1
|
Zeng X, Pan Y, Xia Q, He K. The effects of interleukin-21 in the biology of transplant rejection. Front Immunol 2025; 16:1571828. [PMID: 40376002 PMCID: PMC12078210 DOI: 10.3389/fimmu.2025.1571828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/09/2025] [Indexed: 05/18/2025] Open
Abstract
Interleukin-21 (IL-21) is a cytokine that plays a crucial role in regulating immune responses, affecting various immune cell types, including T cells, B cells, natural killer (NK) cells, and dendritic cells. IL-21 is primarily produced by CD4+ T cells, particularly follicular helper T (Tfh) cells and Th17 cells, and has been shown to be extensively involved in regulating both innate and adaptive immunity. IL-21 is particularly significant in the differentiation, proliferation, and effector functions of T cells and B cells. In the context of organ transplantation, IL-21 contributes to the promotion of acute transplant rejection and the development of chronic rejection, which is primarily antibody-mediated. This review summarizes relevant studies on IL-21 and discusses its multifaceted roles in transplant immune rejection, providing insights into therapeutic strategies for either inhibiting graft rejection or promoting tolerance. It also explores the feasibility of blocking the IL-21 signaling pathway within current immunosuppressive regimens, aiming to provide further clinical references.
Collapse
Affiliation(s)
- Xiandong Zeng
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
| | - Yixiao Pan
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
| | - Kang He
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
| |
Collapse
|
2
|
Azeem M, Helal M, Klein-Hessling S, Serfling E, Goebeler M, Muhammad K, Kerstan A. NFATc1 Fosters Allergic Contact Dermatitis Responses by Enhancing the Induction of IL-17-Producing CD8 Cells. J Invest Dermatol 2024:S0022-202X(24)03036-7. [PMID: 39733935 DOI: 10.1016/j.jid.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024]
Abstract
A plethora of data supports a major role of CD4+ and CD8+ T lymphocytes for the initiation, progression, and maintenance of allergic contact dermatitis. However, in-depth understanding of the molecular mechanisms is still limited. NFATc1 plays an essential role in T-cell activation. We therefore investigated its impact on contact hypersensitivity, the mouse model for allergic contact dermatitis. The contact hypersensitivity response to 2,4,6-trinitrochlorobenzene was diminished in Nfatc1fl/flxCd4-cre mice (Nfatc1-/-) compared with that in wild-type mice and associated with a lower percentage of IL-17-producing CD8+ T (Tc17) cells in both inflamed skin and draining lymph nodes. In vitro Tc17 polarization assays revealed that Nfatc1-/- CD8+ T cells have a reduced capacity to polarize into Tc17 cells. Applying single-cell RNA sequencing, we realized that NFATc1 controls the T-cell differentiation fate. In the absence of NFATc1, CD8+ T cells favor the development of IFN-γ-secreting CD8+ T (Tc1) lymphocytes, whereas in its presence, they turn into Tc17 cells. Finally, the adoptive transfer of 2,4,6-trinitrochlorobenzene-sensitized wild-type CD8+ T cells restored the contact hypersensitivity response in naïve Nfatc1-/- mice. Our data demonstrate that NFATc1 contributes to the development of Tc17 cells and might present a promising target to alleviate CD8+ T-cell-mediated allergic responses.
Collapse
Affiliation(s)
- Muhammad Azeem
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany; Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Moutaz Helal
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Klein-Hessling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany; Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Andreas Kerstan
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Isvoranu G, Chiritoiu-Butnaru M. Therapeutic potential of interleukin-21 in cancer. Front Immunol 2024; 15:1369743. [PMID: 38638431 PMCID: PMC11024325 DOI: 10.3389/fimmu.2024.1369743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
Interleukin-21 (IL-21) is an immunostimulatory cytokine which belongs to the common gamma-chain family of cytokines. It plays an import role in the development, differentiation, proliferation, and activation of immune cells, in particular T and natural killer (NK) cells. Since its discovery in 2000, IL-21 has been shown to regulate both adaptive and immune responses associates with key role in antiviral and antitumor responses. Recent advances indicate IL-21 as a promising target for cancer treatment and encouraging results were obtained in preclinical studies which investigated the potency of IL-21 alone or in combination with other therapies, including monoclonal antibodies, checkpoint inhibitory molecules, oncolytic virotherapy, and adoptive cell transfer. Furthermore, IL-21 showed antitumor effects in the treatment of patients with advanced cancer, with minimal side effects in several clinical trials. In the present review, we will outline the recent progress in IL-21 research, highlighting the potential of IL-21 based therapy as single agent or in combination with other drugs to enhance cancer treatment efficiency.
Collapse
Affiliation(s)
- Gheorghita Isvoranu
- Department of Animal Husbandry,” Victor Babeș” National Institute of Pathology, Bucharest, Romania
| | - Marioara Chiritoiu-Butnaru
- Department of Molecular and Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
4
|
Hu J, Ascierto P, Cesano A, Herrmann V, Marincola FM. Shifting the paradigm: engaging multicellular networks for cancer therapy. J Transl Med 2024; 22:270. [PMID: 38475820 PMCID: PMC10936124 DOI: 10.1186/s12967-024-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 03/14/2024] Open
Abstract
Most anti-cancer modalities are designed to directly kill cancer cells deploying mechanisms of action (MOAs) centered on the presence of a precise target on cancer cells. The efficacy of these approaches is limited because the rapidly evolving genetics of neoplasia swiftly circumvents the MOA generating therapy-resistant cancer cell clones. Other modalities engage endogenous anti-cancer mechanisms by activating the multi-cellular network (MCN) surrounding neoplastic cells in the tumor microenvironment (TME). These modalities hold a better chance of success because they activate numerous types of immune effector cells that deploy distinct cytotoxic MOAs. This in turn decreases the chance of developing treatment-resistance. Engagement of the MCN can be attained through activation of immune effector cells that in turn kill cancer cells or when direct cancer killing is complemented by the production of proinflammatory factors that secondarily recruit and activate immune effector cells. For instance, adoptive cell therapy (ACT) supplements cancer cell killing with the release of homeostatic and pro-inflammatory cytokines by the immune cells and damage associated molecular patterns (DAMPs) by dying cancer cells. The latter phenomenon, referred to as immunogenic cell death (ICD), results in an exponential escalation of anti-cancer MOAs at the tumor site. Other approaches can also induce exponential cancer killing by engaging the MCN of the TME through the release of DAMPs and additional pro-inflammatory factors by dying cancer cells. In this commentary, we will review the basic principles that support emerging paradigms likely to significantly improve the efficacy of anti-cancer therapy.
Collapse
Affiliation(s)
- Joyce Hu
- Sonata Therapeutics, Watertown, MA, 02472, USA.
| | - Paolo Ascierto
- Cancer Immunotherapy and Innovative Therapy, National Tumor Institute, Fondazione G. Pascale, 80131, Naples, Italy
| | | | | | | |
Collapse
|
5
|
Zhang J, Xiang F, Ding Y, Hu W, Wang H, Zhang X, Lei Z, Li T, Wang P, Kang X. Identification and validation of RNA-binding protein SLC3A2 regulates melanocyte ferroptosis in vitiligo by integrated analysis of single-cell and bulk RNA-sequencing. BMC Genomics 2024; 25:236. [PMID: 38438962 PMCID: PMC10910712 DOI: 10.1186/s12864-024-10147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The pathogenesis of vitiligo remains unclear. The genes encoding vitiligo-related RNA-binding proteins (RBPs) and their underlying pathogenic mechanism have not been determined. RESULTS Single-cell transcriptome sequencing (scRNA-seq) data from the CNCB database was obtained to identify distinct cell types and subpopulations and the relative proportion changes in vitiligo and healthy samples. We identified 14 different cell types and 28 cell subpopulations. The proportion of each cell subpopulation significantly differed between the patients with vitiligo and healthy groups. Using RBP genes for unsupervised clustering, we obtained the specific RBP genes of different cell types in vitiligo and healthy groups. The RBP gene expression was highly heterogeneous; there were significant differences in some cell types, such as keratinocytes, Langerhans, and melanocytes, while there were no significant differences in other cells, such as T cells and fibroblasts, in the two groups. The melanocyte-specific RBP genes were enriched in the apoptosis and immune-related pathways in the patients with vitiligo. Combined with the bulk RNA-seq data of melanocytes, key RBP genes related to melanocytes were identified, including eight upregulated RBP genes (CDKN2A, HLA-A, RPL12, RPL29, RPL31, RPS19, RPS21, and RPS28) and one downregulated RBP gene (SLC3A2). Cell experiments were conducted to explore the role of the key RBP gene SLC3A2 in vitiligo. Cell experiments confirmed that melanocyte proliferation decreased, whereas apoptosis increased, after SLC3A2 knockdown. SLC3A2 knockdown in melanocytes also decreased the SOD activity and melanin content; increased the Fe2+, ROS, and MDA content; significantly increased the expression levels of TYR and COX2; and decreased the expression levels of glutathione and GPX4. CONCLUSION We identified the RBP genes of different cell subsets in patients with vitiligo and confirmed that downregulating SLC3A2 can promote ferroptosis in melanocytes. These findings provide new insights into the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Jingzhan Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Fang Xiang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Yuan Ding
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Wen Hu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Hongjuan Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Xiangyue Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Zixian Lei
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Tingting Li
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Peng Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China.
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China.
| |
Collapse
|
6
|
Liu Y, Dang Y, Zhang C, Liu L, Cai W, Li L, Fang L, Wang M, Xu S, Wang G, Zheng J, Li H. IL-21-armored B7H3 CAR-iNKT cells exert potent antitumor effects. iScience 2024; 27:108597. [PMID: 38179061 PMCID: PMC10765065 DOI: 10.1016/j.isci.2023.108597] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 10/06/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
CD1d-restricted invariant NKT (iNKT) cells play a critical role in tumor immunity. However, the scarcity and limited persistence restricts their development and clinical application. Here, we demonstrated that iNKT cells could be efficiently expanded using modified cytokines combination from peripheral blood mononuclear cells. Introduction of IL-21 significantly increased the frequency of CD62L-positive memory-like iNKT cells. iNKT cells armoring with B7H3-targeting second generation CAR and IL-21 showed potent tumor cell killing activity. Moreover, co-expression of IL-21 promoted the activation of Stat3 signaling and reduced the expression of exhaustion markers in CAR-iNKT cells in vitro. Most importantly, IL-21-arming significantly prolonged B7H3 CAR-iNKT cell proliferation and survival in vivo, thus improving their therapeutic efficacy in mouse renal cancer xerograph models without observed cytokine-related adverse events. In summary, these results suggest that B7H3 CAR-iNKT armored with IL-21 is a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Yilin Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yuanyuan Dang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Chuhan Zhang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Liu Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Wenhui Cai
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Liantao Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Med-ical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Med-ical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Med-ical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Shunzhe Xu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Med-ical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Junnian Zheng
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Med-ical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Med-ical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
7
|
Fu Y, Tang R, Zhao X. Engineering cytokines for cancer immunotherapy: a systematic review. Front Immunol 2023; 14:1218082. [PMID: 37483629 PMCID: PMC10357296 DOI: 10.3389/fimmu.2023.1218082] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Cytokines are pivotal mediators of cell communication in the tumor microenvironment. Multiple cytokines are involved in the host antitumor response, but the production and function of these cytokines are usually dysregulated during malignant tumor progression. Considering their clinical potential and the early successful use of cytokines in cancer immunotherapy, such as interferon alpha-2b (IFNα-2b; IntronA®) and IL-2 (Proleukin®), cytokine-based therapeutics have been extensively evaluated in many follow-up clinical trials. Following these initial breakthroughs, however, clinical translation of these natural messenger molecules has been greatly limited owing to their high-degree pleiotropic features and complex biological properties in many cell types. These characteristics, coupled with poor pharmacokinetics (a short half-life), have hampered the delivery of cytokines via systemic administration, particularly because of severe dose-limiting toxicities. New engineering approaches have been developed to widen the therapeutic window, prolong pharmacokinetic effects, enhance tumor targeting and reduce adverse effects, thereby improving therapeutic efficacy. In this review, we focus on the recent progress and competitive landscape in cytokine engineering strategies and preclinical/clinical therapeutics for cancer. In addition, aiming to promote engineered cytokine-based cancer immunotherapy, we present a profound discussion about the feasibility of recently developed methods in clinical medicine translation.
Collapse
Affiliation(s)
- Yong Fu
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Jiangsu Simcere Pharmaceutical Co, Ltd., Nanjing, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Simcere Zaiming Pharmaceutical Co, Ltd., Nanjing, China
| | - Xiaofeng Zhao
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Jiangsu Simcere Pharmaceutical Co, Ltd., Nanjing, China
| |
Collapse
|
8
|
Wei F, Cheng XX, Xue JZ, Xue SA. Emerging Strategies in TCR-Engineered T Cells. Front Immunol 2022; 13:850358. [PMID: 35432319 PMCID: PMC9006933 DOI: 10.3389/fimmu.2022.850358] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer has made tremendous progress in recent years, as demonstrated by the remarkable clinical responses obtained from adoptive cell transfer (ACT) of patient-derived tumor infiltrating lymphocytes, chimeric antigen receptor (CAR)-modified T cells (CAR-T) and T cell receptor (TCR)-engineered T cells (TCR-T). TCR-T uses specific TCRS optimized for tumor engagement and can recognize epitopes derived from both cell-surface and intracellular targets, including tumor-associated antigens, cancer germline antigens, viral oncoproteins, and tumor-specific neoantigens (neoAgs) that are largely sequestered in the cytoplasm and nucleus of tumor cells. Moreover, as TCRS are naturally developed for sensitive antigen detection, they are able to recognize epitopes at far lower concentrations than required for CAR-T activation. Therefore, TCR-T holds great promise for the treatment of human cancers. In this focused review, we summarize basic, translational, and clinical insights into the challenges and opportunities of TCR-T. We review emerging strategies used in current ACT, point out limitations, and propose possible solutions. We highlight the importance of targeting tumor-specific neoAgs and outline a strategy of combining neoAg vaccines, checkpoint blockade therapy, and adoptive transfer of neoAg-specific TCR-T to produce a truly tumor-specific therapy, which is able to penetrate into solid tumors and resist the immunosuppressive tumor microenvironment. We believe such a combination approach should lead to a significant improvement in cancer immunotherapies, especially for solid tumors, and may provide a general strategy for the eradication of multiple cancers.
Collapse
Affiliation(s)
- Fang Wei
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Xiao-Xia Cheng
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - John Zhao Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Shao-An Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| |
Collapse
|
9
|
Goncharov MM, Bryushkova EA, Sharaev NI, Skatova VD, Baryshnikova AM, Sharonov GV, Karnaukhov V, Vakhitova MT, Samoylenko IV, Demidov LV, Lukyanov S, Chudakov DM, Serebrovskaya EO. Pinpointing the tumor-specific T-cells via TCR clusters. eLife 2022; 11:77274. [PMID: 35377314 PMCID: PMC9023053 DOI: 10.7554/elife.77274] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Adoptive cell transfer (ACT) is a promising approach to cancer immunotherapy, but its efficiency fundamentally depends on the extent of tumor-specific T cell enrichment within the graft. This can be estimated via activation with identifiable neoantigens, tumor-associated antigens (TAAs), or living or lysed tumor cells, but these approaches remain laborious, time-consuming, and functionally limited, hampering clinical development of ACT. Here, we demonstrate that homology cluster analysis of T cell receptor (TCR) repertoires efficiently identifies tumor-reactive TCRs allowing to: (1) detect their presence within the pool of tumor-infiltrating lymphocytes (TILs); (2) optimize TIL culturing conditions, with IL-2low/IL-21/anti-PD-1 combination showing increased efficiency; (3) investigate surface marker-based enrichment for tumor-targeting T cells in freshly isolated TILs (enrichment confirmed for CD4+ and CD8+ PD-1+/CD39+ subsets), or re-stimulated TILs (informs on enrichment in 4-1BB-sorted cells). We believe that this approach to the rapid assessment of tumor-specific TCR enrichment should accelerate T cell therapy development.
Collapse
Affiliation(s)
- Mikhail M Goncharov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | | | - Nikita I Sharaev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Valeria D Skatova
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Anastasiya M Baryshnikova
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - George V Sharonov
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Vadim Karnaukhov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Maria T Vakhitova
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Igor V Samoylenko
- Oncodermatology Department, NN Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| | - Lev V Demidov
- Oncodermatology Department, NN Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| | - Sergey Lukyanov
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Dmitriy M Chudakov
- Department of genomics of adaptive immunity, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | | |
Collapse
|
10
|
Holder PG, Lim SA, Huang CS, Sharma P, Dagdas YS, Bulutoglu B, Sockolosky JT. Engineering interferons and interleukins for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114112. [PMID: 35085624 DOI: 10.1016/j.addr.2022.114112] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Cytokines are a class of potent immunoregulatory proteins that are secreted in response to various stimuli and act locally to regulate many aspects of human physiology and disease. Cytokines play important roles in cancer initiation, progression, and elimination, and thus, there is a long clinical history associated with the use of recombinant cytokines to treat cancer. However, the use of cytokines as therapeutics has been limited by cytokine pleiotropy, complex biology, poor drug-like properties, and severe dose-limiting toxicities. Nevertheless, cytokines are crucial mediators of innate and adaptive antitumor immunity and have the potential to enhance immunotherapeutic approaches to treat cancer. Development of immune checkpoint inhibitors and combination immunotherapies has reinvigorated interest in cytokines as therapeutics, and a variety of engineering approaches are emerging to improve the safety and effectiveness of cytokine immunotherapy. In this review we highlight recent advances in cytokine biology and engineering for cancer immunotherapy.
Collapse
|
11
|
Le PT, Ha N, Tran NK, Newman AG, Esselen KM, Dalrymple JL, Schmelz EM, Bhandoola A, Xue HH, Singh PB, Thai TH. Targeting Cbx3/HP1γ Induces LEF-1 and IL-21R to Promote Tumor-Infiltrating CD8 T-Cell Persistence. Front Immunol 2021; 12:738958. [PMID: 34721405 PMCID: PMC8549513 DOI: 10.3389/fimmu.2021.738958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint blockade (ICB) relieves CD8+ T-cell exhaustion in most mutated tumors, and TCF-1 is implicated in converting progenitor exhausted cells to functional effector cells. However, identifying mechanisms that can prevent functional senescence and potentiate CD8+ T-cell persistence for ICB non-responsive and resistant tumors remains elusive. We demonstrate that targeting Cbx3/HP1γ in CD8+ T cells augments transcription initiation and chromatin remodeling leading to increased transcriptional activity at Lef1 and Il21r. LEF-1 and IL-21R are necessary for Cbx3/HP1γ-deficient CD8+ effector T cells to persist and control ovarian cancer, melanoma, and neuroblastoma in preclinical models. The enhanced persistence of Cbx3/HP1γ-deficient CD8+ T cells facilitates remodeling of the tumor chemokine/receptor landscape ensuring their optimal invasion at the expense of CD4+ Tregs. Thus, CD8+ T cells heightened effector function consequent to Cbx3/HP1γ deficiency may be distinct from functional reactivation by ICB, implicating Cbx3/HP1γ as a viable cancer T-cell-based therapy target for ICB resistant, non-responsive solid tumors.
Collapse
Affiliation(s)
- Phuong T Le
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ngoc Ha
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ngan K Tran
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Andrew G Newman
- Institute of Cell and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Katharine M Esselen
- Division of Gynecologic Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - John L Dalrymple
- Division of Gynecologic Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Eva M Schmelz
- Department of Human Nutrition, Food, and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Avinash Bhandoola
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, United States
| | - Prim B Singh
- Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan
| | - To-Ha Thai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Xue D, Hsu E, Fu YX, Peng H. Next-generation cytokines for cancer immunotherapy. Antib Ther 2021; 4:123-133. [PMID: 34263141 PMCID: PMC8271143 DOI: 10.1093/abt/tbab014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Most studies focus on the first and second signals of T cell activation. However, the roles of cytokines in immunotherapy are not fully understood, and cytokines have not been widely used in patient care. Clinical application of cytokines is limited due to their short half-life in vivo, severe toxicity at therapeutic doses, and overall lack of efficacy. Several modifications have been engineered to extend their half-life and increase tumor targeting, including polyethylene glycol conjugation, fusion to tumor-targeting antibodies, and alteration of cytokine/cell receptor-binding affinity. These modifications demonstrate an improvement in either increased antitumor efficacy or reduced toxicity. However, these cytokine engineering strategies may still be improved further, as each strategy poses advantages and disadvantages in the delicate balance of targeting tumor cells, tumor-infiltrating lymphocytes, and peripheral immune cells. This review focuses on selected cytokines, including interferon-α, interleukin (IL)-2, IL-15, IL-21, and IL-12, in both preclinical studies and clinical applications. We review next-generation designs of these cytokines that improve half-life, tumor targeting, and antitumor efficacy. We also present our perspectives on the development of new strategies to potentiate cytokine-based immunotherapy.
Collapse
Affiliation(s)
- Diyuan Xue
- Key laboratory of Infection and Immunity Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Rd, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eric Hsu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Hua Peng
- Key laboratory of Infection and Immunity Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Rd, Chaoyang District, Beijing 100101, China
| |
Collapse
|
13
|
Assing K, Nielsen C, Jakobsen M, Andersen CB, Skogstrand K, Gaini S, Preiss B, Mortensen SB, Skov MN, Rasmussen LD. Potential anti-EBV effects associated with elevated interleukin-21 levels: a case report. BMC Infect Dis 2020; 20:878. [PMID: 33228556 PMCID: PMC7685648 DOI: 10.1186/s12879-020-05609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 11/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Germinal center derived memory B cells and plasma cells constitute, in health and during EBV reactivation, the largest functional EBV reservoir. Hence, by reducing germinal center derived formation of memory B cells and plasma cells, EBV loads may be reduced. Animal and in-vitro models have shown that IL-21 can support memory B and plasma cell formation and thereby potentially contribute to EBV persistence. However, IL-21 also displays anti-viral effects, as mice models have shown that CD4+ T cell produced IL-21 is critical for the differentiation, function and survival of anti-viral CD8+ T cells able to contain chronic virus infections. CASE PRESENTATION We present immunological work-up (flow-cytometry, ELISA and genetics) related to a patient suffering from a condition resembling B cell chronic active EBV infection, albeit with moderately elevated EBV copy numbers. No mutations in genes associated with EBV disease, common variable immunodeficiency or pertaining to the IL-21 signaling pathway (including hypermorphic IL-21 mutations) were found. Increased (> 5-fold increase 7 days post-vaccination) CD4+ T cell produced (p < 0.01) and extracellular IL-21 levels characterized our patient and coexisted with: CD8+ lymphopenia, B lymphopenia, hypogammaglobulinemia, compromised memory B cell differentiation, absent induction of B-cell lymphoma 6 protein (Bcl-6) dependent peripheral follicular helper T cells (pTFH, p = 0.01), reduced frequencies of peripheral CD4+ Bcl-6+ T cells (p = 0.05), compromised plasmablast differentiation (reduced protein vaccine responses (p < 0.001) as well as reduced Treg frequencies. Supporting IL-21 mediated suppression of pTFH formation, pTFH and CD4+ IL-21+ frequencies were strongly inversely correlated, prior to and after vaccination, in the patient and in controls, Spearman's rho: - 0.86, p < 0.001. CONCLUSIONS To the best of our knowledge, this is the first report of elevated CD4+ IL-21+ T cell frequencies in human EBV disease. IL-21 overproduction may, apart from driving T cell mediated anti-EBV responses, disrupt germinal center derived memory B cell and plasma cell formation, and thereby contribute to EBV disease control.
Collapse
Affiliation(s)
- Kristian Assing
- Department of Clinical Immunology, Odense University Hospital, J.B. Winsloevs Vej 4, 5000, Odense, Denmark.
| | - Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital, J.B. Winsloevs Vej 4, 5000, Odense, Denmark
| | - Marianne Jakobsen
- Department of Clinical Immunology, Odense University Hospital, J.B. Winsloevs Vej 4, 5000, Odense, Denmark
| | | | - Kristin Skogstrand
- Department of Congenital Disorders, Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Shahin Gaini
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - Birgitte Preiss
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Sussi Bagge Mortensen
- Department of Clinical Immunology, Odense University Hospital, J.B. Winsloevs Vej 4, 5000, Odense, Denmark
| | | | | |
Collapse
|
14
|
Deng S, Sun Z, Qiao J, Liang Y, Liu L, Dong C, Shen A, Wang Y, Tang H, Fu YX, Peng H. Targeting tumors with IL-21 reshapes the tumor microenvironment by proliferating PD-1intTim-3-CD8+ T cells. JCI Insight 2020; 5:132000. [PMID: 32271164 DOI: 10.1172/jci.insight.132000] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
The lack of sufficient functional tumor-infiltrating lymphocytes in the tumor microenvironment (TME) is one of the primary indications for the poor prognosis of patients with cancer. In this study, we developed an Erbitux-based IL-21 tumor-targeting fusion protein (Erb-IL21) to prolong the half-life and improve the antitumor efficacy of IL-21. Compared with Erb-IL2, Erb-IL21 demonstrated much lower toxicity in vivo. Mechanistically, Erb-IL21 selectively expanded functional cytotoxic T lymphocytes but not dysfunctional CD8+ T cells in the TME. We observed that the IL-21-mediated antitumor effect largely depended on the existing intratumoral CD8+ T cells, instead of newly migrated CD8+ T cells. Furthermore, Erb-IL21 overcame checkpoint blockade resistance in mice with advanced tumors. Our study reveals that Erb-IL21 can target IL-21 to tumors and maximize the antitumor potential of checkpoint blockade by expending a subset of tumor antigen-specific CD8+ T cells to achieve effective tumor control.
Collapse
Affiliation(s)
- Sisi Deng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhichen Sun
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jian Qiao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yong Liang
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Longchao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunbo Dong
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aijun Shen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yang Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hong Tang
- Institute Pasteur of Shanghai Chinese Academy of Sciences, Shanghai, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hua Peng
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
IL-21 regulates SOCS1 expression in autoreactive CD8 + T cells but is not required for acquisition of CTL activity in the islets of non-obese diabetic mice. Sci Rep 2019; 9:15302. [PMID: 31653894 PMCID: PMC6814838 DOI: 10.1038/s41598-019-51636-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
In type 1 diabetes, maturation of activated autoreactive CD8+ T cells to fully armed effector cytotoxic T lymphocytes (CTL) occurs within the islet. At present the signals required for the maturation process are poorly defined. Cytokines could potentially provide the necessary "third signal" required to generate fully mature CTL capable of killing insulin-producing β-cells. To determine whether autoreactive CTL within islets respond to cytokines we generated non-obese diabetic (NOD) mice with a reporter for cytokine signalling. These mice express a reporter gene, hCD4, under the control of the endogenous regulatory elements for suppressor of cytokine signalling (SOCS)1, which is itself regulated by pro-inflammatory cytokines. In NOD mice, the hCD4 reporter was expressed in infiltrated islets and the expression level was positively correlated with the frequency of infiltrating CD45+ cells. SOCS1 reporter expression was induced in transferred β-cell-specific CD8+ 8.3T cells upon migration from pancreatic draining lymph nodes into islets. To determine which cytokines induced SOCS1 promoter activity in islets, we examined hCD4 reporter expression and CTL maturation in the absence of the cytokine receptors IFNAR1 or IL-21R. We show that IFNAR1 deficiency does not confer protection from diabetes in 8.3 TCR transgenic mice, nor is IFNAR1 signalling required for SOCS1 reporter upregulation or CTL maturation in islets. In contrast, IL-21R-deficient 8.3 mice have reduced diabetes incidence and reduced SOCS1 reporter activity in islet CTLs. However IL-21R deficiency did not affect islet CD8+ T cell proliferation or expression of granzyme B or IFNγ. Together these data indicate that autoreactive CD8+ T cells respond to IL-21 and not type I IFNs in the islets of NOD mice, but neither IFNAR1 nor IL-21R are required for islet intrinsic CTL maturation.
Collapse
|
16
|
Snell LM, MacLeod BL, Law JC, Osokine I, Elsaesser HJ, Hezaveh K, Dickson RJ, Gavin MA, Guidos CJ, McGaha TL, Brooks DG. CD8 + T Cell Priming in Established Chronic Viral Infection Preferentially Directs Differentiation of Memory-like Cells for Sustained Immunity. Immunity 2018; 49:678-694.e5. [PMID: 30314757 DOI: 10.1016/j.immuni.2018.08.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 06/13/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
CD8+ T cell exhaustion impedes control of chronic viral infection; yet how new T cell responses are mounted during chronic infection is unclear. Unlike T cells primed at the onset of infection that rapidly differentiate into effectors and exhaust, we demonstrate that virus-specific CD8+ T cells primed after establishment of chronic LCMV infection preferentially generate memory-like transcription factor TCF1+ cells that were transcriptionally and proteomically distinct, less exhausted, and more responsive to immunotherapy. Mechanistically, adaptations of antigen-presenting cells and diminished T cell signaling intensity promoted differentiation of the memory-like subset at the expense of rapid effector cell differentiation, which was now highly dependent on IL-21-mediated CD4+ T cell help for its functional generation. Chronic viral infection similarly redirected de novo differentiation of tumor-specific CD8+ T cells, ultimately preventing cancer control. Thus, targeting these T cell stimulatory pathways could enable strategies to control chronic infection, tumors, and enhance immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Laura M Snell
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Bethany L MacLeod
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Jaclyn C Law
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - Ivan Osokine
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Heidi J Elsaesser
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Kebria Hezaveh
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Russell J Dickson
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Marc A Gavin
- Translational Research Program, Benaroya Research Institute, Seattle, WA, 98101 USA
| | - Cynthia J Guidos
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada; Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4 Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - David G Brooks
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada.
| |
Collapse
|
17
|
Hsu CY, Yeh LT, Fu SH, Chien MW, Liu YW, Miaw SC, Chang DM, Sytwu HK. SUMO-defective c-Maf preferentially transactivates Il21 to exacerbate autoimmune diabetes. J Clin Invest 2018; 128:3779-3793. [PMID: 30059018 DOI: 10.1172/jci98786] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
SUMOylation is involved in the development of several inflammatory diseases, but the physiological significance of SUMO-modulated c-Maf in autoimmune diabetes is not completely understood. Here, we report that an age-dependent attenuation of c-Maf SUMOylation in CD4+ T cells is positively correlated with the IL-21-mediated diabetogenesis in NOD mice. Using 2 strains of T cell-specific transgenic NOD mice overexpressing wild-type c-Maf (Tg-WTc) or SUMOylation site-mutated c-Maf (Tg-KRc), we demonstrated that Tg-KRc mice developed diabetes more rapidly than Tg-WTc mice in a CD4+ T cell-autonomous manner. Moreover, SUMO-defective c-Maf preferentially transactivated Il21 to promote the development of CD4+ T cells with an extrafollicular helper T cell phenotype and expand the numbers of granzyme B-producing effector/memory CD8+ T cells. Furthermore, SUMO-defective c-Maf selectively inhibited recruitment of Daxx/HDAC2 to the Il21 promoter and enhanced histone acetylation mediated by CREB-binding protein (CBP) and p300. Using pharmacological interference with CBP/p300, we illustrated that CBP30 treatment ameliorated c-Maf-mediated/IL-21-based diabetogenesis. Taken together, our results show that the SUMOylation status of c-Maf has a stronger regulatory effect on IL-21 than the level of c-Maf expression, through an epigenetic mechanism. These findings provide new insights into how SUMOylation modulates the pathogenesis of autoimmune diabetes in a T cell-restricted manner and on the basis of a single transcription factor.
Collapse
Affiliation(s)
| | - Li-Tzu Yeh
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shin-Huei Fu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Wei Chien
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Wen Liu
- Graduate Institute of Life Sciences and.,Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Shi-Chuen Miaw
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Deh-Ming Chang
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Graduate Institute of Life Sciences and.,Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
18
|
Rincon M, Pereira FV. A New Perspective: Mitochondrial Stat3 as a Regulator for Lymphocyte Function. Int J Mol Sci 2018; 19:ijms19061656. [PMID: 29866996 PMCID: PMC6032237 DOI: 10.3390/ijms19061656] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
Stat3 as a transcription factor regulating gene expression in lymphocytes during the immune response is well known. However, since the pioneering studies discovering the presence of Stat3 in mitochondria and its role in regulating mitochondrial metabolism, only a few studies have investigated this non-conventional function of Stat3 in lymphocytes. From this perspective, we review what is known about Stat3 as a transcription factor and what is known and unknown about mitochondrial Stat3 (mitoStat3) in lymphocytes. We also provide a framework to consider how some of the functions previously assigned to Stat3 as regulator of gene transcription could be mediated by mitoStat3 in lymphocytes. The goal of this review is to stimulate interest for future studies investigating mitoStat3 in the immune response that could lead to the generation of alternative pharmacological inhibitors of mitoStat3 for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Mercedes Rincon
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05405, USA.
| | - Felipe Valença Pereira
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
19
|
Meng Q, Valentini D, Rao M, Liu Z, Xie S, Morgell A, Dodoo E, Löhr M, Rangelova E, Del Chiaro M, Ernberg I, Maeurer M. Prediction of improved survival in patients with pancreatic cancer via IL-21 enhanced detection of mesothelin epitope-reactive T-cell responses. Oncotarget 2018; 9:22451-22459. [PMID: 29854291 PMCID: PMC5976477 DOI: 10.18632/oncotarget.25121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Most patients with pancreatic cancer present with extensive metastasis at diagnosis, with a 5-year survival rate of approximately 5%, despite chemotherapy and surgery. New treatment modalities are needed to improve survival. Mesothelin is a tumor-associated antigen (TAA) in patients with pancreatic cancer that could be used to gauge cellular immune responses directed against transformed cells since up to 100 percent of pancreatic ductal adenocarcinoma cells have been shown to strongly express mesothelin. A prospective, observational study was carried out in twenty-six, chemotherapy-naïve patients with resectable pancreatic ductal adenocarcinoma. Participants were between 48 and 81 years (median age: 64.5 years), 15 males and 11 females. All participants were clinically followed-up between 439 and 853 days post-surgery (n=14) or until death (n=12). Peripheral blood drawn on the day of surgery was stimulated with a mesothelin peptide pool (42 peptides, non-overlapping), individual mesothelin peptides, positive (anti-CD3 antibody, OKT3) and negative controls (medium) with or without adding IL-21. Kaplan-Meier estimators were used to gauge patients’ survival pattern in relation to mesothelin-specific IFN-γ responses. A survival benefit was linked with IFN-γ responses to peptides corresponding to mature mesothelin (p=0.018) and targeted recognition of the mesothelin601-615 epitope (MQEALSGTPCLLGPG) (p=0.006) in the presence of IL-21. Conversely, production of high levels of IFN-γ to OKT3 stimulation with IL-21 conditioning was associated with reduced survival of patients (p=0.016). Gauging anti-Mesothelin- directed immune responses will aid to identify patients i) in need of a more intensive clinical follow-up and ii) who may benefit from immunotherapeutic approaches targeting mesothelin.
Collapse
Affiliation(s)
- Qingda Meng
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Davide Valentini
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Martin Rao
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Zhenjiang Liu
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Shanshan Xie
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Ann Morgell
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Matthias Löhr
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Elena Rangelova
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Marco Del Chiaro
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden.,Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
20
|
Raeber ME, Zurbuchen Y, Impellizzieri D, Boyman O. The role of cytokines in T-cell memory in health and disease. Immunol Rev 2018; 283:176-193. [DOI: 10.1111/imr.12644] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Miro E. Raeber
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
| | - Yves Zurbuchen
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
| | | | - Onur Boyman
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
- Faculty of Medicine; University of Zurich; Zurich Switzerland
| |
Collapse
|
21
|
Loschinski R, Böttcher M, Stoll A, Bruns H, Mackensen A, Mougiakakos D. IL-21 modulates memory and exhaustion phenotype of T-cells in a fatty acid oxidation-dependent manner. Oncotarget 2018; 9:13125-13138. [PMID: 29568345 PMCID: PMC5862566 DOI: 10.18632/oncotarget.24442] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/01/2018] [Indexed: 11/25/2022] Open
Abstract
T-cell-based therapies represent a promising strategy for cancer treatment. In this context, cytokines are discussed as a bona fide instrument for fine-tuning T- cell biology. One promising candidate is the pleiotropic interleukin-21 (IL-21) with only little being known regarding its direct effects on human T-cells. Thus, we sought out to characterize the impact of IL-21 on T-cell metabolism, fitness, and differentiation. Culturing T-cells in presence of IL-21 elicited a metabolic skewing away from aerobic glycolysis towards fatty acid oxidation (FAO). These changes of the metabolic framework were paralleled by increased mitochondrial fitness and biogenesis. However, oxidative stress levels were not increased but rather decreased. Furthermore, elevated FAO and mitochondrial biomass together with enhanced antioxidative properties are linked to formation of longer lasting memory responses and less PD-1 expression. We similarly observed an IL-21-triggered induction of central memory-like T-cells and reduced levels of PD-1 on the cell surface. Taken together, IL-21 shifts T-cells towards an immunometabolic phenotype that has been associated with increased survivability and enhanced anti-tumor efficacy. In addition, our data reveals a novel interconnection between fatty acid metabolism and immune function regulated by IL 21.
Collapse
Affiliation(s)
- Romy Loschinski
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andrej Stoll
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
22
|
Abdelsamed HA, Zebley CC, Youngblood B. Epigenetic Maintenance of Acquired Gene Expression Programs during Memory CD8 T Cell Homeostasis. Front Immunol 2018; 9:6. [PMID: 29403491 PMCID: PMC5778141 DOI: 10.3389/fimmu.2018.00006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
Memory CD8 T cells have a unique ability to provide lifelong immunity against pathogens containing their cognate epitope. Because of their ability to provide lifelong protection, the generation of memory T cells is now a major focus for current vaccination or adoptive cell therapy approaches to treat chronic viral infections and cancer. It is now clear that maintenance of memory CD8 T cells occurs through a process of antigen-independent homeostatic proliferation, which is regulated in part by the gamma chain cytokines IL-7 and IL-15. Here, we will describe the role of these cytokines in the survival and self-renewal of memory CD8 T cells. Further, we will describe the role of epigenetics in the maintenance of acquired functions among memory CD8 T cells during homeostatic proliferation.
Collapse
Affiliation(s)
- Hossam A Abdelsamed
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Caitlin C Zebley
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
23
|
Jain S, Ward JM, Shin DM, Wang H, Naghashfar Z, Kovalchuk AL, Morse HC. Associations of Autoimmunity, Immunodeficiency, Lymphomagenesis, and Gut Microbiota in Mice with Knockins for a Pathogenic Autoantibody. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2020-2033. [PMID: 28727987 DOI: 10.1016/j.ajpath.2017.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/09/2017] [Indexed: 01/26/2023]
Abstract
A number of mouse strains transgenic for B-cell receptors specific for nucleic acids or other autoantigens have been generated to understand how autoreactive B cells are regulated in normal and autoimmune mice. Previous studies of nonautoimmune C57BL/6 mice heterozygous for both the IgH and IgL knockins of the polyreactive autoantibody, 564, produced high levels of autoantibodies in a largely Toll-like receptor 7-dependent manner. Herein, we describe studies of mice homozygous for the knockins that also expressed high levels of autoantibodies but, unlike the heterozygotes, exhibited a high incidence of mature B-cell lymphomas and enhanced susceptibility to bacterial infections. Microarray analyses and serological studies suggested that lymphomagenesis might be related to chronic B-cell activation promoted by IL-21. Strikingly, mice treated continuously with antibiotic-supplemented water did not develop lymphomas or abscesses and exhibited less autoimmunity. This mouse model may help us understand the reasons for enhanced susceptibility to lymphoma development exhibited by humans with a variety of autoimmune diseases, such as Sjögren syndrome, systemic lupus erythematosus, and highly active rheumatoid arthritis.
Collapse
Affiliation(s)
- Shweta Jain
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Jerrold M Ward
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Dong-Mi Shin
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Hongsheng Wang
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Zohreh Naghashfar
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Alexander L Kovalchuk
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland.
| |
Collapse
|
24
|
Cachem FCOF, Dias AS, Monteiro C, Castro JR, Fernandes G, Delphim L, Almeida AJ, Tavares F, Maciel AMA, Amendola-Pires MM, Brandão-Mello CE, Bento CAM. The proportion of different interleukin-17-producing T-cell subsets is associated with liver fibrosis in chronic hepatitis C. Immunology 2017; 151:167-176. [PMID: 28140446 DOI: 10.1111/imm.12720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/13/2022] Open
Abstract
Studies have suggested the pivotal role of T helper type 1 (Th1) -related cytokines on the outcome of hepatitis C virus (HCV) infection. Nevertheless, the role of different interleukin-17 (IL-17) -secreting T cells on chronic hepatitis C (CHC) is less clear. Here, the in vivo IL-1β, IL-6, and IL-17 levels were positively correlated with both alanine transaminase (ALT) levels and hepatic lesions. When compared with the control group, CHC patients showed a lower proportion of IL-17-secreting (CD4+ and CD8+ ) T cells capable of simultaneously producing IL-21. Moreover, the percentage of IL-10-secreting Th17 cells was also lower in CHC patients. Notably, advanced liver lesions were observed among those patients with lower percentage levels of IL-17-producing T cells positive for IL-21, interferon-γ (IFN-γ) and IL-10. In contrast, the severity of hepatic damage was associated with peripheral single IL-17+ T cells. The percentage of IL-17+ IL-21- IFN-γ+ (CD4+ and CD8+ ) T-cell phenotypes was positively associated with plasma CD14 levels. Finally, elevated levels of circulating CD14 were detected among CHC patients with extensive liver damage. In summary, although preliminary, our results suggest that a balance between different IL-17-producing T cells, associated with peripheral levels of CD14, may be a progress marker for liver disease in chronically HCV-infected patients.
Collapse
Affiliation(s)
- Fabio C O F Cachem
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology, Immunology and Parasitology, UERJ, Rio de Janeiro, Brazil
| | - Aleida S Dias
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarice Monteiro
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology, Immunology and Parasitology, UERJ, Rio de Janeiro, Brazil
| | - José Roberto Castro
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Fernandes
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Letícia Delphim
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adilson J Almeida
- Division of Gastroenterology & Hepatology, Internal Medicine Department, HUGG, UNIRIO, Rio de Janeiro, Brazil
| | - Felipe Tavares
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra M A Maciel
- Division of Gastroenterology & Hepatology, Internal Medicine Department, HUGG, UNIRIO, Rio de Janeiro, Brazil
| | - Marcia M Amendola-Pires
- Division of Gastroenterology & Hepatology, Internal Medicine Department, HUGG, UNIRIO, Rio de Janeiro, Brazil
| | - Carlos E Brandão-Mello
- Division of Gastroenterology & Hepatology, Internal Medicine Department, HUGG, UNIRIO, Rio de Janeiro, Brazil
| | - Cleonice A M Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology, Immunology and Parasitology, UERJ, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Shapiro M, Nandi B, Gonzalez G, Prabhala RH, Mashimo H, Huang Q, Frank NY, Munshi NC, Gold JS. Deficiency of the immunostimulatory cytokine IL-21 promotes intestinal neoplasia via dysregulation of the Th1/Th17 axis. Oncoimmunology 2016; 6:e1261776. [PMID: 28197386 DOI: 10.1080/2162402x.2016.1261776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022] Open
Abstract
IL-21 has reported activity in promoting both Th1 and Th17 immune responses. Its role in sporadic human colorectal cancer is unknown. We aimed to delineate the role of IL-21 in a model of sporadic intestinal carcinogenesis. We found that in APCMIN/+ mice, ablation of IL-21 increased intestinal tumorigenesis. Expression of pro-inflammatory Th17-associated genes, including RORγt and IL-17A, was increased in the intestine in the absence of IL-21, while expression of antitumor Th1-associated genes Tbet, IFNγ, granzyme B, and perforin was decreased. Similarly, the IL-21-deficient APCMIN/+ mouse intestines had fewer infiltrating T cells as well as decreased effector memory T cells, NK cells, and granzyme B-expressing cells. Finally, our data suggest that IL-21 impairs Th17 immune responses as mesenteric lymph nodes from IL-21-deficient mice had increased IL-17A expression, and naive helper T cells from IL-21-deficient mice were more prone to differentiate into IL-17A-secreting cells.
Collapse
Affiliation(s)
- Mia Shapiro
- Research Services, VA Boston Healthcare System, West Roxbury, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bisweswar Nandi
- Research Services, VA Boston Healthcare System, West Roxbury, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gabriel Gonzalez
- Research Services, VA Boston Healthcare System, West Roxbury, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Rao H Prabhala
- Research Services, VA Boston Healthcare System, West Roxbury, MA, USA; Harvard Medical School, Boston, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hiroshi Mashimo
- Harvard Medical School, Boston, MA, USA; Medicine Services, VA Boston Healthcare System, West Roxbury, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| | - Qin Huang
- Harvard Medical School, Boston, MA, USA; Pathology Services, VA Boston Healthcare System, West Roxbury, MA, USA
| | - Natasha Y Frank
- Harvard Medical School, Boston, MA, USA; Medicine Services, VA Boston Healthcare System, West Roxbury, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| | - Nikhil C Munshi
- Harvard Medical School, Boston, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Medicine Services, VA Boston Healthcare System, West Roxbury, MA, USA
| | - Jason S Gold
- Harvard Medical School, Boston, MA, USA; Brigham and Women's Hospital, Boston, MA, USA; Surgery Services, VA Boston Healthcare System, West Roxbury, MA, USA
| |
Collapse
|
26
|
Abstract
Vitiligo, an acquired depigmentation disorder, manifests as white macules on the skin and can cause significant psychological stress and stigmatization. Recent advances have shed light on key components that drive disease onset and progression as well as therapeutic approaches. Vitiligo can be triggered by stress to the melanin pigment-producing cells of the skin, the melanocytes. The triggers, which range from sunburn to mechanical trauma and chemical exposures, ultimately cause an autoimmune response that targets melanocytes, driving progressive skin depigmentation. The most significant progress in our understanding of disease etiology has been made on three fronts: (1) identifying cellular responses to stress, including antioxidant pathways and the unfolded protein response (UPR), as key players in disease onset, (2) characterizing immune responses that target melanocytes and drive disease progression, and (3) identifying major susceptibility genes. The current model for vitiligo pathogenesis postulates that oxidative stress causes cellular disruptions, including interruption of protein maturation in the endoplasmic reticulum (ER), leading to the activation of the UPR and expression of UPR-regulated chemokines such as interleukin 6 (IL-6) and IL-8. These chemokines recruit immune components to the skin, causing melanocytes to be targeted for destruction. Oxidative stress can further increase melanocyte targeting by promoting antigen presentation. Two key components of the autoimmune response that promote disease progression are the interferon (IFN)-γ/CXCL10 axis and IL-17-mediated responses. Several genome-wide association studies support a role for these pathways, with the antioxidant gene
NRF2, UPR gene
XBP1, and numerous immune-related genes including class I and class II major histocompatibility genes associated with a risk for developing vitiligo. Novel approaches to promote repigmentation in vitiligo are being investigated and may yield effective, long-lasting therapies.
Collapse
Affiliation(s)
- Prashiela Manga
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, 10016, USA
| | - Nada Elbuluk
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, 10016, USA
| | - Seth J Orlow
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
27
|
Forced co-expression of IL-21 and IL-7 in whole-cell cancer vaccines promotes antitumor immunity. Sci Rep 2016; 6:32351. [PMID: 27571893 PMCID: PMC5004106 DOI: 10.1038/srep32351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
Genetic modification of whole-cell cancer vaccines to augment their efficacies has a history of over two and a half decades. Various genes and gene combinations, targeting different aspects of immune responses have been tested in pursuit of potent adjuvant effects. Here we show that co-expression of two cytokine members of the common cytokine receptor γ-chain family, IL-21 and IL-7, in whole-cell cancer vaccines boosts antitumor immunity in a CD4+ and CD8+ T cell-dependent fashion. It also generates effective immune memory. The vaccine-elicited short-term effects positively correlated with enhanced infiltration of CD4+ and CD8+ effector T cells, and the long-term effects positively correlated with enhanced infiltration of effector memory T cells, especially CD8+ effector memory T cells. Preliminary data suggested that the vaccine exhibited good safety profile in murine models. Taken together, the combination of IL-21 and IL-7 possesses potent adjuvant efficacy in whole-cell vaccines. This finding warrants future development of IL-21 and IL-7 co-expressing whole-cell cancer vaccines and their relevant combinatorial regimens.
Collapse
|
28
|
Biological effects of IL-21 on different immune cells and its role in autoimmune diseases. Immunobiology 2016; 221:357-67. [DOI: 10.1016/j.imbio.2015.09.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/19/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022]
|
29
|
Nguyen V, Rus H, Chen C, Rus V. CTL-Promoting Effects of IL-21 Counteract Murine Lupus in the Parent→F1 Graft-versus-Host Disease Model. THE JOURNAL OF IMMUNOLOGY 2016; 196:1529-40. [DOI: 10.4049/jimmunol.1501824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/10/2015] [Indexed: 01/05/2023]
|
30
|
Orio J, Carli C, Janelle V, Giroux M, Taillefer J, Goupil M, Richaud M, Roy DC, Delisle JS. Early exposure to interleukin-21 limits rapidly generated anti-Epstein-Barr virus T-cell line differentiation. Cytotherapy 2015; 17:496-508. [PMID: 25661862 DOI: 10.1016/j.jcyt.2014.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS The adoptive transfer of ex vivo-expanded Epstein-Barr virus (EBV)-specific T-cell lines is an attractive strategy to treat EBV-related neoplasms. Current evidence suggests that for adoptive immunotherapy in general, clinical responses are superior if the transferred cells have not reached a late or terminal effector differentiation phenotype before infusion. The cytokine interleukin (IL)-21 has shown great promise at limiting late T-cell differentiation in vitro, but this remains to be demonstrated in anti-viral T-cell lines. METHODS We adapted a clinically validated protocol to rapidly generate EBV-specific T-cell lines in 12 to 14 days and tested whether the addition of IL-21 at the initiation of the culture would affect T-cell expansion and differentiation. RESULTS We generated clinical-scale EBV-restricted T-cell line expansion with balanced T-cell subset ratios. The addition of IL-21 at the beginning of the culture decreased both T-cell expansion and effector memory T-cell accumulation, with a relative increase in less-differentiated T cells. Within CD4 T-cell subsets, exogenous IL-21 was notably associated with the cell surface expression of CD27 and high KLF2 transcript levels, further arguing for a role of IL-21 in the control of late T-cell differentiation. CONCLUSIONS Our results show that IL-21 has profound effects on T-cell differentiation in a rapid T-cell line generation protocol and as such should be further explored as a novel approach to program anti-viral T cells with features associated with early differentiation and optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Julie Orio
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada
| | - Cédric Carli
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada
| | - Valérie Janelle
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada
| | - Martin Giroux
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada
| | - Julie Taillefer
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada
| | - Mathieu Goupil
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada
| | - Manon Richaud
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada
| | - Denis-Claude Roy
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada; Hematology-Oncology Division, Hôpital Maisonneuve-Rosemont, Quebec, Canada; Department of Medicine, University of Montréal, Quebec, Canada
| | - Jean-Sébastien Delisle
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada; Hematology-Oncology Division, Hôpital Maisonneuve-Rosemont, Quebec, Canada; Department of Medicine, University of Montréal, Quebec, Canada.
| |
Collapse
|
31
|
Li J, Ren W, Ma W, Zhang J, Shi J, Qin C. Interleukin-21 responses in patients with chronic hepatitis B. J Interferon Cytokine Res 2014; 35:134-42. [PMID: 25243706 DOI: 10.1089/jir.2013.0119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin (IL)-21 has been demonstrated to play a pivotal role in controlling chronic viral infections. However, little is known about the regulatory role of IL-21 in T cell immunity during the process of chronic hepatitis B (CHB). In the present study, the levels of serum IL-21 in 77 patients with various degrees of CHB in immune clearance phase (IC), 25 patients infected with hepatitis B virus (HBV) in immune tolerance phase (IT), and 25 healthy controls (HC) were measured and their potential association with major clinic indexes was examined. Peripheral blood mononuclear cells from CHB patients were stimulated with hepatitis B core antigen (HBcAg) in the presence or absence of anti-IL-21 antibody or recombinant IL-21, and the frequency of HBcAg-specific IL-21(+)CD4(+) and interferon (IFN)-γ(+)CD8(+) T cells was characterized by flow cytometry. Our data indicated that the levels of serum IL-21 were significantly higher in the IC CHB patients than that in the other groups and were positively correlated with the levels of serum HBV DNA and HBeAg in the IC patients. There was a low frequency of HBcAg-specific IL-21(+)CD4(+) T cells in IC CHB patients. Further, IL-21 enhanced HBcAg-specific IFN-γ(+)CD8(+) T cell proliferation, while treatment with anti-IL-21 inhibited antigen-specific IFN-γ(+)CD8(+) T cell expansion in vitro. Our findings imply that IL-21 positively regulates proinflammatory IFN-γ(+)CD8(+) T cell responses during the process of chronic HBV infection in humans.
Collapse
Affiliation(s)
- Jie Li
- 1 Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong University , Shandong, China
| | | | | | | | | | | |
Collapse
|
32
|
Iwamoto T, Suto A, Tanaka S, Takatori H, Suzuki K, Iwamoto I, Nakajima H. Interleukin-21-Producing c-Maf-Expressing CD4+ T Cells Induce Effector CD8+ T Cells and Enhance Autoimmune Inflammation in Scurfy Mice. Arthritis Rheumatol 2014; 66:2079-90. [DOI: 10.1002/art.38658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/01/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Taro Iwamoto
- Chiba University Graduate School of Medicine; Chiba Japan
| | - Akira Suto
- Chiba University Graduate School of Medicine; Chiba Japan
| | - Shigeru Tanaka
- Chiba University Graduate School of Medicine; Chiba Japan
| | | | - Kotaro Suzuki
- Chiba University Graduate School of Medicine; Chiba Japan
| | | | | |
Collapse
|
33
|
Marquis M, Boulet S, Mathien S, Rousseau J, Thébault P, Daudelin JF, Rooney J, Turgeon B, Beauchamp C, Meloche S, Labrecque N. The non-classical MAP kinase ERK3 controls T cell activation. PLoS One 2014; 9:e86681. [PMID: 24475167 PMCID: PMC3903551 DOI: 10.1371/journal.pone.0086681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022] Open
Abstract
The classical mitogen-activated protein kinases (MAPKs) ERK1 and ERK2 are activated upon stimulation of cells with a broad range of extracellular signals (including antigens) allowing cellular responses to occur. ERK3 is an atypical member of the MAPK family with highest homology to ERK1/2. Therefore, we evaluated the role of ERK3 in mature T cell response. Mouse resting T cells do not transcribe ERK3 but its expression is induced in both CD4⁺ and CD8⁺ T cells following T cell receptor (TCR)-induced T cell activation. This induction of ERK3 expression in T lymphocytes requires activation of the classical MAPK ERK1 and ERK2. Moreover, ERK3 protein is phosphorylated and associates with MK5 in activated primary T cells. We show that ERK3-deficient T cells have a decreased proliferation rate and are impaired in cytokine secretion following in vitro stimulation with low dose of anti-CD3 antibodies. Our findings identify the atypical MAPK ERK3 as a new and important regulator of TCR-induced T cell activation.
Collapse
Affiliation(s)
- Miriam Marquis
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
| | - Salix Boulet
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - Simon Mathien
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Justine Rousseau
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Paméla Thébault
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | | | - Julie Rooney
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - Benjamin Turgeon
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | | | - Sylvain Meloche
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
34
|
Rodrigues L, Bonorino C. Role of IL-15 and IL-21 in viral immunity: applications for vaccines and therapies. Expert Rev Vaccines 2014; 8:167-77. [DOI: 10.1586/14760584.8.2.167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A, Bruneval P, Fridman WH, Becker C, Pagès F, Speicher MR, Trajanoski Z, Galon J. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013; 39:782-95. [PMID: 24138885 DOI: 10.1016/j.immuni.2013.10.003] [Citation(s) in RCA: 2905] [Impact Index Per Article: 242.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/25/2013] [Indexed: 02/08/2023]
Abstract
The complex interactions between tumors and their microenvironment remain to be elucidated. Combining large-scale approaches, we examined the spatio-temporal dynamics of 28 different immune cell types (immunome) infiltrating tumors. We found that the immune infiltrate composition changed at each tumor stage and that particular cells had a major impact on survival. Densities of T follicular helper (Tfh) cells and innate cells increased, whereas most T cell densities decreased along with tumor progression. The number of B cells, which are key players in the core immune network and are associated with prolonged survival, increased at a late stage and showed a dual effect on recurrence and tumor progression. The immune control relevance was demonstrated in three endoscopic orthotopic colon-cancer mouse models. Genomic instability of the chemokine CXCL13 was a mechanism associated with Tfh and B cell infiltration. CXCL13 and IL21 were pivotal factors for the Tfh/B cell axis correlating with survival. This integrative study reveals the immune landscape in human colorectal cancer and the major hallmarks of the microenvironment associated with tumor progression and recurrence.
Collapse
Affiliation(s)
- Gabriela Bindea
- INSERM U872, Laboratory of Integrative Cancer Immunology, Paris 75006, France; Université Paris Descartes, Paris 75006, France; Cordeliers Research Centre, Université Pierre et Marie Curie Paris 6, Paris 75006, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
McPhee CG, Bubier JA, Sproule TJ, Park G, Steinbuck MP, Schott WH, Christianson GJ, Morse HC, Roopenian DC. IL-21 is a double-edged sword in the systemic lupus erythematosus-like disease of BXSB.Yaa mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:4581-8. [PMID: 24078696 PMCID: PMC3807747 DOI: 10.4049/jimmunol.1300439] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The pleiotropic cytokine IL-21 is implicated in the pathogenesis of human systemic lupus erythematosus by polymorphisms in the molecule and its receptor (IL-21R). The systemic lupus erythematosus-like autoimmune disease of BXSB.Yaa mice is critically dependent on IL-21 signaling, providing a model for understanding IL-21/IL-21R signaling in lupus pathogenesis. In this study, we generated BXSB.Yaa mice selectively deficient in IL-21R on B cells, on all T cells, or on CD8(+) T cells alone and examined the effects on disease. We found that IL-21 signaling to B cells is essential for the development of all classical disease manifestations, but that IL-21 signaling also supports the expansion of central memory, CD8(+) suppressor cells and broadly represses the cytokine activity of CD4(+) T cells. These results indicate that IL-21 has both disease-promoting and disease-suppressive effects in the autoimmune disease of BXSB.Yaa mice.
Collapse
Affiliation(s)
| | | | | | - Giljun Park
- The Jackson Laboratory, Bar Harbor, ME 04609
| | | | | | | | - Herbert C. Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | | |
Collapse
|
37
|
Hong C, Nam AS, Keller HR, Ligons DL, Park JY, Yoon HW, Park JJ, Luckey MA, Park JH. Interleukin-6 expands homeostatic space for peripheral T cells. Cytokine 2013; 64:532-40. [PMID: 23988623 PMCID: PMC3806195 DOI: 10.1016/j.cyto.2013.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 11/18/2022]
Abstract
T cell homeostasis and survival is dependent on interleukin-7 (IL-7). Immune activation, however, downregulates IL-7 receptor expression on T cells so that T cell survival during activation must be maintained independently of IL-7. The pro-inflammatory cytokine IL-6 shares common signaling pathways with IL-7 and can promote T cell survival in vitro. But whether IL-6 promotes T cell survival and homeostasis in vivo is not clear. Notably, IL-6 overexpression results in massive plasmacytosis and autoimmunity so that an IL-6 effect on in vivo T cell survival has remained untested. To overcome this limitation, here we generated IL-6 transgenic mice on an immunoglobulin heavy chain (IgH) deficient background which rendered them B cell deficient. Notably, such IgH(KO)IL6(Tg) mice were free of any signs of inflammation or autoimmunity and remained healthy throughout the course of analysis. In these mice, we found that IL-6 overexpression significantly increased peripheral T cell numbers, but importantly without increasing thymopoiesis. Moreover, IL-6 signaled T cells maintained their naïve phenotype and did not express activation/memory markers, suggesting that increased T cell numbers were due to increased T cell survival and not because of expansion of activated T cells. Mechanistically, we found that IL-6 signaling induced expression of pro-survival factors Mcl-1 and Pim-1/-2 but not Bcl-2. Thus, IL-6 is a T cell homeostatic cytokine that expands T cell space and can maintain the naïve T cell pool.
Collapse
Affiliation(s)
- Changwan Hong
- Experimental Immunology Branch, National Cancer Institute, NIH,
Bethesda, MD 20892
| | - Anna S. Nam
- Experimental Immunology Branch, National Cancer Institute, NIH,
Bethesda, MD 20892
- University of Missouri School of Medicine, Columbia, MO 65201
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Hilary R. Keller
- Experimental Immunology Branch, National Cancer Institute, NIH,
Bethesda, MD 20892
| | - Davinna L. Ligons
- Experimental Immunology Branch, National Cancer Institute, NIH,
Bethesda, MD 20892
| | - Joo-Young Park
- Experimental Immunology Branch, National Cancer Institute, NIH,
Bethesda, MD 20892
| | - Hee-won Yoon
- Experimental Immunology Branch, National Cancer Institute, NIH,
Bethesda, MD 20892
| | - Joseph J. Park
- Experimental Immunology Branch, National Cancer Institute, NIH,
Bethesda, MD 20892
| | - Megan A. Luckey
- Experimental Immunology Branch, National Cancer Institute, NIH,
Bethesda, MD 20892
| | - Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, NIH,
Bethesda, MD 20892
| |
Collapse
|
38
|
van Leeuwen MA, Lindenbergh-Kortleve DJ, Raatgeep HC, de Ruiter LF, de Krijger RR, Groeneweg M, Escher JC, Samsom JN. Increased production of interleukin-21, but not interleukin-17A, in the small intestine characterizes pediatric celiac disease. Mucosal Immunol 2013; 6:1202-13. [PMID: 23571506 DOI: 10.1038/mi.2013.19] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 03/01/2013] [Indexed: 02/04/2023]
Abstract
Celiac disease (CD) is caused by inflammatory CD4(+) T-cell responses to dietary gluten. It is unclear whether interleukin (IL)-21 and IL-17A contribute to CD onset and lesion severity; therefore, we investigated IL-21 and IL-17A expression in biopsies from pediatric CD patients with different histopathological scores. High numbers of IL-21-producing cells were observed in pediatric CD lesions, even Marsh 1-2 lesions, whereas increased numbers of IL-17 secreting cells were not observed. Intraepithelial lymphocytes, CD4(+) T cells and also neutrophils secreted IL-21. Flow cytometry of lamina propria cells revealed a large population of IL-21- and interferon-γ (IFN-γ)-secreting CD3(+) T cells that did not secrete IL-17A. Adult CD patient biopsies also contained high numbers of IL-21-positive cells; however, enhanced numbers of IL-17-positive cells were observed in a small subgroup of patients with severe lesions. As duodenal tissue damage increases contact with microbe-associated molecular patterns, we hypothesized that microbial sensing by Toll-like receptors (TLRs) modulates T cell-derived cytokine secretion. Costimulation with TLR3 ligands during polyclonal T-cell activation significantly increased IL-21 secretion, whereas TLR2 ligands selectively enhanced IL-17A. These results demonstrate that an IL-17A-independent increase in IL-21 production by CD4(+) T cells is characteristic of pediatric CD. We hypothesize that incidental IL-17 secretion is caused by tissue damage rather than gluten-specific responses.
Collapse
Affiliation(s)
- M A van Leeuwen
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Rajbhandary S, Zhao MF, Zhao N, Lu WY, Zhu HB, Xiao X, Deng Q, Li YM. Multiple Cytotoxic Factors Involved in IL-21 Enhanced Antitumor Function of CIK Cells Signaled through STAT-3 and STAT5b Pathways. Asian Pac J Cancer Prev 2013; 14:5825-31. [DOI: 10.7314/apjcp.2013.14.10.5825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
40
|
Liu SM, King C. IL-21–Producing Th Cells in Immunity and Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2013; 191:3501-6. [DOI: 10.4049/jimmunol.1301454] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Kared H, Fabre T, Bédard N, Bruneau J, Shoukry NH. Galectin-9 and IL-21 mediate cross-regulation between Th17 and Treg cells during acute hepatitis C. PLoS Pathog 2013; 9:e1003422. [PMID: 23818845 PMCID: PMC3688567 DOI: 10.1371/journal.ppat.1003422] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/30/2013] [Indexed: 12/12/2022] Open
Abstract
Loss of CD4 T cell help correlates with virus persistence during acute hepatitis C virus (HCV) infection, but the underlying mechanism(s) remain unknown. We developed a combined proliferation/intracellular cytokine staining assay to monitor expansion of HCV-specific CD4 T cells and helper cytokines expression patterns during acute infections with different outcomes. We demonstrate that acute resolving HCV is characterized by strong Th1/Th17 responses with specific expansion of IL-21-producing CD4 T cells and increased IL-21 levels in plasma. In contrast, viral persistence was associated with lower frequencies of IL-21-producing CD4 T cells, reduced proliferation and increased expression of the inhibitory receptors T cell immunoglobulin and mucin-domain-containing-molecule-3 (Tim-3), programmed death 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) on HCV-specific CD8 T cells. Progression to persistent infection was accompanied by increased plasma levels of the Tim-3 ligand Galectin-9 (Gal-9) and expansion of Gal-9 expressing regulatory T cells (Tregs). In vitro supplementation of Tim-3(high) HCV-specific CD8 T cells with IL-21 enhanced their proliferation and prevented Gal-9 induced apoptosis. siRNA-mediated knockdown of Gal-9 in Treg cells rescued IL-21 production by HCV-specific CD4 T cells. We propose that failure of CD4 T cell help during acute HCV is partially due to an imbalance between Th17 and Treg cells whereby exhaustion of both CD4 and CD8 T cells through the Tim-3/Gal-9 pathway may be limited by IL-21 producing Th17 cells or enhanced by Gal-9 producing Tregs.
Collapse
Affiliation(s)
- Hassen Kared
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
| | - Thomas Fabre
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Departement de médecine familiale, Université de Montréal, Montréal, Québec, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
42
|
Stumhofer JS, Silver JS, Hunter CA. IL-21 is required for optimal antibody production and T cell responses during chronic Toxoplasma gondii infection. PLoS One 2013; 8:e62889. [PMID: 23667536 PMCID: PMC3647013 DOI: 10.1371/journal.pone.0062889] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/26/2013] [Indexed: 12/21/2022] Open
Abstract
Previous studies have indicated that Il21r−/− mice chronically infected with Toxoplasma gondii display a defect in serum IgG; however, the basis for this antibody defect was not defined and questions remain about the role of IL-21 in promoting the production of IL-10, which is required to limit infection-induced pathology during toxoplasmosis. Therefore, Il21−/− mice were challenged with T. gondii to determine whether IL-21 impacts the parasite-specific CD8+ T cell response, its contribution to thymus-dependent antibody production after infection, and balance between protective and pathogenic responses. Whereas IL-21 has been implicated in the differentiation of IL-10 producing CD4+ T cells no immune-mediated pathology was evident in Il21−/− mice during the acute response, nor was there a defect in the development of this population in chronically infected Il21−/− mice. However, Il21−/− mice displayed a defect in IgG production after infection that correlated with a decrease in GC B cell numbers, the CD4+ and CD8+ T cell numbers in the brain were reduced over the course of the chronic infection leading to a decrease in total IFN-γ production and an increase in parasite numbers associated with susceptibility to toxoplasmic encephalitis. Together, these results identify a key role for IL-21 in shaping the humoral and cellular response to T. gondii, but indicate that IL-21 has a limited role in regulating immunopathology.
Collapse
Affiliation(s)
- Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America.
| | | | | |
Collapse
|
43
|
Araki A, Nara H, Rahman M, Onoda T, Li J, Juliana FM, Jin L, Murata K, Takeda Y, Asao H. Role of interleukin-21 isoform in dextran sulfate sodium (DSS)-induced colitis. Cytokine 2013; 62:262-71. [PMID: 23557800 DOI: 10.1016/j.cyto.2013.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 02/01/2013] [Accepted: 03/08/2013] [Indexed: 12/28/2022]
Abstract
Interleukin-21 (IL-21) is overproduced in human intestines affected by inflammatory bowel disease (IBD) and in the gut of mice with DSS-induced colitis. IL-21-deficient mice are largely protected against DSS-induced colitis, indicating that IL-21 plays a key role in the development of IBD. We previously identified a novel IL-21 isoform named IL-21iso. In this study, we found that in addition to the conventional IL-21, IL-21iso mRNA was also expressed in the colon with DSS-induced colitis. To investigate whether IL-21iso plays a role in DSS-induced colitis, we established transgenic mice (mIL-21iso-Tg mice) that expressed mouse IL-21iso under the control of the lck proximal promoter. Although mIL-21iso-Tg mice did not have any gross physical abnormalities, their peripheral lymphocytes counts were higher than those in wild-type littermates. Notably, their CD8(+) T cell and CD4(+) effector memory T-cell populations were elevated. DSS-induced colitis was far more severe in the mIL-21iso-Tg mice than in wild-type mice, and was accompanied by a marked loss of body weight and by colon inflammation with increased cellular infiltration. In DSS-treated mice, colon tissues from mIL-21iso-Tg mice had significantly higher gene activation levels for cytokines such as IL-17A, TNF-α, IL-6, IL-10, and IL-4, and for transcription factors such as T-bet, GATA-3, RORγt, and Foxp3, than were found in wild-type mice. These results indicate that besides IL-21, IL-21iso may be another regulator of gut inflammation.
Collapse
Affiliation(s)
- Akemi Araki
- Department of Immunology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sutherland APR, Joller N, Michaud M, Liu SM, Kuchroo VK, Grusby MJ. IL-21 Promotes CD8+ CTL Activity via the Transcription Factor T-bet. THE JOURNAL OF IMMUNOLOGY 2013; 190:3977-84. [DOI: 10.4049/jimmunol.1201730] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
Cox MA, Kahan SM, Zajac AJ. Anti-viral CD8 T cells and the cytokines that they love. Virology 2013; 435:157-69. [PMID: 23217625 DOI: 10.1016/j.virol.2012.09.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 12/01/2022]
Abstract
Viral infections cause an immunological disequilibrium that provokes CD8 T cell responses. These cells play critical roles in purging acute infections, limiting persistent infections, and conferring life-long protective immunity. At every stage of the response anti-viral CD8 T cells are sensitive to signals from cytokines. Initially cytokines operate as immunological warning signs that inform of the presence of an infection, and also influence the developmental choices of the responding cells. Later during the course of the response other sets of cytokines support the survival and maintenance of the differentiated anti-viral CD8 T cells. Although many cytokines promote virus-specific CD8 T cells, other cytokines can suppress their activities and thus favor viral persistence. In this review we discuss how select cytokines act to regulate anti-viral CD8 T cells throughout the response and influence the outcome of viral infections.
Collapse
Affiliation(s)
- Maureen A Cox
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
46
|
Mathieu M, Cotta-Grand N, Daudelin JF, Thébault P, Labrecque N. Notch signaling regulates PD-1 expression during CD8(+) T-cell activation. Immunol Cell Biol 2012; 91:82-8. [PMID: 23070399 DOI: 10.1038/icb.2012.53] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Programmed cell death 1 (PD-1) is an inhibitory receptor involved in T-cell activation, tolerance and exhaustion. Little is known on how the expression of PD-1 is controlled during T-cell activation. Recent studies demonstrated that NFATc1 and IRF9 regulate Pdcd1 (PD-1) transcription and that T-bet acts as a transcriptional repressor. In this study, we have investigated the role of the Notch signaling pathway in PD-1 regulation. Using specific inhibitors of the Notch signaling pathway, we showed decreased PD-1 expression and inhibition of Pdcd1 transcription by activated CD8(+) T cells. Chromatin immunoprecipitation further showed occupancy of the Pdcd1 promoter with RBPJk and Notch1 intracellular domain at RBPJk-binding sites. Our results identify the Notch signaling pathway as an important regulator of PD-1 expression by activated CD8(+) T cells.
Collapse
Affiliation(s)
- Mélissa Mathieu
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montréal, Quebec, Canada
| | | | | | | | | |
Collapse
|
47
|
Abstract
Interleukin (IL)-21 is one of a group of cytokines including IL-2, IL-4, IL-7, IL-9 and IL-15 whose receptor complexes share the common γ chain (γ(c)). Secretion of IL-21 is restricted mainly to T follicular helper (TFH) CD4 T cell subset with contributions from Th17, natural killer (NK) T cells, but the effects of IL-21 are pleiotropic, owing to the broad cellular distribution of the IL-21 receptor. The role of IL-21 in sustaining and regulating T cell, B cell and NK cell responses during chronic viral infections has recently come into focus. This chapter reviews current knowledge about the biology of IL-21 in the context of HIV infection.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | | | | |
Collapse
|
48
|
Boyman O, Krieg C, Homann D, Sprent J. Homeostatic maintenance of T cells and natural killer cells. Cell Mol Life Sci 2012; 69:1597-608. [PMID: 22460580 DOI: 10.1007/s00018-012-0968-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 11/30/2022]
Abstract
Homeostasis in the immune system encompasses the mechanisms governing maintenance of a functional and diverse pool of lymphocytes, thus guaranteeing immunity to pathogens while remaining self-tolerant. Antigen-naïve T cells rely on survival signals through contact with self-peptide-loaded major histocompatibility complex (MHC) molecules plus interleukin (IL)-7. Conversely, antigen-experienced (memory) T cells are typically MHC-independent and they survive and undergo periodic homeostatic proliferation through contact with both IL-7 and IL-15. Also, non-conventional γδ T cells rely on a mix of IL-7 and IL-15 for their homeostasis, whereas natural killer cells are mainly dependent on contact with IL-15. Homeostasis of CD4(+) T regulatory cells is different in being chiefly regulated by contact with IL-2. Notably, increased levels of these cytokines cause expansion of responsive lymphocytes, such as found in lymphopenic hosts or following cytokine injection, whereas reduced cytokine levels cause a decline in cell numbers.
Collapse
Affiliation(s)
- Onur Boyman
- Allergy Unit, Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, Zurich, Switzerland.
| | | | | | | |
Collapse
|
49
|
Unique features of memory T cells in HIV elite controllers: a systems biology perspective. Curr Opin HIV AIDS 2011; 6:188-96. [DOI: 10.1097/coh.0b013e32834589a1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Cox MA, Harrington LE, Zajac AJ. Cytokines and the inception of CD8 T cell responses. Trends Immunol 2011; 32:180-6. [PMID: 21371940 PMCID: PMC3074938 DOI: 10.1016/j.it.2011.01.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/07/2011] [Accepted: 01/14/2011] [Indexed: 01/01/2023]
Abstract
The activation and differentiation of CD8 T cells is a necessary first step that endows these cells with the phenotypic and functional properties required for the control of intracellular pathogens. The induction of the CD8 T cell responses typically results in the development of a massive overall population of effector cells, comprising both highly functional but short-lived terminally differentiated cells, as well as a smaller subset of precursors that are predisposed to survive and transition into the memory T cell pool. In this review, we discuss how inflammatory cytokines and IL-2 bias the initial response towards short-lived effector generation, and also highlight the potential counterbalancing role of IL-21.
Collapse
Affiliation(s)
- Maureen A. Cox
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Laurie E. Harrington
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Allan J. Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|