1
|
Li H, Shan C, Zhu Y, Yao X, Lin L, Zhang X, Qian Y, Wang Y, Xu J, Zhang Y, Li H, Zhao L, Chen K. Helminth-induced immune modulation in colorectal cancer: exploring therapeutic applications. Front Immunol 2025; 16:1484686. [PMID: 40297577 PMCID: PMC12034720 DOI: 10.3389/fimmu.2025.1484686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Colorectal cancer is one of the most lethal tumors, posing a financial and healthcare burden. This study investigates how helminths and pre-existing diseases such as colitis, obesity, diabetes, and gut microbiota issues influence colon cancer development and prognosis. The immune system's protective immunosuppressive response to helminth invasion minimizes inflammation-induced cell damage and DNA mutations, lowering the risk of colorectal cancer precursor lesions. Helminth infection-mediated immunosuppression can hasten colorectal cancer growth and metastasis, which is detrimental to patient outcomes. Some helminth derivatives can activate immune cells to attack cancer cells, making them potentially useful as colorectal cancer vaccines or therapies. This review also covers gene editing approaches. We discovered that using CRISPR/Cas9 to inhibit live helminths modulates miRNA, which limits tumor growth. We propose more multicenter studies into helminth therapy's long-term effects and immune regulation pathways. We hope to treat colorectal cancer patients with helminth therapy and conventional cancer treatments in an integrative setting.
Collapse
Affiliation(s)
- Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Ocean College, Beibu Gulf University, Qinzhou, China
| | - Chaojun Shan
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yunhuan Zhu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaodong Yao
- School of Marxism, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijun Lin
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaofen Zhang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuncheng Qian
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuqing Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jialu Xu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yijie Zhang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hairun Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ling Zhao
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
2
|
Binsaleh AY, El-Haggar SM, Hegazy SK, Maher MM, Bahgat MM, Elmasry TA, Alrubia S, Alsegiani AS, Eldesoqui M, Bahaa MM. The adjunctive role of metformin in patients with mild to moderate ulcerative colitis: a randomized controlled study. Front Pharmacol 2025; 16:1507009. [PMID: 40191419 PMCID: PMC11969268 DOI: 10.3389/fphar.2025.1507009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/14/2025] [Indexed: 04/09/2025] Open
Abstract
Background Metformin, hypoglycemic medication, is recognized for its diverse properties and its capacity to influence the inflammatory pathways. Medications with anti-inflammatory and anti-oxidative characteristics have been demonstrated to be able to elicit and sustain remission in ulcerative colitis (UC), chronic inflammatory disorder of the bowel. Studies in both preclinical and clinical settings have looked into the several metabolic pathways via which metformin protects against UC. Aim To assess efficacy of metformin as adjunctive therapy in patients with mild to moderate UC. Methods This clinical research was double-blinded, randomized, controlled, and involved 60 patients with mild to moderate UC. The participants were randomly assigned to one of two groups (n = 30). The control group was given 1 g of mesalamine three times a day (t.i.d.) for a period of 6 months (mesalamine group). The metformin group was given 500 mg of metformin twice daily and 1 g of mesalamine t. i.d. For a period of 6 months. Patients with UC were assessed by a gastroenterologist using the disease activity index (DAI) both at the beginning of treatment and 6 months thereafter. To evaluate the drug's biological efficacy, measurements of fecal calprotectin, serum C-reactive protein (CRP), interleukin 10 (IL-10), and nitric oxide (NO) were taken both before and after treatment. Study outcomes Decrease in DAI and change in the level of measured serum and fecal markers. Results The metformin group displayed a statistical reduction in DAI (p = 0.0001), serum CRP (p = 0.019), NO (p = 0.04), and fecal calprotectin (p = 0.027), as well as a significant increase in IL-10 (p = 0.04) when compared to the mesalamine group. There was a significant direct correlation between DAI and calprotectin (p < 0.0001, r = 0.551), and between DAI and CRP (p < 0.0001, r = 0.794). There was a significant negative correlation between DAI and IL-10 (p = 0.0003, r = 0.371). Conclusion Metformin may be an effective adjunct drug in management of patients with mild to moderate UC by decreasing DAI and other inflammatory markers that were involved in the pathogenesis of UC. Clinical Trial Registration identifier NCT05553704.
Collapse
Affiliation(s)
- Ammena Y. Binsaleh
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sahar M. El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Gharbia Government, Tanta, Egypt
| | - Sahar K. Hegazy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Gharbia Government, Tanta, Egypt
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Maha M. Maher
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Internal Medicine Department, Faculty of Medicine, Horus University, New Damietta, Egypt
| | - Monir M. Bahgat
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Thanaa A. Elmasry
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Al-Gharbia, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University, Arish campus, Egypt
| | - Sarah Alrubia
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amsha S. Alsegiani
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
3
|
Pandey H, Tang DWT, Wong SH, Lal D. Helminths in alternative therapeutics of inflammatory bowel disease. Intest Res 2025; 23:8-22. [PMID: 39916482 PMCID: PMC11834367 DOI: 10.5217/ir.2023.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2025] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a nonspecific chronic inflammation of the gastrointestinal tract. Despite recent advances in therapeutics and newer management strategies, IBD largely remains untreatable. Helminth therapy is a promising alternative therapeutic for IBD that has gained some attention in the last two decades. Helminths have immunomodulatory effects and can alter the gut microbiota. The immunomodulatory effects include a strong Th2 immune response, T-regulatory cell response, and the production of regulatory cytokines. Although concrete evidence regarding the efficacy of helminth therapy in IBD is lacking, clinical studies and studies done in animal models have shown some promise. Most clinical studies have shown that helminth therapy is safe and easily tolerable. Extensive work has been done on the whipworm Trichuris, but other helminths, including Schistosoma, Trichinella, Heligmosomoides, and Ancylostoma, have also been explored for pre-clinical and animal studies. This review article summarizes the potential of helminth therapy as an alternative therapeutic or an adjuvant to the existing therapeutic procedures for IBD treatment.
Collapse
Affiliation(s)
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
4
|
Mules TC, Vacca F, Cait A, Yumnam B, Schmidt A, Lavender B, Maclean K, Noble SL, Gasser O, Camberis M, Le Gros G, Inns S. A Small Intestinal Helminth Infection Alters Colonic Mucus and Shapes the Colonic Mucus Microbiome. Int J Mol Sci 2024; 25:12015. [PMID: 39596084 PMCID: PMC11593901 DOI: 10.3390/ijms252212015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Infecting humans with controlled doses of small intestinal helminths, such as human hookworm, is proposed as a therapy for the colonic inflammatory disease ulcerative colitis. Strengthening the colonic mucus barrier is a potential mechanism by which small intestinal helminths could treat ulcerative colitis. In this study, we compare C57BL/6 mice infected with the small intestinal helminth Heligmosomoides polygyrus and uninfected controls to investigate changes in colonic mucus. Histology, gene expression, and immunofluorescent analysis demonstrate that this helminth induces goblet cell hyperplasia, and an upregulation of mucin sialylation, and goblet-cell-derived functional proteins resistin-like molecule-beta (RELM-β) and trefoil factors (TFFs), in the colon. Using IL-13 knockout mice, we reveal that these changes are predominantly IL-13-dependent. The assessment of the colonic mucus microbiome demonstrates that H. polygyrus infection increases the abundance of Ruminococcus gnavus, a commensal bacterium capable of utilising sialic acid as an energy source. This study also investigates a human cohort experimentally challenged with human hookworm. It demonstrates that TFF blood levels increase in individuals chronically infected with small intestinal helminths, highlighting a conserved mucus response between humans and mice. Overall, small intestinal helminths modify colonic mucus, highlighting this as a plausible mechanism by which human hookworm therapy could treat ulcerative colitis.
Collapse
Affiliation(s)
- Thomas C. Mules
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
- Department of Medicine, University of Otago, 23A Mein St., Newtown, Wellington 6242, New Zealand
| | - Francesco Vacca
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Alissa Cait
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Bibek Yumnam
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Alfonso Schmidt
- Hugh Green Technology Centre, Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Brittany Lavender
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Kate Maclean
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Sophia-Louise Noble
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Stephen Inns
- Department of Medicine, University of Otago, 23A Mein St., Newtown, Wellington 6242, New Zealand
| |
Collapse
|
5
|
Mighani L, Eilakinezhad M, Esmaeili SA, Khazaei M, Eskandari M, Nazari SE, Bazaz MM, Kharazmi K, Moghaddas E, Zarean M. Immunomodulatory effect of Dicrocoelium dendriticum ova on DSS-induced experimental colitis in C57BL/6 mouse. Sci Rep 2024; 14:24180. [PMID: 39406758 PMCID: PMC11480399 DOI: 10.1038/s41598-024-73692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammatory bowel disease (IBD) significantly diminishes an individual's quality of life and increases the risk of colorectal cancer. Recent clinical and experimental findings suggest that infection with parasitic helminths may suppress the development of certain inflammatory conditions. The objective of this study was to evaluate the immunoregulatory effects of Dicrocoelium eggs on experimentally induced colitis in C57BL/6 mice using dextran sulfate sodium (DSS). C57BL/6 mice received 3.5% DSS orally for 7 days to induce colitis, during which they were treated intraperitoneally with Dicrocoelium eggs. The severity of colitis was assessed through parameters such as body weight, stool consistency or bleeding, disease activity index (DAI), colon lengths, macroscopic scores, histopathological findings, colon gene expression levels, and serum cytokine levels. Our results indicated that Dicrocoelium eggs administration significantly reduced the severity of colitis and disease activity. Histopathological scores improved, correlating with downregulation of IFN-γ and upregulation of IL-4 expression. This findings suggest the therapeutic potential of Dicrocoelium eggs in treating colitis. Immunotherapy involving Dicrocoelium eggs primarily induces a Th2 response and modulates IFN-γ, contributing to reduced inflammation in colitis. Thus, this approach could be a promising therapeutic strategy for alleviating inflammation in IBD.
Collapse
Affiliation(s)
- Leila Mighani
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Eilakinezhad
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Moein Eskandari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mojtaba Mousavi Bazaz
- Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khatereh Kharazmi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Elham Moghaddas
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Zarean
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Cutaneous Leishmaniosis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
El-kady AM, Altwaim SA, Wakid MH, Banjar AS, Mohammed K, Alfaifi MS, Elshazly H, Al-Megrin WAI, Alshehri EA, Sayed E, Elshabrawy HA. Prior Trichinella spiralis infection protects against Schistosoma mansoni induced hepatic fibrosis. Front Vet Sci 2024; 11:1443267. [PMID: 39439825 PMCID: PMC11494294 DOI: 10.3389/fvets.2024.1443267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background Schistosomiasis affects approximately 250 million people worldwide, with 200,000 deaths annually. It has been documented that the granulomatous response to Schistosoma mansoni (S. mansoni) oviposition is the root cause of progressive liver fibrosis in chronic infection, in 20% of the patients, and can lead to liver cirrhosis and/or liver cancer. The influence of helminths coinfection on schistosomiasis-induced liver pathological alterations remains poorly understood. Therefore, in this study, we investigated the effect of Trichinella spiralis (T. spiralis) infection on S. mansoni-induced hepatic fibrosis. Materials and methods Thirty adult male Balb-c mice were divided into three groups. Group 1 was left uninfected; group 2 was infected with S. mansoni cercariae and group 3 was orally infected with T. spiralis larvae, then 28 days later, this group was infected with S. mansoni cercariae. All groups were sacrificed at the end of the 8th week post infection with S. mansoni to evaluate the effect of pre-infection with T. spiralis on S. mansoni induced liver fibrosis was evaluated parasitologically (worm burden and egg count in tissues), biochemically (levels of alanine aminotransferase and aspartate aminotransferase), histopathologically (H&E and MT staining, and immunohistochemical staining for the expression of α-SMA, IL-6, IL-1β, IL-17, IL-23, TNF-α, and TGF-β). Results The results in the present study demonstrated marked protective effect of T. spiralis against S. mansoni induced liver pathology. We demonstrated that pre-infection with T. spirais caused marked reduction in the number of S. mansoni adult worms (3.17 ± 0.98 vs. 18 ± 2.16, P = 0.114) and egg count in both the intestine (207.2 ± 64.3 vs. 8,619.43 ± 727.52, P = 0.009) and liver tissues (279 ± 87.2 vs. 7,916.86 ± 771.34; P = 0.014). Consistently, we found significant reductions in both number (3.4 ± 1.1 vs. 11.8.3 ± 1.22; P = 0.007) and size (84 ± 11 vs. 294.3 ± 16.22; P = 0.001) of the hepatic granulomas in mice pre-infected with T. spiralis larvae compared to those infected with only S. mansoni. Furthermore, pre- infection with T. spiralis markedly reduced S. mansoni- induced hepatic fibrosis, as evidenced by decreased collagen deposition, low expression of α-SMA, and significantly reduced levels of IL-17, IL-1B, IL-6, TGF-B, IL-23, and TNF-α compared to mice infected with S. mansoni only. Conclusions Our data show that pre-infection with T. spiralis effectively protected mice from severe schistosomiasis and liver fibrosis. We believe that our findings support the potential utility of helminths for the preventing and ameliorating severe pathological alterations induced by schistosomiasis.
Collapse
Affiliation(s)
- Asmaa M. El-kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Sarah A. Altwaim
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Majed H. Wakid
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa S. Banjar
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalil Mohammed
- Department of Epidemiology and Medical Statistics, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mashael S. Alfaifi
- Department of Epidemiology and Medical Statistics, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences-Scientific Departments, Qassim University, Buraidah, Qassim, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Eman Sayed
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, United States
| |
Collapse
|
7
|
Malacco NL, Michi AN, Siciliani E, Madrigal AG, Sternlieb T, Fontes G, King IL, Cestari I, Jardim A, Stevenson MM, Lopes F. Helminth-derived metabolites induce tolerogenic functional, metabolic, and transcriptional signatures in dendritic cells that attenuate experimental colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525718. [PMID: 39211070 PMCID: PMC11360915 DOI: 10.1101/2023.01.26.525718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory diseases in which abdominal pain, bloody diarrhea, weight loss, and fatigue collectively result in diminished quality of patient life. The disappearance of intestinal helminth infections in Western societies is associated with an increased prevalence of IBD and other immune-mediated inflammatory diseases. Evidence indicates that helminths induce tolerogenic dendritic cells (tolDCs), which promote intestinal tolerance and attenuate intestinal inflammation characteristic of IBD, but the exact mechanism is unclear. Helminth-derived excretory-secretory (HES) products including macromolecules, proteins, and polysaccharides have been shown to modulate the antigen presenting function of DCs with down-stream effects on effector CD4 + T cells. Previous studies indicate that DCs in helminth-infected animals induce tolerance to unrelated antigens and DCs exposed to HES display phenotypic and functional features of tolDCs. Here, we identify that nonpolar metabolites (HnpM) produced by a helminth, the murine gastrointestinal nematode Heligmosomoides polygyrus bakeri (Hpb), induce tolDCs as evidenced by decreased LPS-induced TNF and increased IL-10 secretion and reduced expression of MHC-II, CD86, and CD40. Furthermore, these DCs inhibited OVA-specific CD4 + T cell proliferation and induced CD4 + Foxp3 + regulatory T cells. Adoptive transfer of HnpM-induced tolDCs attenuated DSS-induced intestinal inflammation characteristic of IBD. Mechanistically, HnpM induced metabolic and transcriptional signatures in BMDCs consistent with tolDCs. Collectively, our findings provide groundwork for further investigation into novel mechanisms regulating DC tolerance and the role of helminth secreted metabolites in attenuating intestinal inflammation associated with IBD. Summary Sentence: Metabolites produced by Heligmosomoides polygyrus induce metabolic and transcriptional changes in DCs consistent with tolDCs, and adoptive transfer of these DCs attenuated DSS-induced intestinal inflammation.
Collapse
|
8
|
Jamtsho T, Loukas A, Wangchuk P. Pharmaceutical Potential of Remedial Plants and Helminths for Treating Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2024; 17:819. [PMID: 39065669 PMCID: PMC11279646 DOI: 10.3390/ph17070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Research is increasingly revealing that inflammation significantly contributes to various diseases, particularly inflammatory bowel disease (IBD). IBD is a major medical challenge due to its chronic nature, affecting at least one in a thousand individuals in many Western countries, with rising incidence in developing nations. Historically, indigenous people have used natural products to treat ailments, including IBD. Ethnobotanically guided studies have shown that plant-derived extracts and compounds effectively modulate immune responses and reduce inflammation. Similarly, helminths and their products offer unique mechanisms to modulate host immunity and alleviate inflammatory responses. This review explored the pharmaceutical potential of Aboriginal remedial plants and helminths for treating IBD, emphasizing recent advances in discovering anti-inflammatory small-molecule drug leads. The literature from Scopus, MEDLINE Ovid, PubMed, Google Scholar, and Web of Science was retrieved using keywords such as natural product, small molecule, cytokines, remedial plants, and helminths. This review identified 55 important Aboriginal medicinal plants and 9 helminth species that have been studied for their anti-inflammatory properties using animal models and in vitro cell assays. For example, curcumin, berberine, and triptolide, which have been isolated from plants; and the excretory-secretory products and their protein, which have been collected from helminths, have demonstrated anti-inflammatory activity with lower toxicity and fewer side effects. High-throughput screening, molecular docking, artificial intelligence, and machine learning have been engaged in compound identification, while clustered regularly interspaced short palindromic repeats (CRISPR) gene editing and RNA sequencing have been employed to understand molecular interactions and regulations. While there is potential for pharmaceutical application of Aboriginal medicinal plants and gastrointestinal parasites in treating IBD, there is an urgent need to qualify these plant and helminth therapies through reproducible clinical and mechanistic studies.
Collapse
Affiliation(s)
- Tenzin Jamtsho
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Phurpa Wangchuk
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| |
Collapse
|
9
|
Chakraborty A, Bayry J, Mukherjee S. Helminth-derived biomolecules as potential therapeutics against ulcerative colitis. Immunotherapy 2024; 16:635-640. [PMID: 38888436 PMCID: PMC11404699 DOI: 10.1080/1750743x.2024.2360382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry & Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| |
Collapse
|
10
|
Maruszewska-Cheruiyot M, Szewczak L, Krawczak-Wójcik K, Kierasińska M, Stear M, Donskow-Łysoniewska K. The Impact of Intestinal Inflammation on Nematode's Excretory-Secretory Proteome. Int J Mol Sci 2023; 24:14127. [PMID: 37762428 PMCID: PMC10531923 DOI: 10.3390/ijms241814127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Parasitic nematodes and their products are promising candidates for therapeutics against inflammatory bowel diseases (IBD). Two species of nematodes, the hookworm Necator americanus and the whipworm Trichuis suis, are being used in clinical treatment trials of IBD referred to as "helminth therapy". Heligmosomoides polygyrus is a well-known model for human hookworm infections. Excretory-secretory (ES) products of H. polygyrus L4 stage that developed during colitis show a different immunomodulatory effect compared to the ES of H. polgyrus from healthy mice. The aim of the study was to evaluate excretory-secretory proteins produced by H. polygyrus L4 stage males and females that developed in the colitic milieu. Mass spectrometry was used to identify proteins. Blast2GO was used to investigate the functions of the discovered proteins. A total of 387 proteins were identified in the ES of H. polygyrus L4 males (HpC males), and 330 proteins were identified in the ES of L4 females that developed in the colitic milieu (HpC females). In contrast, only 200 proteins were identified in the ES of L4 males (Hp males) and 218 in the ES of L4 females (Hp females) that developed in control conditions. Most of the proteins (123) were detected in all groups. Unique proteins identified in the ES of HpC females included annexin, lysozyme-2, apyrase, and galectin. Venom allergen/Ancylostoma-secreted protein-like, transthyretin-like family proteins, and galectins were found in the secretome of HpC males but not in the secretome of control males. These molecules may be responsible for the therapeutic effects of nematodes in DSS-induced colitis.
Collapse
Affiliation(s)
- Marta Maruszewska-Cheruiyot
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland;
| | - Ludmiła Szewczak
- Department of Parasitology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 00-096 Warsaw, Poland;
| | - Katarzyna Krawczak-Wójcik
- Department of Biomedical Sciences, Faculty of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Marymoncka 34, 00-968 Warsaw, Poland;
| | - Magdalena Kierasińska
- Department of Histology and Embryology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland;
| | - Michael Stear
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Katarzyna Donskow-Łysoniewska
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland;
| |
Collapse
|
11
|
Beyhan YE, Yıldız MR. Microbiota and parasite relationship. Diagn Microbiol Infect Dis 2023; 106:115954. [PMID: 37267741 DOI: 10.1016/j.diagmicrobio.2023.115954] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 06/04/2023]
Abstract
The diversity of microbiota is different in each person. Many health problems such as autoimmune diseases, diabetes, cardiovascular diseases, and depression can be caused by microbiota imbalance. Since the parasite needs a host to survive, it interacts closely with the microbiota elements. Blastocystis acts on the inflammatory state of the intestine and may cause various gastrointestinal symptoms, on the contrary, it is more important for gut health because it causes bacterial diversity and richness. Blastocystis is associated with changes in gut microbiota composition, the ultimate indicator of which is the Firmicutes/Bacteroidetes ratio. The Bifidobacterium genus was significantly reduced in IBS patients and Blastocystis, and there is a significant decrease in Faecalibacterium prausnitzii, which has anti-inflammatory properties in Blastocystis infection without IBS. Lactobacillus species reduce the presence of Giardia, and the produced bacteriocins prevent parasite adhesion. The presence of helminths has been strongly associated with the transition from Bacteroidetes to Firmicutes and Clostridia. Contrary to Ascaris, alpha diversity in the intestinal microbiota decreases in chronic Trichuris muris infection, and growth and nutrient metabolism efficiency can be suppressed. Helminth infections indirectly affect mood and behavior in children through their effects on microbiota change. The main and focus of this review is to address the relationship of parasites with microbiota elements and to review the data about what changes they cause. Microbiota studies have gained importance recently and it is thought that it will contribute to the treatment of many diseases as well as in the fight against parasitic diseases in the future.
Collapse
Affiliation(s)
- Yunus E Beyhan
- Department of Parasitology, Van Yüzüncü Yil University Faculty of Medicine, Van, Turkey.
| | - Muhammed R Yıldız
- Department of Parasitology, Van Yüzüncü Yil University Faculty of Medicine, Van, Turkey
| |
Collapse
|
12
|
Kim SY, Park JH, Leite G, Pimentel M, Rezaie A. Interleukin-10 Knockout Mice Do Not Reliably Exhibit Macroscopic Inflammation: A Natural History Endoscopic Surveillance Study. Dig Dis Sci 2023; 68:1858-1862. [PMID: 36929236 DOI: 10.1007/s10620-023-07871-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Interleukin (IL)-10 knockout (KO) mice, a model for inflammatory bowel disease (IBD), develop chronic enterocolitis due to an aberrant immune response to enteric antigens. Endoscopy, the gold standard for evaluation of human mucosal health, is not widely available for murine models. AIMS To assess the natural history of left-sided colitis in IL-10 KO mice via serial endoscopies. METHODS BALB/cJ IL-10 KO mice underwent regular endoscopic assessments from 2 up to 8 months of age. Procedures were recorded and blindly evaluated using a 4-component endoscopic score: mucosal wall transparency, intestinal bleeding, focal lesions and perianal lesions (0-3 points each). An endoscopic score ≥ 1 point was considered as the presence of colitis/flare. RESULTS IL-10 KO mice (N = 40, 9 female) were assessed. Mean age at first endoscopy was 62.5 ± 2.5 days; average number of procedures per mouse was 6.0 ± 1.3. A total of 238 endoscopies were conducted every 24.8 ± 8.3 days, corresponding to 124.1 ± 45.2 days of surveillance per mouse. Thirty-three endoscopies in 24 mice (60%) detected colitis, mean endoscopy score 2.5 ± 1.3 (range: 1-6.3). Nineteen mice (47.5%) had one episode of colitis and 5 (12.5%) had 2-3 episodes. All exhibited complete spontaneous healing on subsequent endoscopies. CONCLUSIONS In this large-scale endoscopic surveillance study of IL-10 KO mice, 40% of mice did not develop endoscopic left-sided colitis. Furthermore, IL-10 KO mice did not exhibit persistent colitis and universally exhibited complete spontaneous healing without treatment. The natural history of colitis in IL-10 KO mice may not be comparable with that of IBD in humans and requires careful consideration.
Collapse
Affiliation(s)
- Seung Young Kim
- Division of Gastroenterology, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, South Korea
| | - Jae Ho Park
- Division of Gastroenterology, Department of Internal Medicine, Ulsan University Hospital, Ulsan, South Korea
| | - Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Atagozli T, Elliott DE, Ince MN. Helminth Lessons in Inflammatory Bowel Diseases (IBD). Biomedicines 2023; 11:1200. [PMID: 37189818 PMCID: PMC10135676 DOI: 10.3390/biomedicines11041200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Helminths are multicellular invertebrates that colonize the gut of many vertebrate animals including humans. This colonization can result in pathology, which requires treatment. It can also lead to a commensal and possibly even a symbiotic relationship where the helminth and the host benefit from each other's presence. Epidemiological data have linked helminth exposure to protection from immune disorders that include a wide range of diseases, such as allergies, autoimmune illnesses, and idiopathic inflammatory disorders of the gut, which are grouped as inflammatory bowel diseases (IBD). Treatment of moderate to severe IBD involves the use of immune modulators and biologics, which can cause life-threatening complications. In this setting, their safety profile makes helminths or helminth products attractive as novel therapeutic approaches to treat IBD or other immune disorders. Helminths stimulate T helper-2 (Th2) and immune regulatory pathways, which are targeted in IBD treatment. Epidemiological explorations, basic science studies, and clinical research on helminths can lead to the development of safe, potent, and novel therapeutic approaches to prevent or treat IBD in addition to other immune disorders.
Collapse
Affiliation(s)
- Tyler Atagozli
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
| | - David E. Elliott
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Mirac Nedim Ince
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
14
|
Setshedi M, Watermeyer G. The impact of Helicobacter pylori and intestinal helminth infections on gastric adenocarcinoma and inflammatory bowel disease in Sub-Saharan Africa. Front Med (Lausanne) 2022; 9:1013779. [PMID: 36569142 PMCID: PMC9780450 DOI: 10.3389/fmed.2022.1013779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric adenocarcinoma (GCA) is the 5th leading cancer globally with an estimated 1.1 million cases reported in 2020. Ninety percent of non-cardia GCAs are attributable to Helicobacter pylori (H. pylori), the most prevalent bacterial infection globally. Rates of H. pylori infection are highest in Sub-Saharan Africa (SSA), yet surprisingly low numbers of GCAs are reported in the region. A similar phenomenon is seen with the inflammatory bowel diseases (IBD), Crohn's disease, and ulcerative colitis. These disorders have risen dramatically over the past century in high income countries across the globe, with sharp increases noted more recently in newly industrialized regions. In contrast IBD is rare in most regions in SSA. For both diseases this may reflect under-reporting or limited access to diagnostic modalities, but an alternative explanation is the high burden of infection with gastrointestinal parasites endemic to SSA which may attenuate the risk of developing GCA and IBD. In this mini review we discuss the complex interplay between these microorganisms, GCA, and IBD, as well as a possible protective role of H. pylori and the development of IBD.
Collapse
|
15
|
Yeshi K, Ruscher R, Loukas A, Wangchuk P. Immunomodulatory and biological properties of helminth-derived small molecules: Potential applications in diagnostics and therapeutics. FRONTIERS IN PARASITOLOGY 2022; 1:984152. [PMID: 39816468 PMCID: PMC11731824 DOI: 10.3389/fpara.2022.984152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2025]
Abstract
Parasitic helminths secrete and excrete a vast array of molecules known to help skew or suppress the host's immune response, thereby establishing a niche for sustained parasite maintenance. Indeed, the immunomodulatory potency of helminths is attributed mainly to excretory/secretory products (ESPs). The ESPs of helminths and the identified small molecules (SM) are reported to have diverse biological and pharmacological properties. The available literature reports only limited metabolites, and the identity of many metabolites remains unknown due to limitations in the identification protocols and helminth-specific compound libraries. Many metabolites are known to be involved in host-parasite interactions and pathogenicity. For example, fatty acids (e.g., stearic acid) detected in the infective stages of helminths are known to have a role in host interaction through facilitating successful penetration and migration inside the host. Moreover, excreted/secreted SM detected in helminth species are found to possess various biological properties, including anti-inflammatory activities, suggesting their potential in developing immunomodulatory drugs. For example, helminths-derived somatic tissue extracts and whole crude ESPs showed anti-inflammatory properties by inhibiting the secretion of proinflammatory cytokines from human peripheral blood mononuclear cells and suppressing the pathology in chemically-induced experimental mice model of colitis. Unlike bigger molecules like proteins, SM are ideal candidates for drug development since they are small structures, malleable, and lack immunogenicity. Future studies should strive toward identifying unknown SM and isolating the under-explored niche of helminth metabolites using the latest metabolomics technologies and associated software, which hold potential keys for finding new diagnostics and novel therapeutics.
Collapse
Affiliation(s)
- Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia
| | | | | | | |
Collapse
|
16
|
Rad MJ, Navi Z, Heidari AR, Arab FL, Tabasi N, Rastin M, Khadem Rezaiyan M, Moghaddas E, Mahmoudi M. Evaluation of the immunoregulatory effect of
Dicrocoelium dendriticum
eggs on inflammatory and anti‐inflammatory cytokines in
EAE
model. Parasite Immunol 2022; 44:e12942. [DOI: 10.1111/pim.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Mozhdeh Jafari Rad
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Zahra Navi
- Department of Parasitology and Mycology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Reza Heidari
- Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Nafiseh Tabasi
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Maryam Rastin
- Immunology Research Center, Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Khadem Rezaiyan
- Clinical Research Development Unit Mashhad University of Medical Sciences Mashhad Iran
| | - Elham Moghaddas
- Department of Parasitology and Mycology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mahmoud Mahmoudi
- Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Immunology Research Center, Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
17
|
Shi W, Xu N, Wang X, Vallée I, Liu M, Liu X. Helminth Therapy for Immune-Mediated Inflammatory Diseases: Current and Future Perspectives. J Inflamm Res 2022; 15:475-491. [PMID: 35087284 PMCID: PMC8789313 DOI: 10.2147/jir.s348079] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Affiliation(s)
- Wenjie Shi
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Ning Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Isabelle Vallée
- UMR BIPAR, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
- Correspondence: Xiaolei Liu; Mingyuan Liu, Tel +86-15943092280; +86-13019125996, Email ;
| |
Collapse
|
18
|
Arai T, Lopes F. Potential of human helminth therapy for resolution of inflammatory bowel disease: The future ahead. Exp Parasitol 2021; 232:108189. [PMID: 34848244 DOI: 10.1016/j.exppara.2021.108189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease (IBD) is associated with a dysregulated mucosal immune response in the gastrointestinal tract. The number of patients with IBD has increased worldwide, especially in highly industrialized western societies. The population of patients with IBD in North America is forecasted to reach about four million by 2030; meanwhile, there is no definitive therapy for IBD. Current anti-inflammatory, immunosuppressive, or biological treatment may induce and maintain remission, but not all patients respond to these treatments. Recent studies explored parasitic helminths as a novel modality of therapy due to their potent immunoregulatory properties in humans. Research using IBD animal models infected with a helminth or administered helminth-derived products such as excretory-secretory products has been promising, and helminth-microbiota interactions exert their anti-inflammatory effects by modulating the host immunity. Recent studies also indicate that evidence that helminth-derived metabolites may play a role in anticolitic effects. Thus, the helminth shows a potential benefit for treatment against IBD. Here we review the current feasibility of "helminth therapy" from the laboratory for application in IBD management.
Collapse
Affiliation(s)
- Toshio Arai
- Institution of Parasitology, McGill University, Quebec, Canada; Department of Gastroenterology, Hashimoto Municipal Hospital, Wakayama, Japan
| | - Fernando Lopes
- Institution of Parasitology, McGill University, Quebec, Canada.
| |
Collapse
|
19
|
Chen Z, Shen X, Zhou Q, Zhan Q, Xu X, Chen Q, An F, Sun J. Dietary xylo-oligosaccharide ameliorates colonic mucus microbiota penetration with restored autophagy in interleukin-10 gene-deficient mice. JPEN J Parenter Enteral Nutr 2021; 46:1130-1140. [PMID: 34618377 DOI: 10.1002/jpen.2274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is, nowadays, highly prevalent and presents a global clinical challenge. The objective of this study is to assess the effects of xylo-oligosaccharide (XOS) on Il10-/- mice, a classic animal model of IBD. METHODS Male wild-type (WT) mice were assigned to WT group, and Il10-/- mice were assigned to interleukin-10 gene-deficient (IL-10-KO) group and XOS group, respectively. There were 6-8 mice aged 8 weeks in each group. Mice in the XOS group received 1.0 g/kg/day XOS by gavage for 4 weeks. RESULTS Compared with mice in IL-10-KO group, Il10-/- mice with XOS intervention presented significant mild spontaneous colitis with lower disease activity index, histological scores, and bowel inflammatory cytokine levels. Dietary XOS downregulated bowel mucus bacterial penetration, which occurred as early as the onset of bowel colitis. The effect of XOS was associated with restored expression of LC3II/I and decreased expression of p62 and beclin-1 in colon. CONCLUSIONS Therefore, XOS decreases colonic mucus microbiota penetration with restored function of antophagy. Our findings suggest that XOS may be a potential dietary supplement or functional food for early management of IBD.
Collapse
Affiliation(s)
- Zhongxia Chen
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Xiao Shen
- Department of Intensive Care Unit, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qunyan Zhou
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Qiang Zhan
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Xingwen Xu
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Qiuyu Chen
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Fangmei An
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Jing Sun
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| |
Collapse
|
20
|
Yousefi Y, Haq S, Banskota S, Kwon YH, Khan WI. Trichuris muris Model: Role in Understanding Intestinal Immune Response, Inflammation and Host Defense. Pathogens 2021; 10:pathogens10080925. [PMID: 34451389 PMCID: PMC8399713 DOI: 10.3390/pathogens10080925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Several parasites have evolved to survive in the human intestinal tract and over 1 billion people around the world, specifically in developing countries, are infected with enteric helminths. Trichuris trichiura is one of the world’s most common intestinal parasites that causes human parasitic infections. Trichuris muris, as an immunologically well-defined mouse model of T. trichiura, is extensively used to study different aspects of the innate and adaptive components of the immune system. Studies on T. muris model offer insights into understanding host immunity, since this parasite generates two distinct immune responses in resistant and susceptible strains of mouse. Apart from the immune cells, T. muris infection also influences various components of the intestinal tract, especially the gut microbiota, mucus layer, epithelial cells and smooth muscle cells. Here, we reviewed the different immune responses generated by innate and adaptive immune components during acute and chronic T. muris infections. Furthermore, we discussed the importance of studying T. muris model in understanding host–parasite interaction in the context of alteration in the host’s microbiota, intestinal barrier, inflammation, and host defense, and in parasite infection-mediated modulation of other immune and inflammatory diseases.
Collapse
Affiliation(s)
- Yeganeh Yousefi
- Farncombe Family Digestive Health Research Institute, McMaster University Health Sciences Centre Room 3N7, 1280 Main St. W, Hamilton, ON L8N 3Z5, Canada; (Y.Y.); (S.H.); (S.B.); (Y.H.K.)
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada
| | - Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University Health Sciences Centre Room 3N7, 1280 Main St. W, Hamilton, ON L8N 3Z5, Canada; (Y.Y.); (S.H.); (S.B.); (Y.H.K.)
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada
| | - Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University Health Sciences Centre Room 3N7, 1280 Main St. W, Hamilton, ON L8N 3Z5, Canada; (Y.Y.); (S.H.); (S.B.); (Y.H.K.)
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University Health Sciences Centre Room 3N7, 1280 Main St. W, Hamilton, ON L8N 3Z5, Canada; (Y.Y.); (S.H.); (S.B.); (Y.H.K.)
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, McMaster University Health Sciences Centre Room 3N7, 1280 Main St. W, Hamilton, ON L8N 3Z5, Canada; (Y.Y.); (S.H.); (S.B.); (Y.H.K.)
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada
- Correspondence: ; Tel.: +1-905-521-2100 (ext. 22846)
| |
Collapse
|
21
|
Sprouty2 limits intestinal tuft and goblet cell numbers through GSK3β-mediated restriction of epithelial IL-33. Nat Commun 2021; 12:836. [PMID: 33547321 PMCID: PMC7864916 DOI: 10.1038/s41467-021-21113-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Dynamic regulation of intestinal cell differentiation is crucial for both homeostasis and the response to injury or inflammation. Sprouty2, an intracellular signaling regulator, controls pathways including PI3K and MAPKs that are implicated in differentiation and are dysregulated in inflammatory bowel disease. Here, we ask whether Sprouty2 controls secretory cell differentiation and the response to colitis. We report that colonic epithelial Sprouty2 deletion leads to expanded tuft and goblet cell populations. Sprouty2 loss induces PI3K/Akt signaling, leading to GSK3β inhibition and epithelial interleukin (IL)-33 expression. In vivo, this results in increased stromal IL-13+ cells. IL-13 in turn induces tuft and goblet cell expansion in vitro and in vivo. Sprouty2 is downregulated by acute inflammation; this appears to be a protective response, as VillinCre;Sprouty2F/F mice are resistant to DSS colitis. In contrast, Sprouty2 is elevated in chronic colitis and in colons of inflammatory bowel disease patients, suggesting that this protective epithelial-stromal signaling mechanism is lost in disease. Dynamic regulation of colonic secretory cell numbers is a critical component of the response to intestinal injury and inflammation. Here, the authors show that loss of the intracellular signalling regulator Sprouty2 in the intestinal epithelial cells is a protective response to injury that leads to increased secretory cell numbers, thus limiting colitis severity.
Collapse
|
22
|
Metwali A, Winckler S, Urban JF, Kaplan MH, Ince MN, Elliott DE. Helminth-induced regulation of T-cell transfer colitis requires intact and regulated T cell Stat6 signaling in mice. Eur J Immunol 2020; 51:433-444. [PMID: 33067820 DOI: 10.1002/eji.201848072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/24/2020] [Indexed: 02/01/2023]
Abstract
Infection with parasitic worms (helminths) alters host immune responses and can inhibit pathogenic inflammation. Helminth infection promotes a strong Th2 and T regulatory response while suppressing Th1 and Th17 function. Th2 responses are largely dependent on transcriptional programs directed by Stat6-signaling. We examined the importance of intact T cell Stat6 signaling on helminth-induced suppression of murine colitis that results from T cell transfer into immune-deficient mice. Colonization with the intestinal nematode Heligmosomoides polygyrus bakeri resolves WT T cell transfer colitis. However, if the transferred T cells lack intact Stat6 then helminth exposure failed to attenuate colitis or suppress MLN T cell IFN-γ or IL17 production. Loss of Stat6 signaling resulted in decreased IL10 and increased IFN-γ co-expression by IL-17+ T cells. We also transferred T cells from mice with constitutive T cell expression of activated Stat6 (Stat6VT). These mice developed a severe eosinophilic colitis that also was not attenuated by helminth infection. These results show that T cell expression of intact but regulated Stat6 signaling is required for helminth infection-associated regulation of pathogenic intestinal inflammation.
Collapse
Affiliation(s)
- Ahmed Metwali
- Internal Medicine, Iowa City Veterans Administration Health Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Sarah Winckler
- Internal Medicine, Iowa City Veterans Administration Health Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Joseph F Urban
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD, USA
| | - Mark H Kaplan
- Department of Pediatrics, H.B. Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M Nedim Ince
- Internal Medicine, Iowa City Veterans Administration Health Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - David E Elliott
- Internal Medicine, Iowa City Veterans Administration Health Center, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
23
|
Axelrad JE, Cadwell KH, Colombel JF, Shah SC. Systematic review: gastrointestinal infection and incident inflammatory bowel disease. Aliment Pharmacol Ther 2020; 51:1222-1232. [PMID: 32372471 PMCID: PMC7354095 DOI: 10.1111/apt.15770] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/24/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The initiating events of chronic gastrointestinal (GI) inflammation in Crohn's disease (CD) and ulcerative colitis (UC) are not well-defined, but GI infections are implicated. AIMS To define the role of GI infections in risk of incident inflammatory bowel disease (IBD) and synthesise the current body of relevant translational data to provide biological context for associations between GI infections and IBD risk. METHODS We systematically reviewed electronic databases through February 2020. Clinical studies that provided risk estimates of the association between GI infections and incident IBD were included. Inclusion criteria were broader for translational studies aiming to define mechanisms of GI infections and predisposition to or protection from IBD. RESULTS Of the studies identified, 63 met full inclusion criteria. Among studies of clinical gastroenteritis, bacteria-specifically, Salmonella species, Campylobacter species and Clostridioides difficile-demonstrated consistent positive associations with risk of incident IBD. Of viruses, norovirus was associated with increased risk of incident CD. Regarding inverse associations with incident IBD, Helicobacter pylori and helminth infections were associated with a generally consistent reduced risk of IBD. Based on a qualitative analysis of the translational data, putative mechanisms involve multiple microbial and immunologic pathways. CONCLUSIONS Based on this systematic review, certain enteric pathogens are associated with an increased risk of incident IBD, while others are potentially protective. Prospective studies are required to clarify the clinical implications of these enteric pathogens on the risk and course of IBD, and possible therapeutic or preventative benefit.
Collapse
Affiliation(s)
- Jordan E Axelrad
- Division of Gastroenterology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Ken H Cadwell
- Division of Gastroenterology, Department of Medicine, NYU School of Medicine, New York, NY, USA
- Department of Microbiology, NYU School of Medicine, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shailja C Shah
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
24
|
Filbey KJ, Mehta PH, Meijlink KJ, Pellefigues C, Schmidt AJ, Le Gros G. The Gastrointestinal Helminth Heligmosomoides bakeri Suppresses Inflammation in a Model of Contact Hypersensitivity. Front Immunol 2020; 11:950. [PMID: 32508831 PMCID: PMC7249854 DOI: 10.3389/fimmu.2020.00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
Helminths regulate host immune responses to ensure their own long-term survival. Numerous studies have demonstrated that these helminth-induced regulatory mechanisms can also limit host inflammatory responses in several disease models. We used the Heligmosomoides bakeri (Hb) infection model (also known as H. polygyrus or H. polygyrus bakeri in the literature) to test whether such immune regulation affects skin inflammatory responses induced by the model contact sensitiser dibutyl phthalate fluorescein isothiocynate (DBP-FITC). Skin lysates from DBP-FITC-sensitized, Hb-infected mice produced less neutrophil specific chemokines and had significantly reduced levels of skin thickening and cellular inflammatory responses in tissue and draining lymph nodes (LNs) compared to uninfected mice. Hb-induced suppression did not appear to be mediated by regulatory T cells, nor was it due to impaired dendritic cell (DC) activity. Mice cleared of infection remained unresponsive to DBP-FITC sensitization indicating that suppression was not via the secretion of Hb-derived short-lived regulatory molecules, although long-term effects on cells cannot be ruled out. Importantly, similar helminth-induced suppression of inflammation was also seen in the draining LN after intradermal injection of the ubiquitous allergen house dust mite (HDM). These findings demonstrate that Hb infection attenuates skin inflammatory responses by suppressing chemokine production and recruitment of innate cells. These findings further contribute to the growing body of evidence that helminth infection can modulate inflammatory and allergic responses via a number of mechanisms with potential to be exploited in therapeutic and preventative strategies in the future.
Collapse
Affiliation(s)
- Kara J Filbey
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Palak H Mehta
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | | | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
25
|
Ramani S, Chauhan N, Khatri V, Vitali C, Kalyanasundaram R. Wuchereria bancrofti macrophage migration inhibitory factor-2 (rWbaMIF-2) ameliorates experimental colitis. Parasite Immunol 2020; 42:e12698. [PMID: 31976564 DOI: 10.1111/pim.12698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
Abstract
Immunomodulatory molecules produced by helminth parasites are receiving much attention recently as novel therapeutic agents for inflammation and autoimmune diseases. In this study, we show that macrophage migration inhibitory factor (MIF) homologue from the filarial parasite, Wuchereria bancrofti (rWbaMIF-2), can suppress inflammation in a dextran sulphate sodium salt (DSS)-induced colitis model. The disease activity index (DAI) in DSS given mice showed loss of body weight and bloody diarrhoea. At autopsy, colon of these mice showed severe inflammation and reduced length. Administration of rWbaMIF-2 significantly reduced the DAI in DSS-induced colitis mice. rWbaMIF-2-treated mice had no blood in the stools, and their colon length was similar to the normal colon with minimal inflammation and histological changes. Pro-inflammatory cytokine genes (TNF-α, IL-6, IFN-γ, IL-1β, IL-17A and NOS2) were downregulated in the colon tissue and peritoneal macrophages of rWbaMIF-2-treated mice. However, there were significant increases in IL-10-producing Treg and B1 cells in the colon and peritoneal cavity of rWbaMIF-2-treated mice. These findings suggested that rWbaMIF-2 treatment significantly ameliorated the clinical symptoms, inflammation and colon pathology in DSS given mice. This immunomodulatory effect of rWbaMIF-2 appeared to be by promoting the infiltration of Treg cells into the colon.
Collapse
Affiliation(s)
- Shriram Ramani
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Nikhil Chauhan
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Vishal Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Connie Vitali
- Department of Health Sciences Education, University of Illinois College of Medicine, Rockford, IL, USA
| | | |
Collapse
|
26
|
Abdoli A, Mirzaian Ardakani H. Potential application of helminth therapy for resolution of neuroinflammation in neuropsychiatric disorders. Metab Brain Dis 2020; 35:95-110. [PMID: 31352539 DOI: 10.1007/s11011-019-00466-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022]
Abstract
Neuropsychiatric disorders (NPDs) are among the major debilitating disorders worldwide with multiple etiological factors. However, in recent years, psychoneuroimmunology uncovered the role of inflammatory condition and autoimmune disorders in the etiopathogenesis of different NPDs. Hence, resolution of inflammation is a new therapeutic target of NPDs. On the other hand, Helminth infections are among the most prevalent infectious diseases in underdeveloped countries, which usually caused chronic infections with minor clinical symptoms. Remarkably, helminths are among the master regulator of inflammatory reactions and epidemiological studies have shown an inverse association between prevalence of autoimmune disorders with these infections. As such, changes of intestinal microbiota are known to be associated with inflammatory conditions in various NPDs. Conversely, helminth colonization alters the intestinal microbiota composition that leads to suppression of intestinal inflammation. In animal models and human studies, helminths or their antigens have shown to be protected against severe autoimmune and allergic disorders, decline the intensity of inflammatory reactions and improved clinical symptoms of the patients. Therefore, "helminthic therapy" have been used for modulation of immune disturbances in different autoimmunity illnesses, such as Multiple Sclerosis (MS) and Inflammatory Bowel Disease (IBD). Here, it is proposed that "helminthic therapy" is able to ameliorate neuroinflammation of NPDs through immunomodulation of inflammatory reactions and alteration of microbiota composition. This review discusses the potential application of "helminthic therapy" for resolution of neuroinflammation in NPDs.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, POBox 74148-46199, Ostad Motahari Ave, Jahrom, Iran.
- Zoonoses Research Center, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hoda Mirzaian Ardakani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
27
|
Therapeutic applicability of helminths in autoimmune diseases - literature overview. GASTROENTEROLOGY REVIEW 2019; 14:168-172. [PMID: 31649786 PMCID: PMC6807663 DOI: 10.5114/pg.2019.88164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/14/2019] [Indexed: 11/17/2022]
Abstract
This paper presents an overview of published studies conducted on helminths – parasites of the human gastrointestinal tract. Making use of their ability for immunomodulation may lead to the introduction of effective therapies for autoimmune diseases. This paper presents chronologically attempts to treat autoimmune diseases not only of the gastrointestinal tract, but also of the nervous and endocrine systems, which have been undertaken for decades. The overview of analysed reports demonstrates that as medical knowledge on the cells and mediators participating actively in inflammatory processes accumulates, clinical trials focus on ever more specific areas concerning the pathomechanisms of autoimmune diseases. The outcomes of clinical trials conducted both on animals and humans give reasons to assume that the modification of the human intestinal microflora may be the key to fighting against these diseases.
Collapse
|
28
|
Ali Mubaraki M, Ahmad M, Hafiz TA, Marie MA. The therapeutic prospect of crosstalk between prokaryotic and eukaryotic organisms in the human gut. FEMS Microbiol Ecol 2019; 94:4966977. [PMID: 29796663 DOI: 10.1093/femsec/fiy065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
The peaceful phenomenon of the co-evolution between the prokaryotes (microbiota) and the eukaryotes (parasites including protozoa and helminths) in the animal gut has drawn the researchers' attention. Importantly, exploring the potential of helminths for therapeutic uses was one of the reasons behind understanding the physiological and immunological crosstalk existing between them. Here we discuss the interactive immunological associations of helminths and microbial responses individually and in combination with their hosts. Considering that there is probably crosstalk between eukaryotic organisms like helminths and protozoa with their host's gut microbiota, in this review we searched the literature identifying the privileged and favourable relationship generated between them in the host. Understanding the possibilities of the role of helminths along with gut microbiota as a black box would certainly help decode the therapeutic intrusion with helminths in experimental clinical trials, and a successful trial could be used to consider possible future and safe treatments for various immune-inflammatory diseases in humans.
Collapse
Affiliation(s)
- Murad Ali Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammad Ahmad
- Medical Surgical Nursing Department, College of Nursing, King Saud University, Saudi Arabia
| | - Taghreed A Hafiz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammed A Marie
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| |
Collapse
|
29
|
Hang L, Kumar S, Blum AM, Urban JF, Fantini MC, Weinstock JV. Heligmosomoides polygyrus bakeri Infection Decreases Smad7 Expression in Intestinal CD4 + T Cells, Which Allows TGF-β to Induce IL-10-Producing Regulatory T Cells That Block Colitis. THE JOURNAL OF IMMUNOLOGY 2019; 202:2473-2481. [PMID: 30850474 DOI: 10.4049/jimmunol.1801392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/04/2019] [Indexed: 12/25/2022]
Abstract
Helminthic infections modulate host immunity and may protect their hosts from developing immunological diseases like inflammatory bowel disease. Induction of regulatory T cells (Tregs) may be an important part of this protective process. Heligmosomoides polygyrus bakeri infection also promotes the production of the regulatory cytokines TGF-β and IL-10 in the gut. In the intestines, TGF-β helps induce regulatory T cells. This study used Foxp3/IL-10 double reporter mice to investigate the effect of TGF-β on the differentiation of colon and mesenteric lymph node-derived murine Foxp3- IL-10- CD4+ T cells into their regulatory phenotypes. Foxp3- IL-10- CD4+ T cells from H. polygyrus bakeri-infected mice, as opposed to T cells from uninfected animals, cultured in vitro with TGF-β and anti-CD3/CD28 mAb differentiated into Foxp3+ and/or IL-10+ T cells. The IL-10-producing T cells nearly all displayed CD25. Smad7 is a natural inhibitor of TGF-β signaling. In contrast to gut T cells from uninfected mice, Foxp3- IL10- CD4+ T cells from H. polygyrus bakeri-infected mice displayed reduced Smad7 expression and responded to TGF-β with Smad2/3 phosphorylation. The TGF-β-induced Tregs that express IL-10 blocked colitis when transferred into the Rag/CD25- CD4+ T cell transfer model of inflammatory bowel disease. TGF-β had a greatly diminished capacity to induce Tregs in H. polygyrus bakeri-infected transgenic mice with constitutively high T cell-specific Smad7 expression. Thus, infection with H. polygyrus bakeri causes down-modulation in Smad7 expression in intestinal CD4+ T cells, which allows the TGF-β produced in response to the infection to induce the Tregs that prevent colitis.
Collapse
Affiliation(s)
- Long Hang
- Division of Gastroenterology/Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Sangeeta Kumar
- Division of Gastroenterology/Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Arthur M Blum
- Division of Gastroenterology/Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Joseph F Urban
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705; and
| | - Massimo C Fantini
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Joel V Weinstock
- Division of Gastroenterology/Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111;
| |
Collapse
|
30
|
Ryan NM, Oghumu S. Role of mast cells in the generation of a T-helper type 2 dominated anti-helminthic immune response. Biosci Rep 2019; 39:BSR20181771. [PMID: 30670631 PMCID: PMC6379226 DOI: 10.1042/bsr20181771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Mast cells are long-lived, innate immune cells of the myeloid lineage which are found in peripheral tissues located throughout the body, and positioned at the interface between the host and the environment. Mast cells are found in high concentrations during helminth infection. Using Kitw-sh mast cell deficient mice, a recently published study in Bioscience Reports by Gonzalez et al. (Biosci. Rep., 2018) focused on the role of mast cells in the immune response to infection by the helminth Hymenolepis diminuta The authors showed that mast cells play a role in the modulation of Th2 immune response characterized by a unique IL-4, IL-5 and IL-13 cytokine profile, as well as subsequent robust worm expulsion during H. diminuta infection. Unlike WT mice which expelled H. diminuta at day 10, Kitw-sh deficient mice displayed delayed worm expulsion (day 14 post infection). Further, a possible role for mast cells in the basal expression of cytokines IL-25, IL-33 and thymic stromal lymphopoietin was described. Deletion of neutrophils in Kitw-sh deficient mice enhanced H. diminuta expulsion, which was accompanied by splenomegaly. However, interactions between mast cells and other innate and adaptive immune cells during helminth infections are yet to be fully clarified. We conclude that the elucidation of mechanisms underlying mast cell interactions with cells of the innate and adaptive immune system during infection by helminths can potentially uncover novel therapeutic applications against inflammatory, autoimmune and neoplastic diseases.
Collapse
Affiliation(s)
- Nathan M Ryan
- Department of Pathology, College of Medicine, Ohio State University Wexner Medical Center, Columbus, OH, U.S.A
| | - Steve Oghumu
- Department of Pathology, College of Medicine, Ohio State University Wexner Medical Center, Columbus, OH, U.S.A.
| |
Collapse
|
31
|
Shen W, Li Y, Zou Y, Cao L, Cai X, Gong J, Xu Y, Zhu W. Mesenteric Adipose Tissue Alterations in Crohn's Disease Are Associated With the Lymphatic System. Inflamm Bowel Dis 2019; 25:283-293. [PMID: 30295909 DOI: 10.1093/ibd/izy306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mesenteric fat wrapping and thickening are typical characteristics of Crohn's disease (CD). The purpose of this study was to explore the cause of mesenteric adipose hypertrophy and analyze the role of lymphatic vessels in mesenteric adipose tissue in CD. METHODS Twenty-three CD patients who underwent ileocolonic resection were included. In CD patients, specimens were obtained from hypertrophic mesenteric adipose tissue (htMAT) next to the diseased ileum. The mesenteric lymphatic vessels in mesenteric adipose tissue were separated under stereoscope microscope. Transmission electron microscopy and immunofluorescence were used to observe the structure of mesenteric lymphatic vessels. The NF-κB signaling pathway in mesenteric adipose tissue was detected in CD specimens using Western blotting. RESULTS Electron microscopy showed that the structure of mesenteric lymphatic vessel was discontinuous, and the microstructure of lymphatic endothelial cells appeared ruptured and incomplete. Through an immunofluorescence technique, we found that the surface of lymphatic endothelial cells lacked tight junction protein staining in CD. Also, the expression of claudin-1, occludin, and ZO-1 in the mesenteric lymphatic vessel of htMAT was significantly lower than that of control. These results indicated that the structure of the mesenteric lymphatic vessel in htMAT was mispatterned and ruptured, which could lead to lymph leakage. Leaky lymph factors could stimulate adipose tissue to proliferate. Antigens that leaked into the mesenteric adipose tissue could effectively elicit an immune response. The levels of cytokines (TNF-a, IL-1β, IL-6) was increased in the htMAT of CD patients by activated NF-κB signaling pathway. CONCLUSIONS Our findings demonstrated that the hypertrophy of mesenteric adipose tissue may result from mispatterned and ruptured lymphatic vessels. Alteration of mesenteric adipose tissue was associated with activated NF-κB signaling pathway. This study enhances support for elucidating the importance of mesenteric lymphatic vessels and adipose tissue in CD.
Collapse
Affiliation(s)
- Weisong Shen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yujie Zou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Lei Cao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xingchen Cai
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yihan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
32
|
L4 stage Heligmosomoides polygyrus prevents the maturation of dendritic JAWS II cells. Exp Parasitol 2019; 196:12-21. [DOI: 10.1016/j.exppara.2018.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/24/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022]
|
33
|
Yap GS, Gause WC. Helminth Infections Induce Tissue Tolerance Mitigating Immunopathology but Enhancing Microbial Pathogen Susceptibility. Front Immunol 2018; 9:2135. [PMID: 30386324 PMCID: PMC6198046 DOI: 10.3389/fimmu.2018.02135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 01/17/2023] Open
Abstract
Helminths are ubiquitous and have chronically infected vertebrates throughout their evolution. As such helminths have likely exerted considerable selection pressure on our immune systems. The large size of multicellular helminths and their limited replicative capacity in the host necessarily elicits different host protective mechanisms than the immune response evoked by microbial pathogens such as bacteria, viruses and intracellular parasites. The cellular damage resulting from helminth migration through tissues is a major trigger of the type 2 and regulatory immune responses, which activates wound repair mechanisms that increases tissue tolerance to injury and resistance mechanisms that enhance resistance to further colonization with larval stages. While these wound healing and anti-inflammatory responses may be beneficial to the helminth infected host, they may also compromise the host's ability to mount protective immune responses to microbial pathogens. In this review we will first describe helminth-induced tolerance mechanisms that develop in specific organs including the lung and the intestine, and how adaptive immunity may contribute to these responses through differential activation of T cells in the secondary lymphoid organs. We will then integrate studies that have examined how the immune response is modulated in these specific tissues during coinfection of helminths with viruses, protozoa, and bacteria.
Collapse
Affiliation(s)
- George S Yap
- Department of Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - William C Gause
- Department of Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
34
|
Wang H, Wang Y, Zhao J, Jiang J, Zhou Y, Shi P, Liu Q, Sun Y. Dietary Nondigestible Polysaccharides Ameliorate Colitis by Improving Gut Microbiota and CD4 + Differentiation, as Well as Facilitating M2 Macrophage Polarization. JPEN J Parenter Enteral Nutr 2018; 43:401-411. [PMID: 30277587 DOI: 10.1002/jpen.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/23/2018] [Accepted: 06/25/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND The aim of this study was to investigate the therapeutic mechanism of a specific multifiber mix diet (MF) designed to match the fiber content of a healthy diet in interleukin-10 knockout (IL-10-/- ) mice with spontaneous chronic colitis displaying similar characteristics to those of human Crohn's disease (CD). METHODS Sixteen-week-old IL-10-/- mice were used for the experiments with MF diet for 4 weeks. Severity of colitis, the composition of the fecal microbiota, expression of Th1/Th17 cells, myeloperoxidase (MPO) concentrations, and inflammatory cytokines and chemokines (tumor necrosis factor-α [TNF-α], IL-6, macrophage inflammatory protein [MIP]-2, monocyte chemoattractant protein-1 [MCP-1], and MIP-1α), as well as arginase 1 (Arg1) and signal transducers and activators of transcription 6 (STAT6) proteins, were measured at the end of the experiment. In addition, the corresponding metabolites (short-chain fatty acids) of MF on CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) were also detected in vivo and in vitro. RESULTS MF treatment significantly ameliorated colitis associated with decreased lamina propria frequency of Th1/Th17 cells, MPO concentrations, and inflammatory cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1, and MIP-1α). An increase in gut microbial diversity was observed after MF treatment compared with IL-10-/- mice, including a significant increase in bacteria belonging to the Firmicutes phylum and a significant decrease in bacteria belonging to the Proteobacteria phylum. Moreover, MF treatment increased the differentiation of CD4+ CD25+ Foxp3+ Tregs mainly by microbial metabolites butyrate. In addition, Arg1 and STAT6 proteins were also significantly increased after MF treatment. CONCLUSIONS These results shed light on the contribution of MF treatment to the CD mouse model and suggest that MF has potential as a therapeutic strategy for enhancing efficacy in inducing remission in patients with active CD.
Collapse
Affiliation(s)
- Honggang Wang
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Yong Wang
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Jie Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Jianguo Jiang
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Yaxing Zhou
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Peiliang Shi
- Model Animal Research Center of Nanjing University, Nanjing, 210089, Jiangsu Province, China
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Yueming Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| |
Collapse
|
35
|
Rodrigues VF, Bahia MPS, Cândido NR, Moreira JMP, Oliveira VG, Araújo ES, Rodrigues Oliveira JL, Rezende MDC, Correa A, Negrão-Corrêa D. Acute infection with Strongyloides venezuelensis increases intestine production IL-10, reduces Th1/Th2/Th17 induction in colon and attenuates Dextran Sulfate Sodium-induced colitis in BALB/c mice. Cytokine 2018; 111:72-83. [PMID: 30118915 DOI: 10.1016/j.cyto.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Helminth infection can reduce the severity of inflammatory bowel disease. However, the modulatory mechanisms elicited by helminth infection are not yet fully understood and vary depending on the experimental model. Herein we evaluated the effect of acute infection of BALB/c mice with Strongyloides venezuelensis on the clinical course of ulcerative colitis induced by Dextran Sulfate Sodium (DSS) treatment of these animals. For the experiments, S. venezuelensis-infected BALB/c mice were treated orally with 4% DSS solution for seven days. As controls, we used untreated S. venezuelensis infected, DSS-treated uninfected, and untreated/uninfected BALB/c mice. During DSS treatment, mice from the different groups were compared with regards to the clinical signs related to the severity of colitis and intestinal inflammation. Mice acutely infected with S. venezulensis and treated with DSS had reduced clinical score, shortening of the colon, and tissue inflammation. Moreover, DSS-treated and infected mice showed reduced IL-4, INF-γ, and IL-17 levels and increase of IL-10 production in the colon and/or in the supernatant of mesenteric lymph nodes cell cultures that resulted in lower eosinophil peroxidase and myeloperoxidase activity in colon homogenates, when compared with DSS-treated uninfected mice. DSS-treated infected mice also preserved the intestine architecture and had normal differentiation of goblet cells and mucus production in the colon mucosa. In conclusion, the data indicate that the clinical improvement reported in DSS-treated infected mice was accompanied by the lower production of Th1/Th2/Th17 pro-inflammatory cytokines, stimulation of IL-10, and induction of mucosal repair mechanisms.
Collapse
Affiliation(s)
- Vanessa Fernandes Rodrigues
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Márcia Paulliny Soares Bahia
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Núbia Rangel Cândido
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - João Marcelo Peixoto Moreira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Vinicius Gustavo Oliveira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Emília Souza Araújo
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Jailza Lima Rodrigues Oliveira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Michelle de Carvalho Rezende
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Ary Correa
- Departments of Microbiology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Deborah Negrão-Corrêa
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil.
| |
Collapse
|
36
|
Maruszewska-Cheruiyot M, Donskow-Łysoniewska K, Doligalska M. Helminth Therapy: Advances in the use of Parasitic Worms Against Inflammatory Bowel Diseases and its Challenges. Helminthologia 2018; 55:1-11. [PMID: 31662622 PMCID: PMC6799527 DOI: 10.1515/helm-2017-0048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022] Open
Abstract
Development of modern medicine and better living conditions in the 20th century helped in reducing a number of cases of infectious diseases. During the same time, expansion of autoimmunological disorders was noticed. Among other are Inflammatory Bowel Diseases (IBD) including ulcerative colitis and Crohn's disease which are chronic and relapsing inflammation of the gastrointestinal tract. Absence of effective treatment in standard therapies effects the search for alternative opportunities. As per hygienic hypothesis increasing number of cases of autoimmune diseases is as a result of reduced exposure to pathogens, especially parasites. Thus, one of the promising remedial acts against IBD and other allergic and autoimmune disorders is "helminth therapy". Cure with helminths seems to be the most effective therapy of IBD currently proposed. Helminth therapy focuses on advantageous results that have been obtained from the clinical trials, but its mechanisms are still unclear. Explanation of this phenomenon would help to develop new drugs against IBD based on helminth immunomodulatory molecules.
Collapse
Affiliation(s)
- M. Maruszewska-Cheruiyot
- Department of Parasitology, Faculty of Biology University of Warsaw, Miecznikowa 1, 02-096Warsaw, Poland
- E-mail:
| | - K. Donskow-Łysoniewska
- Department of Parasitology, Faculty of Biology University of Warsaw, Miecznikowa 1, 02-096Warsaw, Poland
| | - M. Doligalska
- Department of Parasitology, Faculty of Biology University of Warsaw, Miecznikowa 1, 02-096Warsaw, Poland
| |
Collapse
|
37
|
Lippens C, Guivier E, Ollivier A, Faivre B, Sorci G. Life history adjustments to intestinal inflammation in a gut nematode. J Exp Biol 2017; 220:3724-3732. [DOI: 10.1242/jeb.161059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Many parasitic nematodes establish chronic infections. This implies a finely tuned interaction with the host immune response in order to avoid infection clearance. Although a number of immune interference mechanisms have been described in nematodes, how parasites adapt to the immune environment provided by their hosts remains largely unexplored. Here, we used the gastrointestinal nematode Heligmosomoides polygyrus to investigate the plasticity of life history traits and immunomodulatory mechanisms in response to intestinal inflammation. We adopted an experimental model of induced colitis and exposed worms to intestinal inflammation at two different developmental stages (larvae and adults). We found that H. polygyrus responded to intestinal inflammation by up-regulating the expression of a candidate gene involved in the interference with the host immune response. Worms infecting mice with colitis also had better infectivity (earlier adult emergence in the intestinal lumen and higher survival) compared with worms infecting control hosts, suggesting that H. polygyrus adjusted its life history schedule in response to intestinal inflammation.
Collapse
Affiliation(s)
- Cédric Lippens
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Emmanuel Guivier
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
- Institut Méditerranéen de la Biodiversité et d'Ecologie marine et continentale (IMBE, UMR Université Aix Marseille/CNRS 7263/IRD 237/Avignon Université), France
| | - Anthony Ollivier
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
38
|
IL-4 enhances IL-10 production in Th1 cells: implications for Th1 and Th2 regulation. Sci Rep 2017; 7:11315. [PMID: 28900244 PMCID: PMC5595963 DOI: 10.1038/s41598-017-11803-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/30/2017] [Indexed: 12/22/2022] Open
Abstract
IL-10 is an immunomodulatory cytokine with a critical role in limiting inflammation in immune-mediated pathologies. The mechanisms leading to IL-10 expression by CD4+ T cells are being elucidated, with several cytokines implicated. We explored the effect of IL-4 on the natural phenomenon of IL-10 production by a chronically stimulated antigen-specific population of differentiated Th1 cells. In vitro, IL-4 blockade inhibited while addition of exogenous IL-4 to Th1 cultures enhanced IL-10 production. In the in vivo setting of peptide immunotherapy leading to a chronically stimulated Th1 phenotype, lack of IL-4Rα inhibited the induction of IL-10. Exploring the interplay of Th1 and Th2 cells through co-culture, Th2-derived IL-4 promoted IL-10 expression by Th1 cultures, reducing their pathogenicity in vivo. Co-culture led to upregulated c-Maf expression with no decrease in the proportion of T-bet+ cells in these cultures. Addition of IL-4 also reduced the encephalitogenic capacity of Th1 cultures. These data demonstrate that IL-4 contributes to IL-10 production and that Th2 cells modulate Th1 cultures towards a self-regulatory phenotype, contributing to the cross-regulation of Th1 and Th2 cells. These findings are important in the context of Th1 driven diseases since they reveal how the Th1 phenotype and function can be modulated by IL-4.
Collapse
|
39
|
Lippens C, Faivre B, Sorci G. Microevolutionary response of a gut nematode to intestinal inflammation. Int J Parasitol 2017; 47:617-623. [DOI: 10.1016/j.ijpara.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/26/2022]
|
40
|
Wang L, Xie H, Xu L, Liao Q, Wan S, Yu Z, Lin D, Zhang B, Lv Z, Wu Z, Sun X. rSj16 Protects against DSS-Induced Colitis by Inhibiting the PPAR-α Signaling Pathway. Theranostics 2017; 7:3446-3460. [PMID: 28912887 PMCID: PMC5596435 DOI: 10.7150/thno.20359] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/17/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Epidemiologic studies and animal model experiments have shown that parasites have significant modulatory effects on autoimmune disorders, including inflammatory bowel disease (IBD). Recombinant Sj16 (rSj16), a 16-kDa secreted protein of Schistosoma japonicum (S.japonicum) produced by Escherichia coli (E. coli), has been shown to have immunoregulatory effects in vivo and in vitro. In this study, we aimed to determine the effects of rSj16 on dextran sulfate sodium (DSS)-induced colitis. Methods: DSS-induced colitis mice were treated with rSj16. Body weight loss, disease activity index (DAI), myeloperoxidase (MPO) activity levels, colon lengths, macroscopic scores, histopathology findings, inflammatory cytokine levels and regulatory T cell (Treg) subset levels were examined. Moreover, the differential genes expression after treated with rSj16 were sequenced, analyzed and identified. Results: rSj16 attenuated clinical activity of DSS-induced colitis mice, diminished pro-inflammatory cytokine production, up-regulated immunoregulatory cytokine production and increased Treg percentages in DSS-induced colitis mice. Moreover, DSS-induced colitis mice treated with rSj16 displayed changes in the expression levels of specific genes in the colon and show the crucial role of peroxisome proliferator activated receptor α (PPAR-α) signaling pathway. PPAR-α activation diminished the therapeutic effects of rSj16 in DSS-induced colitis mice, indicating that the PPAR-α signaling pathway plays a crucial role in DSS-induced colitis development. Conclusions: rSj16 has protective effects on DSS-induced colitis, effects mediated mainly by PPAR-α signaling pathway inhibition. The findings of this study suggest that rSj16 may be useful as a therapeutic agent and that PPAR-α may be a new therapeutic target in the treatment of IBD.
Collapse
Affiliation(s)
- Lifu Wang
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Hui Xie
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Lian Xu
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Qi Liao
- Department of Preventive Medicine, School of Medicine, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Shuo Wan
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Zilong Yu
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Datao Lin
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Beibei Zhang
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Zhiyue Lv
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Zhongdao Wu
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Xi Sun
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| |
Collapse
|
41
|
Williams AR, Dige A, Rasmussen TK, Hvas CL, Dahlerup JF, Iversen L, Stensvold CR, Agnholt J, Nejsum P. Immune responses and parasitological observations induced during probiotic treatment with medicinal Trichuris suis ova in a healthy volunteer. Immunol Lett 2017; 188:32-37. [PMID: 28602842 DOI: 10.1016/j.imlet.2017.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/26/2022]
Abstract
Ingestion of eggs (ova) of the porcine nematode parasite Trichuris suis (TSO) may reduce the severity of autoimmune disorders, however the development of TSO treatment as a useful therapy for autoimmune diseases is hampered by a lack of knowledge on the development of the parasite and the nature of the local immune responses in humans. Here, we used colonoscopy to investigate the development of T. suis and related mucosal and systemic immune responses during TSO treatment in an intestinally healthy male volunteer. TSO treatment induced T. suis-specific serum antibodies, a transient blood eosinophilia, and increases in IFNγ+ and IL4+ cells within the circulating CD4+ T-cell population. Increased expression of genes encoding cytokines (IL4, IL10, IL17 and TGF-β), and transcription factors (FOXP3, GATA3 and RORC) were apparent in the ascending and transverse colon (the predilection site of the worms), whereas only limited changes in gene expression were observed proximally (ileum) and distally (descending colon) to the infected tissue. We further show that T. suis is able to colonise the human colon, with a number of worms developing to a similar size and morphology observed in the natural pig host, and a small number of unembryonated eggs were passed in the faeces, indicating patent infection. Notably, the volunteer experienced a substantial improvement in psoriasis during the course of TSO treatment. Thus, TSO treatment induced a mixed Th1/Th2/T regulatory response at the local site of infection, which was also reflected to some extent in the peripheral circulation. These results, together with the first definitive observations that T. suis can mature to adult size and reproduce in humans, shed new light on the interaction between the human immune system and probiotic helminth treatment, which should facilitate further development of this novel therapeutic option.
Collapse
Affiliation(s)
- Andrew R Williams
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Anders Dige
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Tue Kruse Rasmussen
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark; Department of Rheumatology, Aarhus University Hospital, Denmark
| | - Christian L Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Jens F Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - C Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jørgen Agnholt
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
42
|
Varyani F, Fleming JO, Maizels RM. Helminths in the gastrointestinal tract as modulators of immunity and pathology. Am J Physiol Gastrointest Liver Physiol 2017; 312:G537-G549. [PMID: 28302598 PMCID: PMC5495915 DOI: 10.1152/ajpgi.00024.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 01/31/2023]
Abstract
Helminth parasites are highly prevalent in many low- and middle-income countries, in which inflammatory bowel disease and other immunopathologies are less frequent than in the developed world. Many of the most common helminths establish themselves in the gastrointestinal tract and can exert counter-inflammatory influences on the host immune system. For these reasons, interest has arisen as to how parasites may ameliorate intestinal inflammation and whether these organisms, or products they release, could offer future therapies for immune disorders. In this review, we discuss interactions between helminth parasites and the mucosal immune system, as well as the progress being made toward identifying mechanisms and molecular mediators through which it may be possible to attenuate pathology in the intestinal tract.
Collapse
Affiliation(s)
- Fumi Varyani
- 1Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom; ,2Edinburgh Clinical Academic Track, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom; and
| | - John O. Fleming
- 3Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Rick M. Maizels
- 1Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom;
| |
Collapse
|
43
|
Smallwood TB, Giacomin PR, Loukas A, Mulvenna JP, Clark RJ, Miles JJ. Helminth Immunomodulation in Autoimmune Disease. Front Immunol 2017; 8:453. [PMID: 28484453 PMCID: PMC5401880 DOI: 10.3389/fimmu.2017.00453] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/03/2017] [Indexed: 12/26/2022] Open
Abstract
Helminths have evolved to become experts at subverting immune surveillance. Through potent and persistent immune tempering, helminths can remain undetected in human tissues for decades. Redirecting the immunomodulating "talents" of helminths to treat inflammatory human diseases is receiving intensive interest. Here, we review therapies using live parasitic worms, worm secretions, and worm-derived synthetic molecules to treat autoimmune disease. We review helminth therapy in both mouse models and clinical trials and discuss what is known on mechanisms of action. We also highlight current progress in characterizing promising new immunomodulatory molecules found in excretory/secretory products of helminths and their potential use as immunotherapies for acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Taylor B Smallwood
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Jason P Mulvenna
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
44
|
Elliott DE, Weinstock JV. Nematodes and human therapeutic trials for inflammatory disease. Parasite Immunol 2017; 39. [PMID: 27977856 DOI: 10.1111/pim.12407] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022]
Abstract
Helminth infections likely provide a protective influence against some immune-mediated and metabolic diseases because helminth infection dramatically decreased in developed countries shortly before the explosive rise in the prevalence of these diseases. The capacity of helminths to activate immune-regulatory circuits in their hosts and to modulate the composition of intestinal flora appears to be the mechanisms of protective action. Animal models of disease show that various helminth species prevent and/or block inflammation in various organs in a diverse range of diseases. Clinical trials have demonstrated that medicinal exposure to Trichuris suis or small numbers of Necator americanus is safe with minor, if any, reported adverse effects. This includes exposure of inflamed intestine to T. suis, asthmathic lung to N. americanus and in patients with atopy. Efficacy has been suggested in some small studies, but is absent in others. Factors that may have led to inconclusive results in some trials are discussed. To date, there have been no registered clinical trials using helminths to treat metabolic syndrome or its component conditions. However, the excellent safety profile of T. suis or N. americanus suggests that such studies should be possible.
Collapse
Affiliation(s)
- D E Elliott
- Division of Gastroenterology, University of Iowa, Iowa City, IA, USA
| | - J V Weinstock
- Division of Gastroenterology, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
45
|
Schölmerich J, Fellermann K, Seibold FW, Rogler G, Langhorst J, Howaldt S, Novacek G, Petersen AM, Bachmann O, Matthes H, Hesselbarth N, Teich N, Wehkamp J, Klaus J, Ott C, Dilger K, Greinwald R, Mueller R, on behalf of the International TRUST-2 Study Group. A Randomised, Double-blind, Placebo-controlled Trial of Trichuris suis ova in Active Crohn's Disease. J Crohns Colitis 2017; 11:390-399. [PMID: 27707789 PMCID: PMC5881737 DOI: 10.1093/ecco-jcc/jjw184] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS To investigate the efficacy and safety of three different dosages of embryonated, viable eggs of Trichuris suis [TSO] versus placebo for induction of remission in mildly-to-moderately active ileocolonic, uncomplicated Crohn's disease [CD]. METHODS Adults with active CD [n = 252] randomly received six fortnightly doses of 250, 2500, or 7500 TSO/15 ml suspension/day [TSO 250, TSO 2500, TSO 7500], or 15 ml placebo solution/day, in a double-blind fashion, with 4 weeks' follow-up. Primary endpoint was the rate of clinical remission [Crohn's Disease Activity Index [CDAI] < 150] at end of treatment, ie at Week 12 or withdrawal. Secondary endpoints included the course of clinical remission, rate of clinical response, change in CDAI, change in markers of inflammation, mucosal healing, and Physician's Global Assessment. RESULTS Clinical remission at Week 12 occurred in 38.5%, 35.2%, and 47.2% of TSO 250, TSO 2500, and TSO 7500 patients, respectively, and in 42.9% of placebo recipients. TSO induced a dose-dependent immunological response. There was no response regarding laboratory markers of inflammation. Other secondary efficacy variables also showed no advantage of TSO over placebo for treatment of active CD. Administration of TSO did not result in any serious adverse drug reaction. Review of non-serious suspected adverse drug reactions following TSO did not reveal any safety concerns. CONCLUSIONS Administration of 250-7500 TSO fortnightly over 12 weeks was safe and showed a dose-dependent immunological response, but no TSO dose showed a clinically relevant effect over placebo for induction of clinical remission or response in mildly-to-moderately active, ileocolonic CD.
Collapse
Affiliation(s)
- Jürgen Schölmerich
- Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | | - Frank W. Seibold
- Spital Netz Bern Tiefenau, Abt. Gastroenterologie, Bern, Switzerland
| | - Gerhard Rogler
- University of Zurich, Division of Gastroenterology and Hepatology, Zurich, Switzerland
| | - Jost Langhorst
- Kliniken Essen-Mitte, University of Duisburg-Essen, Integrative Gastroenterologie, Essen, Germany
| | - Stefanie Howaldt
- Hamburgisches Forschungsinstitut für CED, HaFCED GmbH&Co.KG, Hamburg, Germany
| | - Gottfried Novacek
- Medizinische Universität Wien, Universitätsklinik für Innere Medizin III, Vienna, Austria
| | - Andreas Munk Petersen
- Hvidovre University Hospital, Department of Gastroenterology and Department of Clinical Microbiology, Hvidovre, Denmark
| | | | - Harald Matthes
- Gemeinschaftskrankenhaus Havelhöhe, Abt. Gastroenterologie, Berlin, Germany
| | | | - Niels Teich
- Internistische Gemeinschaftspraxis für Verdauungs- und Stoffwechselkrankheiten Leipzig & Schkeuditz, Leipzig, Germany
| | - Jan Wehkamp
- Robert-Bosch-Krankenhaus, Abt. Innere Medizin I, Stuttgart, Germany
| | - Jochen Klaus
- Universitätsklinikum Ulm, Klinik für Innere Medizin I, Ulm, Germany
| | - Claudia Ott
- University Hospital of Regensburg, Dept. of Internal Medicine I, Regensburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Sotillo J, Ferreira I, Potriquet J, Laha T, Navarro S, Loukas A, Mulvenna J. Changes in protein expression after treatment with Ancylostoma caninum excretory/secretory products in a mouse model of colitis. Sci Rep 2017; 7:41883. [PMID: 28191818 PMCID: PMC5304188 DOI: 10.1038/srep41883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022] Open
Abstract
Different reports have highlighted the potential use of helminths and their secretions in the treatment of inflammatory bowel disease (IBD) conditions; however, no reports have investigated their effects at a proteome level. Herein, we characterise the protein expression changes that occur in lamina propria (LP) and the intestinal epithelial cells (IEC) of mice with dextran sulfate sodium (DSS)-induced colitis treated with Ancylostoma caninum excretory/secretory (ES) products using a quantitative proteomic approach. We have shown how parasite products can significantly alter the expression of proteins involved in immune responses, cell death and with an antioxidant activity. Interestingly, significant changes in the expression levels of different mucins were observed in this study. MUC13, a mucin implicated in gastrointestinal homeostasis, was upregulated in the LP of mice with DSS-induced colitis treated with ES, while MUC2, a major component of mucus, was upregulated in the IEC. In addition, A. caninum proteins have an important effect on proteins with antioxidant functions and proteins involved in intestinal homeostasis and tissue integrity and regeneration. Understanding how parasites can ameliorate IBD pathogenesis can help us design novel treatments for autoimmune diseases.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Ivana Ferreira
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Jeremy Potriquet
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Severine Navarro
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,The University of Queensland, School of Biomedical Sciences, Brisbane 4072, Australia
| |
Collapse
|
47
|
Weingarden AR, Vaughn BP. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes 2017; 8:238-252. [PMID: 28609251 PMCID: PMC5479396 DOI: 10.1080/19490976.2017.1290757] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex set of diseases that lead to chronic inflammation in the gastrointestinal tract. Although the etiology of IBD is not fully understood, it is well-known that the intestinal microbiota is associated with the development and maintenance of IBD. Manipulation of the gut microbiota, therefore, may represent a target for IBD therapy. Fecal microbiota transplantation (FMT), where fecal microbiota from a healthy donor is transplanted into a patient's GI tract, is already a successful therapy for Clostridium difficile infection. FMT is currently being explored as a potential therapy for IBD as well. In this review, the associations between the gut microbiota and IBD and the emerging data on FMT for IBD will be discussed.
Collapse
Affiliation(s)
- Alexa R. Weingarden
- Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN, USA
| | - Byron P. Vaughn
- Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, MN, USA,CONTACT Byron P. Vaughn 420 Delaware street SE, MMC36, Minneapolis, MN 55455
| |
Collapse
|
48
|
Khelifi L, Soufli I, Labsi M, Touil-Boukoffa C. Immune-protective effect of echinococcosis on colitis experimental model is dependent of down regulation of TNF-α and NO production. Acta Trop 2017; 166:7-15. [PMID: 27983971 DOI: 10.1016/j.actatropica.2016.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022]
Abstract
Hydatid disease (echinococcosis) is a chronic, endemic helminthic disease caused by the larval stage of the tapeworm, Echinococcus granulosus. This disease is endemic in many parts of the world, such as the Mediterranean area, and in particular in Algeria. Helminth parasites have developed complex strategies to modulate the immune responses of their hosts through versatile immune-regulatory mechanisms. These mechanisms may regulate immune responses associated with inflammatory diseases such as inflammatory bowel diseases (IBD). the goal of this study was to investigate the effect of Echinococcus granulosus infection on the development of dextran sulfate sodium (DSS)-induced colitis. Our results demonstrated that E. granulosus infection significantly improved the clinical symptoms and histological scores observed during DSS-induced colitis, and also maintained mucus production by goblet cells. Interestingly, this infection reduced Nitric oxide (NO) and tumor necrosis factor α (TNF-α) production and attenuated inducible nitric oxide synthase (iNOS) and nuclear factor-κB (NF-κB) expression in colonic tissues. Collectively, our data support the hygiene hypothesis and indicate that prior infection with E. granulosus can effectively protect mice from DSS-induced colitis by enhancing immune-regulatory mechanisms.
Collapse
Affiliation(s)
- Lila Khelifi
- Laboratory of Cellular and Molecular Biology, Department of Biology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.
| | - Imene Soufli
- Laboratory of Cellular and Molecular Biology, Department of Biology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.
| | - Moussa Labsi
- Laboratory of Cellular and Molecular Biology, Department of Biology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.
| | - Chafia Touil-Boukoffa
- Laboratory of Cellular and Molecular Biology, Department of Biology, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.
| |
Collapse
|
49
|
Sorobetea D, Holm JB, Henningsson H, Kristiansen K, Svensson-Frej M. Acute infection with the intestinal parasiteTrichuris murishas long-term consequences on mucosal mast cell homeostasis and epithelial integrity. Eur J Immunol 2016; 47:257-268. [DOI: 10.1002/eji.201646738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/08/2016] [Accepted: 11/24/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Daniel Sorobetea
- Immunology Section; Department of Experimental Medical Sciences; Medical Faculty; Lund University; Lund Sweden
| | - Jacob Bak Holm
- Laboratory of Genomics and Molecular Biomedicine; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Henrietta Henningsson
- Immunology Section; Department of Experimental Medical Sciences; Medical Faculty; Lund University; Lund Sweden
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Marcus Svensson-Frej
- Immunology Section; Department of Experimental Medical Sciences; Medical Faculty; Lund University; Lund Sweden
| |
Collapse
|
50
|
Fiebiger U, Bereswill S, Heimesaat MM. Dissecting the Interplay Between Intestinal Microbiota and Host Immunity in Health and Disease: Lessons Learned from Germfree and Gnotobiotic Animal Models. Eur J Microbiol Immunol (Bp) 2016; 6:253-271. [PMID: 27980855 PMCID: PMC5146645 DOI: 10.1556/1886.2016.00036] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
This review elaborates the development of germfree and gnotobiotic animal models and their application in the scientific field to unravel mechanisms underlying host-microbe interactions and distinct diseases. Strictly germfree animals are raised in isolators and not colonized by any organism at all. The germfree state is continuously maintained by birth, raising, housing and breeding under strict sterile conditions. However, isolator raised germfree mice are exposed to a stressful environment and exert an underdeveloped immune system. To circumvent these physiological disadvantages depletion of the bacterial microbiota in conventionally raised and housed mice by antibiotic treatment has become an alternative approach. While fungi and parasites are not affected by antibiosis, the bacterial microbiota in these "secondary abiotic mice" have been shown to be virtually eradicated. Recolonization of isolator raised germfree animals or secondary abiotic mice results in a gnotobiotic state. Both, germfree and gnotobiotic mice have been successfully used to investigate biological functions of the conventional microbiota in health and disease. Particularly for the development of novel clinical applications germfree mice are widely used tools, as summarized in this review further focusing on the modulation of bacterial microbiota in laboratory mice to better mimic conditions in the human host.
Collapse
Affiliation(s)
| | | | - Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology and Hygiene, Charité – University Medicine Berlin, Campus Benjamin Franklin
| |
Collapse
|