other immunomodulators might play a role. AMs were isolated from bronchoalveolar lavage (BAL) fluid from either mice or humans, and cocultured with enriched naive CD4(+)FoxP3(-) T cells. We show here for the first time that AMs and AM-conditioned media (AM-CM) from mice and humans induced FoxP3 expression in naive CD4(+) T cells in vitro, an outcome that was reversed in part either by inhibiting retinoic acid (RA) binding to its receptor (RAR), or by blocking transforming growth factor (TGF)-β₁ signaling. A nasal administration of the RAR antagonist reduced the frequencies of CD4(+)FoxP3(+) T cells in the lungs of mice after aerosol challenge with Bordetella pertussis. In addition, we found that the intranasal vaccination of mice with ovalbumin (OVA) protein in conjunction with an RAR inhibitor led to a significant increase in OVA-specific serum IgE. Our findings suggest that AMs can mediate tolerance in the lungs of mice and humans via RA and TGF-β₁. These data may have implications in the development of nasal vaccines in the future.
Collapse
Affiliation(s)
- Michelle M Coleman
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
18
|
Mizutani N, Nabe T, Yoshino S. Interleukin-33 and alveolar macrophages contribute to the mechanisms underlying the exacerbation of IgE-mediated airway inflammation and remodelling in mice. Immunology 2013; 139:205-18. [PMID: 23323935 DOI: 10.1111/imm.12071] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/10/2013] [Accepted: 01/10/2013] [Indexed: 02/07/2023] Open
Abstract
Allergen-specific IgE has long been regarded as a major molecular component of allergic asthma. Additionally, there is increasing evidence of the important roles of interleukin-33 (IL-33) in the disease. Here, we show that IL-33 and alveolar macrophages play essential roles in the exacerbation of IgE-mediated airway inflammation and remodelling. BALB/c mice passively sensitized with ovalbumin (OVA)-specific IgE monoclonal antibody (mAb) were challenged with OVA seven times intratracheally. The seventh challenge exacerbated airway inflammation and remodelling compared with the fourth challenge; furthermore, markedly increased expression of IL-33 in the lungs was observed at the fourth and seventh challenges. When anti-IL-33 or anti-ST2 antibody was administered during the fourth to seventh challenge, airway inflammation and remodelling were significantly inhibited at the seventh challenge. Because increases of IL-33(+) and ST2(+) alveolar macrophages and ST2(+) CD4(+) T cells in the lungs were observed at the fourth challenge, the roles of macrophages and CD4(+) cells were investigated. Depletion of macrophages by 2-chloroadenosine during the fourth to seventh challenge suppressed airway inflammation and remodelling, and IL-33 production in the lung at the seventh challenge; additionally, anti-CD4 mAb inhibited airway inflammation, but not airway remodelling and IL-33 production. Meanwhile, treatment with 2-chloroadenosine or anti-CD4 mAb decreased IL-33-induced airway inflammation in normal mice; airway remodelling was repressed only by 2-chloroadenosine. These results illustrate that macrophage-derived IL-33 contributes to the exacerbation of IgE-mediated airway inflammation by mechanisms associated with macrophages and CD4(+) cells, and airway remodelling through the activation of macrophages.
Collapse
Affiliation(s)
- Nobuaki Mizutani
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan.
| | | | | |
Collapse
|
19
|
Alveolar macrophages and Toll-like receptor 4 mediate ventilated lung ischemia reperfusion injury in mice. Anesthesiology 2012; 117:822-35. [PMID: 22890118 DOI: 10.1097/aln.0b013e31826a4ae3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I-R) injury is a sterile inflammatory process that is commonly associated with diverse clinical situations such as hemorrhage followed by resuscitation, transient embolic events, and organ transplantation. I-R injury can induce lung dysfunction whether the I-R occurs in the lung or in a remote organ. Recently, evidence has emerged that receptors and pathways of the innate immune system are involved in recognizing sterile inflammation and overlap considerably with those involved in the recognition of and response to pathogens. METHODS The authors used a mouse surgical model of transient unilateral left pulmonary artery occlusion without bronchial involvement to create ventilated lung I-R injury. In addition, they mimicked nutritional I-R injury in vitro by transiently depriving cells of all nutrients. RESULTS Compared with sham-operated mice, mice subjected to ventilated lung I-R injury had up-regulated lung expression of inflammatory mediator messenger RNA for interleukin-1β, interleukin-6, and chemokine (C-X-C motif) ligand-1 and -2, paralleled by histologic evidence of lung neutrophil recruitment and increased plasma concentrations of interleukin-1β, interleukin-6, and high-mobility group protein B1 proteins. This inflammatory response to I-R required toll-like receptor-4 (TLR4). In addition, the authors demonstrated in vitro cooperativity and cross-talk between human macrophages and endothelial cells, resulting in augmented inflammatory responses to I-R. Remarkably, the authors found that selective depletion of alveolar macrophages rendered mice resistant to ventilated lung I-R injury. CONCLUSIONS The data reveal that alveolar macrophages and the pattern recognition receptor toll-like receptor-4 are involved in the generation of the early inflammatory response to lung I-R injury.
Collapse
|
20
|
|
21
|
Quan FS, Kim MC, Lee BJ, Song JM, Compans RW, Kang SM. Influenza M1 VLPs containing neuraminidase induce heterosubtypic cross-protection. Virology 2012; 430:127-35. [PMID: 22658901 DOI: 10.1016/j.virol.2012.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/30/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
Abstract
Influenza virus like particles (VLPs) containing hemagglutinin were previously demonstrated to induce protection against the homologous strains. However, little information is available on the protective role of neuraminidase (NA), the second major glycoprotein. In this study, we developed VLPs (NA VLPs) containing NA and M1 derived from A/PR/8/34 (H1N1) influenza virus, and investigated their ability to induce protective immunity. Intranasal immunization with NA VLPs induced serum antibody responses to H1N1 and H3N2 influenza A viruses as well as significant neuraminidase inhibition activity. Importantly, mice immunized with NA VLPs were 100% protected against lethal infection by the homologous A/PR/8/34 (H1N1) as well as heterosubtypic A/Philippines/82 (H3N2) virus, although body weight loss was observed after lethal challenge with heterosubtypic H3N2 virus. The present study therefore provides evidence that influenza VLPs containing M1 and NA are capable of inducing immunity to homologous as well as antigenically distinct influenza A virus strains.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 130-701, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Nieuwenhuizen NE, Kirstein F, Jayakumar J, Emedi B, Hurdayal R, Horsnell WGC, Lopata AL, Brombacher F. Allergic airway disease is unaffected by the absence of IL-4Rα-dependent alternatively activated macrophages. J Allergy Clin Immunol 2012; 130:743-750.e8. [PMID: 22552110 DOI: 10.1016/j.jaci.2012.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 02/14/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Markers of alternatively activated macrophages (AAMs) are upregulated in the lungs of asthmatic patients and in mice with allergic airway disease. AAMs are thought to contribute to the pathogenesis of allergic airway disease by virtue of their decreased NO production and increased production of proline and polyamines, which are important in the synthesis of connective tissues such as collagen. OBJECTIVE We aimed to define the role of AAMs in the pathogenesis of allergic airway disease. METHODS The IL-4 receptor alpha (IL-4Rα) gene is genetically abrogated in macrophages in LysM(cre)IL-4Rα(-/lox) mice, which therefore have impaired IL-4/IL-13 activation of AAMs through IL-4R types 1 and 2. Responses of LysM(cre)IL-4Rα(-/lox) mice and IL-4Rα(-/lox) littermate controls were examined in ovalbumin- and house dust mite-induced allergic airway disease. RESULTS IL-4Rα expression was shown to be efficiently depleted from alveolar macrophages, interstitial macrophages, and CD11b(+)MHCII(+) inflammatory macrophages. Although the expression of markers of AAMs such as Ym-1, arginase and found in inflammatory zone 1 was decreased in macrophages of LysM(cre)IL-4Rα(-/lox) mice in chronic ovalbumin-induced allergic airway disease, airway hyperreactivity, T(H)2 responses, mucus hypersecretion, eosinophil infiltration, and collagen deposition were not significantly reduced. LysM(cre)IL-4Rα(-/lox) mice and littermate controls also developed similar responses in acute ovalbumin- and house dust mite-induced allergic airway disease. CONCLUSION Our results suggest that the presence of AAMs in allergic airway disease may be only an association, as a result of the increased T(H)2 responses present during disease, and that IL-4Rα-dependent AAMs do not play an important role in the pathology of disease.
Collapse
|
23
|
Lai PS, Fresco JM, Pinilla MA, Macias AA, Brown RD, Englert JA, Hofmann O, Lederer JA, Hide W, Christiani DC, Cernadas M, Baron RM. Chronic endotoxin exposure produces airflow obstruction and lung dendritic cell expansion. Am J Respir Cell Mol Biol 2012; 47:209-17. [PMID: 22517795 DOI: 10.1165/rcmb.2011-0447oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Little is known about the mechanisms of persistent airflow obstruction that result from chronic occupational endotoxin exposure. We sought to analyze the inflammatory response underlying persistent airflow obstruction as a result of chronic occupational endotoxin exposure. We developed a murine model of daily inhaled endotoxin for periods of 5 days to 8 weeks. We analyzed physiologic lung dysfunction, lung histology, bronchoalveolar lavage fluid and total lung homogenate inflammatory cell and cytokine profiles, and pulmonary gene expression profiles. We observed an increase in airway hyperresponsiveness as a result of chronic endotoxin exposure. After 8 weeks, the mice exhibited an increase in bronchoalveolar lavage and lung neutrophils that correlated with an increase in proinflammatory cytokines. Detailed analyses of inflammatory cell subsets revealed an expansion of dendritic cells (DCs), and in particular, proinflammatory DCs, with a reduced percentage of macrophages. Gene expression profiling revealed the up-regulation of a panel of genes that was consistent with DC recruitment, and lung histology revealed an accumulation of DCs in inflammatory aggregates around the airways in 8-week-exposed animals. Repeated, low-dose LPS inhalation, which mirrors occupational exposure, resulted in airway hyperresponsiveness, associated with a failure to resolve the proinflammatory response, an inverted macrophage to DC ratio, and a significant rise in the inflammatory DC population. These findings point to a novel underlying mechanism of airflow obstruction as a result of occupational LPS exposure, and suggest molecular and cellular targets for therapeutic development.
Collapse
Affiliation(s)
- Peggy S Lai
- Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Song JM, Kim YC, O E, Compans RW, Prausnitz MR, Kang SM. DNA vaccination in the skin using microneedles improves protection against influenza. Mol Ther 2012; 20:1472-80. [PMID: 22508490 DOI: 10.1038/mt.2012.69] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In this study, we tested the hypothesis that DNA vaccination in the skin using microneedles improves protective immunity compared to conventional intramuscular (i.m.) injection of a plasmid DNA vaccine encoding the influenza hemagglutinin (HA). In vivo fluorescence imaging demonstrated the expression of a reporter gene delivered to the skin using a solid microneedle patch coated with plasmid DNA. Vaccination at a low dose (3 µg HA DNA) using microneedles generated significantly stronger humoral immune responses and better protective responses post-challenge compared to i.m. vaccination at either low or high (10 µg HA DNA) dose. Vaccination using microneedles at a high (10 µg) dose further generated improved post-challenge protection, as measured by survival, recall antibody-secreting cell responses in spleen and bone marrow, and interferon (IFN)-γ cytokine T-cell responses. This study demonstrates that DNA vaccination in the skin using microneedles induces higher humoral and cellular immune responses as well as improves protective immunity compared to conventional i.m. injection of HA DNA vaccine.
Collapse
Affiliation(s)
- Jae-Min Song
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | |
Collapse
|
25
|
Cao H, Molday RS, Hu J. Gene therapy: light is finally in the tunnel. Protein Cell 2012; 2:973-89. [PMID: 22231356 DOI: 10.1007/s13238-011-1126-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 11/27/2011] [Indexed: 01/23/2023] Open
Abstract
After two decades of ups and downs, gene therapy has recently achieved a milestone in treating patients with Leber's congenital amaurosis (LCA). LCA is a group of inherited blinding diseases with retinal degeneration and severe vision loss in early infancy. Mutations in several genes, including RPE65, cause the disease. Using adeno-associated virus as a vector, three independent teams of investigators have recently shown that RPE65 can be delivered to retinal pigment epithelial cells of LCA patients by subretinal injections resulting in clinical benefits without side effects. However, considering the whole field of gene therapy, there are still major obstacles to clinical applications for other diseases. These obstacles include innate and immune barriers to vector delivery, toxicity of vectors and the lack of sustained therapeutic gene expression. Therefore, new strategies are needed to overcome these hurdles for achieving safe and effective gene therapy. In this article, we shall review the major advancements over the past two decades and, using lung gene therapy as an example, discuss the current obstacles and possible solutions to provide a roadmap for future gene therapy research.
Collapse
Affiliation(s)
- Huibi Cao
- Programme in Physiology and Experimental Medicine, Hospital for Sick Children, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5G, 1X8, Canada
| | | | | |
Collapse
|
26
|
Bang BR, Chun E, Shim EJ, Lee HS, Lee SY, Cho SH, Min KU, Kim YY, Park HW. Alveolar macrophages modulate allergic inflammation in a murine model of asthma. Exp Mol Med 2011; 43:275-80. [PMID: 21415590 DOI: 10.3858/emm.2011.43.5.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The role of alveolar macrophages (AMs) in the pathogenesis of asthma is still unknown. The aim of the present study was to investigate the effects of AM in the murine model of asthma. AMs were selectively depleted by liposomes containing clodronate just before allergen challenges, and changes in inflammatory cells and cytokine concentrations in bronchoalveolar lavage (BAL) fluid were measured. AMs were then adoptively transferred to AM-depleted sensitized mice and changes were measured. Phenotypic changes in AMs were evaluated after in vitro allergen stimulation. AM-depletion after sensitization significantly increased the number of eosinophils and lymphocytes and the concentrations of IL-4, IL-5 and GM-CSF in BAL fluid. These changes were significantly ameliorated only by adoptive transfer of unsensitized AMs, not by sensitized AMs. In addition, in vitro allergen stimulation of AMs resulted in their gaining the ability to produce inflammatory cytokines, such as IL-1β, IL-6 and TNF-α, and losing the ability to suppress GM-CSF concentrations in BAL fluid. These findings suggested that AMs worked probably through GM-CSF-dependent mechanisms, although further confirmatory experiments are needed. Our results indicate that the role of AMs in the context of airway inflammation should be re-examined.
Collapse
Affiliation(s)
- Bo Ram Bang
- Department of Internal Medicine, College of Medicine, Seoul National University, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Snelgrove RJ, Godlee A, Hussell T. Airway immune homeostasis and implications for influenza-induced inflammation. Trends Immunol 2011; 32:328-34. [PMID: 21612981 DOI: 10.1016/j.it.2011.04.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
The lung is exposed to a myriad of innocuous antigens on a daily basis and must maintain a state of immune ignorance or tolerance to these harmless stimuli to retain pulmonary homeostasis and to prevent potentially fatal immunopathology. Here, we examine how, in the lower airways, resident cell populations contribute to the immune regulatory strategies that restrain inflammation. During influenza infection, these suppressive signals must be overcome to elicit a protective immune response that eliminates the virus. We also discuss how, after resolution of infection, the lung does not return to the original homeostatic state, and how the induced altered state can persist for long periods, which leaves the lung more susceptible to other infectious insults.
Collapse
Affiliation(s)
- Robert J Snelgrove
- Imperial College London, Leukocyte Biology Section, National Heart and Lung Institute, London, SW7 2AZ, UK
| | | | | |
Collapse
|
28
|
Song JM, Wang BZ, Park KM, Van Rooijen N, Quan FS, Kim MC, Jin HT, Pekosz A, Compans RW, Kang SM. Influenza virus-like particles containing M2 induce broadly cross protective immunity. PLoS One 2011; 6:e14538. [PMID: 21267073 PMCID: PMC3022578 DOI: 10.1371/journal.pone.0014538] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 11/25/2010] [Indexed: 12/29/2022] Open
Abstract
Background Current influenza vaccines based on the hemagglutinin protein are strain specific and do not provide good protection against drifted viruses or emergence of new pandemic strains. An influenza vaccine that can confer cross-protection against antigenically different influenza A strains is highly desirable for improving public health. Methodology/Principal Findings To develop a cross protective vaccine, we generated influenza virus-like particles containing the highly conserved M2 protein in a membrane-anchored form (M2 VLPs), and investigated their immunogenicity and breadth of cross protection. Immunization of mice with M2 VLPs induced anti-M2 antibodies binding to virions of various strains, M2 specific T cell responses, and conferred long-lasting cross protection against heterologous and heterosubtypic influenza viruses. M2 immune sera were found to play an important role in providing cross protection against heterosubtypic virus and an antigenically distinct 2009 pandemic H1N1 virus, and depletion of dendritic and macrophage cells abolished this cross protection, providing new insight into cross-protective immune mechanisms. Conclusions/Significance These results suggest that presenting M2 on VLPs in a membrane-anchored form is a promising approach for developing broadly cross protective influenza vaccines.
Collapse
Affiliation(s)
- Jae-Min Song
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Bao-Zhong Wang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kyoung-Mi Park
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Nico Van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Medisch Centrum, Amsterdam, The Netherlands
| | - Fu-Shi Quan
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Min-Chul Kim
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Hyun-Tak Jin
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard W. Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (RWC); (SMK)
| | - Sang-Moo Kang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (RWC); (SMK)
| |
Collapse
|
29
|
Vaccination inducing broad and improved cross protection against multiple subtypes of influenza A virus. Proc Natl Acad Sci U S A 2010; 108:757-61. [PMID: 21187388 DOI: 10.1073/pnas.1012199108] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of an influenza vaccine that provides broadly cross-protective immunity has been a scientific challenge for more than half a century. This study presents an approach to overcome strain-specific protection by supplementing conventional vaccines with virus-like particles (VLPs) containing the conserved M2 protein (M2 VLPs) in the absence of adjuvants. We demonstrate that an inactivated influenza vaccine supplemented with M2 VLPs prevents disease symptoms without showing weight loss and confers complete cross protection against lethal challenge with heterologous influenza A viruses including the 2009 H1N1 pandemic virus as well as heterosubtypic H3N2 and H5N1 influenza viruses. Cross-protective immunity was long-lived, for more than 7 mo. Immune sera from mice immunized with M2 VLP supplemented vaccine transferred cross protection to naive mice. Dendritic and macrophage cells were found to be important for this cross protection mediated by immune sera. The results provide evidence that supplementation of seasonal influenza vaccines with M2 VLPs is a promising approach for overcoming the limitation of strain-specific protection by current vaccines and developing a universal influenza A vaccine.
Collapse
|
30
|
Careau E, Turmel V, Lauzon-Joset JF, Bissonnette EY. Alveolar macrophages reduce airway hyperresponsiveness and modulate cytokine levels. Exp Lung Res 2010; 36:255-61. [PMID: 20497019 DOI: 10.3109/01902140903410757] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The authors have recently demonstrated that alveolar macrophages (AMs) are important in protecting against early phase reactions and airway hyperresponsiveness following allergen challenge. To further understand the mechanisms involved, the authors investigated the capacity of AMs to modulate airway inflammation and cytokine levels in bronchoalveolar lavage (BAL). AMs from allergy-susceptible Brown Norway (BN) rats or allergy-resistant Sprague-Dawley (SD) rats were transferred into AM-depleted BN rats 24 hours prior to allergen challenge. Methacholine-induced airway hyperresponsiveness was examined 24 hours following ovalbumin challenge. Total cells, cell types, and cytokine levels (tumor necrosis factor [TNF], interleukin [IL]-4, IL-10, IL-12 and IL-13) in BAL were measured 24 hours after allergen challenge. The transfer of AMs from SD rats into AM-depleted BN rats 24 hours before allergen challenge eliminated methacholine-induced airway hyperresponsiveness, but did not modify the number and the type of inflammatory cells in BAL. Levels of IL-13 and TNF were significantly higher in BAL of BN rats compared with SD rats. Interestingly, IL-13 and TNF levels were significantly increased and inhibited, respectively, in BN rats that received AMs from SD rats compared with BN rats. Our data suggest that AM modulation of cytokine milieu is involved in the reduction of airway hyperresponsiveness.
Collapse
Affiliation(s)
- Eric Careau
- Department of Pneumology, Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Quebec, Canada
| | | | | | | |
Collapse
|
31
|
Hussell T, Goulding J. Structured regulation of inflammation during respiratory viral infection. THE LANCET. INFECTIOUS DISEASES 2010; 10:360-6. [PMID: 20417418 DOI: 10.1016/s1473-3099(10)70067-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Innate immune cells including macrophages, dendritic cells, and granulocytes are resident within or patrol very different microenvironments in the host. Their activity or responsiveness to antigen is dictated by site-specific factors. Because of the constant exposure to environmental antigens and commensal microorganisms, mucosal immunity needs to be more constrained than peripheral counterparts to prevent unnecessary inflammation. The epithelial surfaces that dominate all mucosal tissues provide an ideal regulator since innate immune cells are often in intimate contact with, or lie immediately beneath, them and a breach in epithelial integrity would signal a damaging event and release innate immunity from their influence. We discuss the role of the respiratory epithelium in raising the threshold of innate immune cell activation at homoeostasis, how its absence triggers innate immunity, and how inflammatory resolution often produces an altered homoeostatic environment that can affect the next inflammatory event at this site.
Collapse
Affiliation(s)
- Tracy Hussell
- Imperial College London, Leukocyte Biology Section, National Heart and Lung Institute, London, UK.
| | | |
Collapse
|
32
|
Bedoret D, Wallemacq H, Marichal T, Desmet C, Quesada Calvo F, Henry E, Closset R, Dewals B, Thielen C, Gustin P, de Leval L, Van Rooijen N, Le Moine A, Vanderplasschen A, Cataldo D, Drion PV, Moser M, Lekeux P, Bureau F. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J Clin Invest 2009; 119:3723-38. [PMID: 19907079 DOI: 10.1172/jci39717] [Citation(s) in RCA: 312] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 09/09/2009] [Indexed: 01/09/2023] Open
Abstract
The respiratory tract is continuously exposed to both innocuous airborne antigens and immunostimulatory molecules of microbial origin, such as LPS. At low concentrations, airborne LPS can induce a lung DC-driven Th2 cell response to harmless inhaled antigens, thereby promoting allergic asthma. However, only a small fraction of people exposed to environmental LPS develop allergic asthma. What prevents most people from mounting a lung DC-driven Th2 response upon exposure to LPS is not understood. Here we have shown that lung interstitial macrophages (IMs), a cell population with no previously described in vivo function, prevent induction of a Th2 response in mice challenged with LPS and an experimental harmless airborne antigen. IMs, but not alveolar macrophages, were found to produce high levels of IL-10 and to inhibit LPS-induced maturation and migration of DCs loaded with the experimental harmless airborne antigen in an IL-10-dependent manner. We further demonstrated that specific in vivo elimination of IMs led to overt asthmatic reactions to innocuous airborne antigens inhaled with low doses of LPS. This study has revealed a crucial role for IMs in maintaining immune homeostasis in the respiratory tract and provides an explanation for the paradox that although airborne LPS has the ability to promote the induction of Th2 responses by lung DCs, it does not provoke airway allergy under normal conditions.
Collapse
Affiliation(s)
- Denis Bedoret
- Laboratory of Cellular and Molecular Physiology, GIGA-Research, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dua HS, Donoso LA, Laibson PR. Conjunctival instillation of retinal antigens induces tolerance Does it invoke mucosal tolerance mediated via conjunctiva associated lymphoid tissues (CALT)? Ocul Immunol Inflamm 2009; 2:29-36. [DOI: 10.3109/09273949409057799] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Johnston CJ, Williams JP, Elder A, Hernady E, Finkelstein JN. INFLAMMATORY CELL RECRUITMENT FOLLOWING THORACIC IRRADIATION. Exp Lung Res 2009; 30:369-82. [PMID: 15204829 DOI: 10.1080/01902140490438915] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ionizing radiation leads to a progressive injury in which a monocyte/macrophage-rich pneumonitis is followed by a chronic progressive fibrosis. In the present study, the role of macrophage/monocyte recruitment in the genesis of radiation-induced pulmonary fibrosis was examined. The objectives were threefold: (i) characterize the inflammatory cells recruited into the lung during the development of radiation-induced fibrosis; (ii) investigate changes in lung response following depletion of resident alveolar macrophages in vivo prior to radiation treatment; (iii) assess if inhalation of low levels of endotoxin would potentiate the radiation-initiated injury. One group of fibrosis-sensitive C57BL/6 mice was irradiated with a single dose of 15 Gy to the thorax. In a second group, resident inflammatory cells were depleted using clodronate, encapsulated into liposomes, 48 hours prior to irradiation with a single dose of 15 Gy to the thorax. Control animals were sham irradiated. All groups of animals then were examined 8, 16, or 24 weeks post irradiation. No difference in total cell numbers or cell differentials was observed between irradiated mice or those that were both liposome treated and irradiated at any time point. At 16 weeks, mice that received radiation showed a 5- to 6-fold increase in lymphocytes regardless of treatment as compared to control animals. At 24 weeks post irradiation, select groups were exposed to lipopolysaccharide (LPS) and examined 24 hours post inhalation. Lavageable protein was increased several fold in mice that received both radiation and LPS exposure as compared to 15 Gy or LPS exposure alone. These results demonstrate: (i) macrophages and lymphocytes are the predominately recruited cell types through 24 weeks post irradiation; (ii) recovery of inflammatory cells, regardless of prior macrophage depletion, were similar, suggesting that early responses are primarily driven by parenchymal cell injury; (iii) thoracic irradiation-induced injury can cause sensitization to a secondary stimulus that may result in injuries/responses not predicted by evaluating exposures individually.
Collapse
Affiliation(s)
- Carl J Johnston
- Department of Environmental Medicine, University of Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
35
|
Alveolar macrophages are indispensable for controlling influenza viruses in lungs of pigs. J Virol 2008; 82:4265-74. [PMID: 18287245 DOI: 10.1128/jvi.02602-07] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alveolar macrophages constitutively reside in the respiratory tracts of pigs and humans. An in vivo role of alveolar macrophages in defending against influenza viruses in mice infected with a reassorted influenza virus, 1918 HA/NA:Tx/91, was reported, but there has been no report on an in vivo role of alveolar macrophages in a natural host such as a pig using currently circulating human influenza virus. Here we show that in vivo depletion of alveolar macrophages in pigs by dichloromethylene diphosphonate (MDPCL2) treatment results in 40% mortality when pigs are infected with currently circulating human H1N1 influenza viruses, while none of the infected control pigs died. All infected pigs depleted of alveolar macrophages suffered from more severe respiratory signs than infected control pigs. Induction of tumor necrosis factor alpha in the infected pigs depleted of alveolar macrophages was significantly lower than that in the lungs of infected control pigs, and the induction of interleukin-10, an immunosuppressive cytokine, significantly increased in the lungs of infected pigs depleted of alveolar macrophages compared to infected control pigs. When we measured antibody titers and CD8(+) T lymphocytes expressing gamma interferon (IFN-gamma), lower antibody titers and a lower percentage of CD8(+) T lymphocytes expressing IFN-gamma were detectable in MDPCL2-treated infected pigs than in phosphate-buffered saline- and liposome-treated and infected pigs. Taken together, our findings suggest that alveolar macrophages are essential for controlling H1N1 influenza viruses in pigs.
Collapse
|
36
|
Landsman L, Jung S. Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 179:3488-94. [PMID: 17785782 DOI: 10.4049/jimmunol.179.6.3488] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alveolar macrophages are a unique type of mononuclear phagocytes that populate the external surface of the lung cavity. Early studies have suggested that alveolar macrophages originate from tissue-resident, local precursors, whereas others reported their derivation from blood-borne cells. However, the role of circulating monocytes as precursors of alveolar macrophages was never directly tested. In this study, we show through the combined use of conditional cell ablation and adoptive cell transfer that alveolar macrophages originate in vivo from blood monocytes. Interestingly, this process requires an obligate intermediate stage, the differentiation of blood monocytes into parenchymal lung macrophages, which subsequently migrate into the alveolar space. We also provide direct evidence for the ability of both lung and alveolar macrophages to proliferate.
Collapse
Affiliation(s)
- Limor Landsman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
37
|
Miskovic M, Couëtil L, Thompson C. Lung Function and Airway Cytologic Profiles in Horses with Recurrent Airway Obstruction Maintained in Low-Dust Environments. J Vet Intern Med 2007. [DOI: 10.1111/j.1939-1676.2007.tb03065.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
38
|
Benoit A, Huang Y, Proctor J, Rowden G, Anderson R. Effects of alveolar macrophage depletion on liposomal vaccine protection against respiratory syncytial virus (RSV). Clin Exp Immunol 2006; 145:147-54. [PMID: 16792685 PMCID: PMC1941998 DOI: 10.1111/j.1365-2249.2006.03114.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Little is known about the identities and roles of antigen-presenting cells upon exposure to antigens of respiratory syncytial virus (RSV). Here, we focused on elucidating the importance of alveolar macrophages in conferring protective immunity in mice administered a liposome-encapsulated recombinant fragment of the RSV G protein. Mice were depleted of alveolar macrophages by intranasal inoculation of liposome-encapsulated dichloromethylenediphosphonic acid (DMDP). Mice depleted of alveolar macrophages prior to immunization developed reduced levels of serum RSV-neutralizing antibody and showed dramatically impaired protection against RSV challenge. The severity of interstitial inflammation was also markedly reduced in macrophage-depleted mice. In conclusion, this study demonstrates a pivotal role for alveolar macrophages during exposure to liposome-encapsulated RSV antigen in initiating both protective and histopathological responses against RSV.
Collapse
Affiliation(s)
- A Benoit
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
39
|
Pulkkinen V, Majuri ML, Wang G, Holopainen P, Obase Y, Vendelin J, Wolff H, Rytilä P, Laitinen LA, Haahtela T, Laitinen T, Alenius H, Kere J, Rehn M. Neuropeptide S and G protein-coupled receptor 154 modulate macrophage immune responses. Hum Mol Genet 2006; 15:1667-79. [PMID: 16600990 DOI: 10.1093/hmg/ddl090] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
G protein-coupled receptor 154 (GPR154) is a recently discovered asthma susceptibility gene upregulated in the airways of asthma patients. We previously observed increased pulmonary mRNA expression of the murine ortholog Gpr154 in a mouse model of ovalbumin (OVA)-induced inflammation. However, the expression profile of GPR154 in leukocytes and the cellular functions of the receptor and its endogenous agonist neuropeptide S (NPS) have remained unidentified. Here, we characterized the mRNA expression of NPS and GPR154 by using real-time RT-PCR in fractionated human blood cells and in peripheral blood mononuclear cells (PBMCs) with monocyte or T cell activation. The expression of GPR154 in leukocytes was further confirmed by immunoblotting experiments and immunohistochemical staining of human sputum samples. Additionally, we characterized the expression of GPR154 in the lung tissue samples and in the bronchoalveolar lavage (BAL) fluid of OVA sensitized and challenged BALB/c mice. In human blood and sputum cells, monocyte/macrophages and eosinophils were identified as GPR154-positive cells. In PBMCs, monocyte activation with LPS but not T cell activation with anti-CD3/CD28 antibodies resulted in increased NPS and GPR154 expression. In the lung tissue samples and in the BAL fluid of OVA-challenged mice, GPR154 expression was upregulated in alveolar macrophages in comparison to controls. In the mouse macrophage RAW 264.7 cell line, NPS-stimulated Galphas- and Galphaq-dependent phagocytosis of Escherichia coli. The results show that GPR154 is upregulated in macrophages after antigen challenge and that NPS is capable of inducing phagocytosis of unopsonized bacteria.
Collapse
Affiliation(s)
- Ville Pulkkinen
- Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Valstar DL, Schijf MA, Arts JHE, Kuper CF, Nijkamp FP, Storm G, Bloksma N, Henricks PAJ. Alveolar macrophages suppress non-specific inflammation caused by inhalation challenge with trimellitic anhydride conjugated to albumin. Arch Toxicol 2006; 80:561-71. [PMID: 16485118 DOI: 10.1007/s00204-006-0081-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/02/2006] [Indexed: 10/25/2022]
Abstract
Occupational exposure to low molecular weight chemicals, like trimellitic anhydride (TMA), can result in occupational asthma. Alveolar macrophages (AMs) are among the first cells to encounter these inhaled compounds and were previously shown to affect TMA-induced asthma-like symptoms in the Brown Norway rat (Valstar et al., Toxicol. Appl. Pharmacology 211:20-29, 2006). TMA is a hapten that will bind to endogenous proteins upon entrance of the body. Therefore, in the present study we determined if TMA conjugated to albumin is able to induce asthma-like symptoms and if these are affected by AM depletion. Female Brown Norway rats were sensitized by dermal application of TMA or received vehicle alone on days 0 and 7. One day prior to the inhalation challenge the rats were treated intratracheally with either empty liposomes or liposomes containing clodronate (dichloromethylene diphosphonate) to specifically deplete the lungs of AMs. On day 21, all groups of rats were challenged by inhalation of TMA-BSA. Breathing frequency, tidal volume, and minute ventilation were measured before, during, within 1 h, and 24 h after challenge and the gross respiratory rate score was determined during challenge. Total and TMA-specific IgE levels were determined in serum and lung lavage fluid and parameters of inflammation and tissue damage were assessed in lung lavage fluid and/or lung tissue 24 h after challenge. Sensitization with TMA had no effect on the lung function before challenge, but TMA-BSA challenge resulted in an early asthmatic response as compared to the non-sensitized rats, irrespective of AM depletion. AM depletion had no effect on the sensitization-induced serum and lung lavage fluid IgE levels. TMA-BSA inhalation did not induce airway inflammation and tissue damage irrespective of sensitization, unless AM were depleted. Data indicate that AMs inhibit immunologically non-specific damage and inflammatory cell influx into the lungs as caused by TMA-BSA inhalation. Since effects of inhalation challenge with TMA-BSA are partly different from those of TMA, challenge with the latter is to be preferred for hazard identification.
Collapse
Affiliation(s)
- Dingena L Valstar
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Haczku A. Role and regulation of lung collectins in allergic airway sensitization. Pharmacol Ther 2005; 110:14-34. [PMID: 16226313 DOI: 10.1016/j.pharmthera.2005.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 08/23/2005] [Indexed: 12/21/2022]
Abstract
Inhalation of allergens in atopic patients results in a characteristic inflammatory response while in normal, healthy individuals it elicits no symptoms. The mechanisms by which the pulmonary immune system accomplishes elimination of inhaled particles and suppression of the ensuing inflammatory response are poorly understood. Based on their structural uniqueness, specific localization and functional versatility the hydrophilic surfactant proteins [surfactant protein (SP)-A and SP-D] are important candidate regulators of these processes. Recent studies in our laboratory and others indicated significant changes in levels of these molecules during the asthmatic response in animal models as well as in asthmatic patients. Because of their capability to directly inhibit T-cell activation and T-cell-dependent allergic inflammatory events, SP-A and SP-D may be significant contributors to the local control of T-helper (Th)2-type inflammation in the airways. This review will discuss their relevant structural-functional features and recent evidence supporting the hypothesis that SP-A and SP-D have a role in regulation of allergic airway sensitization.
Collapse
Affiliation(s)
- Angela Haczku
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, 421 Curie Boulevard, BRB II/III #840, Philadelphia, 19104-6061, USA.
| |
Collapse
|
42
|
Elder A, Johnston C, Gelein R, Finkelstein J, Wang Z, Notter R, Oberdörster G. Lung inflammation induced by endotoxin is enhanced in rats depleted of alveolar macrophages with aerosolized clodronate. Exp Lung Res 2005; 31:527-46. [PMID: 16019986 DOI: 10.1080/019021490944223] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Clodronate liposomes were given to rats via intratracheal inhalation to investigate the importance of alveolar macrophages (AMs) in inhaled endotoxin-induced lung injury. When AM depletion was maximal (87% to 90%), rats were exposed to lipopolysaccharide (LPS) or saline. Neither clodronate nor saline liposomes induced an influx of neutrophils (PMNs) into the lungs. However, depleted LPS-exposed rats had 5- to 8-fold higher numbers of lavage PMNs and greater lavage cell reactive oxygen species release compared to undepleted rats. Although AM depletion by itself did not significantly increase inflammatory cytokine expression in lung tissue, LPS-induced message levels for interleukin (IL)-1alpha, IL-1beta, IL-6, and tumor necrosis factor (TNF)-alpha were approximately 2-fold higher in AM-depleted rats compared to undepleted rats. These results indicate that cells other than AMs can recruit inflammatory cells into the lungs during acute LPS-induced injury and that AMs play an important suppressive role in the innate pulmonary inflammatory response.
Collapse
Affiliation(s)
- A Elder
- Department of Environmental Medicine, University of Rochester, New York 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Elder ACP, Gelein R, Oberdörster G, Finkelstein J, Notter R, Wang Z. Efficient depletion of alveolar macrophages using intratracheally inhaled aerosols of liposome-encapsulated clodronate. Exp Lung Res 2004; 30:105-20. [PMID: 14972771 DOI: 10.1080/01902140490266510] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rat alveolar macrophages (AMs) were depleted via intratracheal inhalation (ITIH) of clodronate-containing liposomes. AM depletion following ITIH delivery of clodronate liposomes was 33.2 +/- 14.2 on day 1, 88.1 +/- 6.2 on day 3, and 91.4 +/- 1.8 on day 4 relative to control rats given saline-containing liposomes. Almost all (approximately 99%) of the AMs remaining at the 3-day time point were peroxidase negative, suggesting that immature macrophages were not recruited from the circulation to replace those undergoing cell death on that day. Only 0.5% +/- 0.5% of bronchoalveolar lavage (BAL) cells were neutrophils at this time (normalized to controls). Whole-body inhalation did not induce as much AM depletion at 3 days (37.6% +/- 10.1%) and required larger amounts of liposome-encapsulated clodronate compared to ITIH. Intratracheal instillation (as opposed to inhalation) of clodronate liposomes produced a significant inflammatory response characterized by the influx of both polymorphonuclear neutrophils (PMNs) and macrophages. In subsequent pilot studies, the response to intratracheally instilled crystalline silica (75 microg) was found to be markedly reduced in rats depleted of AMs by the ITIH method. We conclude that ITIH of clodronate liposomes in rats is both efficient and useful for examining the role of AMs in pulmonary toxicology.
Collapse
Affiliation(s)
- A C P Elder
- Department of Environmental Medicine, University of Rochester, Rochester, New York 14642, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Marc Peters-Golden
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109-0642, USA.
| |
Collapse
|
45
|
Careau E, Bissonnette EY. Adoptive transfer of alveolar macrophages abrogates bronchial hyperresponsiveness. Am J Respir Cell Mol Biol 2004; 31:22-7. [PMID: 14962974 DOI: 10.1165/rcmb.2003-0229oc] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Increasing evidence suggests that alveolar macrophages (AM) are involved in asthma pathogenesis. To better understand the role that these cells play, we investigated the capacity of AM from allergy-resistant rat, Sprague Dawley (SD), to modulate airway hyperresponsiveness of allergy-susceptible rat, Brown Norway (BN). AM of ovalbumin (OVA)-sensitized BN rats were eliminated by intratracheal instillation of liposomes containing clodronate. AM from OVA-sensitized SD rats were transferred into AM-depleted BN rats 24 h before allergen challenge. Airway responsiveness to methacholine was measured the following day. Instillation of liposomes containing clodronate in BN rats eliminated 85% AM after 3 d compared with saline liposomes. Methacholine concentration needed to increase lung resistance by 200% (EC200RL) was significantly lower in OVA-challenged BN rats (27.9 +/- 2.8 mg/ml) compared with SD rats (63.9 +/- 8.6 mg/ml). However, when AM from SD rats were transferred into AM-depleted BN rats, airway responsiveness (64.0 +/- 11.3 mg/ml) was reduced to the level of naïve rats (54.4 +/- 3.7 mg/ml) in a dose-dependent manner. Interestingly, transfer of AM from BN rats into SD rats did not modulate airway responsiveness. To our knowledge, this is the first direct evidence showing that AM may protect against the development of airway hyperresponsiveness.
Collapse
Affiliation(s)
- Eric Careau
- Centre de Recherche, Hôpital Laval, Institut universitaire de Cardiologie et de Pneumologie de l'Université Laval, Québec, Canada.
| | | |
Collapse
|
46
|
|
47
|
Bunn HJ, Hewitt CRA, Grigg J. Suppression of autologous peripheral blood mononuclear cell proliferation by alveolar macrophages from young infants. Clin Exp Immunol 2002; 128:313-7. [PMID: 12041510 PMCID: PMC1906398 DOI: 10.1046/j.1365-2249.2002.01848.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maintenance of lung homeostasis involves a complex interaction between T lymphocytes and alveolar macrophages (AM), in which AM suppress pulmonary T cell proliferation to antigenic stimuli. To assess whether AM-mediated suppression is attenuated in healthy young infants, AM and peripheral blood mononuclear cells (PBMC) were sampled prior to elective surgery. Children were divided into <4 months of age (Group I) and >4 months (Group II). Autologous PBMC and AM were co-cultured in vitro with phytohaemaglutinin (PHA) at AM : PBMC ratios ranging from 2:1 to 1 : 5. Methyl-tritiated thymidine was added after 48 h and uptake determined at 72 h. Percentage suppression or enhancement of PBMC proliferation by AM was determined relative to proliferation of PBMC with PHA. To determine the role of soluble factors of suppression, cell-free supernatants from paediatric AM and PBMC co-cultures were added to PHA-stimulated adult PBMC. The median age was 3 months for Group I (n = 9) and 7 years 2 months (n = 13) for Group II. Percentage suppression of PBMC proliferation was attenuated in Group I (versus Group II) at AM : PBMC ratios of 2:1 (median 78 versus 92, P< 0 x 05) and 1 : 1 (45 versus 87, P< 0 x 01). Cell-free supernatants from Groups I and II suppressed proliferation of adult PBMC, but there was no difference in suppression between the age groups. We conclude that suppression of autologous PHA-stimulated PBMC proliferation by AM is attenuated in young infants, and this immaturity is not explained by reduced release of soluble factors.
Collapse
Affiliation(s)
- H J Bunn
- Leicester Children's Asthma Centre, Institute for Lung Health, University of Leicester, UK
| | | | | |
Collapse
|
48
|
Zhang-Hoover J, Sutton A, van Rooijen N, Stein-Streilein J. A critical role for alveolar macrophages in elicitation of pulmonary immune fibrosis. Immunology 2000; 101:501-11. [PMID: 11122454 PMCID: PMC2327107 DOI: 10.1046/j.1365-2567.2000.00143.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hapten immune pulmonary interstitial fibrosis (HIPIF) is induced by a recall cell-mediated immune response against the hapten 2,4, 6-trinitrobenzene sulphonic acid (TNBS) in the lung. Studies here dissect the role of the cellular components of the bronchoalveolar lavage (BAL) cells (alveolar macrophages [AMs] versus monocytes and immature dendritic cells) in the fibrogenic inflammatory response. BAL cells from HIPIF mice were generally more activated and produced a greater amount of tumour necrosis factor-alpha (TNF-alpha) than controls. Liposome-encapsulated dichloromethylene diphosphonate (Cl(2)MDP) that was inoculated intranasally (i.n.) into mice selectively depleted AMs. Following AM depletion, the number of TNF-alpha-containing cells was reduced, and both the number of immune inflammatory cells recruited into the alveolar space and the subsequent collagen deposition (hydroxyproline) were decreased in the sensitized and intratracheally (i.t.) challenged mice. In conclusion, AMs are required, in part, for the development of pulmonary fibrosis in HIPIF because AM-derived factors such as TNF-alpha are needed for initiation of chemokine and cytokine pathways and accumulation of immune inflammatory cells.
Collapse
Affiliation(s)
- J Zhang-Hoover
- Schepens Eye Research Institute, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
49
|
MESH Headings
- Adrenal Cortex Hormones/therapeutic use
- Allergens/immunology
- Animals
- Antigen-Presenting Cells/drug effects
- Antigen-Presenting Cells/physiology
- Dendritic Cells/physiology
- Humans
- Langerhans Cells/physiology
- Macrophages/physiology
- Monocytes/physiology
- Nasal Mucosa/immunology
- Rhinitis, Allergic, Perennial/drug therapy
- Rhinitis, Allergic, Perennial/etiology
- Rhinitis, Allergic, Perennial/immunology
- Rhinitis, Allergic, Seasonal/drug therapy
- Rhinitis, Allergic, Seasonal/etiology
- Rhinitis, Allergic, Seasonal/immunology
Collapse
Affiliation(s)
- W J Fokkens
- Department of Otorhinolaryngology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
50
|
Rudin A, Riise GC, Holmgren J. Antibody responses in the lower respiratory tract and male urogenital tract in humans after nasal and oral vaccination with cholera toxin B subunit. Infect Immun 1999; 67:2884-90. [PMID: 10338495 PMCID: PMC96596 DOI: 10.1128/iai.67.6.2884-2890.1999] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nasal vaccine delivery is superior to oral delivery in inducing specific immunoglobulin A (IgA) and IgG antibody responses in the upper respiratory tract. Although an antibody response in the nasal passages is important in protecting against primary colonization with lung pathogens, antibodies in the lungs are usually required as well. We immunized 15 male volunteers twice nasally or orally with cholera toxin B subunit (CTB) and determined the specific antibody levels in serum, bronchoalveolar lavage (BAL) fluid, and urine before and 2 weeks after immunization. Nasal immunization induced fivefold increases in the levels of specific IgA antibodies in BAL fluid of most volunteers, whereas there were no significant specific IgA responses after oral immunization. The specific IgG antibody level increased eightfold in BAL fluid in the nasally vaccinated subjects, and the major part of IgG had most probably been transferred from serum. Since the specific IgG response in serum was lower in the individuals vaccinated orally, the IgG response in BAL fluid in this group was also lower and not significant. In conclusion, nasal immunization is also preferable to the oral route when vaccinating against lower respiratory tract infections, and a systemic immune response is considerably more important in the lower than in the upper respiratory tract. Moreover, both nasal and oral immunizations were able to stimulate 6- to 10-fold specific IgA and IgG responses in urine in about half of the individuals, which indicates that distant mucosal vaccination might be used to prevent adhesion of pathogens to the urogenital tract.
Collapse
Affiliation(s)
- A Rudin
- Department of Medical Microbiology and Immunology and Department of Respiratory Medicine, Göteborg University, S-413 46 Göteborg, Sweden.
| | | | | |
Collapse
|