1
|
Oswald DM, Zhou JY, Jones MB, Cobb BA. Disruption of hepatocyte Sialylation drives a T cell-dependent pro-inflammatory immune tone. Glycoconj J 2020; 37:395-407. [PMID: 32222873 DOI: 10.1007/s10719-020-09918-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Through the catalysis of α2,6-linked sialylation, the enzyme ST6Gal1 is thought to play key roles in immune cell communication and homeostasis. Of particular importance, glycans with terminal α2,6-sialic acids are known to negatively regulate B cell receptor signaling and are associated with an immunosuppressive tumor microenvironment that promotes T cell anergy, suggesting that α2,6-sialic acids are a key immune inhibitory signal. Consistent with this model, mice harboring a hepatocyte-specific ablation of ST6Gal1 (H-cKO) develop a progressive and severe non-alcoholic fatty liver disease characterized by steatohepatitis. Using this H-cKO mouse, we have further discovered that loss of hepatocyte α2,6-sialylation not only increases the inflammatory state of the local tissue microenvironment, but also systemic T cell-dependent immune responses. H-cKO mice responded normally to innate and passively induced inflammation, but showed significantly increased morbidity in T cell-dependent house dust mite-antigen (HDM)-induced asthma and myelin oligodendrocyte glycoprotein (MOG) peptide-induced experimental autoimmune encephalomyelitis (EAE). We further discovered that H-cKO mice have a profound shift toward effector/memory T cells even among unchallenged mice, and that macrophages from both the liver and spleen expressed the inhibitory and α2,6-sialic acid-specific glycan binding molecule CD22. These findings align with previously reported pro-inflammatory changes in liver macrophages, and support a model in which the liver microenvironment sets a systemic immune tone that is regulated by tissue α2,6-sialylation and mediated by liver macrophages and systemic T cells.
Collapse
Affiliation(s)
- Douglas M Oswald
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44160, USA
| | - Julie Y Zhou
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44160, USA
| | - Mark B Jones
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44160, USA
| | - Brian A Cobb
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44160, USA.
| |
Collapse
|
2
|
Bärenwaldt A, Läubli H. The sialoglycan-Siglec glyco-immune checkpoint - a target for improving innate and adaptive anti-cancer immunity. Expert Opin Ther Targets 2019; 23:839-853. [PMID: 31524529 DOI: 10.1080/14728222.2019.1667977] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: During cancer progression, tumor cells develop several mechanisms to prevent killing and to shape the immune system into a tumor-promoting environment. One of such regulatory mechanism is the overexpression of sialic acid (Sia) on carbohydrates of proteins and lipids on tumor cells. Sia-containing glycans or sialoglycans were shown to inhibit immune effector functions of NK cells and T cells by engaging inhibitory Siglec receptors on the surface of these cells. They can also modulate the differentiation of myeloid cells into tumor-promoting M2 macrophages. Areas covered: We review the role of sialoglycans in cancer and introduce the Siglecs, their expression on different immune cells and their interaction with cancer-associated sialoglycans. The targeting of this sialoglycan-Siglec glyco-immune checkpoint is discussed along with potential therapeutic approaches. Pubmed was searched for publications on Siglecs, sialic acid, and cancer. Expert opinion: The targeting of sialoglycan-Siglec interactions has become a major focus in cancer research. New approaches have been developed that directly target sialic acids in tumor lesions. Targeted sialidases that cleave sialic acid specifically in the tumor, have already shown efficacy; efforts targeting the sialoglycan-Siglec pathway for improvement of CAR T cell therapy are ongoing. The sialoglycan-Siglec immune checkpoint is a promising new target for cancer immunotherapy.
Collapse
Affiliation(s)
- Anne Bärenwaldt
- Division of Medical Oncology, and Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel , Basel , Switzerland
| | - Heinz Läubli
- Division of Medical Oncology, and Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel , Basel , Switzerland
| |
Collapse
|
3
|
Espéli M, Clatworthy MR, Bökers S, Lawlor KE, Cutler AJ, Köntgen F, Lyons PA, Smith KGC. Analysis of a wild mouse promoter variant reveals a novel role for FcγRIIb in the control of the germinal center and autoimmunity. ACTA ACUST UNITED AC 2012; 209:2307-19. [PMID: 23109709 PMCID: PMC3501356 DOI: 10.1084/jem.20121752] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Genetic variants of the inhibitory Fc receptor FcγRIIb have been associated with systemic lupus erythematosus in humans and mice. The mechanism by which Fcgr2b variants contribute to the development of autoimmunity is unknown and was investigated by knocking in the most commonly conserved wild mouse Fcgr2b promoter haplotype, also associated with autoimmune-prone mouse strains, into the C57BL/6 background. We found that in the absence of an AP-1-binding site in its promoter, FcγRIIb failed to be up-regulated on activated and germinal center (GC) B cells. This resulted in enhanced GC responses, increased affinity maturation, and autoantibody production. Accordingly, in the absence of FcγRIIb activation-induced up-regulation, mice developed more severe collagen-induced arthritis and spontaneous glomerular immune complex deposition. Our data highlight how natural variation in Fcgr2b drives the development of autoimmune disease. They also show how the study of such variants using a knockin approach can provide insight into immune mechanisms not possible using conventional genetic manipulation, in this case demonstrating an unexpected critical role for the activation-induced up-regulation of FcγRIIb in controlling affinity maturation, autoantibody production, and autoimmunity.
Collapse
Affiliation(s)
- Marion Espéli
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Unlike their protein "roommates" and their nucleic acid "cousins," carbohydrates remain an enigmatic arm of biology. The central reason for the difficulty in fully understanding how carbohydrate structure and biological function are tied is the nontemplate nature of their synthesis and the resulting heterogeneity. The goal of this collection of expert reviews is to highlight what is known about how carbohydrates and their binding partners-the microbial (non-self), tumor (altered-self), and host (self)-cooperate within the immune system, while also identifying areas of opportunity to those willing to take up the challenge of understanding more about how carbohydrates influence immune responses. In the end, these reviews will serve as specific examples of how carbohydrates are as integral to biology as are proteins, nucleic acids, and lipids. Here, we attempt to summarize general concepts on glycans and glycan-binding proteins (mainly C-type lectins, siglecs, and galectins) and their contributions to the biology of immune responses in physiologic and pathologic settings.
Collapse
Affiliation(s)
- Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Laboratorio de Glicómica Funcional, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Ciudad de Buenos Aires, Argentina
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Brian A. Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
5
|
Gross AJ, Lyandres JR, Panigrahi AK, Prak ETL, DeFranco AL. Developmental acquisition of the Lyn-CD22-SHP-1 inhibitory pathway promotes B cell tolerance. THE JOURNAL OF IMMUNOLOGY 2009; 182:5382-92. [PMID: 19380785 DOI: 10.4049/jimmunol.0803941] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To better understand whether autoimmunity in Lyn-deficient mice arises from compromised central or peripheral B cell tolerance, we examined BCR signaling properties of wild-type and Lyn-deficient B cells at different stages of development. Wild-type mature follicular B cells were less sensitive to BCR stimulation than were immature transitional stage 1 B cells with regard to BCR-induced calcium elevation and ERK MAPK activation. In the absence of Lyn, mature B cell signaling was greatly enhanced, whereas immature B cell signaling was minimally affected. Correspondingly, Lyn deficiency substantially enhanced the sensitivity of mature B cells to activation via the BCR, but minimally affected events associated with tolerance induction at the immature stage. The effects of CD22 deficiency on BCR signaling were very similar in B cells at different stages of maturation. These results indicate that the Lyn-CD22-Src homology region 2 domain-containing phosphatase-1 inhibitory pathway largely becomes operational as B cell mature, and sets a threshold for activation that appears to be critical for the maintenance of tolerance in the B cell compartment.
Collapse
Affiliation(s)
- Andrew J Gross
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
6
|
Fuentes-Pananá EM, Bannish G, Karnell FG, Treml JF, Monroe JG. Analysis of the Individual Contributions of Igα (CD79a)- and Igβ (CD79b)-Mediated Tonic Signaling for Bone Marrow B Cell Development and Peripheral B Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2006; 177:7913-22. [PMID: 17114463 DOI: 10.4049/jimmunol.177.11.7913] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The individual contribution of Igalpha and Igbeta for BCR-triggered fates is unclear. Prior evidence supports conflicting ideas concerning unique as well as redundant functions for these proteins in the context of BCR/pre-BCR signaling. Part of this ambiguity may reflect the recent appreciation that Igalpha and Igbeta participate in both Ag-independent (tonic) and Ag-dependent signaling. The present study undertook defining the individual requirement for Igalpha and Igbeta under conditions where only ligand-independent tonic signaling was operative. In this regard, we have constructed chimeric proteins containing one or two copies of the cytoplasmic domains of either Igalpha or Igbeta and Igalpha/Igbeta heterodimers with targeted Tyr-->Phe modifications. The ability of these proteins to act as surrogate receptors and trigger early bone marrow and peripheral B cell maturation was tested in RAG2(-/-) primary pro-B cell lines and in gene transfer experiments in the muMT mouse model. We considered that the threshold for a functional activity mediated by the pre-BCR/BCR might only be reached when two functional copies of the Igalpha/Igbeta ITAM domain are expressed together, and therefore the specificity conferred by these proteins can only be observed in these conditions. We found that the ligand-independent tonic signal is sufficient to drive development into mature follicular B cells and both Igalpha and Igbeta chains supported formation of this population. In contrast, neither marginal zone nor B1 mature B cell subsets develop from bone marrow precursors under conditions where only tonic signals are generated.
Collapse
Affiliation(s)
- Ezequiel M Fuentes-Pananá
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
7
|
Garrett-Sinha LA, Hou P, Wang D, Grabiner B, Araujo E, Rao S, Yun TJ, Clark EA, Simon MC, Clark MR. Spi-1 and Spi-B control the expression of the Grap2 gene in B cells. Gene 2005; 353:134-46. [PMID: 15936902 DOI: 10.1016/j.gene.2005.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 03/21/2005] [Accepted: 04/07/2005] [Indexed: 11/16/2022]
Abstract
The Ets family members Spi-1 and Spi-B have been implicated in the regulation of genes important for B cell antigen receptor (BCR) signaling. Mice deficient in Spi-B exhibit reduced B cell proliferation in response to BCR cross-linking and impaired T cell-dependent immune responses. This defect is exacerbated in the presence of Spi-1 haplo-insufficiency (Spi1+/- SpiB-/-). Tyrosine phosphorylation and calcium mobilization induced by BCR engagement is diminished in Spi1+/- SpiB-/- B lymphocytes, although many key BCR signaling proteins are expressed, suggesting that Spi-1 and Spi-B regulate expression of additional, unidentified signaling molecules. We now demonstrate that expression of the adaptor protein Grap2 is impaired in Spi1+/- SpiB+/- and Spi1+/- SpiB-/- B lymphocytes. Analysis of two alternate murine Grap2 promoters revealed a functionally important Spi-1 and Spi-B DNA binding element located in the downstream promoter. Ectopic expression of Grap2 in Grap2-deficient B cells reduced the recruitment of BLNK to Igalpha and the phosphorylation of specific substrates. Regulation of BLNK recruitment was dependent upon the Grap2 proline-rich domain, while modulation of phosphorylation was dependent upon both the proline-rich and SH2 domains. These data indicate that Spi-1 and Spi-B directly regulate the expression of Grap2 and that Grap2 functions to modulate BCR signaling, but that reduced Grap2 expression is unlikely to account for the BCR signaling defects observed in Spi1+/- SpiB-/- B cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- B-Lymphocytes/metabolism
- Base Sequence
- Binding Sites/genetics
- Blotting, Northern
- Blotting, Western
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Down-Regulation/genetics
- Electrophoretic Mobility Shift Assay
- Gene Expression/genetics
- Genotype
- Heterozygote
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Mutation
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Sequence Alignment
- Sequence Homology, Nucleic Acid
- Signal Transduction
- Spleen/cytology
- Spleen/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, 140 Farber Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fuentes-Pananá EM, Bannish G, van der Voort D, King LB, Monroe JG. Igα/Igβ Complexes Generate Signals for B Cell Development Independent of Selective Plasma Membrane Compartmentalization. THE JOURNAL OF IMMUNOLOGY 2005; 174:1245-52. [PMID: 15661879 DOI: 10.4049/jimmunol.174.3.1245] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ligand-induced BCR association with detergent-resistant plasma membrane compartments (lipid rafts) has been argued to be essential for initiating and/or sustaining Igalpha/Igbeta-dependent BCR signaling. Because a fraction of the BCR and an even larger fraction of the preBCR associates with lipid rafts in the apparent absence of ligand stimulation, it has been proposed that raft-associated receptor complexes mediate the ligand-independent basal signaling events observed in resting B lineage cells. However, there is no direct evidence that localization of Igalpha/Igbeta-containing complexes to detergent-resistant membrane compartments is absolutely required for the signaling events that drive B cell development. To address these issues we have designed surrogate preBCR/Igalpha/Igbeta complexes that are incapable of ligand-induced aggregation and that are preferentially targeted to either raft or nonraft compartments. An analysis of their ability to promote the preBCR-dependent proB-->preB cell transition of murine B cell progenitors revealed that expression of these surrogate receptor complexes at levels that approximate that of the conventional preBCR can drive B cell development in a manner independent of both aggregation and lipid raft localization.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- CD79 Antigens
- Cell Compartmentation/genetics
- Cell Compartmentation/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Detergents
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Microdomains/genetics
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Mice
- Mice, Knockout
- Pre-B Cell Receptors
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Recombinant Fusion Proteins/biosynthesis
- Sequence Deletion
- Signal Transduction/genetics
- Signal Transduction/immunology
- Solubility
Collapse
Affiliation(s)
- Ezequiel M Fuentes-Pananá
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
9
|
Torlakovic E, Malecka A, Myklebust JH, Tierens A, Aasheim HC, Nesland JM, Smeland E, Kvaløy S, Delabie J. PU.1 protein expression has a positive linear association with protein expression of germinal centre B cell genes includingBCL-6, CD10, CD20 andCD22: identification of PU.1 putative binding sites in theBCL-6 promotor. J Pathol 2005; 206:312-9. [PMID: 15892171 DOI: 10.1002/path.1777] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The transcription factor PU.1 has been shown to be crucial for the early stages of B cell development but its function at later stages of B cell development is less well known. We observed previously that PU.1 is expressed uniformly throughout the mature pre-plasma cell B cell population, the only exception being a subpopulation of germinal centre (GC) cells which showed exceptionally high expression of PU.1. This suggested that PU.1 may also have a role in GC B cell biology. To test this hypothesis and to screen for possible genes regulated by PU.1, we first evaluated semi-quantitatively the possible co-expression of PU.1 with proteins known to be upregulated or downregulated during GC B cell development. Normal lymphoid tissues and 255 B cell non-Hodgkin lymphomas of putative GC B cell origin were evaluated. PU.1 expression was positively associated with CD10 (p < 0.0001), CD20 (p = 0.043), CD22 (p = 0.005), CD79a (p = 0.024) and Bcl-6 (p < 0.0001) and negatively associated with cytoplasmic immunoglobulin light-chain expression (p = 0.036) in diffuse large B cell lymphoma. Identical or nearly identical associations were found in follicular lymphoma. Since CD20 is known to be partly regulated by PU.1 and putative PU.1-binding sites have been described in the regulatory regions of the CD22, CD79a and CD10 genes, we looked for putative PU.1 binding sites in the BCL6 promotor. Four such putative PU.1 binding sites were identified. Further analysis by gel-shift electromobility essay showed that PU.1 protein binds to three of the four putative binding sites in the BCL6 promotor. PU.1 and Bcl-6 were also found to be upregulated in centroblasts in the normal GC, but jointly downregulated in a subpopulation of centrocytes. Our findings support the contention that PU.1 may also have an important role in GC B cell development.
Collapse
Affiliation(s)
- Emina Torlakovic
- Department of Pathology, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mirnics ZK, Caudell E, Gao Y, Kuwahara K, Sakaguchi N, Kurosaki T, Burnside J, Mirnics K, Corey SJ. Microarray analysis of Lyn-deficient B cells reveals germinal center-associated nuclear protein and other genes associated with the lymphoid germinal center. THE JOURNAL OF IMMUNOLOGY 2004; 172:4133-41. [PMID: 15034025 DOI: 10.4049/jimmunol.172.7.4133] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lyn is the only member of the Src family expressed in DT40 B cells, which provide a unique model to study the singular contribution of this protein tyrosine kinase (PTK) family to cell signaling. In these cells, gene ablation of Lyn leads to defective B cell receptor signaling. Complementary DNA array analysis of Lyn-deficient DT40 cells shows that the absence of Lyn leads to down-regulation of numerous genes encoding proteins involved in B cell receptor signaling, proliferation, control of transcription, immunity/inflammation response, and cytoskeletal organization. Most of these expression changes have not been previously associated with Lyn PTK signaling. They include alterations in mRNA levels of germinal center-associated nuclear protein (germinal center-associated DNA primase) (GANP), CD74, CD22, NF-kappaB, elongation factor 1alpha, CD79b, octamer binding factor 1, Ig H chain, stathmin, and gamma-actin. Changes in GANP expression were also confirmed in Lyn-deficient mice, suggesting that Lyn PTK has a unique function not compensated for by other Src kinases. Because Lyn-deficient mice have impaired development of germinal centers in spleen, the decreased expression of GANP in the Lyn-deficient DT40 cell line and Lyn-deficient mice suggests that Lyn controls the formation and proliferation of germinal centers via GANP. GANP promoter activity was higher in wild-type vs Lyn-deficient cells. Mutation of the PU.1 binding site reduced activity in wild-type cells and had no effect in Lyn-deficient cells. The presence of Lyn enhanced PU.1 expression in a Northern blot. Thus, the following new signaling pathway has been described: Lyn-->PU.1-->GANP.
Collapse
Affiliation(s)
- Zeljka Korade Mirnics
- Department of Pediatrics, University of Pittsburgh, School of Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lajaunias F, Ida A, Kikuchi S, Fossati-Jimack L, Martinez-Soria E, Moll T, Law CL, Izui S. Differential control of CD22 ligand expression on B and T lymphocytes, and enhanced expression in murine systemic lupus. ARTHRITIS AND RHEUMATISM 2003; 48:1612-21. [PMID: 12794829 DOI: 10.1002/art.11021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE CD22, a B cell-restricted transmembrane glycoprotein, regulates B cell antigen receptor signaling upon interaction with alpha2,6-linked sialic acid-bearing glycans, which act as ligands and are expressed on B and T cells. In this study, we investigated how the expression of CD22 ligand (CD22L) is modulated following lymphocyte activation or during the course of systemic lupus erythematosus (SLE). METHODS The expression levels of CD22L on B and T cells in nonautoimmune mice were assessed by flow cytometric analysis using a soluble recombinant form of CD22, following stimulation with antigen or mitogen in vitro. In addition, the expression levels of CD22L on circulating lymphocytes were correlated with the progression of SLE in lupus-prone mice. RESULTS We observed a constitutive expression of CD22L on mature B cells, but not T cells, in nonautoimmune mice. However, CD22L levels were up-regulated selectively on T cells (but not B cells) stimulated with antigens in vitro, while their expression levels on B cells was up-modulated following polyclonal activation with lipopolysaccharide. Furthermore, expression of CD22L was increased on circulating B cells (and to a lesser extent on T cells) in parallel with progression of SLE in several different lupus-prone mice and in a cohort of (C57BL/6 x [NZB x C57BL/6.Yaa]F(1)) backcross mice. CONCLUSION The expression of CD22L is differentially regulated in B and T cells, and high expression of CD22L on circulating B cells is a marker for development of severe SLE, suggesting a role for CD22-CD22L interactions in SLE as well as in the regulation of humoral immunity.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/metabolism
- Cell Adhesion Molecules
- Cells, Cultured
- Disease Models, Animal
- Female
- Flow Cytometry
- Lectins/metabolism
- Ligands
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/mortality
- Lupus Erythematosus, Systemic/pathology
- Lupus Nephritis/metabolism
- Lupus Nephritis/mortality
- Lupus Nephritis/pathology
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Receptors, Antigen, B-Cell/metabolism
- Recombinant Proteins
- Sialic Acid Binding Ig-like Lectin 2
- Spleen/cytology
- Spleen/immunology
- Survival Rate
- T-Lymphocytes/metabolism
- Up-Regulation
Collapse
|
12
|
Lajaunias F, Nitschke L, Moll T, Martinez-Soria E, Semac I, Chicheportiche Y, Parkhouse RME, Izui S. Differentially regulated expression and function of CD22 in activated B-1 and B-2 lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6078-83. [PMID: 12055217 DOI: 10.4049/jimmunol.168.12.6078] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD22 is a B cell-restricted transmembrane protein that apparently controls signal transduction thresholds initiated through the B cell Ag receptor (BCR) in response to Ag. However, it is still poorly understood how the expression of CD22 is regulated in B cells after their activation. Here we show that the expression levels of CD22 in conventional B-2 cells are markedly down-regulated after cross-linking of BCR with anti-IgM mAb but are up-regulated after stimulation with LPS, anti-CD40 mAb, or IL-4. In contrast, treatment with anti-IgM mAb barely modulated the expression levels of CD22 in CD5(+) B-1 cells, consistent with a weak Ca(2+) response in anti-IgM-treated CD5(+) B-1 cells. Moreover, in CD22-deficient mice, anti-IgM treatment did not trigger enhanced Ca(2+) influx in CD5(+) B-1 cells, unlike CD22-deficient splenic B-2 cells, suggesting a relatively limited role of CD22 in BCR signaling in B-1 cells. In contrast, CD22 levels were markedly down-regulated on wild-type B-1 cells in response to LPS or unmethylated CpG-containing oligodeoxynucleotides. These data indicate that the expression and function of CD22 are differentially regulated in B-1 and conventional B-2 cells, which are apparently implicated in innate and adaptive immunity, respectively.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Anti-Idiotypic/pharmacology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/biosynthesis
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/physiology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- CD40 Antigens/immunology
- Calcium/metabolism
- Calcium Signaling/immunology
- Cell Adhesion Molecules
- Cells, Cultured
- CpG Islands/immunology
- Down-Regulation/immunology
- Immunoglobulin M/immunology
- Interleukin-4/pharmacology
- Lectins
- Lipopolysaccharides/pharmacology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Oligodeoxyribonucleotides/pharmacology
- Peritoneum/cytology
- Peritoneum/immunology
- Peritoneum/metabolism
- Sialic Acid Binding Ig-like Lectin 2
- Spleen/cytology
- Spleen/immunology
- Up-Regulation/immunology
Collapse
|
13
|
Rudge EU, Cutler AJ, Pritchard NR, Smith KGC. Interleukin 4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and Fc gamma RII-mediated B cell suppression. J Exp Med 2002; 195:1079-85. [PMID: 11956299 PMCID: PMC2193690 DOI: 10.1084/jem.20011435] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Inhibitory receptors CD22, Fc gamma RII (CD32), CD72, and paired immunoglobulin-like receptor (PIR)-B are critically involved in negatively regulating the B cell immune response and in preventing autoimmunity. Here we show that interleukin 4 (IL-4) reduces expression of all four on activated B cells at the level of messenger RNA and protein. This reduced expression is dependent on continuous exposure to IL-4 and is mediated through Stat6. Coligation of Fc gamma RII to the B cell receptor (BCR) via intact IgG increases the B cell activation threshold and suppresses antigen presentation. IL-4 completely abolishes these negative regulatory effects of Fc gamma RII. CD22 coligation with the BCR also suppresses activation -- this suppression too is abolished by IL-4. Thus, IL-4 is likely to enhance the B cell immune response by releasing B cells from inhibitory receptor suppression. By this coordinate reduction in expression of inhibitory receptors, and release from CD22 and Fc gamma RII-mediated inhibition, IL-4 is likely to play a role in T cell help of B cells and the development of T helper cell type 2 responses. Conversely, B cell activation in the absence of IL-4 would be more difficult to achieve, contributing to the maintenance of B cell tolerance in the absence of T cell help.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Calcium
- Cell Adhesion Molecules
- Gene Expression
- Humans
- Interleukin-4/immunology
- Interleukin-4/pharmacology
- Intracellular Fluid/immunology
- Lectins
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/genetics
- Receptors, IgG/biosynthesis
- Receptors, IgG/genetics
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- STAT6 Transcription Factor
- Sialic Acid Binding Ig-like Lectin 2
- Trans-Activators/immunology
Collapse
Affiliation(s)
- Elizabeth U Rudge
- Cambridge Institute for Medical Research and the Department of Medicine, Wellcome Trust/MRC Building, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge CB2 2XY, United Kingdom
| | | | | | | |
Collapse
|
14
|
Moyron-Quiroz JE, Partida-Sánchez S, Donís-Hernández R, Sandoval-Montes C, Santos-Argumedo L. Expression and function of CD22, a B-cell restricted molecule. Scand J Immunol 2002; 55:343-51. [PMID: 11967115 DOI: 10.1046/j.1365-3083.2002.01063.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this work, we studied the expression and function of CD22 in murine B cells. CD22 has been previously characterized as an activation marker of mature B lymphocytes. However, we found that CD22 is expressed early during the ontogeny of B cells in the bone marrow and spleen, and was found on B cells isolated from all the different lymphoid compartments. We also found that B cells stimulated through the B-cell antigen receptor (BCR), CD38 and CD40, upregulated CD22 expression to maximal levels within 24 h after stimulation, but that the levels of CD22 declined at later times (48 and 72 h). CD22 is rapidly phosphorylated after BCR signal transduction, and is believed to downregulate B-cell activation. In this study, we did not detect CD22 phosphorylation in activated B cells after CD38 or CD40 cross-linking, even though CD22 was clearly phosphorylated in the BCR-stimulated B cells. Consistent with this, we found no evidence of physical association between CD38 or CD40 and CD22 in B cells. The lack of association or phosphorylation of CD22 induced by CD38 and CD40 cross-linking indicates that CD22 may not downregulate the activation induced by these two molecules.
Collapse
MESH Headings
- ADP-ribosyl Cyclase
- ADP-ribosyl Cyclase 1
- Animals
- Antigens, CD/analysis
- Antigens, CD/physiology
- Antigens, Differentiation/physiology
- Antigens, Differentiation, B-Lymphocyte/analysis
- Antigens, Differentiation, B-Lymphocyte/physiology
- B-Lymphocytes/chemistry
- B-Lymphocytes/physiology
- Bone Marrow/chemistry
- CD40 Antigens/physiology
- Cell Adhesion Molecules
- Lectins
- Membrane Glycoproteins
- Mice
- Mice, Inbred BALB C
- NAD+ Nucleosidase/physiology
- Phosphorylation
- Receptors, Antigen, B-Cell/physiology
- Sialic Acid Binding Ig-like Lectin 2
Collapse
Affiliation(s)
- J E Moyron-Quiroz
- Department of Cellular Biology, Centro de Investigación y Estudios Avanzados del I.P.N., 07360 México D.F., México
| | | | | | | | | |
Collapse
|
15
|
Craxton A, Otipoby KL, Jiang A, Clark EA. Signal transduction pathways that regulate the fate of B lymphocytes. Adv Immunol 1999; 73:79-152. [PMID: 10399006 DOI: 10.1016/s0065-2776(08)60786-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- A Craxton
- Department of Microbiology, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Information is increasingly available concerning the molecular events that occur during primary and antigen-dependent stages of B cell development. In this review the roles of transcription factors and coactivators are discussed with respect to changes in expression patterns of various genes during B cell development. Transcriptional regulation is also discussed in the context of developmentally regulated immunoglobulin gene V(D)J recombination, somatic hypermutation, and isotype switch recombination.
Collapse
Affiliation(s)
- A Henderson
- Department of Veterinary Science, Pennsylvania State University, University Park 16802, USA.
| | | |
Collapse
|
17
|
Makar KW, Pham CTN, Dehoff MH, O’Connor SM, Jacobi SM, Holers VM. An Intronic Silencer Regulates B Lymphocyte Cell- and Stage-Specific Expression of the Human Complement Receptor Type 2 (CR2, CD21) Gene. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.3.1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Human CR2 (CD21) is a B lymphocyte protein whose surface expression is restricted primarily to the mature cell stage during development. To study the transcriptional mechanisms that govern cell- and stage-restricted CR2 expression, we first performed transient transfection analysis using constructs extending from −5 kb to +75 bp (−5 kb/+75) in the CR2 promoter. The promoter was found to be broadly active, with no evidence of cell- or stage-specific reporter gene expression. However, the addition of a 2.5-kb intronic gene segment (containing a DNase I hypersensitive site) to the (−5-kb/+75) construct resulted in appropriate reporter gene expression, defined as the silencing of the (−5-kb/+75) promoter activity only in non-CR2-expressing cells. Interestingly, appropriate reporter gene expression required stable transfection of the constructs in cell lines, suggesting nuclear matrix or chromatin interactions may be important for appropriate CR2 gene expression. Importantly, transgenic mice also required the intronic silencer to generate lymphoid tissue-specific reporter gene expression. Some transgenic founder lines did not demonstrate reporter gene expression, however, indicating that additional transcriptional regulatory elements are present in other regions of the CR2 gene. In summary, these data support the hypothesis that human CR2 expression is regulated primarily by an intronic silencer with lineage- and B cell stage-specific activity.
Collapse
Affiliation(s)
- Karen W. Makar
- *Departments of Medicine and Immunology, Division of Rheumatology, University of Colorado Health Sciences Center, Denver, CO 80262; and
| | - Christine T. N. Pham
- †Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110
| | - Marlin H. Dehoff
- *Departments of Medicine and Immunology, Division of Rheumatology, University of Colorado Health Sciences Center, Denver, CO 80262; and
| | - Siobhan M. O’Connor
- †Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110
| | - Susan M. Jacobi
- †Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110
| | - V. Michael Holers
- *Departments of Medicine and Immunology, Division of Rheumatology, University of Colorado Health Sciences Center, Denver, CO 80262; and
| |
Collapse
|
18
|
Cyster JG, Goodnow CC. Tuning antigen receptor signaling by CD22: integrating cues from antigens and the microenvironment. Immunity 1997; 6:509-17. [PMID: 9175829 DOI: 10.1016/s1074-7613(00)80339-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, 94143-0414, USA
| | | |
Collapse
|