1
|
Suboptimal stimulation by weak agonist epitope variants does not drive dysfunction of HIV-1-specific cytotoxic T lymphocyte clones. AIDS 2019; 33:1565-1574. [PMID: 31306165 DOI: 10.1097/qad.0000000000002259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To assess whether weakly recognized epitope variants induce anergy in HIV-1-specific CD8 T lymphocyte (CTL) clones as a mechanism of dysfunction. DESIGN HIV-1-specific CTL clones were exposed to suboptimally recognized epitope variants, and screened for anergy and other T-cell dysfunction markers, and subsequent capability to kill target cells bearing index epitope. METHODS In addition to the optimally recognized index epitope, two suboptimally recognized epitope variants were selected based on titration curves for killing of peptide-labeled target cells by three HIV-1-specific CTL clones targeting the epitopes SLYNTVATL (Gag 77-85, A02-restricted), RPAEPVPLQL (Rev 66-75, B07-restricted), and KRWIIMGLNK (Gag 263-272, B27-restricted). Consequences of suboptimal stimulation were assessed by cytokine secretion, gene expression, and capacity to kill index epitope-labeled target cells upon rechallenge. RESULTS Suboptimal recognition of epitope variants reduced cytokine production by CTL similarly to reduction in killing of target cells. Gene expression profiles after suboptimal stimulation demonstrated no patterns consistent with T-cell dysfunction due to anergy, exhaustion, or apoptosis. Preexposure of CTL to epitope variants had no discernable impact on their subsequent capacity to kill index epitope-bearing target cells. CONCLUSION Our data explore the hypothesis that poorly recognized epitope variants not only facilitate HIV-1 evasion of CTL recognition, but also induce CTL dysfunction through suboptimal signaling causing anergy. However, the results do not suggest that suboptimal signaling induces anergy (or exhaustion or apoptosis), indicating that the major role of CTL epitope variation is likely viral escape.
Collapse
|
2
|
Cole DK, Fuller A, Dolton G, Zervoudi E, Legut M, Miles K, Blanchfield L, Madura F, Holland CJ, Bulek AM, Bridgeman JS, Miles JJ, Schauenburg AJA, Beck K, Evavold BD, Rizkallah PJ, Sewell AK. Dual Molecular Mechanisms Govern Escape at Immunodominant HLA A2-Restricted HIV Epitope. Front Immunol 2017; 8:1503. [PMID: 29209312 PMCID: PMC5701626 DOI: 10.3389/fimmu.2017.01503] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 12/05/2022] Open
Abstract
Serial accumulation of mutations to fixation in the SLYNTVATL (SL9) immunodominant, HIV p17 Gag-derived, HLA A2-restricted cytotoxic T lymphocyte epitope produce the SLFNTIAVL triple mutant “ultimate” escape variant. These mutations in solvent-exposed residues are believed to interfere with TCR recognition, although confirmation has awaited structural verification. Here, we solved a TCR co-complex structure with SL9 and the triple escape mutant to determine the mechanism of immune escape in this eminent system. We show that, in contrast to prevailing hypotheses, the main TCR contact residue is 4N and the dominant mechanism of escape is not via lack of TCR engagement. Instead, mutation of solvent-exposed residues in the peptide destabilise the peptide–HLA and reduce peptide density at the cell surface. These results highlight the extraordinary lengths that HIV employs to evade detection by high-affinity TCRs with a broad peptide-binding footprint and necessitate re-evaluation of this exemplar model of HIV TCR escape.
Collapse
Affiliation(s)
- David K Cole
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Anna Fuller
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Garry Dolton
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Efthalia Zervoudi
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Mateusz Legut
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Kim Miles
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Lori Blanchfield
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Florian Madura
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Christopher J Holland
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Anna M Bulek
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - John S Bridgeman
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - John J Miles
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom.,James Cook University, Cairns, QLD, Australia
| | - Andrea J A Schauenburg
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Konrad Beck
- Cardiff University School of Dentistry, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Brian D Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Pierre J Rizkallah
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| | - Andrew K Sewell
- Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
3
|
Identification of human viral protein-derived ligands recognized by individual MHCI-restricted T-cell receptors. Immunol Cell Biol 2016; 94:573-82. [PMID: 26846725 PMCID: PMC4943067 DOI: 10.1038/icb.2016.12] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/23/2015] [Accepted: 01/18/2016] [Indexed: 12/12/2022]
Abstract
Evidence indicates that autoimmunity can be triggered by virus-specific CD8+ T cells that crossreact with self-derived peptide epitopes presented on the cell surface by major histocompatibility complex class I (MHCI) molecules. Identification of the associated viral pathogens is challenging because individual T-cell receptors can potentially recognize up to a million different peptides. Here, we generate peptide length-matched combinatorial peptide library (CPL) scan data for a panel of virus-specific CD8+ T-cell clones spanning different restriction elements and a range of epitope lengths. CPL scan data drove a protein database search limited to viruses that infect humans. Peptide sequences were ranked in order of likelihood of recognition. For all anti-viral CD8+ T-cell clones examined in this study, the index peptide was either the top-ranked sequence or ranked as one of the most likely sequences to be recognized. Thus, we demonstrate that anti-viral CD8+ T-cell clones are highly focused on their index peptide sequence and that ‘CPL-driven database searching' can be used to identify the inciting virus-derived epitope for a given CD8+ T-cell clone. Moreover, to augment access to CPL-driven database searching, we have created a publicly accessible webtool. Application of these methodologies in the clinical setting may clarify the role of viral pathogens in the etiology of autoimmune diseases.
Collapse
|
4
|
Tan MP, Gerry AB, Brewer JE, Melchiori L, Bridgeman JS, Bennett AD, Pumphrey NJ, Jakobsen BK, Price DA, Ladell K, Sewell AK. T cell receptor binding affinity governs the functional profile of cancer-specific CD8+ T cells. Clin Exp Immunol 2015; 180:255-70. [PMID: 25496365 PMCID: PMC4408161 DOI: 10.1111/cei.12570] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 12/17/2022] Open
Abstract
Antigen-specific T cell receptor (TCR) gene transfer via patient-derived T cells is an attractive approach to cancer therapy, with the potential to circumvent immune regulatory networks. However, high-affinity tumour-specific TCR clonotypes are typically deleted from the available repertoire during thymic selection because the vast majority of targeted epitopes are derived from autologous proteins. This process places intrinsic constraints on the efficacy of T cell-based cancer vaccines and therapeutic strategies that employ naturally generated tumour-specific TCRs. In this study, we used altered peptide ligands and lentivirus-mediated transduction of affinity-enhanced TCRs selected by phage display to study the functional properties of CD8(+) T cells specific for three different tumour-associated peptide antigens across a range of binding parameters. The key findings were: (i) TCR affinity controls T cell antigen sensitivity and polyfunctionality; (ii) supraphysiological affinity thresholds exist, above which T cell function cannot be improved; and (iii) T cells transduced with very high-affinity TCRs exhibit cross-reactivity with self-derived peptides presented by the restricting human leucocyte antigen. Optimal system-defined affinity windows above the range established for natural tumour-specific TCRs therefore allow the enhancement of T cell effector function without off-target effects. These findings have major implications for the rational design of novel TCR-based biologics underpinned by rigorous preclinical evaluation.
Collapse
Affiliation(s)
- M P Tan
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Klatt NR, Chomont N, Douek DC, Deeks SG. Immune activation and HIV persistence: implications for curative approaches to HIV infection. Immunol Rev 2014; 254:326-42. [PMID: 23772629 DOI: 10.1111/imr.12065] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite complete or near-complete suppression of human immunodeficiency virus (HIV) replication with combination antiretroviral therapy, both HIV and chronic inflammation/immune dysfunction persist indefinitely. Untangling the association between the virus and the host immune environment during therapy might lead to novel interventions aimed at either curing the infection or preventing the development of inflammation-associated end-organ disease. Chronic inflammation and immune dysfunction might lead to HIV persistence by causing virus production, generating new target cells, enabling infecting of activated and resting target cells, altering the migration patterns of susceptible target cells, increasing the proliferation of infected cells, and preventing normal HIV-specific clearance mechanisms from function. Chronic HIV production or replication might contribute to persistent inflammation and immune dysfunction. The rapidly evolving data on these issues strongly suggest that a vicious cycle might exist in which HIV persistence causes inflammation that in turn contributes to HIV persistence.
Collapse
Affiliation(s)
- Nichole R Klatt
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
6
|
Hu Y, Tan PT, Tan TW, August JT, Khan AM. Dissecting the dynamics of HIV-1 protein sequence diversity. PLoS One 2013; 8:e59994. [PMID: 23593157 PMCID: PMC3617185 DOI: 10.1371/journal.pone.0059994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 02/21/2013] [Indexed: 12/22/2022] Open
Abstract
The rapid mutation of human immunodeficiency virus-type 1 (HIV-1) and the limited characterization of the composition and incidence of the variant population are major obstacles to the development of an effective HIV-1 vaccine. This issue was addressed by a comprehensive analysis of over 58,000 clade B HIV-1 protein sequences reported over at least 26 years. The sequences were aligned and the 2,874 overlapping nonamer amino acid positions of the viral proteome, each a possible core binding domain for human leukocyte antigen molecules and T-cell receptors, were quantitatively analyzed for four patterns of sequence motifs: (1) "index", the most prevalent sequence; (2) "major" variant, the most common variant sequence; (3) "minor" variants, multiple different sequences, each with an incidence less than that of the major variant; and (4) "unique" variants, each observed only once in the alignment. The collective incidence of the major, minor, and unique variants at each nonamer position represented the total variant population for the position. Positions with more than 50% total variants contained correspondingly reduced incidences of index and major variant sequences and increased minor and unique variants. Highly diverse positions, with 80 to 98% variant nonamer sequences, were present in each protein, including 5% of Gag, and 27% of Env and Nef, each. The multitude of different variant nonamer sequences (i.e. nonatypes; up to 68%) at the highly diverse positions, represented by the major, multiple minor, and multiple unique variants likely supported variants function both in immune escape and as altered peptide ligands with deleterious T-cell responses. The patterns of mutational change were consistent with the sequences of individual HXB2 and C1P viruses and can be considered applicable to all HIV-1 viruses. This characterization of HIV-1 protein mutation provides a foundation for the design of peptide-based vaccines and therapeutics.
Collapse
Affiliation(s)
- Yongli Hu
- Perdana University Graduate School of Medicine, Selangor Darul Ehsan, Malaysia
| | | | | | | | | |
Collapse
|
7
|
Frequent and variable cytotoxic-T-lymphocyte escape-associated fitness costs in the human immunodeficiency virus type 1 subtype B Gag proteins. J Virol 2013; 87:3952-65. [PMID: 23365420 DOI: 10.1128/jvi.03233-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cytotoxic-T-lymphocyte (CTL) escape mutations undermine the durability of effective human immunodeficiency virus type 1 (HIV-1)-specific CD8(+) T cell responses. The rate of CTL escape from a given response is largely governed by the net of all escape-associated viral fitness costs and benefits. The observation that CTL escape mutations can carry an associated fitness cost in terms of reduced virus replication capacity (RC) suggests a fitness cost-benefit trade-off that could delay CTL escape and thereby prolong CD8 response effectiveness. However, our understanding of this potential fitness trade-off is limited by the small number of CTL escape mutations for which a fitness cost has been quantified. Here, we quantified the fitness cost of the 29 most common HIV-1B Gag CTL escape mutations using an in vitro RC assay. The majority (20/29) of mutations reduced RC by more than the benchmark M184V antiretroviral drug resistance mutation, with impacts ranging from 8% to 69%. Notably, the reduction in RC was significantly greater for CTL escape mutations associated with protective HLA class I alleles than for those associated with nonprotective alleles. To speed the future evaluation of CTL escape costs, we also developed an in silico approach for inferring the relative impact of a mutation on RC based on its computed impact on protein thermodynamic stability. These data illustrate that the magnitude of CTL escape-associated fitness costs, and thus the barrier to CTL escape, varies widely even in the conserved Gag proteins and suggest that differential escape costs may contribute to the relative efficacy of CD8 responses.
Collapse
|
8
|
Cale EM, Bazick HS, Rianprakaisang TA, Alam SM, Letvin NL. Mutations in a dominant Nef epitope of simian immunodeficiency virus diminish TCR:epitope peptide affinity but not epitope peptide:MHC class I binding. THE JOURNAL OF IMMUNOLOGY 2011; 187:3300-13. [PMID: 21841125 DOI: 10.4049/jimmunol.1101080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viruses like HIV and SIV escape from containment by CD8(+) T lymphocytes through generating mutations that interfere with epitope peptide:MHC class I binding. However, mutations in some viral epitopes are selected for that have no impact on this binding. We explored the mechanism underlying the evolution of such epitopes by studying CD8(+) T lymphocyte recognition of a dominant Nef epitope of SIVmac251 in infected Mamu-A*02(+) rhesus monkeys. Clonal analysis of the p199RY-specific CD8(+) T lymphocyte repertoire in these monkeys indicated that identical T cell clones were capable of recognizing wild-type (WT) and mutant epitope sequences. However, we found that the functional avidity of these CD8(+) T lymphocytes for the mutant peptide:Mamu-A*02 complex was diminished. Using surface plasmon resonance to measure the binding affinity of the p199RY-specific TCR repertoire for WT and mutant p199RY peptide:Mamu-A*02 monomeric complexes, we found that the mutant p199RY peptide:Mamu-A*02 complexes had a lower affinity for TCRs purified from CD8(+) T lymphocytes than did the WT p199RY peptide:Mamu-A*02 complexes. These studies demonstrated that differences in TCR affinity for peptide:MHC class I ligands can alter functional p199RY-specific CD8(+) T lymphocyte responses to mutated epitopes, decreasing the capacity of these cells to contain SIVmac251 replication.
Collapse
Affiliation(s)
- Evan M Cale
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
T cell recognition of antigen is a crucial aspect of the adaptive immune response. One of the most common means of pathogen immune evasion is mutation of T cell epitopes. T cell recognition of such ligands can result in a variety of outcomes including activation, apoptosis and anergy. The ability of a given T cell to respond to a specific peptide-MHC ligand is regulated by a number of factors, including the affinity, on- and off-rates and half-life of the TCR-peptide-MHC interaction. Interaction of T cells with low-potency ligands results in unique signaling patterns and requires engagement with a larger number of T cell receptors than agonist ligands. This review will address these aspects of T cell interaction with weak ligands and the ways in which these ligands have been utilized therapeutically.
Collapse
|
10
|
Cifaldi L, Lo Monaco E, Forloni M, Giorda E, Lorenzi S, Petrini S, Tremante E, Pende D, Locatelli F, Giacomini P, Fruci D. Natural Killer Cells Efficiently Reject Lymphoma Silenced for the Endoplasmic Reticulum Aminopeptidase Associated with Antigen Processing. Cancer Res 2011; 71:1597-606. [DOI: 10.1158/0008-5472.can-10-3326] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Ammaranond P, van Bockel DJ, Petoumenos K, McMurchie M, Finlayson R, Middleton MG, Davenport MP, Venturi V, Suzuki K, Gelgor L, Kaldor JM, Cooper DA, Kelleher AD. HIV immune escape at an immunodominant epitope in HLA-B*27-positive individuals predicts viral load outcome. THE JOURNAL OF IMMUNOLOGY 2010; 186:479-88. [PMID: 21115730 DOI: 10.4049/jimmunol.0903227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The CTL response in HLA-B*27(+) HIV-infected individuals is characterized by an immunodominant response to a conserved epitope in gag p24 (aa 263-272, KRWIILGLNK; KK10). Mutations resulting in substitution of the arginine (R264) at position 2 of this epitope have been identified as escape mutations. Nineteen HLA-B*27(+) long-term nonprogressors were identified from an Australian cohort with an average follow-up of 16 y following infection. Viral and host genetic factors impacting on disease progression were determined at multiple time points. Twelve of 19 had wild-type sequences at codon 264 at all time points; 7 of 19 carried CTL escape variants. Median viral load and CD4(+) T cell counts were not significantly different between these groups at enrollment. Viral load, as judged by levels at their last visit (1,700 and 21,000 RNA copies/ml, respectively; p = 0.01) or by time-weighted area under the curve was higher in the escape group (p = 0.02). Escape mutants at other HLA-B*27-restricted epitopes were uncommon. Moreover, host polymorphisms, such as CCR5Δ32, CCR2-64I, and SDF1-3'A, or breadth of TCR repertoire responding to KK10 did not segregate to wild-type or escape groups. Host and viral factors were examined for a relationship to viral load. The only factor to affect viral load was the presence of the R264 escape mutations at the immunodominant epitope. CTL escape at R264 in the KK10 epitope is a major determinant of subsequent viral load in these HLA-B*27(+) individuals.
Collapse
Affiliation(s)
- Palanee Ammaranond
- Immunovirology Laboratory, St Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang S, Buchli R, Schiller J, Gao J, VanGundy RS, Hildebrand WH, Eckels DD. Natural epitope variants of the hepatitis C virus impair cytotoxic T lymphocyte activity. World J Gastroenterol 2010; 16:1953-69. [PMID: 20419832 PMCID: PMC2860072 DOI: 10.3748/wjg.v16.i16.1953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To understand how interactions between hepatitis C virus (HCV) and the host’s immune system might lead to viral persistence or effective elimination of HCV.
METHODS: Nucleotides 3519-3935 of the non-structural 3 (NS3) region were amplified by using reverse transcription polymerase chain reaction (PCR). PCR products of the HCV NS3 regions were integrated into a PCR® T7TOPO® TA vector and then sequenced in both directions using an automated DNA sequencer. Relative major histocompatibility complex binding levels of wild-type and variant peptides were performed by fluorescence polarization-based peptide competition assays. Peptides with wild type and variant sequences of NS3 were synthesized locally using F-moc chemistry and purified by high-performance liquid chromatography. Specific cytotoxic T lymphocytes (CTLs) clones toward HCV NS3 wild-type peptides were generated through limiting dilution cloning. The CTL clones specifically recognizing HCV NS3 wild-type peptides were tested by tetramer staining and flow cytometry. Cytolytic activity of CTL clones was measured using target cells labeled with the fluorescence enhancing ligand, DELFIA EuTDA.
RESULTS: The pattern of natural variants within three human leukocyte antigen (HLA)-A2-restricted NS3 epitopes has been examined in one patient with chronic HCV infection at 12, 28 and 63 mo post-infection. Results obtained may provide convincing evidence of immune selection pressure for all epitopes investigated. Statistical analysis of the extensive sequence variation found within these NS3 epitopes favors a Darwinian selection model of variant viruses. Mutations within the epitopes coincided with the decline of CTL responses, and peptide-binding studies suggested a significant impact of the mutation on T cell recognition rather than peptide presentation by HLA molecules. While most variants were either not recognized or elicited low responses, such could antagonize CTL responses to target cells pulsed with wild-type peptides.
CONCLUSION: Cross-recognition of CTL epitopes from wild-type and naturally-occurring HCV variants may lead to impaired immune responses and ultimately contribute to viral persistence.
Collapse
|
13
|
Wooldridge L, Clement M, Lissina A, Edwards ESJ, Ladell K, Ekeruche J, Hewitt RE, Laugel B, Gostick E, Cole DK, Debets R, Berrevoets C, Miles JJ, Burrows SR, Price DA, Sewell AK. MHC class I molecules with Superenhanced CD8 binding properties bypass the requirement for cognate TCR recognition and nonspecifically activate CTLs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:3357-66. [PMID: 20190139 PMCID: PMC3024536 DOI: 10.4049/jimmunol.0902398] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) CTLs are essential for effective immune defense against intracellular microbes and neoplasia. CTLs recognize short peptide fragments presented in association with MHC class I (MHCI) molecules on the surface of infected or dysregulated cells. Ag recognition involves the binding of both TCR and CD8 coreceptor to a single ligand (peptide MHCI [pMHCI]). The TCR/pMHCI interaction confers Ag specificity, whereas the pMHCI/CD8 interaction mediates enhanced sensitivity to Ag. Striking biophysical differences exist between the TCR/pMHCI and pMHCI/CD8 interactions; indeed, the pMHCI/CD8 interaction can be >100-fold weaker than the cognate TCR/pMHCI interaction. In this study, we show that increasing the strength of the pMHCI/CD8 interaction by approximately 15-fold results in nonspecific, cognate Ag-independent pMHCI tetramer binding at the cell surface. Furthermore, pMHCI molecules with superenhanced affinity for CD8 activate CTLs in the absence of a specific TCR/pMHCI interaction to elicit a full range of effector functions, including cytokine/chemokine release, degranulation and proliferation. Thus, the low solution binding affinity of the pMHCI/CD8 interaction is essential for the maintenance of CTL Ag specificity.
Collapse
Affiliation(s)
- Linda Wooldridge
- Department of Infection, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wooldridge L, Lissina A, Cole DK, van den Berg HA, Price DA, Sewell AK. Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology 2009; 126:147-64. [PMID: 19125886 PMCID: PMC2632693 DOI: 10.1111/j.1365-2567.2008.02848.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 01/16/2023] Open
Abstract
The development of fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) multimers in conjunction with continuing advances in flow cytometry has transformed the study of antigen-specific T cells by enabling their visualization, enumeration, phenotypic characterization and isolation from ex vivo samples. Here, we bring together and discuss some of the 'tricks' that can be used to get the most out of pMHC multimers. These include: (1) simple procedures that can substantially enhance the staining intensity of cognate T cells with pMHC multimers; (2) the use of pMHC multimers to stain T cells with very-low-affinity T-cell receptor (TCR)/pMHC interactions, such as those that typically predominate in tumour-specific responses; and (3) the physical grading and clonotypic dissection of antigen-specific T cells based on the affinity of their cognate TCR using mutant pMHC multimers in conjunction with new approaches to the molecular analysis of TCR gene expression. We also examine how soluble pMHC can be used to examine T-cell activation, manipulate T-cell responses and study allogeneic and superantigen interactions with TCRs. Finally, we discuss the problems that arise with pMHC class II (pMHCII) multimers because of the low affinity of TCR/pMHCII interactions and lack of 'coreceptor help'.
Collapse
Affiliation(s)
- Linda Wooldridge
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
15
|
Reduced viral replication capacity of human immunodeficiency virus type 1 subtype C caused by cytotoxic-T-lymphocyte escape mutations in HLA-B57 epitopes of capsid protein. J Virol 2008; 83:2460-8. [PMID: 19109381 DOI: 10.1128/jvi.01970-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic-T-lymphocyte (CTL) escape mutations in human immunodeficiency viruses encode amino acid substitutions in positions that disrupt CTL targeting, thereby increasing virus survival and conferring a relative fitness benefit. However, it is now clear that CTL escape mutations can also confer a fitness cost, and there is increasing evidence to suggest that in some cases, e.g., escape from HLA-B*57/B*5801-restricted responses, the costs to the escape virus may affect the clinical course of infection. To quantify the magnitude of the costs of HLA-B*57/B*5801 escape, a highly sensitive dual-infection assay that uses synonymous nucleotide sequence tags to quantify viral relative replication capacity (RRC) was developed. We then asked whether such CTL escape mutations had an impact equivalent to that seen for a benchmark mutation, the M184V antiretroviral drug resistance mutation of reverse transcriptase (RRC(V184) = 0.86). To answer the question, the RRCs were quantified for escape mutations in three immunodominant HLA-B*57/B*5801 epitopes in capsid: A146P in IW9 (RRC(P146) = 0.91), A163G in KF11 (RRC(G163) = 0.89), and T242N in TW10 (RRC(N242) = 0.86). Individually, the impact of the escape mutations on RRC was comparable to that of M184V, while coexpression of the mutations resulted in substantial further reductions, with the maximum impact observed for the triple mutant (RRC(P146-G163-N242) = 0.62). By comparison to M184V, the magnitude of the reductions in RRC caused by the escape mutations, particularly when coexpressed, suggests that the costs of escape are sufficient to affect in vivo viral dynamics and may thus play a role in the protective effect associated with HLA-B*57/B*5801.
Collapse
|
16
|
Varela-Rohena A, Molloy PE, Dunn SM, Li Y, Suhoski MM, Carroll RG, Milicic A, Mahon T, Sutton DH, Laugel B, Moysey R, Cameron BJ, Vuidepot A, Purbhoo MA, Cole DK, Phillips RE, June CH, Jakobsen BK, Sewell AK, Riley JL. Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat Med 2008; 14:1390-5. [PMID: 18997777 DOI: 10.1038/nm.1779] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 04/28/2008] [Indexed: 11/09/2022]
Abstract
HIV's considerable capacity to vary its HLA-I-restricted peptide antigens allows it to escape from host cytotoxic T lymphocytes (CTLs). Nevertheless, therapeutics able to target HLA-I-associated antigens, with specificity for the spectrum of preferred CTL escape mutants, could prove effective. Here we use phage display to isolate and enhance a T-cell antigen receptor (TCR) originating from a CTL line derived from an infected person and specific for the immunodominant HLA-A(*)02-restricted, HIVgag-specific peptide SLYNTVATL (SL9). High-affinity (K(D) < 400 pM) TCRs were produced that bound with a half-life in excess of 2.5 h, retained specificity, targeted HIV-infected cells and recognized all common escape variants of this epitope. CD8 T cells transduced with this supraphysiologic TCR produced a greater range of soluble factors and more interleukin-2 than those transduced with natural SL9-specific TCR, and they effectively controlled wild-type and mutant strains of HIV at effector-to-target ratios that could be achieved by T-cell therapy.
Collapse
Affiliation(s)
- Angel Varela-Rohena
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J Virol 2008; 82:3078-89. [PMID: 18184707 DOI: 10.1128/jvi.01812-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1)-specific CD8 cytotoxic T-lymphocyte (CTL) response plays a critical role in controlling HIV-1 replication. Augmenting this response should enhance control of HIV-1 replication and stabilize or improve the clinical course of the disease. Although cytomegalovirus (CMV) or Epstein-Barr virus (EBV) infection in immunocompromised patients can be treated by adoptive transfer of ex vivo-expanded CMV- or EBV-specific CTLs, adoptive transfer of ex vivo-expanded, autologous HIV-1-specific CTLs had minimal effects on HIV-1 replication, likely a consequence of the inherently compromised qualitative function of HIV-1-specific CTLs derived from HIV-1-infected individuals. We hypothesized that this limitation could be circumvented by using as an alternative source of HIV-1-specific CTLs, autologous peripheral CD8(+) T lymphocytes whose antigen specificity is redirected by transduction with lentiviral vectors encoding HIV-1-specific T-cell receptor (TCR) alpha and beta chains, an approach used successfully in cancer therapy. To efficiently convert peripheral CD8 lymphocytes into HIV-1-specific CTLs that potently suppress in vivo HIV-1 replication, we constructed lentiviral vectors encoding the HIV-1-specific TCR alpha and TCR beta chains cloned from a CTL clone specific for an HIV Gag epitope, SL9, as a single transcript linked with a self-cleaving peptide. We demonstrated that transduction with this lentiviral vector efficiently converted primary human CD8 lymphocytes into HIV-1-specific CTLs with potent in vitro and in vivo HIV-1-specific activity. Using lentiviral vectors encoding an HIV-1-specific TCR to transform peripheral CD8 lymphocytes into HIV-1-specific CTLs with defined specificities represents a new immunotherapeutic approach to augment the HIV-1-specific immunity of infected patients.
Collapse
|
18
|
Laugel B, Price DA, Milicic A, Sewell AK. CD8 exerts differential effects on the deployment of cytotoxic T lymphocyte effector functions. Eur J Immunol 2007; 37:905-13. [PMID: 17393387 PMCID: PMC2699424 DOI: 10.1002/eji.200636718] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are equipped with a range of effector functions that contribute both to the control of intracellular pathogens and dysregulated cellular proliferation and to the development of certain immunopathologies such as autoimmune disease. Qualitative analyses of various CTL responses have revealed substantial heterogeneity in the diversity of functions that are mobilized in response to antigen. Here, we studied the influence of the CD8 co-receptor, which is known to enhance antigen recognition by CTL, on the secretion of eight different cytokines and chemokines by human CTL clones using flow cytometric bead array. Our results show that abrogation of MHC class I/CD8 interactions exerts a differential influence on the distinct individual effector functions that are elicited in response to agonist ligands. The magnitude of this co-receptor blockade inhibitory effect was clearly related to the hierarchy of cytokine secretion in terms of activation threshold because those functions requiring the highest amounts of antigen were most affected. Thus, modulation of CD8 activity can effectively tune not only the sensitivity but also the qualitative profile of CTL responses.
Collapse
Affiliation(s)
- Bruno Laugel
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
19
|
Wooldridge L, Lissina A, Vernazza J, Gostick E, Laugel B, Hutchinson SL, Mirza F, Dunbar PR, Boulter JM, Glick M, Cerundolo V, van den Berg HA, Price DA, Sewell AK. Enhanced immunogenicity of CTL antigens through mutation of the CD8 binding MHC class I invariant region. Eur J Immunol 2007; 37:1323-33. [PMID: 17429845 PMCID: PMC2699427 DOI: 10.1002/eji.200636765] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 01/26/2007] [Accepted: 03/12/2007] [Indexed: 11/22/2022]
Abstract
CD8(+) cytotoxic T lymphocytes (CTL) are key determinants of immunity to intracellular pathogens and neoplastic cells. Recognition of specific antigens in the form of peptide-MHC class I complexes (pMHCI) presented on the target cell surface is mediated by T cell receptor (TCR) engagement. The CD8 coreceptor binds to invariant domains of pMHCI and facilitates antigen recognition. Here, we investigate the biological effects of a Q115E substitution in the alpha2 domain of human leukocyte antigen (HLA)-A*0201 that enhances CD8 binding by approximately 50% without altering TCR/pMHCI interactions. Soluble and cell surface-expressed forms of Q115E HLA-A*0201 exhibit enhanced recognition by CTL without loss of specificity. These CD8-enhanced antigens induce greater CD3 zeta chain phosphorylation in cognate CTL leading to substantial increases in cytokine production, proliferation and priming of naive T cells. This effect provides a fundamental new mechanism with which to enhance cellular immunity to specific T cell antigens.
Collapse
Affiliation(s)
- Linda Wooldridge
- Department of Medical Biochemistry & Immunology, University of Cardiff, Cardiff, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Uhlin M, Masucci M, Levitsky V. Is the activity of partially agonistic MHC:peptide ligands dependent on the quality of immunological help? Scand J Immunol 2007; 64:581-7. [PMID: 17083613 DOI: 10.1111/j.1365-3083.2006.01850.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
CD8(+) cytotoxic T lymphocytes (CTL) are important for the immunological control of infections and tumours. Engagement of the T-cell receptor (TCR) with major histocompatibility complex (MHC) class I/peptide complexes on antigen-presenting cells (APC) is the key interaction, which initiates the process of T-cell activation. Depending on the affinity of this interaction, different arrays of signalling pathways and functional outcomes can be activated in the specific T cells. Molecular alterations in the peptide bound to the MHC class I can lead to a lower affinity of the MHC:TCR interaction resulting in incomplete or qualitatively different T-cell responses. Altered peptide ligands (APL) exhibiting such activity are referred to as partial agonists and often occur naturally through genetic instability, which affects T-cell epitopes derived from rapidly mutating viruses or tumour-associated cellular antigens. Partial agonists are usually viewed as peptide variants, which escape efficient CTL recognition. Our recent data suggest that APL can not only trigger incomplete activation but also induce and modulate intrinsic T-cell programmes leading to the shut-off of specific CTL responses. This APL-induced suppression appears to be more prominent in the absence of immunological help, suggesting that under conditions of immune deregulation APL may actively inhibit CTL responses against infectious agents or tumours. In this review, we discuss experimental data supporting this model and possible role of APL-induced immunosuppression in different pathological conditions.
Collapse
Affiliation(s)
- M Uhlin
- Department of Microbiology, Tumor and Cell Biology Center and, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
21
|
Wooldridge L, Scriba TJ, Milicic A, Laugel B, Gostick E, Price DA, Phillips RE, Sewell AK. Anti-coreceptor antibodies profoundly affect staining with peptide-MHC class I and class II tetramers. Eur J Immunol 2006; 36:1847-55. [PMID: 16783852 DOI: 10.1002/eji.200635886] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The T cell coreceptors CD8 and CD4 bind to invariable regions of peptide-MHC class I (pMHCI) and class II (pMHCII) molecules, respectively, and facilitate antigen recognition by a number of mechanisms. It is established that some antibodies (Ab) specific for the CD8 molecule, which stabilizes TCR/pMHCI interactions, can alter the binding of pMHCI tetramers to cell surface TCR. In contrast, the extremely weak pMHCII/CD4 interaction does not stabilize TCR/pMHCII interactions or contribute to cognate tetramer binding; consequently, it is assumed that anti-CD4 Ab do not affect pMHCII binding. Here, we used a panel of point-mutated HLA A2 molecules with a range of affinities for CD8 spanning over three orders of magnitude to demonstrate that anti-CD8 Ab-mediated inhibition of pMHCI tetramer binding and cognate T cell activation correlates directly with the strength of the pMHCI/CD8 interaction. Further, some anti-CD4 Ab were found to block pMHCII tetramer binding; these effects were also paralleled in T cell activation assays. In sum, these data challenge the assertion that anti-coreceptor Ab exert their effects on T cell activation and pMHC binding solely by blocking pMHC/coreceptor interactions.
Collapse
Affiliation(s)
- Linda Wooldridge
- T-cell Modulation Group, The Peter Medawar Building for Pathogen Research, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Norris PJ, Stone JD, Anikeeva N, Heitman JW, Wilson IC, Hirschkorn DF, Clark MJ, Moffett HF, Cameron TO, Sykulev Y, Stern LJ, Walker BD. Antagonism of HIV-specific CD4+ T cells by C-terminal truncation of a minimum epitope. Mol Immunol 2005; 43:1349-57. [PMID: 16216327 PMCID: PMC2561961 DOI: 10.1016/j.molimm.2005.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Indexed: 11/17/2022]
Abstract
Antagonism of T cell responses by variants of the cognate peptide is a potential mechanism of viral escape from immune responses and may play a role in the ability of HIV to evade immune control. We show here a rarely described mechanism of antagonism by a peptide shorter than the minimum length epitope for an HIV p24-specific CD4+ T cell clone. The shorter antagonist peptide-MHC complex bound the T cell receptor (TCR), albeit with lower affinity than the full-length agonist peptide. Prior work showing the crystal structure of the peptide-MHC complex revealed a unique glycine hinge near the C-terminus of the agonist peptide, allowing the generation of full-length antagonist peptide lacking the hinge. These results confirm the dependence of productive TCR engagement on residues spilling out from the C-terminus of the MHC binding groove and show that partial engagement of the TCR with a truncated, low-affinity ligand can result in T cell antagonism.
Collapse
Affiliation(s)
- Philip J Norris
- Blood Systems Research Institute, Department of Laboratory Medicine, University of California, 270 Masonic Avenue, San Francisco, CA 94118, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wooldridge L, van den Berg HA, Glick M, Gostick E, Laugel B, Hutchinson SL, Milicic A, Brenchley JM, Douek DC, Price DA, Sewell AK. Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor-antigen complexes at the cell surface. J Biol Chem 2005; 280:27491-501. [PMID: 15837791 PMCID: PMC2441837 DOI: 10.1074/jbc.m500555200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The off-rate (k(off)) of the T cell receptor (TCR)/peptide-major histocompatibility complex class I (pMHCI) interaction, and hence its half-life, is the principal kinetic feature that determines the biological outcome of TCR ligation. However, it is unclear whether the CD8 coreceptor, which binds pMHCI at a distinct site, influences this parameter. Although biophysical studies with soluble proteins show that TCR and CD8 do not bind cooperatively to pMHCI, accumulating evidence suggests that TCR associates with CD8 on the T cell surface. Here, we titrated and quantified the contribution of CD8 to TCR/pMHCI dissociation in membrane-constrained interactions using a panel of engineered pMHCI mutants that retain faithful TCR interactions but exhibit a spectrum of affinities for CD8 of >1,000-fold. Data modeling generates a "stabilization factor" that preferentially increases the predicted TCR triggering rate for low affinity pMHCI ligands, thereby suggesting an important role for CD8 in the phenomenon of T cell cross-reactivity.
Collapse
MESH Headings
- Antigens/chemistry
- Biophysics/methods
- Biotinylation
- CD8 Antigens/biosynthesis
- CD8 Antigens/chemistry
- Cell Membrane/metabolism
- Dose-Response Relationship, Drug
- Epitopes/chemistry
- Flow Cytometry
- Genes, MHC Class I/genetics
- Genetic Engineering
- HIV-1/metabolism
- Herpesvirus 4, Human/metabolism
- Humans
- Kinetics
- Ligands
- Models, Chemical
- Mutation
- Protein Binding
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Time Factors
Collapse
Affiliation(s)
- Linda Wooldridge
- T Cell Modulation Group, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | - Hugo A. van den Berg
- Institute of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF, United Kingdom
| | - Meir Glick
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts 02139
| | - Emma Gostick
- T Cell Modulation Group, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | - Bruno Laugel
- T Cell Modulation Group, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | - Sarah L. Hutchinson
- T Cell Modulation Group, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | - Anita Milicic
- T Cell Modulation Group, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | - Jason M. Brenchley
- Human Immunology Section, Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - David A. Price
- Human Immunology Section, Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew K. Sewell
- T Cell Modulation Group, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
24
|
Scottà C, Tuosto L, Masci AM, Racioppi L, Piccolella E, Frasca L. Hypervariable region 1 variant acting as TCR antagonist affects hepatitis C virus-specific CD4+ T cell repertoire by favoring CD95-mediated apoptosis. J Leukoc Biol 2005; 78:372-82. [PMID: 15923217 DOI: 10.1189/jlb.0804456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have described previously that hypervariable region 1 (HVR1) variants of hepatitis C virus (HCV) frequently act as T cell receptor (TCR) antagonists for HVR1-specific helper T cells. These naturally occurring HVR1-antagonistic sequences interfered with the effects of HVR1-agonistic sequences such as TCR down-regulation and early activatory signals. By taking advantage of these findings, in this paper, we have analyzed the fate of these HVR1-specific antagonized CD4+ T cells. We present the evidence that TCR antagonism renders agonist-activated T cells susceptible to bystander CD95-mediated killing by suppressing the expression of cellular Fas-associated death domain-like interleukin-1beta-converting enzyme-like inhibitor proteins. To verify whether the TCR repertoire of a HVR1-specific T cell population could be modified consequently, we used a HVR1-agonistic sequence to induce in vitro CD4+ T cells and another HVR1 sequence with antagonistic property to mediate suppressive phenomena. HVR1-specific T cells were cultured with the agonist alone or with the agonist plus the antagonist. HVR1 specificity and T cell repertoires were followed over time by analyzing TCR beta-variable gene segment by "spectratyping". The results showed that the specificity for the agonist was rapidly spoiled after culture in the presence of the antagonist, and the TCR repertoire was strongly modified as a result of CD95-mediated apoptosis of agonist-specific clonal expansions. These data support the hypothesis that in HCV infection, the generation of TCR antagonists may reshape the T cell repertoire, representing an efficacious immune evasion strategy of a highly mutant pathogen.
Collapse
MESH Headings
- Antigens, Viral/immunology
- Apoptosis/immunology
- CD4-Positive T-Lymphocytes/immunology
- Cell Proliferation
- Cells, Cultured
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte
- Hepacivirus/immunology
- Hepacivirus/pathogenicity
- Humans
- Lymphocyte Activation/immunology
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Serpins/biosynthesis
- Serpins/immunology
- T-Lymphocyte Subsets/immunology
- Viral Proteins/biosynthesis
- Viral Proteins/immunology
- fas Receptor/immunology
Collapse
Affiliation(s)
- Cristiano Scottà
- Department of Cellular and Developmental Biology, La Sapienza University, Rome, 00185, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Laugel B, Boulter JM, Lissin N, Vuidepot A, Li Y, Gostick E, Crotty LE, Douek DC, Hemelaar J, Price DA, Jakobsen BK, Sewell AK. Design of Soluble Recombinant T Cell Receptors for Antigen Targeting and T Cell Inhibition. J Biol Chem 2005; 280:1882-92. [PMID: 15531581 DOI: 10.1074/jbc.m409427200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The use of recombinant T cell receptors (TCRs) to target therapeutic interventions has been hindered by the naturally low affinity of TCR interactions with peptide major histocompatibility complex ligands. Here, we use multimeric forms of soluble heterodimeric alphabeta TCRs for specific detection of target cells pulsed with cognate peptide, discrimination of quantitative changes in antigen display at the cell surface, identification of virus-infected cells, inhibition of antigen-specific cytotoxic T lymphocyte activation, and identification of cross-reactive peptides. Notably, the A6 TCR specific for the immunodominant HLA A2-restricted human T cell leukemia virus type 1 Tax(11-19) epitope bound to HLA A2-HuD(87-95) (K(D) 120 microm by surface plasmon resonance), an epitope implicated as a causal antigen in the paraneoplastic neurological degenerative disorder anti-Hu syndrome. A mutant A6 TCR that exhibited dramatically increased affinity for cognate antigen (K(D) 2.5 nm) without enhanced cross-reactivity was generated; this TCR demonstrated potent biological activity even as a monomeric molecule. These data provide insights into TCR repertoire selection and delineate a framework for the selective modification of TCRs in vitro that could enable specific therapeutic intervention in vivo.
Collapse
Affiliation(s)
- Bruno Laugel
- The T-cell Modulation Group, The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Rd., Oxford OX1 3SY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
McKinney DM, Skvoretz R, Livingston BD, Wilson CC, Anders M, Chesnut RW, Sette A, Essex M, Novitsky V, Newman MJ. Recognition of variant HIV-1 epitopes from diverse viral subtypes by vaccine-induced CTL. THE JOURNAL OF IMMUNOLOGY 2004; 173:1941-50. [PMID: 15265928 DOI: 10.4049/jimmunol.173.3.1941] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recognition by CD8(+) T lymphocytes (CTL) of epitopes that are derived from conserved gene products, such as Gag and Pol, is well documented and conceptually supports the development of epitope-based vaccines for use against diverse HIV-1 subtypes. However, many CTL epitopes from highly conserved regions within the HIV-1 genome are highly variable, when assessed by comparison of amino acid sequences. The TCR is somewhat promiscuous with respect to peptide binding, and, as such, CTL can often recognize related epitopes. In these studies, we evaluated CTL recognition of five sets of variant HIV-1 epitopes restricted to HLA-A*0201 and HLA-A*1101 using HLA transgenic mice. We found that numerous different amino acid substitutions can be introduced into epitopes without abrogating their recognition by CTL. Based on our findings, we constructed an algorithm to predict those CTL epitopes capable of inducing responses in the HLA transgenic mice to the greatest numbers of variant epitopes. Similarity of CTL specificity for variant epitopes was demonstrated for humans using PBMC from HIV-1-infected individuals and CTL lines produced in vitro using PBMC from HIV-1-uninfected donors. We believe the ability to predict CTL epitope immunogenicity and recognition patterns of variant epitopes can be useful for designing vaccines against multiple subtypes and circulating recombinant forms of HIV-1.
Collapse
MESH Headings
- AIDS Vaccines/immunology
- Algorithms
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Antigenic Variation/genetics
- Antigenic Variation/immunology
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Gene Products, env/chemistry
- Gene Products, env/immunology
- Gene Products, gag/chemistry
- Gene Products, gag/immunology
- Gene Products, pol/chemistry
- Gene Products, pol/immunology
- Genes, MHC Class I
- HIV Antigens/chemistry
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV Infections/immunology
- HIV-1/classification
- HIV-1/immunology
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- HLA-A3 Antigen/genetics
- HLA-A3 Antigen/immunology
- Humans
- Mice
- Mice, Transgenic
- Peptide Fragments/chemical synthesis
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/immunology
- Sequence Alignment
- T-Cell Antigen Receptor Specificity
- T-Lymphocytes, Cytotoxic/immunology
Collapse
|
27
|
Kan-Mitchell J, Bisikirska B, Wong-Staal F, Schaubert KL, Bajcz M, Bereta M. The HIV-1 HLA-A2-SLYNTVATL is a help-independent CTL epitope. THE JOURNAL OF IMMUNOLOGY 2004; 172:5249-61. [PMID: 15100263 DOI: 10.4049/jimmunol.172.9.5249] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CTL response to the HLA-A*0201-restricted, HIV-1 p17 Gag(77-85) epitope (SLYNTVATL; SL9) has been extensively studied in patients. Although this reactivity is exceptionally prominent in chronically infected patients and inversely correlated to viral load, SL9-specific CTLs (SL9-CTLs) are rarely detected in acute infection. To explore the cellular basis for this unusual manifestation, SL9-CTLs primed ex vivo from naive circulating CD8(+) T cells of healthy, seronegative donors were generated and characterized. SL9 appeared to differ from other well-studied A*0201-restricted epitopes in several significant respects. In contrast to published reports for influenza and melanoma peptides and the HIV gag IV9 epitope studied here in parallel, SL9-CTLs were primed by immature but not mature autologous dendritic cells. Highly activated SL9-CTLs produce sufficient autocrine mediators to sustain clonal expansion and CTL differentiation for months without CD4(+) T cells or exogenous IL-2. Moreover, SL9-CTLs were sensitive to paracrine IL-2-induced apoptosis. IL-2 independence and sensitivity to paracrine IL-2 were also characteristic of SL9-CTLs immunized by dendritic cells transduced by a nonreplicating lentiviral vector encoding full-length Gag. In vitro-primed SL9-CTLs resembled those derived from patients in degeneracy of recognition and functional avidities for both SL9 and its natural mutations. Together, these data show that SL9 is a highly immunogenic, help-independent HIV epitope. The scarcity of SL9-CTLs in acute infection may result from cytokine-induced apoptosis with the intense activation of the innate immunity. In contrast, SL9-CTLs that constitutively produce autocrine help would predominate during CD4-diminished chronic infection.
Collapse
MESH Headings
- Antigen Presentation/genetics
- Antigen Presentation/immunology
- Cell Differentiation/immunology
- Cell Division/immunology
- Clone Cells
- Cytokines/physiology
- Cytotoxicity Tests, Immunologic
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epitopes, T-Lymphocyte/immunology
- Gene Products, gag/immunology
- Genes, T-Cell Receptor beta
- Genetic Vectors
- HIV Antigens/immunology
- HIV-1/genetics
- HIV-1/immunology
- HLA-A Antigens/immunology
- HLA-A2 Antigen/immunology
- Humans
- Interleukin-2/pharmacology
- Lymphocyte Activation/immunology
- Lymphocyte Depletion
- Mutation
- Paracrine Communication/immunology
- Peptide Fragments
- Peptides/immunology
- Peptides/pharmacology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Transduction, Genetic
- Viral Proteins/immunology
- env Gene Products, Human Immunodeficiency Virus
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- June Kan-Mitchell
- Karmanos Cancer Institute, Department of Pathology and Immunology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Wooldridge L, Hutchinson SL, Choi EM, Lissina A, Jones E, Mirza F, Dunbar PR, Price DA, Cerundolo V, Sewell AK. Anti-CD8 antibodies can inhibit or enhance peptide-MHC class I (pMHCI) multimer binding: this is paralleled by their effects on CTL activation and occurs in the absence of an interaction between pMHCI and CD8 on the cell surface. THE JOURNAL OF IMMUNOLOGY 2004; 171:6650-60. [PMID: 14662868 DOI: 10.4049/jimmunol.171.12.6650] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytotoxic T lymphocytes recognize short peptides presented in association with MHC class I (MHCI) molecules on the surface of target cells. The Ag specificity of T lymphocytes is conferred by the TCR, but invariable regions of the peptide-MHCI (pMHCI) molecule also interact with the cell surface glycoprotein CD8. The distinct binding sites for CD8 and the TCR allow pMHCI to be bound simultaneously by both molecules. Even before it was established that the TCR recognized pMHCI, it was shown that CTL exhibit clonal heterogeneity in their ability to activate in the presence of anti-CD8 Abs. These Ab-based studies have since been interpreted in the context of the interaction between pMHCI and CD8 and have recently been extended to show that anti-CD8 Ab can affect the cell surface binding of multimerized pMHCI Ags. In this study, we examine the role of CD8 further using point-mutated pMHCI Ag and show that anti-CD8 Abs can either enhance or inhibit the activation of CTL and the stable cell surface binding of multimerized pMHCI, regardless of whether there is a pMHCI/CD8 interaction. We further demonstrate that multimerized pMHCI Ag can recruit CD8 in the absence of a pMHCI/CD8 interaction and that anti-CD8 Abs can generate an intracellular activation signal resulting in CTL effector function. These results question many previous assumptions as to how anti-CD8 Abs must function and indicate that CD8 has multiple roles in CTL activation that are not necessarily dependent on an interaction with pMHCI.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Blocking/pharmacology
- Binding Sites, Antibody
- Binding, Competitive/immunology
- CD8 Antigens/immunology
- CD8 Antigens/metabolism
- Cell Line
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Clone Cells
- Cross-Linking Reagents/metabolism
- Cytotoxicity, Immunologic/immunology
- H-2 Antigens/genetics
- H-2 Antigens/metabolism
- HLA-A2 Antigen/metabolism
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunosuppressive Agents/pharmacology
- Lymphocyte Activation/immunology
- Mice
- Peptides/metabolism
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Linda Wooldridge
- T Cell Modulation Group, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Choi EML, Chen JL, Wooldridge L, Salio M, Lissina A, Lissin N, Hermans IF, Silk JD, Mirza F, Palmowski MJ, Dunbar PR, Jakobsen BK, Sewell AK, Cerundolo V. High Avidity Antigen-Specific CTL Identified by CD8-Independent Tetramer Staining. THE JOURNAL OF IMMUNOLOGY 2003; 171:5116-23. [PMID: 14607910 DOI: 10.4049/jimmunol.171.10.5116] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tetrameric MHC/peptide complexes are important tools for enumerating, phenotyping, and rapidly cloning Ag-specific T cells. It remains however unclear whether they can reliably distinguish between high and low avidity T cell clones. In this report, tetramers with mutated CD8 binding site selectively stain higher avidity human and murine CTL capable of recognizing physiological levels of Ag. Furthermore, we demonstrate that CD8 binding significantly enhances the avidity as well as the stability of interactions between CTL and cognate tetramers. The use of CD8-null tetramers to identify high avidity CTL provides a tool to compare vaccination strategies for their ability to enhance the frequency of high avidity CTL. Using this technique, we show that DNA priming and vaccinia boosting of HHD A2 transgenic mice fail to selectively expand large numbers of high avidity NY-ESO-1(157-165)-specific CTL, possibly due to the large amounts of antigenic peptide delivered by the vaccinia virus. Furthermore, development of a protocol for rapid identification of high avidity human and murine T cells using tetramers with impaired CD8 binding provides an opportunity not only to monitor expansion of high avidity T cell responses ex vivo, but also to sort high avidity CTL clones for adoptive T cell transfer therapy.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/analysis
- Antigens, Neoplasm/metabolism
- Binding Sites/genetics
- Binding Sites/immunology
- CD8 Antigens/analysis
- CD8 Antigens/genetics
- CD8 Antigens/metabolism
- Cell Line
- Cell Line, Tumor
- Clone Cells
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/analysis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/metabolism
- H-2 Antigens/genetics
- H-2 Antigens/metabolism
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/metabolism
- Humans
- Immunization, Secondary
- Jurkat Cells
- Lymphocyte Activation/genetics
- Membrane Proteins
- Mice
- Mice, Transgenic
- Plasmids/administration & dosage
- Proteins/analysis
- Proteins/genetics
- Proteins/metabolism
- Staining and Labeling
- T-Lymphocytes, Cytotoxic/chemistry
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Vaccinia/genetics
- Vaccinia/immunology
- beta 2-Microglobulin/analysis
- beta 2-Microglobulin/metabolism
Collapse
Affiliation(s)
- Ed Man-Lik Choi
- Tumour Immunology Unit, Nuffield Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hutchinson SL, Wooldridge L, Tafuro S, Laugel B, Glick M, Boulter JM, Jakobsen BK, Price DA, Sewell AK. The CD8 T cell coreceptor exhibits disproportionate biological activity at extremely low binding affinities. J Biol Chem 2003; 278:24285-93. [PMID: 12697765 DOI: 10.1074/jbc.m300633200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T lymphocytes recognize peptides presented in the context of major histocompatibility complex (MHC) molecules on the surface of antigen presenting cells. Recognition specificity is determined by the alphabeta T cell receptor (TCR). The T lymphocyte surface glycoproteins CD8 and CD4 enhance T cell antigen recognition by binding to MHC class I and class II molecules, respectively. Biophysical measurements have determined that equilibrium binding of the TCR with natural agonist peptide-MHC (pMHC) complexes occurs with KD values of 1-50 microm. The pMHCI/CD8 and pMHCII/CD4 interactions are significantly weaker than this (KD >100 microm), and the relative roles of TCR/pMHC and pMHC/coreceptor affinity in T cell activation remain controversial. Here, we engineer mutations in the MHCI heavy chain and beta2-microglobulin that further reduce or abolish the pMHCI/CD8 interaction to probe the significance of pMHC/coreceptor affinity in T cell activation. We demonstrate that the pMHCI/CD8 coreceptor interaction retains the vast majority of its biological activity at affinities that are reduced by over 15-fold (KD > 2 mm). In contrast to previous reports, we observe that the weak interaction between HLA A68 and CD8, which falls within this spectrum of reduced affinities, retains substantial functional activity. These findings are discussed in the context of current concepts of coreceptor dependence and the mechanism by which TCR coreceptors facilitate T cell activation.
Collapse
Affiliation(s)
- Sarah L Hutchinson
- The T Cell Modulation Group, The Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang B, Dyer WB, Zaunders JJ, Mikhail M, Sullivan JS, Williams L, Haddad DN, Harris G, Holt JAG, Cooper DA, Miranda-Saksena M, Boadle R, Kelleher AD, Saksena NK. Comprehensive analyses of a unique HIV-1-infected nonprogressor reveal a complex association of immunobiological mechanisms in the context of replication-incompetent infection. Virology 2002; 304:246-64. [PMID: 12504566 DOI: 10.1006/viro.2002.1706] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently demonstrated that a unique HIV-1-infected nonprogressor was infected with a nonevolving replication-incompetent HIV-1 strain, showing a total absence of viral evolution in vivo. Potent immune responses against HIV-1 were observed in his PBMC, despite an apparent lack of viral replication for at least 8 years. His PBMC resisted superinfection with CCR5, CXCR4, and dual-tropic HIV-1 strains, although highly purified CD4+ T cells supported infection, but without any visible cytopathic effect. Potent noncytolytic CD8+ T cell antiviral activity was shown to protect his PBMC from productive infection. This activity was not mediated by several known chemokines or IFN-gamma, which were produced at high levels after PHA activation of his CD8+ T cells, indicating the action of other CAF-like CD8 factors. This antiviral activity was a memory response, induced by HIV-specific stimulation to similar levels observed by PHA stimulation, but absent in ex vivo resting T cells. Immunological mechanisms associated with this antiviral suppressive activity included vigorous Gag-specific helper T cell proliferative responses and high-level IFN-gamma release by both CD4 and CD8 T cells. These responses were broadly directed against multiple Gag epitopes, both previously reported and some novel epitopes. Strong HIV-specific helper T cell function was also associated with strong neutralizing antibodies. Understanding how to induce these protective immune responses in other individuals could provide a major step forward in the design of effective immunotherapies or vaccines against HIV infection.
Collapse
Affiliation(s)
- Bin Wang
- Retroviral Genetics Laboratory, Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Westmead, New South Wales 2145, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Oxenius A, Sewell AK, Dawson SJ, Günthard HF, Fischer M, Gillespie GM, Rowland-Jones SL, Fagard C, Hirschel B, Phillips RE, Price DA. Functional discrepancies in HIV-specific CD8+ T-lymphocyte populations are related to plasma virus load. J Clin Immunol 2002; 22:363-74. [PMID: 12462336 DOI: 10.1023/a:1020656300027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The potent ability of current antiretroviral drug regimens to control human immunodeficiency Virus-1 (HIV-1) replication, in conjunction with the clinical practice of structured therapeutic interruptions, provides a system in which virus levels are manipulated during a persistent infection in humans. Here, we exploit this system to examine the impact of variable plasma virus load (pVL) on the functionality of HIV-specific CD8+ T-lymphocyte populations. Using both ELISpot methodology and intracellular cytokine staining for interferon (IFN)-gamma to assess functional status, together with fluorochrome-labeled peptide-major histocompatibility complex (pMHC) class I tetramer analysis to detect the physical presence of CD8+ T lymphocytes expressing cognate T-cell receptors (TCRs), we observed that the proportion of HIV-specific CD8+ T lymphocytes capable of mounting an effector response to antigen challenge directly ex vivo is related to the kinetics of virus exposure. Specifically, (a) after prolonged suppression of pVL with antiretroviral therapy (ART), physical and functional measures of HIV-specific CD8+ T-lymphocyte frequencies approximated; and (b) the percentage of functionally responsive cells in the HIV-specific CD8+ T lymphocyte populations declined substantially when therapy was discontinued and pVL recrudesced in the same patients. These results corroborate and extend observations in animal models that describe nonresponsive CD8+ T lymphocytes in the presence of high levels of antigen load and have implications for the interpretation of quantitative data generated by methods that rely on functional readouts.
Collapse
Affiliation(s)
- Annetie Oxenius
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, England.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sewell AK, Booth BL, Cerundolo V, Phillips RE, Price DA. Differential processing of HLA A2-restricted HIV type 1 cytotoxic T lymphocyte epitopes. Viral Immunol 2002; 15:193-6. [PMID: 11952141 DOI: 10.1089/088282402317340332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play a key role in the control of persistent viral infections. Differences in the quality of this cellular immune response influence the long-term outcome of such infections, but the factors that determine which virus-derived peptide epitopes are targeted by CTLs remain poorly understood. Here, we examine the antigen-processing requirements of three human leukocyte antigen (HLA) A*0201-restricted HIV-1 CTL epitopes. Each of these three peptides appears to be generated by a distinct proteolytic pathway, despite presentation on the cell surface in association with the same HLA class I molecule. Presentation of the commonly immunodominant SLYNTVATL (HIV-1 p17 Gag; residues 77-85) epitope was unaffected by inhibition of the proteasome with lactacystin, but was dependent on the presence of the beta-subunit LMP7. These findings are consistent with emerging data on the complexity of peptide epitope generation, and suggest that differences in antigen processing might contribute to patterns of CTL recognition in vivo.
Collapse
Affiliation(s)
- Andrew K Sewell
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Bioinformatics-driven T-cell epitope-identification methods can enhance vaccine target selection significantly. We evaluated three unrelated computational methods to screen Pol, Gag and Env sequences extracted from the Los Alamos HIV database for HLA-A*0201 and HLA-B*3501 T-cell epitope candidates. The hidden Markov model predicted 389 HLA-B*3501-restricted candidates from 374 HIV-1 and 97 HIV-2 sequences. The artificial neural network (ANN) model, and Bioinformatics and Molecular Analysis Section (BIMAS) quantitative matrix predictions for A*0201 yielded 1122 HIV-1 and 548 HIV-2 candidates. The overall sequence coverage of the predicted A*0201 T-cell epitopes was 2.7% (HIV-1)and 3.0% (HIV-2). HLA-B*3501-predicted epitopes covered 0.9% (HIV-1) and 1.4% (HIV-2) of the total sequence. Comparison of 890 ANN- and 397 BIMAS-derived HIV-1 A*0201- restricted epitope candidates showed that only 13-19% of the predicted and 26% of the experimentally confirmed T-cell epitopes were captured by both methods. Extrapolating these results, we estimated that at least 247 predicted HIV-1 epitopes are yet to be discovered as active A*0201-restricted T-cell epitopes. Adequate comparison and combined usage of various predictive bioinformatics methods, rather than uncritical use of any single prediction method, will enable cost-effective and efficient T-cell epitope screening.
Collapse
|
35
|
Douek DC, Betts MR, Brenchley JM, Hill BJ, Ambrozak DR, Ngai KL, Karandikar NJ, Casazza JP, Koup RA. A novel approach to the analysis of specificity, clonality, and frequency of HIV-specific T cell responses reveals a potential mechanism for control of viral escape. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3099-104. [PMID: 11884484 DOI: 10.4049/jimmunol.168.6.3099] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Escape from the CD8(+) T cell response through epitope mutations can lead to loss of immune control of HIV replication. Theoretically, escape from CD8(+) T cell recognition is less likely when multiple TCRs target individual MHC/peptide complexes, thereby increasing the chance that amino acid changes in the epitope could be tolerated. We studied the CD8(+) T cell response to six immunodominant epitopes in five HIV-infected subjects using a novel approach combining peptide stimulation, cell surface cytokine capture, flow cytometric sorting, anchored RT-PCR, and real-time quantitative clonotypic TCR tracking. We found marked variability in the number of clonotypes targeting individual epitopes. One subject recognized a single epitope with six clonotypes, most of which were able to recognize and lyse cells expressing a major epitope variant that arose. Additionally, multiple clonotypes remained expanded during the course of infection, irrespective of epitope variant frequency. Thus, CD8(+) T cells comprising multiple TCR clonotypes may expand in vivo in response to individual epitopes, and may increase the ability of the response to recognize virus escape mutants.
Collapse
Affiliation(s)
- Daniel C Douek
- Department of Experimental Transplantation and Immunology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Goulder PJ, Pasquier C, Holmes EC, Liang B, Tang Y, Izopet J, Saune K, Rosenberg ES, Burchett SK, McIntosh K, Barnardo M, Bunce M, Walker BD, Brander C, Phillips RE. Mother-to-child transmission of HIV infection and CTL escape through HLA-A2-SLYNTVATL epitope sequence variation. Immunol Lett 2001; 79:109-16. [PMID: 11595297 DOI: 10.1016/s0165-2478(01)00272-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cytotoxic T lymphocytes (CTL) play a central role in containment of HIV infection. Evasion of the immune response by CTL escape is associated with progression to disease. It is therefore hypothesised that transmitted viruses encode escape mutations within epitopes that are required for successful control of viraemia. In order to test this hypothesis, escape through the dominant HLA-A2-restricted CTL epitope SLYNTVATL (p17 Gag residues 77-85 SL9) in the setting of mother-to-child-transmission (MTCT) was investigated. Initial data from two families in which the HIV-infected mother expressed HLA-A*0201 and had transmitted the virus to other family members were consistent with this hypothesis. In addition, analysis of the gag sequence phylogeny in one family demonstrated that CTL escape variants can be successfully transmitted both horizontally and vertically. To test the hypothesis further, a larger cohort of transmitting mothers (n=8) and non-transmitters (n=14) were studied. Variation within the SL9 epitope was associated with expression of HLA-A2 (P=0.04) but overall no clear link between variation from the SL9 consensus sequence and MTCT was established. However, the high level of background diversity within p17 Gag served to obscure any possible association between escape and MTCT. In conclusion, these studies highlighted the obstacles to demonstrating CTL escape arising at this particular epitope. Alternative strategies likely to be more definitive are discussed.
Collapse
Affiliation(s)
- P J Goulder
- Department of Paediatrics, Nuffield Department of Medicine, Level 7, Room 7615, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Purbhoo MA, Boulter JM, Price DA, Vuidepot AL, Hourigan CS, Dunbar PR, Olson K, Dawson SJ, Phillips RE, Jakobsen BK, Bell JI, Sewell AK. The human CD8 coreceptor effects cytotoxic T cell activation and antigen sensitivity primarily by mediating complete phosphorylation of the T cell receptor zeta chain. J Biol Chem 2001; 276:32786-92. [PMID: 11438524 DOI: 10.1074/jbc.m102498200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recognition of antigen by cytotoxic T lymphocytes (CTL) is determined by interaction of both the T cell receptor and its CD8 coreceptor with peptide-major histocompatibility complex (pMHC) class I molecules. We examine the relative roles of these receptors in the activation of human CTL using mutations in MHC class I designed to diminish or abrogate the CD8/pMHC interaction. We use surface plasmon resonance to determine that point mutation of the alpha3 loop of HLA A2 abrogates the CD8/pMHC interaction without affecting the affinity of the T cell receptor/pMHC interaction. Antigen-presenting cells expressing HLA A2 which does not bind to CD8 fail to activate CTL at any peptide concentration. Comparison of CTL activation by targets expressing HLA A2 with normal, abrogated, or diminished CD8/pMHC interaction show that the CD8/pMHC interaction enhances sensitivity to antigen. We determine that the biochemical basis for coreceptor dependence is the activation of the 23-kDa phosphoform of the CD3zeta chain. In addition, we produce mutant MHC class I multimers that specifically stain but do not activate CTL. These reagents may prove useful in circumventing undesirable activation-related perturbation of intracellular processes when pMHC multimers are used to phenotype antigen-specific CD8+ lymphocytes.
Collapse
Affiliation(s)
- M A Purbhoo
- University of Oxford, Nuffield Department of Clinical Medicine, Level 7, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xu XN, Purbhoo MA, Chen N, Mongkolsapaya J, Cox JH, Meier UC, Tafuro S, Dunbar PR, Sewell AK, Hourigan CS, Appay V, Cerundolo V, Burrows SR, McMichael AJ, Screaton GR. A Novel Approach to Antigen-Specific Deletion of CTL with Minimal Cellular Activation Using α3 Domain Mutants of MHC Class I/Peptide Complex. Immunity 2001; 14:591-602. [PMID: 11371361 DOI: 10.1016/s1074-7613(01)00133-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we have compared the effector functions and fate of a number of human CTL clones in vitro or ex vivo following contact with variant peptides presented either on the cell surface or in a soluble multimeric format. In the presence of CD8 coreceptor binding, there is a good correlation between TCR signaling, killing of the targets, and FasL-mediated CTL apoptosis. Blocking CD8 binding using alpha3 domain mutants of MHC class I results in much reduced signaling and reduced killing of the targets. Surprisingly, however, FasL expression is induced to a similar degree on these CTLs, and apoptosis of CTL is unaffected. The ability to divorce these events may allow the deletion of antigen-specific and pathological CTL populations without the deleterious effects induced by full CTL activation.
Collapse
Affiliation(s)
- X N Xu
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, OX3 9DS, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Goulder PJ, Altfeld MA, Rosenberg ES, Nguyen T, Tang Y, Eldridge RL, Addo MM, He S, Mukherjee JS, Phillips MN, Bunce M, Kalams SA, Sekaly RP, Walker BD, Brander C. Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection. J Exp Med 2001; 193:181-94. [PMID: 11148222 PMCID: PMC2193346 DOI: 10.1084/jem.193.2.181] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2000] [Accepted: 11/28/2000] [Indexed: 12/17/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play a vital part in controlling viral replication during human viral infections. Most studies in human infections have focused on CTL specificities in chronic infection and few data exist regarding the specificity of the initial CTL response induced in acute infection. In this study, HIV-1 infection in persons expressing human histocompatibility leukocyte antigen (HLA)-A*0201 was used as a means of addressing this issue. In chronic infection, the dominant HLA-A*0201-restricted CTL response is directed towards the epitope SLYNTVATL ("SL9") in p17 Gag (residues 77-85). This epitope is targeted by 75% of HLA-A*0201-positive adults, and the magnitude of this A*0201-SL9 response shows a strong negative association with viral load in progressive infection. Despite using the highly sensitive peptide-major histocompatibility complex tetramer and intracellular cytokine assays, responses to the SL9 epitope were not detectable in any of 11 HLA-A*0201-positive subjects with acute HIV-1 infection (P = 2 x 10(-6)), even when assays were repeated using the SL9 peptide variant that was encoded by their autologous virus. In contrast, multiple responses (median 3) to other epitopes were evident in 7 of the 11 A*0201-positive subjects. Longitudinal study of two subjects confirmed that the A*0201-SL9 response emerged later than other CTL responses, and after viral set point had been reached. Together, these data show that the CTL responses that are present and that even may dominate in chronic infection may differ substantially from those that constitute the initial antiviral CTL response. This finding is an important consideration in vaccine design and in the evaluation of vaccine candidates.
Collapse
Affiliation(s)
- P J Goulder
- Partners AIDS Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
García-Peydró M, Paradela A, Albar JP, Castro JA. Antagonism of direct alloreactivity of an HLA-B27-specific CTL clone by altered peptide ligands of its natural epitope. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5680-5. [PMID: 11067925 DOI: 10.4049/jimmunol.165.10.5680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antagonism of allospecific CTL by altered MHC ligands is a potential approach to specific immunomodulation of allogeneic T cell responses in acute graft rejection and graft-vs-host disease. In this study we have analyzed the capacity of peptide analogs of a natural HLA-B27-allospecific CTL epitope to antagonize direct alloreactivity. Alanine scanning demonstrated that positions 4, 5, and 7 of the peptide epitope were critical for allorecognition. A number of relatively conservative substitutions at each of these positions were then tested for their effect on allorecognition and antagonism. All substitutions at position 5 abrogated cytotoxicity. In contrast, a few changes at positions 4 and 7 were tolerated, indicating a limited flexibility of the allospecific CTL in recognition of peptide epitope variants. Most of the substitutions impairing cytotoxicity actually induced antagonism. However, whereas epitope variants with changes at positions 4 and 7 behaved as weak or intermediate antagonists, some of the variants with changes at position 5 antagonized CTL alloreactivity almost completely. The results in this study demonstrate for the first time that antagonism of direct class I-mediated alloreactivity can be achieved by variants of a natural allospecific peptide epitope.
Collapse
Affiliation(s)
- M García-Peydró
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Cientificas), Universidad Autónoma de Madrid, Facultad de Ciencias, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
41
|
Sewell AK, Price DA, Oxenius A, Kelleher AD, Phillips RE. Cytotoxic T lymphocyte responses to human immunodeficiency virus: control and escape. Stem Cells 2000; 18:230-44. [PMID: 10924089 DOI: 10.1634/stemcells.18-4-230] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Effective preventive and therapeutic intervention in individuals exposed to or infected with human immunodeficiency virus (HIV) depends, in part, on a clear understanding of the interactions between the virus and those elements of the host immune response which control viral replication. Recent advances have provided compelling evidence that cytotoxic T lymphocytes (CTLs) constitute an essential component of protective antiretroviral immunity. Here, we review briefly the significance of this work in the context of previous studies, and outline the mechanisms through which HIV evades CTL activity.
Collapse
Affiliation(s)
- A K Sewell
- The Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | |
Collapse
|
42
|
Tissot AC, Ciatto C, Mittl PR, Grütter MG, Plückthun A. Viral escape at the molecular level explained by quantitative T-cell receptor/peptide/MHC interactions and the crystal structure of a peptide/MHC complex. J Mol Biol 2000; 302:873-85. [PMID: 10993729 DOI: 10.1006/jmbi.2000.4501] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral escape, first characterized for the lymphocytic choriomeningitis virus (LCMV) in a mouse transgenic for the P14 T cell-receptor (TCR), can be due to mutations in T-cell epitopes. We have measured the affinity between the H-2D(b) containing the wild-type and two of its "viral escape" epitopes, as well as other altered peptide ligands (APL), by using BIACORE analysis, and solved the crystal structure of H-2D(b) in complex with the wild-type peptide at 2.75 A resolution. We show that viral escape is due to a 50 to 100-fold reduction in the level of affinity between the P14 TCR and the binary complexes of the MHC molecule with the different peptides. Structurally, one of the mutations alters a TCR contact residue, while the effect of the other on the binding of the TCR must be indirect through structural rearrangements. The former is a null ligand, while the latter still leads to some central tolerance. This work defines the structural and energetic threshold for viral escape.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/isolation & purification
- Crystallography, X-Ray
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/isolation & purification
- Glycoproteins/chemistry
- Glycoproteins/genetics
- Glycoproteins/immunology
- Glycoproteins/isolation & purification
- H-2 Antigens/chemistry
- H-2 Antigens/immunology
- H-2 Antigens/isolation & purification
- Histocompatibility Antigen H-2D
- Immune Tolerance/immunology
- Ligands
- Lymphocytic choriomeningitis virus/genetics
- Lymphocytic choriomeningitis virus/immunology
- Lymphocytic choriomeningitis virus/physiology
- Mice
- Mice, Transgenic
- Models, Molecular
- Molecular Sequence Data
- Mutation/genetics
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/isolation & purification
- Protein Structure, Secondary
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/isolation & purification
- Solvents
- Surface Plasmon Resonance
- Thermodynamics
- Viral Proteins
Collapse
Affiliation(s)
- A C Tissot
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Bouhdoud L, Villain P, Merzouki A, Arella M, Couture C. T-cell receptor-mediated anergy of a human immunodeficiency virus (HIV) gp120-specific CD4(+) cytotoxic T-cell clone, induced by a natural HIV type 1 variant peptide. J Virol 2000; 74:2121-30. [PMID: 10666241 PMCID: PMC111692 DOI: 10.1128/jvi.74.5.2121-2130.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection triggers a cytotoxic T-lymphocyte (CTL) response mediated by CD8(+) and perhaps CD4(+) CTLs. The mechanisms by which HIV-1 escapes from this CTL response are only beginning to be understood. However, it is already clear that the extreme genetic variability of the virus is a major contributing factor. Because of the well-known ability of altered peptide ligands (APL) to induce a T-cell receptor (TCR)-mediated anergic state in CD4(+) helper T cells, we investigated the effects of HIV-1 sequence variations on the proliferation and cytotoxic activation of a human CD4(+) CTL clone (Een217) specific for an epitope composed of amino acids 410 to 429 of HIV-1 gp120. We report that a natural variant of this epitope induced a functional anergic state rendering the T cells unable to respond to their antigenic ligand and preventing the proliferation and cytotoxic activation normally induced by the original antigenic peptide. Furthermore, the stimulation of Een217 cells with this APL generated altered TCR-proximal signaling events that have been associated with the induction of T-cell anergy in CD4(+) T cells. Importantly, the APL-induced anergic state of the Een217 T cells could be prevented by the addition of interleukin 2, which restored their ability to respond to their nominal antigen. Our data therefore suggest that HIV-1 variants can induce a state of anergy in HIV-specific CD4(+) CTLs. Such a mechanism may allow a viral variant to not only escape the CTL response but also facilitate the persistence of other viral strains that may otherwise be recognized and eliminated by HIV-specific CTLs.
Collapse
Affiliation(s)
- L Bouhdoud
- Molecular Oncology Group, Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
44
|
Bachmann MF, Ohashi PS. The role of T-cell receptor dimerization in T-cell activation. IMMUNOLOGY TODAY 1999; 20:568-76. [PMID: 10562708 DOI: 10.1016/s0167-5699(99)01543-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
T-cell specificity is encoded in single T-cell receptors (TCRs) but monovalent interactions with peptide bound to the major histocompatibility complex (MHC) may not sufficiently account for the complexities associated with T-cell activation. This review proposes that TCRs undergo dimerization before activation and that this property might be essential for both T-cell antagonism and T-cell specificity, and may be pivotal for T-cell survival versus T-cell activation.
Collapse
Affiliation(s)
- M F Bachmann
- Basel Institute for Immunology, Grenzacherstr. 487, 4005 Basel, Switzerland.
| | | |
Collapse
|
45
|
Whelan JA, Dunbar PR, Price DA, Purbhoo MA, Lechner F, Ogg GS, Griffiths G, Phillips RE, Cerundolo V, Sewell AK. Specificity of CTL Interactions with Peptide-MHC Class I Tetrameric Complexes Is Temperature Dependent. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.8.4342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Tetrameric peptide-MHC class I complexes (“tetramers”) are proving invaluable as reagents for characterizing immune responses involving CTLs. However, because the TCR can exhibit a degree of promiscuity for binding peptide-MHC class I ligands, there is potential for cross-reactivity. Recent reports showing that the TCR/peptide-MHC interaction is dramatically dependent upon temperature led us to investigate the effects of incubation temperature on tetramer staining. We find that tetramers rapidly stain CTLs with high intensity at 37°C. We examine the fine specificity of tetramer staining using a well-characterized set of natural epitope variants. Peptide variants that elicit little or no functional cellular response from CTLs can stain these cells at 4°C but not at 37°C when incorporated into tetramers. These results suggest that some studies reporting tetramer incubations at 4°C could detect cross-reactive populations of CTLs with minimal avidity for the tetramer peptide, especially in the tetramer-low population. For identifying specific CTLs among polyclonal cell populations such as PBLs, incubation with tetramers at 37°C improves the staining intensity of specific CTLs, resulting in improved separation of tetramer-high CD8+ cells. Confocal microscopy reveals that tetramers incubated at 37°C can be rapidly internalized by specific CTLs into vesicles that overlap with the early endocytic compartment. This TCR-specific internalization suggests that coupling of tetramers or analogues with toxins, which are activated only after receptor internalization, may create immunotoxins capable of killing CTLs of single specificities.
Collapse
Affiliation(s)
- Joseph A. Whelan
- *Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - P. Rod Dunbar
- †Molecular Immunology Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; and
| | - David A. Price
- *Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Marco A. Purbhoo
- *Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Franziska Lechner
- *Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Graham S. Ogg
- †Molecular Immunology Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; and
| | - Gillian Griffiths
- ‡Department of Pathology, Sir William Dunn School, Oxford, United Kingdom
| | - Rodney E. Phillips
- *Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- †Molecular Immunology Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; and
| | - Andrew K. Sewell
- *Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
46
|
Frasca L, Del Porto P, Tuosto L, Marinari B, Scottà C, Carbonari M, Nicosia A, Piccolella E. Hypervariable Region 1 Variants Act as TCR Antagonists for Hepatitis C Virus-Specific CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
In various human viral infections, the appearance of mutated epitopes displaying TCR antagonistic activity has been correlated with the severity and persistence of infection. In hepatitis C virus (HCV) infection, where the virus persistence has been associated with the rapid and substantial Ag modifications occurring during replication, TCR antagonism has been evidenced in CD8+ T cell responses. However, CD4+ T cell antagonism may be another important strategy by which HCV eludes a protective response, because sustained Th responses directed against several HCV Ags are associated with a self-limited course of infection. The data reported here represent the first evidence that variants of the hypervariable region (HVR1) of the putative Envelope 2 protein of HCV can act as powerful TCR antagonists for HVR1-specific CD4+ T cells isolated from HCV-infected individuals. Using classical antagonism assays, we observed strong inhibition of cellular proliferation and cytokine production when the agonist and the antagonist ligands were simultaneously presented by the same APCs. The presence in HVR1 of conserved residues, critical for binding to HLA-DR molecules, supports the function of HVR1 variants as TCR antagonists. In conclusion, our data evidence an antagonism phenomenon, which was achieved by naturally occurring class II-restricted T cell epitopes whose mechanism was addressed in terms of the antagonist capacity to inhibit agonist-mediated TCR down-regulation and early signal transduction.
Collapse
Affiliation(s)
- Loredana Frasca
- *Department of Cellular and Developmental Biology, “La Sapienza” University, Rome, Italy
| | - Paola Del Porto
- *Department of Cellular and Developmental Biology, “La Sapienza” University, Rome, Italy
| | - Loretta Tuosto
- *Department of Cellular and Developmental Biology, “La Sapienza” University, Rome, Italy
| | - Barbara Marinari
- *Department of Cellular and Developmental Biology, “La Sapienza” University, Rome, Italy
| | - Cristiano Scottà
- *Department of Cellular and Developmental Biology, “La Sapienza” University, Rome, Italy
| | - Maurizio Carbonari
- †Department of Clinical Medicine, “La Sapienza” University, Rome, Italy; and
| | - Alfredo Nicosia
- ‡Istituto di Ricerche di Biologia Molecolare P. Angeletti, Pomezia, Rome, Italy
| | - Enza Piccolella
- *Department of Cellular and Developmental Biology, “La Sapienza” University, Rome, Italy
| |
Collapse
|
47
|
Hay CM, Ruhl DJ, Basgoz NO, Wilson CC, Billingsley JM, DePasquale MP, D'Aquila RT, Wolinsky SM, Crawford JM, Montefiori DC, Walker BD. Lack of viral escape and defective in vivo activation of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes in rapidly progressive infection. J Virol 1999; 73:5509-19. [PMID: 10364299 PMCID: PMC112608 DOI: 10.1128/jvi.73.7.5509-5519.1999] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-specific immune responses over the course of rapidly progressive infection are not well defined. Detailed longitudinal analyses of neutralizing antibodies, lymphocyte proliferation, in vivo-activated and memory cytotoxic T-lymphocyte (CTL) responses, and viral sequence variation were performed on a patient who presented with acute HIV-1 infection, developed an AIDS-defining illness 13 months later, and died 45 months after presentation. Neutralizing-antibody responses remained weak throughout, and no HIV-1-specific lymphocyte proliferative responses were seen even early in the disease course. Strong in vivo-activated CTL directed against Env and Pol epitopes were present at the time of the initial drop in viremia but were quickly lost. Memory CTL against Env and Pol epitopes were detected throughout the course of infection; however, these CTL were not activated in vivo. Despite an initially narrow CTL response, new epitopes were not targeted as the disease progressed. Viral sequencing showed the emergence of variants within the two targeted CTL epitopes; however, viral variants within the immunodominant Env epitope were well recognized by CTL, and there was no evidence of viral escape from immune system detection within this epitope. These data demonstrate a narrowly directed, static CTL response in a patient with rapidly progressive disease. We also show that disease progression can occur in the presence of persistent memory CTL recognition of autologous epitopes and in the absence of detectable escape from CTL responses, consistent with an in vivo defect in activation of CTL.
Collapse
Affiliation(s)
- C M Hay
- Partners AIDS Research Center and Infectious Disease Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sewell AK, Price DA, Teisserenc H, Booth BL, Gileadi U, Flavin FM, Trowsdale J, Phillips RE, Cerundolo V. IFN-γ Exposes a Cryptic Cytotoxic T Lymphocyte Epitope in HIV-1 Reverse Transcriptase. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The proteasome, an essential component of the ATP-dependent proteolytic pathway in eukaryotic cells, is responsible for the degradation of most cellular proteins and is believed to be the main source of MHC class I-restricted antigenic peptides for presentation to CTL. Inhibition of the proteasome by lactacystin or various peptide aldehydes can result in defective Ag presentation, and the pivotal role of the proteasome in Ag processing has become generally accepted. However, recent reports have challenged this observation. Here we examine the processing requirements of two HLA A*0201-restricted epitopes from HIV-1 reverse transcriptase and find that they are produced by different degradation pathways. Presentation of the C-terminal ILKEPVHGV epitope is impaired in ME275 melanoma cells by treatment with lactacystin, and is independent of expression of the IFN-γ-inducible proteasome β subunits LMP2 and LMP7. In contrast, both lactacystin treatment and expression of LMP7 induce the presentation of the N-terminal VIYQYMDDL epitope. Consistent with these observations we show that up-regulation of LMP7 by IFN-γ enhances presentation of the VIYQYMDDL epitope. Hence interplay between constitutive and IFN-γ-inducible β-subunits of the proteasome can qualitatively influence Ag presentation. These observations may have relevance to the patterns of immunodominance during the natural course of viral infection.
Collapse
Affiliation(s)
- Andrew K. Sewell
- *University of Oxford, Nuffield Department of Medicine and Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom; and
| | - David A. Price
- *University of Oxford, Nuffield Department of Medicine and Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom; and
| | - Helene Teisserenc
- *University of Oxford, Nuffield Department of Medicine and Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom; and
| | - Bruce L. Booth
- *University of Oxford, Nuffield Department of Medicine and Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom; and
| | - Uzi Gileadi
- *University of Oxford, Nuffield Department of Medicine and Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom; and
| | - Fiona M. Flavin
- *University of Oxford, Nuffield Department of Medicine and Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom; and
| | - John Trowsdale
- † Division of Immunology, Department of Pathology, Cambridge, United Kingdom
| | - Rodney E. Phillips
- *University of Oxford, Nuffield Department of Medicine and Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom; and
| | - Vincenzo Cerundolo
- *University of Oxford, Nuffield Department of Medicine and Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom; and
| |
Collapse
|
49
|
Abstract
Degeneracy rather than unique ligand specificity seems to guide T cell functions. This view has evolved from analyses of T cell development and responses in vivo, as well as studies with synthetic molecular libraries in vitro, and has opened new prospects both for understanding T cell biology and for applied immunology.
Collapse
Affiliation(s)
- K Sparbier
- Department of Dermatology, Medical Faculty Charité, Humboldt University, D-10089, Berlin, Germany
| | | |
Collapse
|
50
|
Sewell AK, Gerth UC, Price DA, Purbhoo MA, Boulter JM, Gao GF, Bell JI, Phillips RE, Jakobsen BK. Antagonism of cytotoxic T-lymphocyte activation by soluble CD8. Nat Med 1999; 5:399-404. [PMID: 10202928 DOI: 10.1038/7398] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The CD8 co-receptor is important in the differentiation and selection of class I MHC-restricted T cells during thymic development, and in the activation of mature T lymphocytes in response to antigen. Here we show that soluble CD8alphaalpha receptor, despite an extremely low affinity for MHC, inhibits activation of cytotoxic lymphocytes by obstructing CD3 zeta-chain phosphorylation. We propose a model for this effect that involves interference of productive receptor multimerization at the T-cell surface. These results provide new insights into the mechanism of T-cell activation and evidence that CD8 function is exquisitely sensitive to disruption, an effect that might be exploited by molecular therapeutics.
Collapse
Affiliation(s)
- A K Sewell
- Nuffield Department of Clinical Medicine, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, UK
| | | | | | | | | | | | | | | | | |
Collapse
|