1
|
Banesh S, Gupta N, Reddy CV, Mallikarjunachari U, Patil N, Uddhavesh S, Saudagar P. A novel approach to design chimeric multi epitope vaccine against Leishmania exploiting infected host cell proteome. Heliyon 2024; 10:e31306. [PMID: 38813178 PMCID: PMC11133825 DOI: 10.1016/j.heliyon.2024.e31306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Leishmaniasis is a major infectious disease having high mortality which could be attributed to lack of a suitable vaccine candidate. We propose a novel approach to design multiepitope vaccine to leishmaniasis exploiting specific membrane proteome from infected macrophage from host. The MHC-I, MHC-II and BC epitopes predicted for unique proteins from the infected macrophages and Leishmania and a MEV designed in various combinations (1a-1m). The epitope arrangements 1a, 1k, 1l, and 1 m showed a strong antigenicity profile and immune response. The molecular dynamics simulation indicate the 1k, 1l, and 1 m constructs have strong affinity toward TLR-2, TLR-3, and TLR-4. Overall the structural and immunogenicity profile suggests 1k is top candidate. Further, a computational model system with TLR-2, TLR-3, TLR-4, BCR, MHC-I and MHC-II was generated for 1k construct to understand the MEV interactions with immune components. Dihedral distribution and distance was enumerated to understand the movement of immune components towards 1k. The results indicate 1k has strong affinity for the immune response molecules especially TLR-3, BCR and MHC-II are coming in close contact with the MEV through the simulation. The study suggests that designed multi-epitope vaccine 1k has potential to induce proper immune response but warrants further studies.
Collapse
Affiliation(s)
- Sooram Banesh
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Neharika Gupta
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Chethireddy Vihadhar Reddy
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Uppuladinne Mallikarjunachari
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC), Pune, Maharastra, India
| | - Nupoor Patil
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Sonavane Uddhavesh
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC), Pune, Maharastra, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| |
Collapse
|
2
|
Morales-Primo AU, Becker I, Pedraza-Zamora CP, Zamora-Chimal J. Th17 Cell and Inflammatory Infiltrate Interactions in Cutaneous Leishmaniasis: Unraveling Immunopathogenic Mechanisms. Immune Netw 2024; 24:e14. [PMID: 38725676 PMCID: PMC11076297 DOI: 10.4110/in.2024.24.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 05/12/2024] Open
Abstract
The inflammatory response during cutaneous leishmaniasis (CL) involves immune and non-immune cell cooperation to contain and eliminate Leishmania parasites. The orchestration of these responses is coordinated primarily by CD4+ T cells; however, the disease outcome depends on the Th cell predominant phenotype. Although Th1 and Th2 phenotypes are the most addressed as steers for the resolution or perpetuation of the disease, Th17 cell activities, especially IL-17 release, are recognized to be vital during CL development. Th17 cells perform vital functions during both acute and chronic phases of CL. Overall, Th17 cells induce the migration of phagocytes (neutrophils, macrophages) to the infection site and CD8+ T cells and NK cell activation. They also provoke granzyme and perforin secretion from CD8+ T cells, macrophage differentiation towards an M2 phenotype, and expansion of B and Treg cells. Likewise, immune cells from the inflammatory infiltrate have modulatory activities over Th17 cells involving their differentiation from naive CD4+ T cells and further expansion by generating a microenvironment rich in optimal cytokines such as IL-1β, TGF-β, IL-6, and IL-21. Th17 cell activities and synergies are crucial for the resistance of the infection during the early and acute stages; however, if unchecked, Th17 cells might lead to a chronic stage. This review discusses the synergies between Th17 cells and the inflammatory infiltrate and how these interactions might destine the course of CL.
Collapse
Affiliation(s)
- Abraham U. Morales-Primo
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| | - Ingeborg Becker
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| | - Claudia Patricia Pedraza-Zamora
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Jaime Zamora-Chimal
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| |
Collapse
|
3
|
Mendes-Aguiar CDO, Kitahara-Oliveira MY, de Almeida ACO, Pereira-Oliveira M, de Oliveira Neto MP, Pirmez C, Sampaio EP, Gomes-Silva A, Da-Cruz AM. DC-SIGN receptor is expressed by cells from cutaneous leishmaniasis lesions and differentially binds to Leishmania (Viannia) braziliensis and L. (Leishmania) amazonensis promastigotes. Mem Inst Oswaldo Cruz 2023; 118:e220044. [PMID: 36995847 PMCID: PMC10042235 DOI: 10.1590/0074-02760220044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Dendritic cells (DCs) specific intercellular adhesion molecule (ICAM)-3-grabbing non integrin receptor (DC-SIGN) binds to subgenera Leishmania promastigotes mediating its interaction with DC and neutrophils, potentially influencing the infection outcome. OBJECTIVES In this work, we investigated whether DC-SIGN receptor is expressed in cells from cutaneous leishmaniasis (CL) lesions as well as the in vitro binding pattern of Leishmania (Viannia) braziliensis (Lb) and L. (L.) amazonensis (La) promastigotes. METHODS DC-SIGN receptor was labeled by immunohistochemistry in cryopreserved CL tissue fragments. In vitro binding assay with CFSE-labeled Lb or La promastigotes and RAJI-transfecting cells expressing DC-SIGN (DC-SIGNPOS) or mock-transfected (DC-SIGNNEG) were monitored by flow cytometry at 2 h, 24 h and 48 h in co-culture. RESULTS In CL lesion infiltrate, DC-SIGNPOS cells were present in the dermis and near the epidermis. Both Lb and La bind to DC-SIGNPOS cells, while binding to DC-SIGNNEG was low. La showed precocious and higher affinity to DC-SIGNhi population than to DC-SIGNlow, while Lb binding was similar in these populations. CONCLUSION Our results demonstrate that DC-SIGN receptor is present in L. braziliensis CL lesions and interact with Lb promastigotes. Moreover, the differences in the binding pattern to Lb and La suggest DC-SIGN can influence in a difference way the intake of the parasites at the first hours after Leishmania infection. These results raise the hypothesis that DC-SIGN receptor could participate in the immunopathogenesis of American tegumentary leishmaniasis accounting for the differences in the outcome of the Leishmania spp. infection.
Collapse
Affiliation(s)
- Carolina de O Mendes-Aguiar
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio Grande do Norte, Instituto de Medicina Tropical do Rio Grande do Norte, Natal, RN, Brasil
| | - Milene Yoko Kitahara-Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
| | - Ana Cristina Oliveira de Almeida
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Marcia Pereira-Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
| | - Manoel Paes de Oliveira Neto
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica em Micobacterioses, Rio de Janeiro, RJ, Brasil
| | - Claude Pirmez
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
| | - Elizabeth Pereira Sampaio
- National Institute of Allergy and Infectious Diseases, Laboratory of Clinical Immunology and Microbiology, Bethesda, MD, USA
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Hanseníase, Rio de Janeiro, RJ, Brasil
| | - Adriano Gomes-Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica em Micobacterioses, Rio de Janeiro, RJ, Brasil
| | - Alda Maria Da-Cruz
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
4
|
Sánchez-García L, Pérez-Torres A, Gudiño-Zayas ME, Zamora-Chimal J, Meneses C, Kamhawi S, Valenzuela JG, Becker I. Leishmania major-Infected Phlebotomus duboscqi Sand Fly Bites Enhance Mast Cell Degranulation. Pathogens 2023; 12:207. [PMID: 36839479 PMCID: PMC9960273 DOI: 10.3390/pathogens12020207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/31/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
Leishmania parasites infect mammalian hosts through the bites of sand fly vectors. The response by mast cells (MC) to the parasite and vector-derived factors, delivered by sand fly bites, has not been characterized. We analyzed MC numbers and their mediators in BALB/c mice naturally infected in the ear with Leishmania major through the bite of the sand fly vector Phlebotomus duboscqi and compared them to non-infected sand fly bites. MC were found at the bite sites of infective and non-infected sand flies throughout 48 h, showing the release of granules with intense TNF-α, histamine, and tryptase staining. At 30 min and 48 h, the MC numbers were significantly higher (p < 0.001) in infected as compared to non-infected bites or controls. Neutrophil recruitment was intense during the first 6 h in the skin of infected and non-infected sand fly bites and decreased thereafter. An influx of neutrophils also occurred in lymph nodes, where a strong TNF-α stain was observed in mononuclear cells. Our data show that MC orchestrate an early inflammatory response after infected and non-infected sand fly bites, leading to neutrophilic recruitment, which potentially provides a safe passage for the parasite within the mammalian host.
Collapse
Affiliation(s)
- Laura Sánchez-García
- División Ciencias de la Salud, Universidad Autónoma del Estado de Quintana Roo, Chetumal C.P. 77039, Mexico
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Laboratorio de Inmunología Comparada de Piel y Mucosas, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México C.P. 04510, Mexico
| | - Marco E. Gudiño-Zayas
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México C.P. 04510, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México C.P. 04510, Mexico
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México C.P. 04510, Mexico
| |
Collapse
|
5
|
Nerb B, Dudziak D, Gessner A, Feuerer M, Ritter U. Have We Ignored Vector-Associated Microbiota While Characterizing the Function of Langerhans Cells in Experimental Cutaneous Leishmaniasis? FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.874081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Klimova N, Holubova J, Streparola G, Tomala J, Brazdilova L, Stanek O, Bumba L, Sebo P. Pertussis toxin suppresses dendritic cell-mediated delivery of B. pertussis into lung-draining lymph nodes. PLoS Pathog 2022; 18:e1010577. [PMID: 35666769 PMCID: PMC9216613 DOI: 10.1371/journal.ppat.1010577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/22/2022] [Accepted: 05/08/2022] [Indexed: 11/18/2022] Open
Abstract
The adenylate cyclase (ACT) and the pertussis (PT) toxins of Bordetella pertussis exert potent immunomodulatory activities that synergize to suppress host defense in the course of whooping cough pathogenesis. We compared the mouse lung infection capacities of B. pertussis (Bp) mutants (Bp AC− or Bp PT–) producing enzymatically inactive toxoids and confirm that ACT action is required for maximal bacterial proliferation in the first days of infection, whereas PT action is crucial for persistence of B. pertussis in mouse lungs. Despite accelerated and near complete clearance from the lungs by day 14 of infection, the PT− bacteria accumulated within the lymphoid tissue of lung-draining mediastinal lymph nodes (mLNs). In contrast, the wild type or AC− bacteria colonized the lungs but did not enter into mLNs. Lung infection by the PT− mutant triggered an early arrival of migratory conventional dendritic cells with associated bacteria into mLNs, where the PT− bacteria entered the T cell-rich paracortex of mLNs by day 5 and proliferated in clusters within the B-cell zone (cortex) of mLNs by day 14, being eventually phagocytosed by infiltrating neutrophils. Finally, only infection by the PT− bacteria triggered an early production of anti-B. pertussis serum IgG antibodies already within 14 days of infection. These results reveal that action of the pertussis toxin blocks DC-mediated delivery of B. pertussis bacteria into mLNs and prevents bacterial colonization of mLNs, thus hampering early adaptive immune response to B. pertussis infection. Of the three classical Bordetella species causing respiratory infections in mammals, only the human-specialized whooping cough agent B. pertussis produces the pertussis toxin (PT) as its major virulence factor. Human pertussis is an acute respiratory illness and the pleiotropic activities of pertussis toxin account for the characteristic systemic manifestations of the disease, such as hyperleukocytosis, histamine sensitization, hyperinsulinemia, or inflammatory lung pathology. We found that PT activity inhibits the migration of infected dendritic cells from the lungs into the draining mediastinal lymph nodes (mLNs). This prevents mLN infection by bacteria evading from migratory cells and delivery of bacterial antigens into mLNs. As a result, the induction of adaptive serum antibody responses to infection is delayed. We thus propose that PT action serves to create a time window for proliferation of B. pertussis on airway mucosa to facilitate transmission of the pathogen among humans.
Collapse
Affiliation(s)
- Nela Klimova
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
| | - Gaia Streparola
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- Czech Centre for Phenogenomics BIOCEV, Vestec, Czech Republic
| | - Jakub Tomala
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Ludmila Brazdilova
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- * E-mail: (LB); (PS)
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- * E-mail: (LB); (PS)
| |
Collapse
|
7
|
Immune Responses in Leishmaniases: An Overview. Trop Med Infect Dis 2022; 7:tropicalmed7040054. [PMID: 35448829 PMCID: PMC9029249 DOI: 10.3390/tropicalmed7040054] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Leishmaniasis is a parasitic, widespread, and neglected disease that affects more than 90 countries in the world. More than 20 Leishmania species cause different forms of leishmaniasis that range in severity from cutaneous lesions to systemic infection. The diversity of leishmaniasis forms is due to the species of parasite, vector, environmental and social factors, genetic background, nutritional status, as well as immunocompetence of the host. Here, we discuss the role of the immune system, its molecules, and responses in the establishment, development, and outcome of Leishmaniasis, focusing on innate immune cells and Leishmania major interactions.
Collapse
|
8
|
Findlay RC, Osman M, Spence KA, Kaye PM, Walrad PB, Wilson LG. High-speed, three-dimensional imaging reveals chemotactic behaviour specific to human-infective Leishmania parasites. eLife 2021; 10:65051. [PMID: 34180835 PMCID: PMC8238501 DOI: 10.7554/elife.65051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/08/2021] [Indexed: 12/04/2022] Open
Abstract
Cellular motility is an ancient eukaryotic trait, ubiquitous across phyla with roles in predator avoidance, resource access, and competition. Flagellar motility is seen in various parasitic protozoans, and morphological changes in flagella during the parasite life cycle have been observed. We studied the impact of these changes on motility across life cycle stages, and how such changes might serve to facilitate human infection. We used holographic microscopy to image swimming cells of different Leishmania mexicana life cycle stages in three dimensions. We find that the human-infective (metacyclic promastigote) forms display ‘run and tumble’ behaviour in the absence of stimulus, reminiscent of bacterial motion, and that they specifically modify swimming direction and speed to target host immune cells in response to a macrophage-derived stimulus. Non-infective (procyclic promastigote) cells swim more slowly, along meandering helical paths. These findings demonstrate adaptation of swimming phenotype and chemotaxis towards human cells.
Collapse
Affiliation(s)
- Rachel C Findlay
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom.,Department of Physics, University of York, York, United Kingdom
| | - Mohamed Osman
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Kirstin A Spence
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Pegine B Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | | |
Collapse
|
9
|
Fonseca CMB, Mendonça TGS, Pereira CFDC, de Barros GM, da Silva ABS, Cavalcante MMADS, Cruz MDSPE, Conde Júnior AM. Structure of the parotid gland in natural infection by Leishmania infantum in Canis familiaris. Arch Oral Biol 2021; 124:105077. [PMID: 33601301 DOI: 10.1016/j.archoralbio.2021.105077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The objective of this study was to perform a histopathological, morphometric and proteomic study of the parotid gland of dogs naturally infected with Leishmania infantum treated and not treated with Allopurinol. DESIGN Parotid glands from 14 dogs were used, divided into two groups: untreated and treated with oral allopurinol (20 mg / kg, once daily for 90 days). After adequate dissection, the organs were submitted to histopathological, histomorphometric and immunohistochemical techniques, using the monoclonal anti-β-catenin antibody. RESULTS Histopathological evaluation of treated and untreated groups showed acinar hypertrophy, structural disorganization of the nucleus and cytoplasm. There was an increase in the area and perimeter of the parotid acini in the experimental groups. The immunostaining of the β-catenin protein in the membrane was severely reduced in the treated and untreated groups. CONCLUSIONS These findings suggest that Leishmania infantum infection and treatment with Allopurinol alter the tissue structure of the parotid gland in dogs, promoting an increase in the acinar volume and a decrease in the expression of β-catenin in cell membranes.
Collapse
Affiliation(s)
- Clarisse Maria Barbosa Fonseca
- Master Program in Science and Health, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil.
| | - Tarsia Giabardo Silva Mendonça
- Master Program in Science and Health, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil
| | - Cristian Francisco de Carvalho Pereira
- Department of Morphology, Health Sciences Center, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil
| | - Gabriel Martins de Barros
- Master Program in Science and Health, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil
| | - Andrezza Braga Soares da Silva
- Doctoral Program in Technologies Applied to Animals of Regional Interest, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil
| | - Maria Michele Araújo de Sousa Cavalcante
- Doctoral Program in Technologies Applied to Animals of Regional Interest, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil
| | - Maria do Socorro Pires E Cruz
- Department of Veterinary Morphophysiology, Center for Agricultural Sciences, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil
| | - Airton Mendes Conde Júnior
- Master Program in Science and Health, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, CEP: 64059-550, Teresina, Piauí, Brazil
| |
Collapse
|
10
|
Adam L, Tchitchek N, Todorova B, Rosenbaum P, Joly C, Poux C, Chapon C, Spetz AL, Ustav M, Le Grand R, Martinon F. Innate Molecular and Cellular Signature in the Skin Preceding Long-Lasting T Cell Responses after Electroporated DNA Vaccination. THE JOURNAL OF IMMUNOLOGY 2020; 204:3375-3388. [PMID: 32385135 DOI: 10.4049/jimmunol.1900517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
DNA vaccines delivered with electroporation (EP) have shown promising results in preclinical models and are evaluated in clinical trials. In this study, we aim to characterize early mechanisms occurring in the skin after intradermal injection and EP of the auxoGTUmultiSIV DNA vaccine in nonhuman primates. First, we show that EP acts as an adjuvant by enhancing local inflammation, notably via granulocytes, monocytes/macrophages, and CD1aint-expressing cell recruitment. EP also induced Langerhans cell maturation, illustrated by CD86, CD83, and HLA-DR upregulation and their migration out of the epidermis. Second, we demonstrate the crucial role of the DNA vaccine in soluble factors release, such as MCP-1 or IL-15. Transcriptomic analysis showed that EP played a major role in gene expression changes postvaccination. However, the DNA vaccine is required to strongly upregulate several genes involved in inflammatory responses (e.g., Saa4), cell migration (e.g., Ccl3, Ccl5, or Cxcl10), APC activation (e.g., Cd86), and IFN-inducible genes (e.g., Ifit3, Ifit5, Irf7, Isg15, orMx1), illustrating an antiviral response signature. Also, AIM-2, a cytosolic DNA sensor, appeared to be strongly upregulated only in the presence of the DNA vaccine and trends to positively correlate with several IFN-inducible genes, suggesting the potential role of AIM-2 in vaccine sensing and the subsequent innate response activation leading to strong adaptive T cell responses. Overall, these results demonstrate that a combined stimulation of the immune response, in which EP and the auxoGTUmultiSIV vaccine triggered different components of the innate immunity, led to strong and persistent cellular recall responses.
Collapse
Affiliation(s)
- Lucille Adam
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Biliana Todorova
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Pierre Rosenbaum
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Candie Joly
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Candice Poux
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Catherine Chapon
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Anna-Lena Spetz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden; and
| | - Mart Ustav
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France;
| |
Collapse
|
11
|
Horta MF, Andrade LO, Martins-Duarte ÉS, Castro-Gomes T. Cell invasion by intracellular parasites - the many roads to infection. J Cell Sci 2020; 133:133/4/jcs232488. [PMID: 32079731 DOI: 10.1242/jcs.232488] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intracellular parasites from the genera Toxoplasma, Plasmodium, Trypanosoma, Leishmania and from the phylum Microsporidia are, respectively, the causative agents of toxoplasmosis, malaria, Chagas disease, leishmaniasis and microsporidiosis, illnesses that kill millions of people around the globe. Crossing the host cell plasma membrane (PM) is an obstacle these parasites must overcome to establish themselves intracellularly and so cause diseases. The mechanisms of cell invasion are quite diverse and include (1) formation of moving junctions that drive parasites into host cells, as for the protozoans Toxoplasma gondii and Plasmodium spp., (2) subversion of endocytic pathways used by the host cell to repair PM, as for Trypanosoma cruzi and Leishmania, (3) induction of phagocytosis as for Leishmania or (4) endocytosis of parasites induced by specialized structures, such as the polar tubes present in microsporidian species. Understanding the early steps of cell entry is essential for the development of vaccines and drugs for the prevention or treatment of these diseases, and thus enormous research efforts have been made to unveil their underlying biological mechanisms. This Review will focus on these mechanisms and the factors involved, with an emphasis on the recent insights into the cell biology of invasion by these pathogens.
Collapse
Affiliation(s)
- Maria Fátima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Luciana Oliveira Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Érica Santos Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| |
Collapse
|
12
|
Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:1-68. [PMID: 31810551 DOI: 10.1016/bs.ircmb.2019.07.004] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) are a unique class of immune cells that act as a bridge between innate and adaptive immunity. The discovery of DCs by Cohen and Steinman in 1973 laid the foundation for DC biology, and the advances in the field identified different versions of DCs with unique properties and functions. DCs originate from hematopoietic stem cells, and their differentiation is modulated by Flt3L. They are professional antigen-presenting cells that patrol the environmental interphase, sites of infection, or infiltrate pathological tissues looking for antigens that can be used to activate effector cells. DCs are critical for the initiation of the cellular and humoral immune response and protection from infectious diseases or tumors. DCs can take up antigens using specialized surface receptors such as endocytosis receptors, phagocytosis receptors, and C type lectin receptors. Moreover, DCs are equipped with an array of extracellular and intracellular pattern recognition receptors for sensing different danger signals. Upon sensing the danger signals, DCs get activated, upregulate costimulatory molecules, produce various cytokines and chemokines, take up antigen and process it and migrate to lymph nodes where they present antigens to both CD8 and CD4 T cells. DCs are classified into different subsets based on an integrated approach considering their surface phenotype, expression of unique and conserved molecules, ontogeny, and functions. They can be broadly classified as conventional DCs consisting of two subsets (DC1 and DC2), plasmacytoid DCs, inflammatory DCs, and Langerhans cells.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
13
|
Rajesh A, Wise L, Hibma M. The role of Langerhans cells in pathologies of the skin. Immunol Cell Biol 2019; 97:700-713. [PMID: 30989674 DOI: 10.1111/imcb.12253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/07/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022]
Abstract
Langerhans cells (LCs) are epidermal immune cells of myeloid origin. Although these cells were primarily thought to play a defensive role in the skin, evidence now indicates a diverse range of LC-mediated effects including the relay of viral antigens in herpes simplex infection, recruitment of eosinophils in atopic dermatitis and promotion of a Th17 response in Candida infection. LCs may have a protective or suppressive function in pathologies of the skin, with differing functions being driven by the skin milieu. Understanding LC function will help guide the development of interventions that modulate these cells for therapeutic benefit.
Collapse
Affiliation(s)
- Aarthi Rajesh
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Lyn Wise
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Merilyn Hibma
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Chen P, Liu X, Sun Y, Zhou P, Wang Y, Zhang Y. Dendritic cell targeted vaccines: Recent progresses and challenges. Hum Vaccin Immunother 2017; 12:612-22. [PMID: 26513200 DOI: 10.1080/21645515.2015.1105415] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches.
Collapse
Affiliation(s)
- Pengfei Chen
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Xinsheng Liu
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Yuefeng Sun
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Peng Zhou
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Yonglu Wang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Yongguang Zhang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| |
Collapse
|
15
|
The role of monocytes in models of infection by protozoan parasites. Mol Immunol 2017; 88:174-184. [PMID: 28704704 DOI: 10.1016/j.molimm.2017.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/29/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
The confirmation of developmental differences between tissue macrophages and peripheral monocytes has changed our view of the functions and dynamics of these two important components of the innate immune system. It has been demonstrated conclusively that homeostasis of tissue resident macrophages is maintained by a low proliferative turn over. During an inflammatory response, bone marrow derived monocytes enter the tissue in large numbers and take part in the defense against the pathogens. After the destruction of invading pathogens, these cells disappear and tissue resident macrophages can be detected again. This new appreciation of the innate immune response has not only answered many outstanding questions regarding the role of the different myeloid cell types in inflammation, but also opened up new areas of research relating to the tissue- and pathogen-specific fate of the inflammatory macrophages or dendritic cells (DCs), and the transfer of this knowledge from mouse models to the human immune system. Nevertheless, there is still confusion in infection models, and especially in studies of human infections, as to what extent these recent observations and findings influence previous interpretations of data. This review will focus on insights from mouse models, summarize the literature on the ontogeny of macrophages and monocytes, explain the role of frequently used monocyte markers and effector molecules, and finally, discuss the role of inflammatory monocytes/macrophages/DCs in two experimental parasitic diseases.
Collapse
|
16
|
Abstract
The leishmaniases are diseases caused by pathogenic protozoan parasites of the genus Leishmania. Infections are initiated when a sand fly vector inoculates Leishmania parasites into the skin of a mammalian host. Leishmania causes a spectrum of inflammatory cutaneous disease manifestations. The type of cutaneous pathology is determined in part by the infecting Leishmania species, but also by a combination of inflammatory and anti-inflammatory host immune response factors resulting in different clinical outcomes. This review discusses the distinct cutaneous syndromes described in humans, and current knowledge of the inflammatory responses associated with divergent cutaneous pathologic responses to different Leishmania species. The contribution of key hematopoietic cells in experimental cutaneous leishmaniasis in mouse models are also reviewed and compared with those observed during human infection. We hypothesize that local skin events influence the ensuing adaptive immune response to Leishmania spp. infections, and that the balance between inflammatory and regulatory factors induced by infection are critical for determining cutaneous pathology and outcome of infection.
Collapse
|
17
|
de Menezes JP, Saraiva EM, da Rocha-Azevedo B. The site of the bite: Leishmania interaction with macrophages, neutrophils and the extracellular matrix in the dermis. Parasit Vectors 2016; 9:264. [PMID: 27146515 PMCID: PMC4857439 DOI: 10.1186/s13071-016-1540-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023] Open
Abstract
Leishmania spp., the causative agents of leishmaniasis, are intracellular parasites, transmitted to humans via the bite of their sand fly vectors. Once inoculated, the promastigotes are exposed to the dermis, which is composed of extracellular matrix (ECM), growth factors and its resident cells. Promastigote forms are phagocytosed by macrophages recruited to the site of the sand fly bite, either directly or after interaction with neutrophils. Since Leishmania is an intracellular parasite, its interaction with the host ECM has been neglected as well as the immediate steps after the sand fly bite. However, promastigotes must overcome the obstacles presented by the dermis ECM in order to establish the infection. Thus, the study of the interaction between Leishmania promastigotes and ECM components as well as the earliest stages of infection are important steps to understand the establishment of the disease, and could contribute in the future to new drug developments towards leishmaniasis.
Collapse
Affiliation(s)
| | - Elvira M Saraiva
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno da Rocha-Azevedo
- Programa de Terapia Celular e Bioengenharia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil. .,Present Address: Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
18
|
Dendritic Cells and Leishmania Infection: Adding Layers of Complexity to a Complex Disease. J Immunol Res 2016; 2016:3967436. [PMID: 26904694 PMCID: PMC4745329 DOI: 10.1155/2016/3967436] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/28/2015] [Indexed: 01/21/2023] Open
Abstract
Leishmaniasis is a group of neglected diseases whose clinical manifestations depend on factors from the host and the pathogen. It is an important public health problem worldwide caused by the protozoan parasite from the Leishmania genus. Cutaneous Leishmaniasis (CL) is the most frequent form of this disease transmitted by the bite of an infected sandfly into the host skin. The parasites can be uptook and/or recognized by macrophages, neutrophils, and/or dendritic cells (DCs). Initially, DCs were described to play a protective role in activating the immune response against Leishmania parasites. However, several reports showed a dichotomic role of DCs in modulating the host immune response to susceptibility or resistance in CL. In this review, we discuss (1) the interactions between DCs and parasites from different species of Leishmania and (2) the crosstalk of DCs and other cells during CL infection. The complexity of these interactions profoundly affects the adaptive immune response and, consequently, the disease outcome, especially from Leishmania species of the New World.
Collapse
|
19
|
Clausen BE, Stoitzner P. Functional Specialization of Skin Dendritic Cell Subsets in Regulating T Cell Responses. Front Immunol 2015; 6:534. [PMID: 26557117 PMCID: PMC4617171 DOI: 10.3389/fimmu.2015.00534] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are a heterogeneous family of professional antigen-presenting cells classically recognized as most potent inducers of adaptive immune responses. In this respect, Langerhans cells have long been considered to be prototypic immunogenic DC in the skin. More recently this view has considerably changed. The generation of in vivo cell ablation and lineage tracing models revealed the complexity of the skin DC network and, in particular, established the existence of a number of phenotypically distinct Langerin+ and negative DC populations in the dermis. Moreover, by now we appreciate that DC also exert important regulatory functions and are required for the maintenance of tolerance toward harmless foreign and self-antigens. This review summarizes our current understanding of the skin-resident DC system in the mouse and discusses emerging concepts on the functional specialization of the different skin DC subsets in regulating T cell responses. Special consideration is given to antigen cross-presentation as well as immune reactions toward contact sensitizers, cutaneous pathogens, and tumors. These studies form the basis for the manipulation of the human counterparts of the murine DC subsets to promote immunity or tolerance for the treatment of human disease.
Collapse
Affiliation(s)
- Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Division of Experimental Dermatology, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
20
|
Leishmania infection modulates beta-1 integrin activation and alters the kinetics of monocyte spreading over fibronectin. Sci Rep 2015; 5:12862. [PMID: 26249106 PMCID: PMC4528201 DOI: 10.1038/srep12862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/10/2015] [Indexed: 11/29/2022] Open
Abstract
Contact with Leishmania leads to a decreases in mononuclear phagocyte adherence to connective tissue. In this work, we studied the early stages of bond formation between VLA4 and fibronectin, measured the kinetics of membrane alignment and the monocyte cytoplasm spreading area over a fibronectin-coated surface, and studied the expression of high affinity integrin epitope in uninfected and Leishmania-infected human monocytes. Our results show that the initial VLA4-mediated interaction of Leishmania-infected monocyte with a fibronectin-coated surface is preserved, however, the later stage, leukocyte spreading over the substrate is abrogated in Leishmania-infected cells. The median of spreading area was 72 [55–89] μm2 for uninfected and 41 [34–51] μm2 for Leishmania-infected monocyte. This cytoplasm spread was inhibited using an anti-VLA4 blocking antibody. After the initial contact with the fibronectrin-coated surface, uninfected monocyte quickly spread the cytoplasm at a 15 μm2 s−1 ratio whilst Leishmania-infected monocytes only made small contacts at a 5.5 μm2 s−1 ratio. The expression of high affinity epitope by VLA4 (from 39 ± 21% to 14 ± 3%); and LFA1 (from 37 ± 32% to 18 ± 16%) molecules was reduced in Leishmania-infected monocytes. These changes in phagocyte function may be important for parasite dissemination and distribution of lesions in leishmaniasis.
Collapse
|
21
|
Jabbour MN, Issa G, Charafeddine K, Simaan Y, Karam M, Khalifeh H, Habib R, Khalifeh I. The immune microenvironment in cutaneous leishmaniasis. J Eur Acad Dermatol Venereol 2014; 29:1170-9. [PMID: 25351105 DOI: 10.1111/jdv.12781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/19/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cutaneous leishmaniasis is an infection that has spread to non-endemic regions, stimulating recent interest for the enhanced understanding of this disease. Downregulation of the CD1a receptor on Langerhans cells has been described in various cutaneous infections. OBJECTIVE In this study, the immune response across different Ridley patterns and parasitic indices is outlined in a case series of cutaneous leishmaniasis. METHODS Skin punch biopsies from the interface of normal and lesional cutaneous leishmaniasis were collected from 33 patients with molecularly confirmed Leishmania tropica or L. major infection. Ridley patterns (2-5) were assessed for various clinicopathological features including age, gender, disease duration, parasitic index and constituents of the inflammatory infiltrate. CD1a, CD68, CD3, CD4, CD8, CD20 and CD138 stains were performed on normal skin tissue, cutaneous leishmaniasis biopsies and cytospin/cell block cytology preparations of cultured leishmania promastigotes. CD1a was quantified per mm2 in the epidermis and dermis. The remaining stains were graded according to a 4-tiered grading system [0 (0-4%); 1 (5-24%); 2 (25-49%); 3 (50-74%) and 4 (75-100%). RESULTS Total CD1a expression significantly decreased (14-fold) from parasitic indices (0-2) to (5-6); (ρ < 0.001). CD1a expression in the epidermis was at least 5-fold lower than normal skin (58 vs. 400 cells/mm2), inversely correlating with the parasitic index. There was an increase in dermal CD1a Langerhans cells (33 vs. 0 cells/mm² in the dermis). CD1a and CD68 staining of amastigotes was strong and diffuse, whereas promastigotes were negative. The major inflammatory infiltrate, in all Ridley patterns, consisted of macrophages and double-negative CD3(+) CD4(-) CD8(-) T lymphocytes. The double-negative CD3 T cells formed a ring around the parasitic laden macrophages. Apart from CD1a, there was no significant difference in inflammatory markers between the various Ridley patterns and parasitic indices. Disease duration did not correlate with Ridley pattern. CONCLUSION The significant decrease in CD1a expression is postulated by two mechanisms; either via direct CD1a receptor uptake by leishmania amastigotes and/or negative feedback inhibition of CD1a Langerhans cells by double-negative CD3 T-regulatory cells. Modulation of the immune microenvironment in cutaneous leishmaniasis represents a potential therapeutic and prophylactic target.
Collapse
Affiliation(s)
- M N Jabbour
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - G Issa
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - K Charafeddine
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Y Simaan
- Department of Biology, University of Balamand, Tripoli, Lebanon
| | - M Karam
- Department of Biology, University of Balamand, Tripoli, Lebanon
| | - H Khalifeh
- Children's Cancer Center Lebanon, American University of Beirut Medical Center, Beirut, Lebanon
| | - R Habib
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - I Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
22
|
Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-β. Blood 2014; 124:2411-20. [DOI: 10.1182/blood-2014-04-568311] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Key Points
Human blood BDCA-1+ DCs have precursor potential. TSLP can be implicated in LC ontogenesis during inflammation.
Collapse
|
23
|
Ashok D, Acha-Orbea H. Timing is everything: dendritic cell subsets in murine Leishmania infection. Trends Parasitol 2014; 30:499-507. [DOI: 10.1016/j.pt.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 02/02/2023]
|
24
|
Gonzalez-Leal IJ, Röger B, Schwarz A, Schirmeister T, Reinheckel T, Lutz MB, Moll H. Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection. PLoS Negl Trop Dis 2014; 8:e3194. [PMID: 25255101 PMCID: PMC4177854 DOI: 10.1371/journal.pntd.0003194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022] Open
Abstract
Resistance and susceptibility to Leishmania major infection in the murine model is determined by the capacity of the host to mount either a protective Th1 response or a Th2 response associated with disease progression. Previous reports involving the use of cysteine cathepsin inhibitors indicated that cathepsins B (Ctsb) and L (Ctsl) play important roles in Th1/Th2 polarization during L. major infection in both susceptible and resistant mouse strains. Although it was hypothesized that these effects are a consequence of differential patterns of antigen processing, the mechanisms underlying these differences were not further investigated. Given the pivotal roles that dendritic cells and macrophages play during Leishmania infection, we generated bone-marrow derived dendritic cells (BMDC) and macrophages (BMM) from Ctsb−/− and Ctsl−/− mice, and studied the effects of Ctsb and Ctsl deficiency on the survival of L. major in infected cells. Furthermore, the signals used by dendritic cells to instruct Th cell polarization were addressed: the expression of MHC class II and co-stimulatory molecules, and cytokine production. We found that Ctsb−/− BMDC express higher levels of MHC class II molecules than wild-type (WT) and Ctsl−/− BMDC, while there were no significant differences in the expression of co-stimulatory molecules between cathepsin-deficient and WT cells. Moreover, both BMDC and BMM from Ctsb−/− mice significantly up-regulated the levels of interleukin 12 (IL-12) expression, a key Th1-inducing cytokine. These findings indicate that Ctsb−/− BMDC display more pro-Th1 properties than their WT and Ctsl−/− counterparts, and therefore suggest that Ctsb down-regulates the Th1 response to L. major. Moreover, they propose a novel role for Ctsb as a regulator of cytokine expression. The emergence of resistance to the available drugs against cutaneous leishmaniasis emphasizes the need of new chemotherapeutic approaches. Cysteine proteases from Leishmania are important virulence factors and, therefore, interesting drug targets. Studies on inhibitors against these enzymes during Leishmania major infection in mice had shown that host equivalents of these proteases are also affected, namely cathepsin B and cathepsin L. The inhibition of cathepsin B resulted in immune-mediated protection, while inhibition of cathepsin L caused susceptibility to the parasite. In the present study, we investigated the effect of cathepsin deficiency on the signals used by dendritic cells to orchestrate the T helper (Th)-mediated immune response against L. major and the control of parasite proliferation within infected macrophages. The results demonstrate that cathepsin B-deficient dendritic cells express higher levels of the antigen-presenting MHC class II molecules than WT and cathepsin L-deficient cells. Surprisingly, dendritic cells and macrophages deficient for cathepsin B showed higher expression of the protective Th1-inducing cytokine IL-12. Therefore, we propose a novel role of this protease as a regulator of cytokine expression. Altogether, these findings suggest that cathepsin B down-regulates the Th1 response to L. major, and, in its absence, antigen-presenting cells express signals protecting against the parasite.
Collapse
Affiliation(s)
- Iris J. Gonzalez-Leal
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Bianca Röger
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Angela Schwarz
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Tanja Schirmeister
- University of Mainz, Institute for Pharmacy and Biochemistry, Mainz, Germany
| | - Thomas Reinheckel
- University of Freiburg, Institute of Molecular Medicine and Cell Research, Freiburg, Germany
| | - Manfred B. Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Heidrun Moll
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
25
|
Hermida MDR, Doria PG, Taguchi AMP, Mengel JO, dos-Santos WLC. Leishmania amazonensis infection impairs dendritic cell migration from the inflammatory site to the draining lymph node. BMC Infect Dis 2014; 14:450. [PMID: 25142021 PMCID: PMC4143564 DOI: 10.1186/1471-2334-14-450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/13/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND In vitro studies show that Leishmania infection decreases the adhesion of inflammatory phagocytes to connective tissue by a mechanism dependent on the modulation of integrin function. However, we know little about the influence of this reduction in leukocyte adhesion on parasite dissemination from the infection site. METHODS In this work, we used a model of chronic peritonitis induced by thioglycollate to study the effect of L. amazonensis infection on the ability of inflammatory phagocyte populations to migrate from an inflammatory site to the draining lymph node. Uninfected or Leishmania-infected thioglycollate-elicited peritoneal exudate cells were transferred from C57BL/6 to BALB/c mice or from Ly5.1+ to Ly5.1- mice. The transferred cells were injected into the peritoneal cavity and tracked to the draining lymph node. RESULTS Migrating cells corresponded to approximately 1% of the injected leukocytes. The proportion of migrating CD11b+CD11c+ (myeloid dendritic cell) was lower after incubation with Leishmania (1.3 to 2.6 times lower in the experiments using C57BL/6 to BALB/c animals and 2.7 to 3.4 times lower in the experiments using Ly5.1+ to Ly5.1- animals) than after leukocyte incubation with medium alone (P < 0.01). There was no consistent decrease in the migration of CD11b+F4/80+ (macrophage) or SSChi GR-1+ (neutrophil) populations. CONCLUSIONS Coincubation with Leishmania changes the migratory pattern of dendritic cells in vivo. Such changes in dendritic cell migration may be associated with immunological events that maintain inflammation at the sites of infection.
Collapse
|
26
|
Abstract
CD4(+) T cells are key cells of the adaptive immune system that use T cell antigen receptors to recognize peptides that are generated in endosomes or phagosomes and displayed on the host cell surface bound to major histocompatibility complex molecules. These T cells participate in immune responses that protect hosts from microbes such as Mycobacterium tuberculosis, Cryptococcus neoformans, Leishmania major, and Salmonella enterica, which have evolved to live in the phagosomes of macrophages and dendritic cells. Here, we review studies indicating that CD4(+) T cells control phagosomal infections asymptomatically in most individuals by secreting cytokines that activate the microbicidal activities of infected phagocytes but in a way that inhibits the pathogen but does not eliminate it. Indeed, we make the case that localized, controlled, persistent infection is necessary to maintain large numbers of CD4(+) effector T cells in a state of activation needed to eradicate systemic and more pathogenic forms of the infection. Finally, we posit that current vaccines for phagosomal infections fail because they do not produce this "periodic reminder" form of CD4(+) T cell-mediated immune control.
Collapse
|
27
|
Ashok D, Schuster S, Ronet C, Rosa M, Mack V, Lavanchy C, Marraco SF, Fasel N, Murphy KM, Tacchini-Cottier F, Acha-Orbea H. Cross-presenting dendritic cells are required for control of Leishmania major infection. Eur J Immunol 2014; 44:1422-32. [PMID: 24643576 DOI: 10.1002/eji.201344242] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/27/2013] [Accepted: 02/06/2014] [Indexed: 11/08/2022]
Abstract
Leishmania major infection induces self-healing cutaneous lesions in C57BL/6 mice. Both IL-12 and IFN-γ are essential for the control of infection. We infected Jun dimerization protein p21SNFT (Batf3(-/-) ) mice (C57BL/6 background) that lack the major IL-12 producing and cross-presenting CD8α(+) and CD103(+) DC subsets. Batf3(-/-) mice displayed enhanced susceptibility with larger lesions and higher parasite burden. Additionally, cells from draining lymph nodes of infected Batf3(-/-) mice secreted less IFN-γ, but more Th2- and Th17-type cytokines, mirrored by increased serum IgE and Leishmania-specific immunoglobulin 1 (Th2 indicating). Importantly, CD8α(+) DCs isolated from lymph nodes of L. major-infected mice induced significantly more IFN-γ secretion by L. major-stimulated immune T cells than CD103(+) DCs. We next developed CD11c-diptheria toxin receptor: Batf3(-/-) mixed bone marrow chimeras to determine when the DCs are important for the control of infection. Mice depleted of Batf-3-dependent DCs from day 17 or wild-type mice depleted of cross-presenting DCs from 17-19 days after infection maintained significantly larger lesions similar to mice whose Batf-3-dependent DCs were depleted from the onset of infection. Thus, we have identified a crucial role for Batf-3-dependent DCs in protection against L. major.
Collapse
Affiliation(s)
- Devika Ashok
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Walker DM, Oghumu S, Gupta G, McGwire BS, Drew ME, Satoskar AR. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci 2013; 71:1245-63. [PMID: 24221133 DOI: 10.1007/s00018-013-1491-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.
Collapse
Affiliation(s)
- Dawn M Walker
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | |
Collapse
|
29
|
Blood dendritic cells in cattle infected with bovine leukemia virus (BLV): isolation and phenotyping. Pol J Vet Sci 2013; 15:599-608. [PMID: 23390747 DOI: 10.2478/v10181-012-0095-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dendritic cells (DCs) are most potent antigen presenting cells (APCs) with unique ability to prime effective immune responses. They express higher levels of MHC class II and accesory molecules on their surface, than other professional APCs. The investigations were performed on DCs generated from blood with the use of microbeads magnetically labeled with mouse anti human CD14. Flow cytometry was applied for determination of DCs immunophenotype in healthy and naturally infected with BLV cattle. For immunophenotyping mouse monoclonal antibodies anti bovine: CD11a, CD11b, CD11c, MHC-I and MHC-II were used. Our results demonstrated that dendritic cells infected with BLV expressed very high percentage of determinants: CD11a, CD11b, CD11c, MHC-I and MHC-II class. Leukaemic DCs exhibited DCs morphology and had a phenotype of mature DCs. The expression of gp51 glycoprotein of BLV on leukaemic DCs was detected in flow cytometry investigations.
Collapse
|
30
|
Kautz-Neu K, Schwonberg K, Fischer MR, Schermann AI, von Stebut E. Dendritic cells in Leishmania major infections: mechanisms of parasite uptake, cell activation and evidence for physiological relevance. Med Microbiol Immunol 2012; 201:581-92. [PMID: 22983754 DOI: 10.1007/s00430-012-0261-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is one of the most important infectious diseases worldwide; a vaccine is still not available. Infected dendritic cells (DC) are critical for the initiation of protective Th1 immunity against Leishmania major. Phagocytosis of L. major by DC leads to cell activation, IL-12 release and (cross-) presentation of Leishmania antigens by DC. Here, we review the role of Fcγ receptor- and B cell-mediated processes for parasite internalization by DC. In addition, the early events after parasite inoculation that consist of mast cell activation, parasite uptake by skin-resident macrophages (MΦ), followed by neutrophil and monocyte immigration and DC activation are described. All these events contribute significantly to antigen processing in infected DC and influence resulting T cell priming in vivo. A detailed understanding of the role of DC for the development of efficient anti-Leishmania immunity will aid the development of potent anti-parasite drugs and/or vaccines.
Collapse
Affiliation(s)
- Kordula Kautz-Neu
- Department of Dermatology, University Medicine, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | | | | | | | | |
Collapse
|
31
|
Liu D, Uzonna JE. The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response. Front Cell Infect Microbiol 2012; 2:83. [PMID: 22919674 PMCID: PMC3417671 DOI: 10.3389/fcimb.2012.00083] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/27/2012] [Indexed: 01/26/2023] Open
Abstract
The complicated interactions between Leishmania and the host antigen-presenting cells (APCs) have fundamental effects on the final outcome of the disease. Two major APCs, macrophages and dendritic cells (DCs), play critical roles in mediating resistance and susceptibility during Leishmania infection. Macrophages are the primary resident cell for Leishmania: they phagocytose and permit parasite proliferation. However, these cells are also the major effector cells to eliminate infection. The effective clearance of parasites by macrophages depends on activation of appropriate immune response, which is usually initiated by DCs. Here, we review the early interaction of APCs with Leishmania parasites and how these interactions profoundly impact on the ensuing adaptive immune response. We also discuss how the current knowledge will allow further refinement of our understanding of the interplay between Leishmania and its hosts that leads to resistance or susceptibility.
Collapse
Affiliation(s)
- Dong Liu
- Department of Immunology, University of Manitoba, Winnipeg MB, Canada
| | | |
Collapse
|
32
|
Immunomodulation by chemotherapeutic agents against Leishmaniasis. Int Immunopharmacol 2011; 11:1668-79. [DOI: 10.1016/j.intimp.2011.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 01/24/2023]
|
33
|
Abstract
Leishmania parasites have been widely used in experimental models to understand generation, maintenance and failure of immune responses underlying resistance and susceptibility to infection. The clinical outcomes of Leishmania infection depend on the infecting species and the immune status of the host. Noticeably most people exposed Leishmania never develop overt disease. Understanding the immunological events that result in failure or successful control of the parasites is fundamental to both design and evaluation of vaccines and therapies against the leishmaniases. Recent studies visualizing immune response to Leishmania major in the skin have given new insights into the different immune cells acting as hosts the parasite during different stage of infection. Control of Leishmania infection and disease progression has been associated with generation of T-helper (Th) 1 and Th2 responses respectively. Though still valid in several aspects, the Th1/Th2 paradigm is an oversimplification in need of revision. Th2 polarization has never explained severity of human leishmanial disease and a number of other T-cell subsets, including regulatory T- and Th17- cells, have important roles in susceptibility and resistance of both experimental and human leishmanial disease. This review gives an updated overview of immunological response considered to be of importance in protection, susceptibility, disease progression and cure of leishmaniasis, with a special emphasis on human diseases.
Collapse
Affiliation(s)
- Susanne Nylén
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
34
|
Nam HW, Ahn HJ, Yang HJ. Pro-inflammatory cytokine expression of spleen dendritic cells in mouse toxoplasmosis. THE KOREAN JOURNAL OF PARASITOLOGY 2011; 49:109-14. [PMID: 21738265 PMCID: PMC3121066 DOI: 10.3347/kjp.2011.49.2.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 01/17/2023]
Abstract
Dendritic cells have been known as a member of strong innate immune cells against infectious organelles. In this study, we evaluated the cytokine expression of splenic dendritic cells in chronic mouse toxoplasmosis by tissue cyst-forming Me49 strain and demonstrated the distribution of lymphoid dendritic cells by fluorescence-activated cell sorter (FACS). Pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-6, and IL-10 increased rapidly at week 1 post-infection (PI) and peaked at week 3 PI. Serum IL-10 level followed the similar patterns. FACS analysis showed that the number of CD8α+/CD11c+ splenic dendritic cells increased at week 1 and peaked at week 3 PI. In conclusion, mouse splenic dendritic cells showed early and rapid cytokine changes and may have important protective roles in early phases of murine toxoplasmosis.
Collapse
Affiliation(s)
- Ho-Woo Nam
- Department of Parasitology, College of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | | | | |
Collapse
|
35
|
Kautz-Neu K, Noordegraaf M, Dinges S, Bennett CL, John D, Clausen BE, von Stebut E. Langerhans cells are negative regulators of the anti-Leishmania response. ACTA ACUST UNITED AC 2011; 208:885-91. [PMID: 21536741 PMCID: PMC3092359 DOI: 10.1084/jem.20102318] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Langerhans cells suppress the immune response to low-dose Leishmania major infection in part by inducing regulatory T cells. Migratory skin dendritic cells (DCs) are thought to play an important role in priming T cell immune responses against Leishmania major, but DC subtypes responsible for the induction of protective immunity against this pathogen are still controversial. In this study, we analyzed the role of Langerin+ skin-derived DCs in the Leishmania model using inducible in vivo cell ablation. After physiologically relevant low-dose infection with L. major (1,000 parasites), mice depleted of all Langerin+ DCs developed significantly smaller ear lesions with decreased parasite loads and a reduced number of CD4+ Foxp3+ regulatory T cells (T reg cells) as compared with controls. This was accompanied by increased interferon γ production in lymph nodes in the absence of Langerin+ DCs. Moreover, selective depletion of Langerhans cells (LCs) demonstrated that the absence of LCs, and not Langerin+ dermal DC, was responsible for the reduced T reg cell immigration and the enhanced Th1 response, resulting in attenuated disease. Our data reveal a unique and novel suppressive role for epidermal LCs in L. major infection by driving the expansion of T reg cells. A better understanding of the various roles of different DC subsets in cutaneous leishmaniasis will improve the development of a potent therapeutic/prophylactic vaccine.
Collapse
Affiliation(s)
- Kordula Kautz-Neu
- Department of Dermatology, Johannes-Gutenberg University, 55131 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Kautz-Neu K, Meyer RG, Clausen BE, von Stebut E. Leishmaniasis, contact hypersensitivity and graft-versus-host disease: understanding the role of dendritic cell subsets in balancing skin immunity and tolerance. Exp Dermatol 2011; 19:760-71. [PMID: 20590820 DOI: 10.1111/j.1600-0625.2010.01116.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dendritic cells (DC) are key elements of the immune system. In peripheral tissues, they function as sentinels taking up and processing antigens. After migration to the draining lymph nodes, the DC either present antigenic peptides by themselves or transfer them to lymph node-resident DC. The skin is the primary interface between the body and the environment and host's various DC subsets, including dermal DC (dDC) and Langerhans cells (LC). Because of their anatomical position in the epidermis, LC are believed to be responsible for induction of adaptive cutaneous immune responses. The functions of LC and dDC in the skin immune system in vivo are manifold, and it is still discussed controversially whether the differentiation of T-cell subtypes (e.g. effector T cells and regulatory T cells) may be initiated by distinct DC subtypes. As skin DC are able to promote or downmodulate immune responses, we chose different skin diseases (cutaneous leishmaniasis, contact hypersensitivity, UV radiation-induced suppression, and graft-versus-host disease) to describe the biological interactions between different DC subtypes and T cells that lead to the development of efficient or unwanted immune responses. A detailed knowledge about the immune modulatory capacity of different cutaneous DC subsets might be helpful to specifically target these cells through the skin during therapeutic interventions.
Collapse
Affiliation(s)
- Kordula Kautz-Neu
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | |
Collapse
|
37
|
Millington OR, Myburgh E, Mottram JC, Alexander J. Imaging of the host/parasite interplay in cutaneous leishmaniasis. Exp Parasitol 2010; 126:310-7. [PMID: 20501336 PMCID: PMC3427850 DOI: 10.1016/j.exppara.2010.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 11/19/2022]
Abstract
An understanding of host-parasite interplay is essential for the development of therapeutics and vaccines. Immunoparasitologists have learned a great deal from 'conventional'in vitro and in vivo approaches, but recent developments in imaging technologies have provided us (immunologists and parasitologists) with the ability to ask new and exciting questions about the dynamic nature of the parasite-immune system interface. These studies are providing us with new insights into the mechanisms involved in the initiation of a Leishmania infection and the consequent induction and regulation of the immune response. Here, we review some of the recent developments and discuss how these observations can be further developed to understand the immunology of cutaneous Leishmania infection in vivo.
Collapse
|
38
|
Ersland K, Wüthrich M, Klein BS. Dynamic interplay among monocyte-derived, dermal, and resident lymph node dendritic cells during the generation of vaccine immunity to fungi. Cell Host Microbe 2010; 7:474-87. [PMID: 20542251 DOI: 10.1016/j.chom.2010.05.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 03/19/2010] [Accepted: 05/03/2010] [Indexed: 12/24/2022]
Abstract
Early innate events that enable priming of antifungal CD4 T cells are poorly understood. We engineered an attenuated fungal vaccine with a model epitope, EalphaRFP, to track vaccine immunity to Blastomyces dermatitidis during yeast recognition, antigen presentation, and priming of naive T cells. After subcutaneous injection of the vaccine, monocyte-derived inflammatory dendritic cells (DCs) are the earliest and largest population that associates with yeast, carrying them into the draining lymph nodes. Despite marked association with yeast, these DCs fail to display surface peptide:MHC complexes or prime naive T cells. Instead, the ability to display antigen and prime CD4 T cells resides with lymph node-resident DCs after antigen transfer from immigrant DCs and with skin migratory DCs. Our work reveals the dynamic interplay among distinct DC subsets that prime naive CD4 T cells after yeast are injected in the skin and discloses the cellular elements underlying vaccine-induced immunity to fungi.
Collapse
Affiliation(s)
- Karen Ersland
- Cell and Molecular Pathology Graduate Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | | | | |
Collapse
|
39
|
Romani N, Clausen BE, Stoitzner P. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev 2010; 234:120-41. [PMID: 20193016 DOI: 10.1111/j.0105-2896.2009.00886.x] [Citation(s) in RCA: 316] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Langerhans cells (LCs) are antigen-presenting dendritic cells (DCs) that reside in epithelia. The best studied example is the LC of the epidermis. By electron microscopy, their identifying feature is the unique rod- or tennis racket-shaped Birbeck granule. The phenotypic hallmark is their expression of the C-type lectin receptor langerin/CD207. Langerin, however, is also expressed on a recently discovered population of DC in the dermis and other tissues of the body. These 'dermal langerin(+) dendritic cells' are unrelated to LCs. The complex field of langerin-negative dermal DCs is not dealt with here. In this article, we briefly review the history, ontogeny, and homeostasis of LCs. More emphasis is laid on the discussion of functional properties in vivo. Novel models using genetically engineered mice are contributing tremendously to our understanding of the role of LCs in eliciting adaptive immune responses against pathogens or tumors and in inducing and maintaining tolerance against self antigens and innocuous substances in vivo. Also, innate effector functions are increasingly being recognized. Current activities in this area are reviewed, and possibilities for future exploitation of LC in medicine, e.g. for the improvement of vaccines, are contemplated.
Collapse
Affiliation(s)
- Nikolaus Romani
- Department of Dermatology & Venereology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | |
Collapse
|
40
|
Factor XIIIa+ dermal dendrocyte parasitism in American tegumentary leishmaniasis skin lesions. Am J Dermatopathol 2010; 32:15-8. [PMID: 19770631 DOI: 10.1097/dad.0b013e3181ab4695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dendritic cells belong to a family of antigen-presenting cells that are localized at the entry sites, such as skin and mucosa. Dendritic cells are related to immune surveillance function. The role of Langerhans cells in the pathogenesis of skin infectious diseases is well studied; however, there are few articles addressing involvement of factor XIIIa-positive dermal dendrocytes (FXIIIa+ DD) in such processes. FXIIIa+ DDs are bone marrow-monocytic lineage-derived cells and members of the skin immune system. Due to their immune phenotype and functional characteristics, they are considered complementary cells to Langerhans cells in the process of antigen presentation and inducing immune response. To verify the interaction between FXIIIa+ DD and Leishmania amastigotes, 22 biopsies of American tegumentary leishmaniasis (ATL) skin lesions were subjected to double staining technique with anti-factor XIIIa and anti-Leishmania antibodies. FXIIIa+ DDs were hypertrophic and abundant in the cutaneous reaction of ATL. FXIIIa+ DDs harboring parasites were observed in 11 of 22 skin biopsies. The data obtained suggest that FXIIIa+ DD plays a role in the pathogenesis of ATL skin lesion as host cell, immune effector, and/or antigen-presenting cell.
Collapse
|
41
|
Abstract
Langerhans cells (LC) are members of the heterogenous family of professional antigen presenting dendritic cells (DC). They are identified by the C-type lectin receptor Langerin and form a contiguous network in the epidermis. Consequently, LC are an integral part of the skin barrier to the environment and were considered to be critical inducers of skin immunity, whereas dermal DC were largely overlooked. However, with the identification of a distinct subset of Langerin expressing dermal DC, the situation in the skin has become more complex and the relative contribution of the different cutaneous DC populations in balancing immunity and tolerance has become a matter of active debate. Here, we briefly review the classical paradigm and recent challenges of LC function, before focusing on advances concerning their role in contact hypersensitivity and ultraviolet radiation-induced immunosuppression obtained with in vivo LC ablation models. We then discuss novel LC/DC-specific gene targeting approaches currently used to dissect the role of the regulatory cytokines transforming growth factor-beta and interleukin-10 to govern LC and DC function in vivo. This second generation of LC-specific genetically engineered mice will considerably extend our understanding of the molecular control of LC function in regulating skin immunity and tolerance in the near future.
Collapse
Affiliation(s)
- Björn E Clausen
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | | |
Collapse
|
42
|
Neospora caninum excreted/secreted antigens trigger CC-chemokine receptor 5-dependent cell migration. Int J Parasitol 2010; 40:797-805. [PMID: 20060395 DOI: 10.1016/j.ijpara.2009.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 12/04/2009] [Accepted: 12/06/2009] [Indexed: 01/10/2023]
Abstract
Neospora caninum, the causative agent of neosporosis, is an obligate intracellular parasite considered to be a major cause of abortion in cattle throughout the world. Most studies concerning N. caninum have focused on life cycle, seroepidemiology, pathology and vaccination, while data on host-parasite interaction, such as host cell migration, mechanisms of evasion and dissemination of this parasite during the early phase of infection are still poorly understood. Here we show the ability of excreted/secreted antigens from N. caninum (NcESAs) to attract monocytic cells to the site of primary infection in both in vitro and in vivo assays. Molecules from the family of cyclophilins present on the NcESAs were shown to work as chemokine-like proteins and NcESA-induced chemoattraction involved G(i) protein signaling and participation of CC-chemokine receptor 5 (CCR5). Additionally, we demonstrate the ability of NcESAs to enhance the expression of CCR5 on monocytic cells and this increase occurred in parallel with the chemotactic activity of NcESAs by increasing cell migration. These results suggest that during the first days of infection, N. caninum produces molecules capable of inducing monocytic cell migration to the sites of infection, which will consequently enhance initial parasite invasion and proliferation. Altogether, these results help to clarify some key features involved in the process of cell migration and may reveal virulence factors and therapeutic targets to control neosporosis.
Collapse
|
43
|
Geiger B, Wenzel J, Hantschke M, Haase I, Ständer S, Von Stebut E. Resolving lesions in human cutaneous leishmaniasis predominantly harbour chemokine receptor CXCR3-positive T helper 1/T cytotoxic type 1 cells. Br J Dermatol 2009; 162:870-4. [DOI: 10.1111/j.1365-2133.2009.09573.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Mortellaro A, Urbano M, Citterio S, Foti M, Granucci F, Ricciardi-Castagnoli P. Generation of murine growth factor-dependent long-term dendritic cell lines to investigate host-parasite interactions. Methods Mol Biol 2009; 531:17-27. [PMID: 19347308 DOI: 10.1007/978-1-59745-396-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Substantial progress has been made over the last several years in the development of protocols for the isolation of large numbers of dendritic cells (DCs) from different tissues and their short-term culture. Indeed, several stable DC lines and clones have been established from various tissues of mice and humans, providing useful experimental tools for studying the biology of DCs at both molecular and biochemical levels and for the establishment of new DC-based immunotherapies. In this chapter, we will describe the development of long-term DC lines that maintain the growth factor dependence and their immature functional state, thus providing a unique opportunity to study the mechanisms of the initiation of the immune response to infectious agents.
Collapse
Affiliation(s)
- Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | | | | | | | | |
Collapse
|
45
|
Pham W, Kobukai S, Hotta C, Gore JC. Dendritic cells: therapy and imaging. Expert Opin Biol Ther 2009; 9:539-64. [DOI: 10.1517/14712590902867739] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wellington Pham
- Vanderbilt University, Institute of Imaging Science, 1161 21st Avenue South, AA. 1105 MCN, Nashville, TN 37232-2310, USA
| | - Saho Kobukai
- Vanderbilt University, Institute of Imaging Science, 1161 21st Avenue South, AA. 1105 MCN, Nashville, TN 37232-2310, USA
- *These individuals contributed equally to this work
| | - Chie Hotta
- Brigham and Women's Hospital, Harvard Medical School, Center for Neurologic Diseases, 77 Avenue Louis Pasteur, HIM 780, Boston, MA 02115, USA
- *These individuals contributed equally to this work
| | - John C Gore
- Vanderbilt University, Institute of Imaging Science, 1161 21st Avenue South, AA. 1105 MCN, Nashville, TN 37232-2310, USA
| |
Collapse
|
46
|
Brewig N, Kissenpfennig A, Malissen B, Veit A, Bickert T, Fleischer B, Mostböck S, Ritter U. Priming of CD8+ and CD4+ T cells in experimental leishmaniasis is initiated by different dendritic cell subtypes. THE JOURNAL OF IMMUNOLOGY 2009; 182:774-83. [PMID: 19124720 DOI: 10.4049/jimmunol.182.2.774] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biological role of Langerin+ dendritic cells (DCs) such as Langerhans cells and a subset of dermal DCs (dDCs) in adaptive immunity against cutaneous pathogens remains enigmatic. Thus, we analyzed the impact of Langerin+ DCs in adaptive T cell-mediated immunity toward Leishmania major parasites in a Lang-DTR mouse model that allows conditional diphtheria toxin (DT)-induced ablation of Langerin+ DCs in vivo. For the first time, infection experiments with DT-treated Lang-DTR mice revealed that proliferation of L. major-specific CD8+ T cells is significantly reduced during the early phase of the immune response following depletion of Langerin+ DCs. Consequently, the total number of activated CD8+ T cells within the draining lymph node and at the site of infection is diminished. Furthermore, we show that the impaired CD8+ T cell response is due to the absence of Langerin+ dDCs and not Langerhans cells. Nevertheless, the CD4+ T cell response is not altered and the infection is cleared as effectively in DT-treated Lang-DTR mice as in control mice. This clearly demonstrates that Langerin+ DCs are, in general, dispensable for an efficient adaptive immune response against L. major parasites. Thus, we propose a novel concept that, in the experimental model of leishmaniasis, priming of CD4+ T cells is mediated by Langerin- dDCs, whereas Langerin+ dDCs are involved in early priming of CD8+ T cells.
Collapse
Affiliation(s)
- Nancy Brewig
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Dendritic cells are potent antigen-presenting cells endowed with the unique ability to prime T-cell responses. To present foreign antigens to na ive T cells, dendritic cells must migrate from inflamed or injured peripheral tissues to the closest draining lymph nodes through afferent lymphatic vessels. In addition, conventional dendritic cells, plasmacytoid dendritic cells and monocytes enter lymph nodes from blood crossing high endothelial venules. The selective migration of dendritic cells and their residence in non lymphoid as well as in lymphoid organs are tightly regulated events, whose molecular control is being unraveled rapidly. In this chapter, we review key aspects of what is known about dendritic cell traffic to peripheral nodes from tissues, in particular skin, and from blood. A better understanding of the regulation of dendritic cell migration for optimal priming of T-cell responses is essential for future advances in manipulating dendritic cell traffic as a means to improve immune responses in clinical settings.
Collapse
|
48
|
Snider H, Lezama-Davila C, Alexander J, Satoskar AR. Sex hormones and modulation of immunity against leishmaniasis. Neuroimmunomodulation 2009; 16:106-13. [PMID: 19212130 PMCID: PMC2760305 DOI: 10.1159/000180265] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sex-associated hormones such as estradiol, testosterone and progesterone have all been shown to modulate immune responses, which can result in differential disease outcomes between males and females, as well as between pregnant and nonpregnant females. Most parasitic diseases, including leishmaniasis, usually result in more severe disease in males compared with females. This review highlights our current knowledge concerning the role of sex hormones in modulating leishmaniasis in both clinical settings and experimental disease models.
Collapse
Affiliation(s)
- Heidi Snider
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
49
|
Ng LG, Hsu A, Mandell MA, Roediger B, Hoeller C, Mrass P, Iparraguirre A, Cavanagh LL, Triccas JA, Beverley SM, Scott P, Weninger W. Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PLoS Pathog 2008; 4:e1000222. [PMID: 19043558 PMCID: PMC2583051 DOI: 10.1371/journal.ppat.1000222] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 10/29/2008] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DC), including those of the skin, act as sentinels for intruding microorganisms. In the epidermis, DC (termed Langerhans cells, LC) are sessile and screen their microenvironment through occasional movements of their dendrites. The spatio-temporal orchestration of antigen encounter by dermal DC (DDC) is not known. Since these cells are thought to be instrumental in the initiation of immune responses during infection, we investigated their behavior directly within their natural microenvironment using intravital two-photon microscopy. Surprisingly, we found that, under homeostatic conditions, DDC were highly motile, continuously crawling through the interstitial space in a Galpha(i) protein-coupled receptor-dependent manner. However, within minutes after intradermal delivery of the protozoan parasite Leishmania major, DDC became immobile and incorporated multiple parasites into cytosolic vacuoles. Parasite uptake occurred through the extension of long, highly dynamic pseudopods capable of tracking and engulfing parasites. This was then followed by rapid dendrite retraction towards the cell body. DDC were proficient at discriminating between parasites and inert particles, and parasite uptake was independent of the presence of neutrophils. Together, our study has visualized the dynamics and microenvironmental context of parasite encounter by an innate immune cell subset during the initiation of the immune response. Our results uncover a unique migratory tissue surveillance program of DDC that ensures the rapid detection of pathogens.
Collapse
Affiliation(s)
- Lai Guan Ng
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - Alice Hsu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael A. Mandell
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ben Roediger
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - Christoph Hoeller
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Paulus Mrass
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Amaya Iparraguirre
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Lois L. Cavanagh
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | - James A. Triccas
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wolfgang Weninger
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
- Discipline of Dermatology, University of Sydney, Camperdown, New South Wales, Australia
- * E-mail:
| |
Collapse
|
50
|
Nogueira MF, Sotto MN, Cucé LC. American tegumentary leishmaniasis: langerhans cells in montenegro skin test. Rev Inst Med Trop Sao Paulo 2008; 50:283-6. [DOI: 10.1590/s0036-46652008000500007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 09/11/2008] [Indexed: 11/22/2022] Open
Abstract
This work analyzed the histopathology and epidermal Langerhans cells (LC) of Montenegro skin test (MST) in patients with American tegumentary leishmaniasis (ATL) in order to in situ characterize and compare the immunological reaction of the two major clinical forms of ATL, localized cutaneous leishmaniasis (LCL) and mucocutaneous leishmaniasis (MCL). MST histopathology of both LCL and MCL showed superficial and deep perivascular inflammatory infiltrate composed mainly of lymphocytes and histiocytes. Epidermal LC population was higher in MST biopsies taken from LCL patients when compared to MCL group, at 48 and 72 hours after antigen inoculation. Increased number of epidermal LC displayed in MST biopsies of LCL patients represents specific cellular immunity against parasites. The decrease of LC in MST biopsies of MCL patients does not necessarily indicate a worse specific cellular immunity in this clinical form of leishmaniasis.
Collapse
|