1
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
2
|
van Noort JM, Baker D, Kipp M, Amor S. The pathogenesis of multiple sclerosis: a series of unfortunate events. Clin Exp Immunol 2023; 214:1-17. [PMID: 37410892 PMCID: PMC10711360 DOI: 10.1093/cei/uxad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/10/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by the chronic inflammatory destruction of myelinated axons in the central nervous system. Several ideas have been put forward to clarify the roles of the peripheral immune system and neurodegenerative events in such destruction. Yet, none of the resulting models appears to be consistent with all the experimental evidence. They also do not answer the question of why MS is exclusively seen in humans, how Epstein-Barr virus contributes to its development but does not immediately trigger it, and why optic neuritis is such a frequent early manifestation in MS. Here we describe a scenario for the development of MS that unifies existing experimental evidence as well as answers the above questions. We propose that all manifestations of MS are caused by a series of unfortunate events that usually unfold over a longer period of time after a primary EBV infection and involve periodic weakening of the blood-brain barrier, antibody-mediated CNS disturbances, accumulation of the oligodendrocyte stress protein αB-crystallin and self-sustaining inflammatory damage.
Collapse
Affiliation(s)
- Johannes M van Noort
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - David Baker
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
3
|
Zhang W, Joshi C, Smith C, Ujas TA, Rivas JR, Cowell L, Christley S, Stowe AM, Monson NL. Neuronal binding by antibodies can be influenced by low pH stress during the isolation procedure. J Immunol Methods 2023; 521:113535. [PMID: 37558123 PMCID: PMC11249026 DOI: 10.1016/j.jim.2023.113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/18/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Low pH stress and its influence on antibody binding is a common consideration among chemists, but is only recently emerging as a consideration in Immunological studies. Antibody characterizations in Multiple Sclerosis (MS), an autoimmune disease of the Central Nervous System (CNS) has revealed that antibodies in the cerebrospinal fluid (CSF) of patients with Multiple Sclerosis bind to myelin-related and non-myelin antigen targets. Many laboratories have used molecular biology techniques to generate recombinant human antibodies (rhAbs) expressed by individual B cells from healthy donors and patients with systemic autoimmune disease to identify antigen targets. This approach has been adapted within the Neuroimmunology research community to investigate antigen targets of individual B cells in the CSF of MS patients. Our laboratory determines which antibodies to clone based on their immunogenetics and this method enriches for cloning of rhAbs that bind to neurons. However, newer technologies to assist in purification of these rhAbs from culture supernatants use an acidic elution buffer which may enhance low pH stress on the antibody structure. Our laboratory routinely uses a basic elution buffer to purify rhAbs from culture supernatants to avoid low pH stress to the antibody structure. Our goal was to investigate whether acidic elution of our rhAbs using Next Generation Chromatography would impact the rhAbs' ability to bind neurons. The limited data presented here for two neuron-binding rhAbs tested indicated that acidic elution buffers used during rhAb purification impacted the ability of rhAbs with low CDR3 charge to maintain binding to neuronal targets. Reproducibility in a larger panel of rhAbs and factors underlying these observations remain untested.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Chaitanya Joshi
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Chad Smith
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Thomas A Ujas
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Jacqueline R Rivas
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Lindsay Cowell
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Scott Christley
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Ann M Stowe
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Nancy L Monson
- Department of Neurology, Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, United States of America.
| |
Collapse
|
4
|
Alghibiwi H, Ansari MA, Nadeem A, Algonaiah MA, Attia SM, Bakheet SA, Albekairi TH, Almudimeegh S, Alhamed AS, Shahid M, Alwetaid MY, Alassmrry YA, Ahmad SF. DAPTA, a C-C Chemokine Receptor 5 (CCR5), Leads to the Downregulation of Notch/NF-κB Signaling and Proinflammatory Mediators in CD40 + Cells in Experimental Autoimmune Encephalomyelitis Model in SJL/J Mice. Biomedicines 2023; 11:1511. [PMID: 37371605 DOI: 10.3390/biomedicines11061511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system characterized by motor deficits, cognitive impairment, fatigue, pain, and sensory and visual dysfunction. CD40, highly expressed in B cells, plays a significant role in MS pathogenesis. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS has been well established, as well as its relevance in MS patients. This study aimed to evaluate the therapeutic potential of DAPTA, a selective C-C chemokine receptor 5 (CCR5) antagonist in the murine model of MS, and to expand the knowledge of its mechanism of action. Following the induction of EAE, DAPTA was administrated (0.01 mg/kg, i.p.) daily from day 14 to day 42. We investigated the effects of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α in CD40+ spleen B cells using flow cytometry. Furthermore, we also analyzed the effect of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α mRNA expression levels using qRT-PCR in brain tissue. EAE mice treated with DAPTA showed substantial reductions in NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α but an increase in the IκBα of CD40+ B lymphocytes. Moreover, EAE mice treated with DAPTA displayed decreased NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α and but showed increased IκBα mRNA expression levels. This study showed that DAPTA has significant neuroprotective potential in EAE via the downregulation of inflammatory mediators and NF-κB/Notch signaling. Collectively, DAPTA might have potential therapeutic targets for use in MS treatment.
Collapse
Affiliation(s)
- Hanan Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed Ali Algonaiah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasseen A Alassmrry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Telesford KM, Amezcua L, Tardo L, Horton L, Lund BT, Reder AT, Vartanian T, Monson NL. Understanding humoral immunity and multiple sclerosis severity in Black, and Latinx patients. Front Immunol 2023; 14:1172993. [PMID: 37215103 PMCID: PMC10196635 DOI: 10.3389/fimmu.2023.1172993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
People identified with Black/African American or Hispanic/Latinx ethnicity are more likely to exhibit a more severe multiple sclerosis disease course relative to those who identify as White. While social determinants of health account for some of this discordant severity, investigation into contributing immunobiology remains sparse. The limited immunologic data stands in stark contrast to the volume of clinical studies describing ethnicity-associated discordant presentation, and to advancement made in our understanding of MS immunopathogenesis over the past several decades. In this perspective, we posit that humoral immune responses offer a promising avenue to better understand underpinnings of discordant MS severity among Black/African American, and Hispanic/Latinx-identifying patients.
Collapse
Affiliation(s)
- Kiel M. Telesford
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Lilyana Amezcua
- Multiple Sclerosis Comprehensive Care Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauren Tardo
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| | - Lindsay Horton
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| | - Brett T. Lund
- Multiple Sclerosis Comprehensive Care Center, University of Southern California, Los Angeles, CA, United States
| | - Anthony T. Reder
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Timothy Vartanian
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Nancy L. Monson
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| |
Collapse
|
6
|
Bogers L, Engelenburg HJ, Janssen M, Unger PPA, Melief MJ, Wierenga-Wolf AF, Hsiao CC, Mason MRJ, Hamann J, van Langelaar J, Smolders J, van Luijn MM. Selective emergence of antibody-secreting cells in the multiple sclerosis brain. EBioMedicine 2023; 89:104465. [PMID: 36796230 PMCID: PMC9958261 DOI: 10.1016/j.ebiom.2023.104465] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Although distinct brain-homing B cells have been identified in multiple sclerosis (MS), it is unknown how these further evolve to contribute to local pathology. We explored B-cell maturation in the central nervous system (CNS) of MS patients and determined their association with immunoglobulin (Ig) production, T-cell presence, and lesion formation. METHODS Ex vivo flow cytometry was performed on post-mortem blood, cerebrospinal fluid (CSF), meninges and white matter from 28 MS and 10 control brain donors to characterize B cells and antibody-secreting cells (ASCs). MS brain tissue sections were analysed with immunostainings and microarrays. IgG index and CSF oligoclonal bands were measured with nephelometry, isoelectric focusing, and immunoblotting. Blood-derived B cells were cocultured under T follicular helper-like conditions to evaluate their ASC-differentiating capacity in vitro. FINDINGS ASC versus B-cell ratios were increased in post-mortem CNS compartments of MS but not control donors. Local presence of ASCs associated with a mature CD45low phenotype, focal MS lesional activity, lesional Ig gene expression, and CSF IgG levels as well as clonality. In vitro B-cell maturation into ASCs did not differ between MS and control donors. Notably, lesional CD4+ memory T cells positively correlated with ASC presence, reflected by local interplay with T cells. INTERPRETATION These findings provide evidence that local B cells at least in late-stage MS preferentially mature into ASCs, which are largely responsible for intrathecal and local Ig production. This is especially seen in active MS white matter lesions and likely depends on the interaction with CD4+ memory T cells. FUNDING Stichting MS Research (19-1057 MS; 20-490f MS), National MS Fonds (OZ2018-003).
Collapse
Affiliation(s)
- Laurens Bogers
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Hendrik J Engelenburg
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Malou Janssen
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Peter-Paul A Unger
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Marie-José Melief
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Cheng-Chih Hsiao
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Matthew R J Mason
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, 1007 MB, Amsterdam, The Netherlands
| | - Jamie van Langelaar
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands; Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Evangelopoulos ME, Koutsis G, Boufidou F, Markianos M. Cholesterol levels in plasma and cerebrospinal fluid in patients with clinically isolated syndrome and relapsing-remitting multiple sclerosis. Neurobiol Dis 2022; 174:105889. [DOI: 10.1016/j.nbd.2022.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022] Open
|
8
|
Abstract
Since the initial observation of increased immunoglobulin concentrations in the cerebrospinal fluid of multiple sclerosis (MS) patients in the 1940s, B cells have been considered to participate in the pathology of MS through the production of autoantibodies reactive against central nervous system antigens. However, it is now recognized that B cells contribute to MS relapses via antibody-independent activities, including the presentation of antigens to T cells and the release of pro-inflammatory cytokines. In addition, the recent identification of B cell-rich follicle-like structures in the meninges of progressive MS patients suggests that the pathogenic roles of B cells also exist at the progressive phase of this disease. Recently, large-scale clinical trials have demonstrated the efficacy of B-cell depletion therapy using anti-CD20 antibodies in relapsing as well as primary progressive MS. B-cell depletion therapy has become an essential treatment option for MS based on its unique benefit to risk balance in relapsing MS, and because it is the only drug that has been shown to be effective in primary progressive MS to date.
Collapse
Affiliation(s)
- Yusei Miyazaki
- Department of Neurology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Masaaki Niino
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| |
Collapse
|
9
|
Negron A, Stüve O, Forsthuber TG. Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control? Front Neurol 2020; 11:607766. [PMID: 33363512 PMCID: PMC7753025 DOI: 10.3389/fneur.2020.607766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Olaf Stüve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Neurology Section, Veterans Affairs North Texas Health Care System, Medical Service, Dallas, TX, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
10
|
|
11
|
Arneth BM. Impact of B cells to the pathophysiology of multiple sclerosis. J Neuroinflammation 2019; 16:128. [PMID: 31238945 PMCID: PMC6593488 DOI: 10.1186/s12974-019-1517-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is a chronic autoimmune disorder that affects the central nervous system and compromises the health and well-being of millions of people worldwide. B cells have been linked to MS and its progression. This review aimed to determine the role of B cells in MS development. Methods Articles used in this review were obtained from PubMed, LILACS, and EBSCO. The search terms and phrases included “multiple sclerosis,” “MS,” “B-Cells,” “pathogenesis,” and “development.” Original research studies and articles on MS and B cells published between 2007 and 2018 were included. Results Results from the selected articles showed a significant connection between B cell groups and MS. B cells act as a significant source of plasma cells, which generate antibodies while also regulating autoimmune processes and T cell production. In addition, B cells regulate the release of molecules that affect the proinflammatory actions of other immune cells. Discussion B cells play key roles in immune system functioning and MS. The findings of this review illustrate the complex nature of B cell actions, their effects on the autoimmune system, and the method by which they contribute to MS pathogenesis. Conclusion Previous research implicates biological, genetic, and environmental factors in MS pathogenesis. This review suggests that B cells contribute to MS development and advancement by influencing and regulating autoimmune processes such as T cell production and APC activity.
Collapse
Affiliation(s)
- Borros M Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Feulgenstr. 12, 35392, Giessen, Germany.
| |
Collapse
|
12
|
Negron A, Robinson RR, Stüve O, Forsthuber TG. The role of B cells in multiple sclerosis: Current and future therapies. Cell Immunol 2018; 339:10-23. [PMID: 31130183 DOI: 10.1016/j.cellimm.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
While it was long held that T cells were the primary mediators of multiple sclerosis (MS) pathogenesis, the beneficial effects observed in response to treatment with Rituximab (RTX), a monoclonal antibody (mAb) targeting CD20, shed light on a key contributor to MS that had been previously underappreciated: B cells. This has been reaffirmed by results from clinical trials testing the efficacy of subsequently developed B cell-depleting mAbs targeting CD20 as well as studies revisiting the effects of previous disease-modifying therapies (DMTs) on B cell subsets thought to modulate disease severity. In this review, we summarize current knowledge regarding the complex roles of B cells in MS pathogenesis and current and potential future B cell-directed therapies.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, USA
| | | |
Collapse
|
13
|
Kearns PKA, Casey HA, Leach JP. Hypothesis: Multiple sclerosis is caused by three-hits, strictly in order, in genetically susceptible persons. Mult Scler Relat Disord 2018; 24:157-174. [PMID: 30015080 DOI: 10.1016/j.msard.2018.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Abstract
Multiple Sclerosis is a chronic, progressive and debilitating neurological disease which, despite extensive study for over 100 years, remains of enigmatic aetiology. Drawn from the epidemiological evidence, there exists a consensus that there are environmental (possibly infectious) factors that contribute to disease pathogenesis that have not yet been fully elucidated. Here we propose a three-tiered hypothesis: 1) a clinic-epidemiological model of multiple sclerosis as a rare late complication of two sequential infections (with the temporal sequence of infections being important); 2) a proposal that the first event is helminthic infection with Enterobius Vermicularis, and the second is Epstein Barr Virus infection; and 3) a proposal for a testable biological mechanism, involving T-Cell exhaustion for Epstein-Barr Virus protein LMP2A. We believe that this model satisfies some of the as-yet unexplained features of multiple sclerosis epidemiology, is consistent with the clinical and neuropathological features of the disease and is potentially testable by experiment. This model may be generalizable to other autoimmune diseases.
Collapse
|
14
|
Bonnan M, Gianoli-Guillerme M, Courtade H, Demasles S, Krim E, Marasescu R, Dréau H, Debeugny S, Barroso B. Estimation of intrathecal IgG synthesis: simulation of the risk of underestimation. Ann Clin Transl Neurol 2018; 5:524-537. [PMID: 29761116 PMCID: PMC5945966 DOI: 10.1002/acn3.548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/14/2018] [Accepted: 02/11/2018] [Indexed: 12/15/2022] Open
Abstract
Objective The low level of passively diffused IgG through the blood–brain barrier is sufficient to blur the estimation of intrathecal IgG synthesis (ITS). Therefore, this estimation requires a mathematical calculation derived from empirical laws, but the range of normal values in healthy controls is wide enough to prevent a precise calculation. This study investigated the precision of various methods of ITS estimations and their application to two clinical situations: plasma exchange and immune suppression targeting ITS. Methods Based on a mathematical model of ITS, we constructed a population of healthy controls and applied a tunable ITS. Results We demonstrate the following results: underestimation of ITS is common at individual level but true ITS is well fitted by cohorts; QIgG increases after plasma exchange; IgGLoc calculation based on Qlim falsely increases when QAlb decreases; the sample size required to demonstrate a decrease in ITS increases exponentially with larger QAlb. Interpretation Studies evaluating changes in ITS level should be adjusted to QAlb. Low amounts of ITS could be largely underestimated.
Collapse
Affiliation(s)
- Mickael Bonnan
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | | | - Henri Courtade
- Biologie médicale Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Stéphanie Demasles
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Elsa Krim
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Raluca Marasescu
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Hervé Dréau
- Unité de recherche clinique Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Stéphane Debeugny
- Unité de recherche clinique Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| | - Bruno Barroso
- Service de neurologie Centre Hospitalier de Pau 4 bd Hauterive Pau 64046 France
| |
Collapse
|
15
|
Greenfield AL, Hauser SL. B-cell Therapy for Multiple Sclerosis: Entering an era. Ann Neurol 2018; 83:13-26. [PMID: 29244240 PMCID: PMC5876115 DOI: 10.1002/ana.25119] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/01/2017] [Accepted: 12/09/2017] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies that target CD20 expressing B cells represent an important new treatment option for patients with multiple sclerosis (MS). B-cell-depleting therapy is highly effective against relapsing forms of the disease and is also the first treatment approach proven to protect against disability worsening in primary progressive MS. Moreover, evolving clinical experience with B-cell therapy, combined with a more sophisticated understanding of humoral immunity in preclinical models and in patients with MS, has led to major progress in deciphering the immune pathogenesis of MS. Here, we review the nuanced roles of B cells in MS autoimmunity, the clinical data supporting use of ocrelizumab and other anti-CD20 therapies in the treatment of MS, as well as safety and practical considerations for prescribing. Last, we summarize remaining unanswered questions regarding the proper role of anti-CD20 therapy in MS, its limitations, and the future landscape of B-cell-based approaches to treatment. Ann Neurol 2018;83:13-26.
Collapse
Affiliation(s)
- Ariele L. Greenfield
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Stephen L. Hauser
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
16
|
Fillatreau S. B cells and their cytokine activities implications in human diseases. Clin Immunol 2018; 186:26-31. [PMID: 28736271 PMCID: PMC5844600 DOI: 10.1016/j.clim.2017.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022]
Abstract
B cells are the only cell type that can give rise to antibody-producing cells, and the only cell type whose selective depletion can, today, lead to an improvement of a wide range of immune-mediated inflammatory diseases, including disorders not primarily driven by autoantibodies. Here, I discuss this paradoxical observation, and propose that the capacity of B cells to act as cytokine-producing cells explains how they can control monocyte activity and subsequently disease pathogenesis. Together with current data on the effect of anti-CD20 B cell-depleting reagents in the clinic, this novel knowledge on B cell heterogeneity opens the way for novel safer and more efficient strategies to target B cells. The forthcoming identification of disease-relevant B cell subsets is awaited to permit their monitoring and specific targeting in a personalized medicine approach.
Collapse
Affiliation(s)
- Simon Fillatreau
- Institut Necker-Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants Malades, Paris, France; Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz Institute, Berlin, Germany.
| |
Collapse
|
17
|
Pollok K, Mothes R, Ulbricht C, Liebheit A, Gerken JD, Uhlmann S, Paul F, Niesner R, Radbruch H, Hauser AE. The chronically inflamed central nervous system provides niches for long-lived plasma cells. Acta Neuropathol Commun 2017; 5:88. [PMID: 29178933 PMCID: PMC5702095 DOI: 10.1186/s40478-017-0487-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 10/30/2017] [Indexed: 11/11/2022] Open
Abstract
Although oligoclonal bands in the cerebrospinal fluid have been a hallmark of multiple sclerosis diagnosis for over three decades, the role of antibody-secreting cells in multiple sclerosis remains unclear. T and B cells are critical for multiple sclerosis pathogenesis, but increasing evidence suggests that plasma cells also contribute, through secretion of autoantibodies. Long-lived plasma cells are known to drive various chronic inflammatory conditions as e.g. systemic lupus erythematosus, however, to what extent they are present in autoimmune central nervous system inflammation has not yet been investigated. In brain biopsies from multiple sclerosis patients and other neurological diseases, we could detect non-proliferating plasma cells (CD138+Ki67−) in the parenchyma. Based on this finding, we hypothesized that long-lived plasma cells can persist in the central nervous system (CNS). In order to test this hypothesis, we adapted the multiple sclerosis mouse model experimental autoimmune encephalomyelitis to generate a B cell memory response. Plasma cells were found in the meninges and the parenchyma of the inflamed spinal cord, surrounded by tissue areas resembling survival niches for these cells, characterized by an up-regulation of chemokines (CXCL12), adhesion molecules (VCAM-1) and survival factors (APRIL and BAFF). In order to determine the lifetime of plasma cells in the chronically inflamed CNS, we labeled the DNA of proliferating cells with 5-ethynyl-2′-deoxyuridine (EdU). Up to five weeks later, we could detect EdU+ long-lived plasma cells in the murine CNS. To our knowledge, this is the first study describing non-proliferating plasma cells directly in the target tissue of a chronic inflammation in humans, as well as the first evidence demonstrating the ability of plasma cells to persist in the CNS, and the ability of the chronically inflamed CNS tissue to promote this persistence. Hence, our results suggest that the CNS provides survival niches for long-lived plasma cells, similar to the niches found in other organs. Targeting these cells in the CNS offers new perspectives for treatment of chronic autoimmune neuroinflammatory diseases, especially in patients who do not respond to conventional therapies.
Collapse
|
18
|
Malviya M, Barman S, Golombeck KS, Planagumà J, Mannara F, Strutz-Seebohm N, Wrzos C, Demir F, Baksmeier C, Steckel J, Falk KK, Gross CC, Kovac S, Bönte K, Johnen A, Wandinger KP, Martín-García E, Becker AJ, Elger CE, Klöcker N, Wiendl H, Meuth SG, Hartung HP, Seebohm G, Leypoldt F, Maldonado R, Stadelmann C, Dalmau J, Melzer N, Goebels N. NMDAR encephalitis: passive transfer from man to mouse by a recombinant antibody. Ann Clin Transl Neurol 2017; 4:768-783. [PMID: 29159189 PMCID: PMC5682115 DOI: 10.1002/acn3.444] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
Objective Autoimmune encephalitis is most frequently associated with anti‐NMDAR autoantibodies. Their pathogenic relevance has been suggested by passive transfer of patients' cerebrospinal fluid (CSF) in mice in vivo. We aimed to analyze the intrathecal plasma cell repertoire, identify autoantibody‐producing clones, and characterize their antibody signatures in recombinant form. Methods Patients with recent onset typical anti‐NMDAR encephalitis were subjected to flow cytometry analysis of the peripheral and intrathecal immune response before, during, and after immunotherapy. Recombinant human monoclonal antibodies (rhuMab) were cloned and expressed from matching immunoglobulin heavy‐ (IgH) and light‐chain (IgL) amplicons of clonally expanded intrathecal plasma cells (cePc) and tested for their pathogenic relevance. Results Intrathecal accumulation of B and plasma cells corresponded to the clinical course. The presence of cePc with hypermutated antigen receptors indicated an antigen‐driven intrathecal immune response. Consistently, a single recombinant human GluN1‐specific monoclonal antibody, rebuilt from intrathecal cePc, was sufficient to reproduce NMDAR epitope specificity in vitro. After intraventricular infusion in mice, it accumulated in the hippocampus, decreased synaptic NMDAR density, and caused severe reversible memory impairment, a key pathogenic feature of the human disease, in vivo. Interpretation A CNS‐specific humoral immune response is present in anti‐NMDAR encephalitis specifically targeting the GluN1 subunit of the NMDAR. Using reverse genetics, we recovered the typical intrathecal antibody signature in recombinant form, and proved its pathogenic relevance by passive transfer of disease symptoms from man to mouse, providing the critical link between intrathecal immune response and the pathogenesis of anti‐NMDAR encephalitis as a humorally mediated autoimmune disease.
Collapse
Affiliation(s)
- Manish Malviya
- Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany.,Present address: Centre Physiopathologie de Toulouse-Purpan Université Toulouse III Toulouse France
| | - Sumanta Barman
- Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | | | - Jesús Planagumà
- Institut d'Investigació Biomèdica August Pi i Sunyer University of Barcelona Barcelona Spain
| | - Francesco Mannara
- Institut d'Investigació Biomèdica August Pi i Sunyer University of Barcelona Barcelona Spain.,Laboratori de Neurofarmacologia Universitat Pompeu Fabra Facultat de Ciències de la Salut i de la Vida Barcelona Spain
| | | | - Claudia Wrzos
- Institute of Neuropathology University of Göttingen Göttingen Germany
| | - Fatih Demir
- Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany.,Present address: Forschungszentrum Jülich Jülich Germany
| | - Christine Baksmeier
- Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Julia Steckel
- Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Kim Kristin Falk
- Institute of Clinical Chemistry and Department of Neurology University Hospital of Schleswig-Holstein Lübeck/Kiel Schleswig-Holstein Germany
| | | | - Stjepana Kovac
- Department of Neurology University of Münster Münster Germany
| | - Kathrin Bönte
- Department of Neurology University of Münster Münster Germany
| | - Andreas Johnen
- Department of Neurology University of Münster Münster Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry and Department of Neurology University Hospital of Schleswig-Holstein Lübeck/Kiel Schleswig-Holstein Germany
| | - Elena Martín-García
- Laboratori de Neurofarmacologia Universitat Pompeu Fabra Facultat de Ciències de la Salut i de la Vida Barcelona Spain
| | - Albert J Becker
- Department of Neuropathology University of Bonn Bonn Germany
| | | | - Nikolaj Klöcker
- Institute of Neurophysiology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Heinz Wiendl
- Department of Neurology University of Münster Münster Germany
| | - Sven G Meuth
- Department of Neurology University of Münster Münster Germany
| | - Hans-Peter Hartung
- Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH) University of Münster Münster Germany
| | - Frank Leypoldt
- Institute of Clinical Chemistry and Department of Neurology University Hospital of Schleswig-Holstein Lübeck/Kiel Schleswig-Holstein Germany
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia Universitat Pompeu Fabra Facultat de Ciències de la Salut i de la Vida Barcelona Spain
| | | | - Josep Dalmau
- Institut d'Investigació Biomèdica August Pi i Sunyer University of Barcelona Barcelona Spain.,Catalan Institution for Research and Advanced Studies Barcelona Spain.,Department of Neurology University of Pennsylvania Philadelphia Pennsylvania
| | - Nico Melzer
- Department of Neurology University of Münster Münster Germany
| | - Norbert Goebels
- Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| |
Collapse
|
19
|
Staun-Ram E, Miller A. Effector and regulatory B cells in Multiple Sclerosis. Clin Immunol 2017; 184:11-25. [PMID: 28461106 DOI: 10.1016/j.clim.2017.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
The role of B cells in the pathogenesis of Multiple Sclerosis (MS), an autoimmune neurodegenerative disease, is becoming eminent in recent years, but the specific contribution of the distinct B cell subsets remains to be elucidated. Several B cell subsets have shown regulatory, anti-inflammatory capacities in response to stimuli in vitro, as well as in the animal model of MS: Experimental Autoimmune Encephalomyelitis (EAE). However, the functional role of the B regulatory cells (Bregs) in vivo and specifically in the human disease is yet to be clarified. In the present review, we have summarized the updated information on the roles of effector and regulatory B cells in MS and the immune-modulatory effects of MS therapeutic agents on their phenotype and function.
Collapse
Affiliation(s)
- Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Neuroimmunology Unit & Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel.
| |
Collapse
|
20
|
Rivas JR, Ireland SJ, Chkheidze R, Rounds WH, Lim J, Johnson J, Ramirez DMO, Ligocki AJ, Chen D, Guzman AA, Woodhall M, Wilson PC, Meffre E, White C, Greenberg BM, Waters P, Cowell LG, Stowe AM, Monson NL. Peripheral VH4+ plasmablasts demonstrate autoreactive B cell expansion toward brain antigens in early multiple sclerosis patients. Acta Neuropathol 2017; 133:43-60. [PMID: 27730299 DOI: 10.1007/s00401-016-1627-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 11/24/2022]
Abstract
Plasmablasts are a highly differentiated, antibody secreting B cell subset whose prevalence correlates with disease activity in Multiple Sclerosis (MS). For most patients experiencing partial transverse myelitis (PTM), plasmablasts are elevated in the blood at the first clinical presentation of disease (known as a clinically isolated syndrome or CIS). In this study we found that many of these peripheral plasmablasts are autoreactive and recognize primarily gray matter targets in brain tissue. These plasmablasts express antibodies that over-utilize immunoglobulin heavy chain V-region subgroup 4 (VH4) genes, and the highly mutated VH4+ plasmablast antibodies recognize intracellular antigens of neurons and astrocytes. Most of the autoreactive, highly mutated VH4+ plasmablast antibodies recognize only a portion of cortical neurons, indicating that the response may be specific to neuronal subgroups or layers. Furthermore, CIS-PTM patients with this plasmablast response also exhibit modest reactivity toward neuroantigens in the plasma IgG antibody pool. Taken together, these data indicate that expanded VH4+ peripheral plasmablasts in early MS patients recognize brain gray matter antigens. Peripheral plasmablasts may be participating in the autoimmune response associated with MS, and provide an interesting avenue for investigating the expansion of autoreactive B cells at the time of the first documented clinical event.
Collapse
Affiliation(s)
- Jacqueline R Rivas
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Sara J Ireland
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Rati Chkheidze
- Department of Pathology, UT Southwestern, Dallas, TX, USA
| | - William H Rounds
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Joseph Lim
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Jordan Johnson
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Denise M O Ramirez
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Ann J Ligocki
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Ding Chen
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Alyssa A Guzman
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Mark Woodhall
- Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Patrick C Wilson
- Department of Biomedical Sciences, University of Chicago, Chicago, IL, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Charles White
- Department of Pathology, UT Southwestern, Dallas, TX, USA
| | | | - Patrick Waters
- Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lindsay G Cowell
- Department of Clinical Science, UT Southwestern, Dallas, TX, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA.
- Department of Immunology, UT Southwestern, Dallas, TX, USA.
| |
Collapse
|
21
|
Mei F, Lehmann-Horn K, Shen YAA, Rankin KA, Stebbins KJ, Lorrain DS, Pekarek K, A Sagan S, Xiao L, Teuscher C, von Büdingen HC, Wess J, Lawrence JJ, Green AJ, Fancy SP, Zamvil SS, Chan JR. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. eLife 2016; 5. [PMID: 27671734 PMCID: PMC5039026 DOI: 10.7554/elife.18246] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/01/2016] [Indexed: 01/19/2023] Open
Abstract
Demyelination in MS disrupts nerve signals and contributes to axon degeneration. While remyelination promises to restore lost function, it remains unclear whether remyelination will prevent axonal loss. Inflammatory demyelination is accompanied by significant neuronal loss in the experimental autoimmune encephalomyelitis (EAE) mouse model and evidence for remyelination in this model is complicated by ongoing inflammation, degeneration and possible remyelination. Demonstrating the functional significance of remyelination necessitates selectively altering the timing of remyelination relative to inflammation and degeneration. We demonstrate accelerated remyelination after EAE induction by direct lineage analysis and hypothesize that newly formed myelin remains stable at the height of inflammation due in part to the absence of MOG expression in immature myelin. Oligodendroglial-specific genetic ablation of the M1 muscarinic receptor, a potent negative regulator of oligodendrocyte differentiation and myelination, results in accelerated remyelination, preventing axonal loss and improving functional recovery. Together our findings demonstrate that accelerated remyelination supports axonal integrity and neuronal function after inflammatory demyelination. DOI:http://dx.doi.org/10.7554/eLife.18246.001
Collapse
Affiliation(s)
- Feng Mei
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Klaus Lehmann-Horn
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Yun-An A Shen
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Kelsey A Rankin
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | | | | | - Kara Pekarek
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Sharon A Sagan
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Cory Teuscher
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
| | | | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - J Josh Lawrence
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, United States
| | - Ari J Green
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Stephen Pj Fancy
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Scott S Zamvil
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
22
|
Winter M, Baksmeier C, Steckel J, Barman S, Malviya M, Harrer-Kuster M, Hartung HP, Goebels N. Dose-dependent inhibition of demyelination and microglia activation by IVIG. Ann Clin Transl Neurol 2016; 3:828-843. [PMID: 27844029 PMCID: PMC5099529 DOI: 10.1002/acn3.326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 04/25/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022] Open
Abstract
Objective Intravenous immunoglobulin (IVIG) is an established treatment for numerous autoimmune conditions. Clinical trials of IVIG for multiple sclerosis, using diverse dose regimens, yielded controversial results. The aim of this study is to dissect IVIG effector mechanisms on demyelination in an ex vivo model of the central nervous system (CNS)‐immune interface. Methods Using organotypic cerebellar slice cultures (OSC) from transgenic mice expressing green fluorescent protein (GFP) in oligodendrocytes/myelin, we induced extensive immune‐mediated demyelination and oligodendrocyte loss with an antibody specific for myelin oligodendrocyte glycoprotein (MOG) and complement. Protective IVIG effects were assessed by live imaging of GFP expression, confocal microscopy, immunohistochemistry, gene expression analysis and flow cytometry. Results IVIG protected OSC from demyelination in a dose‐dependent manner, which was at least partly attributed to interference with complement‐mediated oligodendroglia damage, while binding of the anti‐MOG antibody was not prevented. Staining with anti‐CD68 antibodies and flow cytometry confirmed that IVIG prevented microglia activation and oligodendrocyte death, respectively. Equimolar IVIG‐derived Fab fragments or monoclonal IgG did not protect OSC, while Fc fragments derived from a polyclonal mixture of human IgG were at least as potent as intact IVIG. Interpretation Both intact IVIG and Fc fragments exert a dose‐dependent protective effect on antibody‐mediated CNS demyelination and microglia activation by interfering with the complement cascade and, presumably, interacting with local immune cells. Although this experimental model lacks blood–brain barrier and peripheral immune components, our findings warrant further studies on optimal dose finding and alternative modes of application to enhance local IVIG concentrations at the site of tissue damage.
Collapse
Affiliation(s)
- Meike Winter
- Department of Neurology, Medical Faculty Heinrich-Heine-University Duesseldorf Moorenstr. 5 D-40225 Duesseldorf Germany
| | - Christine Baksmeier
- Department of Neurology, Medical Faculty Heinrich-Heine-University Duesseldorf Moorenstr. 5 D-40225 Duesseldorf Germany
| | - Julia Steckel
- Department of Neurology, Medical Faculty Heinrich-Heine-University Duesseldorf Moorenstr. 5 D-40225 Duesseldorf Germany
| | - Sumanta Barman
- Department of Neurology, Medical Faculty Heinrich-Heine-University Duesseldorf Moorenstr. 5 D-40225 Duesseldorf Germany
| | - Manish Malviya
- Department of Neurology, Medical Faculty Heinrich-Heine-University Duesseldorf Moorenstr. 5D-40225 Duesseldorf Germany; Present address: CPTP, Centre Physiopathologie de Toulouse-Purpan INSERM U1043 - CNRS UMR 5282-Université Toulouse III Toulouse France
| | - Melanie Harrer-Kuster
- University of Zuerich, Clinical Neuroimmunology Zuerich Switzerland; Present address: Abb Vie AG Baar Switzerland
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty Heinrich-Heine-University Duesseldorf Moorenstr. 5 D-40225 Duesseldorf Germany
| | - Norbert Goebels
- Department of Neurology, Medical Faculty Heinrich-Heine-University Duesseldorf Moorenstr. 5 D-40225 Duesseldorf Germany
| |
Collapse
|
23
|
Antibodies in multiple sclerosis oligoclonal bands target debris. Proc Natl Acad Sci U S A 2016; 113:7696-8. [PMID: 27357674 DOI: 10.1073/pnas.1609246113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proc Natl Acad Sci U S A 2016; 113:7864-9. [PMID: 27325759 DOI: 10.1073/pnas.1522730113] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oligoclonal Ig bands (OCBs) of the cerebrospinal fluid are a hallmark of multiple sclerosis (MS), a disabling inflammatory disease of the central nervous system (CNS). OCBs are locally produced by clonally expanded antigen-experienced B cells and therefore are believed to hold an important clue to the pathogenesis. However, their target antigens have remained unknown, mainly because it was thus far not possible to isolate distinct OCBs against a background of polyclonal antibodies. To overcome this obstacle, we copurified disulfide-linked Ig heavy and light chains from distinct OCBs for concurrent analysis by mass spectrometry and aligned patient-specific peptides to corresponding transcriptome databases. This method revealed the full-length sequences of matching chains from distinct OCBs, allowing for antigen searches using recombinant OCB antibodies. As validation, we demonstrate that an OCB antibody from a patient with an infectious CNS disorder, neuroborreliosis, recognized a Borrelia protein. Next, we produced six recombinant antibodies from four MS patients and identified three different autoantigens. All of them are conformational epitopes of ubiquitous intracellular proteins not specific to brain tissue. Our findings indicate that the B-cell response in MS is heterogeneous and partly directed against intracellular autoantigens released during tissue destruction. In addition to helping elucidate the role of B cells in MS, our approach allows the identification of target antigens of OCB antibodies in other neuroinflammatory diseases and the production of therapeutic antibodies in infectious CNS diseases.
Collapse
|
25
|
Lossius A, Johansen JN, Vartdal F, Holmøy T. High-throughput sequencing of immune repertoires in multiple sclerosis. Ann Clin Transl Neurol 2016; 3:295-306. [PMID: 27081660 PMCID: PMC4818741 DOI: 10.1002/acn3.295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/21/2015] [Accepted: 01/18/2016] [Indexed: 12/24/2022] Open
Abstract
T cells and B cells are crucial in the initiation and maintenance of multiple sclerosis (MS), and the activation of these cells is believed to be mediated through specific recognition of antigens by the T‐ and B‐cell receptors. The antigen receptors are highly polymorphic due to recombination (T‐ and B‐cell receptors) and mutation (B‐cell receptors) of the encoding genes, which can therefore be used as fingerprints to track individual T‐ and B‐cell clones. Such studies can shed light on mechanisms driving the immune responses and provide new insights into the pathogenesis. Here, we summarize studies that have explored the T‐ and B‐cell receptor repertoires using earlier methodological approaches, and we focus on how high‐throughput sequencing has provided new knowledge by surveying the immune repertoires in MS in even greater detail and with unprecedented depth.
Collapse
Affiliation(s)
- Andreas Lossius
- Department of Immunology and Transfusion Medicine Oslo University Hospital Rikshospitalet Oslo Norway; Department of Neurology Oslo University Hospital Rikshospitalet Oslo Norway; Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Jorunn N Johansen
- Department of Immunology and Transfusion Medicine Oslo University Hospital Rikshospitalet Oslo Norway
| | - Frode Vartdal
- Department of Immunology and Transfusion Medicine Oslo University Hospital Rikshospitalet Oslo Norway; Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Trygve Holmøy
- Institute of Clinical Medicine University of Oslo Oslo Norway; Department of Neurology Akershus University Hospital Lørenskog Norway
| |
Collapse
|
26
|
Hohlfeld R, Dornmair K, Meinl E, Wekerle H. The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol 2015; 15:317-31. [PMID: 26724102 DOI: 10.1016/s1474-4422(15)00313-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023]
Abstract
Interest in CD8+ T cells and B cells was initially inspired by observations in multiple sclerosis rather than in animal models: CD8+ T cells predominate in multiple sclerosis lesions, oligoclonal immunoglobulin bands in CSF have long been recognised as diagnostic and prognostic markers, and anti-B-cell therapies showed considerable efficacy in multiple sclerosis. Taking a reverse-translational approach, findings from human T-cell receptor (TCR) and B-cell receptor (BCR) repertoire studies provided strong evidence for antigen-driven clonal expansion in the brain and CSF. New methods allow the reconstruction of human TCRs and antibodies from tissue-infiltrating immune cells, which can be used for the unbiased screening of antigen libraries. Myelin oligodendrocyte glycoprotein (MOG) has received renewed attention as an antibody target in childhood multiple sclerosis and in a small subgroup of adult patients with multiple sclerosis. Furthermore, there is growing evidence that a separate condition in adults exists, tentatively called MOG-antibody-associated encephalomyelitis, which has clinical features that overlap with neuromyelitis optica spectrum disorder and multiple sclerosis. Although CD8+ T cells and B cells are thought to have a pathogenic role in some subgroups of patients, their target antigens have yet to be identified.
Collapse
Affiliation(s)
- Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Campus Martinsried-Grosshadern, Ludwig-Maximilians University, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Campus Martinsried-Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Campus Martinsried-Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Hartmut Wekerle
- HERTIE Senior Professor Group Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
27
|
Claes N, Fraussen J, Stinissen P, Hupperts R, Somers V. B Cells Are Multifunctional Players in Multiple Sclerosis Pathogenesis: Insights from Therapeutic Interventions. Front Immunol 2015; 6:642. [PMID: 26734009 PMCID: PMC4685142 DOI: 10.3389/fimmu.2015.00642] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/07/2015] [Indexed: 01/07/2023] Open
Abstract
Multiple sclerosis (MS) is a severe disease of the central nervous system (CNS) characterized by autoimmune inflammation and neurodegeneration. Historically, damage to the CNS was thought to be mediated predominantly by activated pro-inflammatory T cells. B cell involvement in the pathogenesis of MS was solely attributed to autoantibody production. The first clues for the involvement of antibody-independent B cell functions in MS pathology came from positive results in clinical trials of the B cell-depleting treatment rituximab in patients with relapsing-remitting (RR) MS. The survival of antibody-secreting plasma cells and decrease in T cell numbers indicated the importance of other B cell functions in MS such as antigen presentation, costimulation, and cytokine production. Rituximab provided us with an example of how clinical trials can lead to new research opportunities concerning B cell biology. Moreover, analysis of the antibody-independent B cell functions in MS has gained interest since these trials. Limited information is present on the effects of current immunomodulatory therapies on B cell functions, although effects of both first-line (interferon, glatiramer acetate, dimethyl fumarate, and teriflunomide), second-line (fingolimod, natalizumab), and even third-line (monoclonal antibody therapies) treatments on B cell subtype distribution, expression of functional surface markers, and secretion of different cytokines by B cells have been studied to some extent. In this review, we summarize the effects of different MS-related treatments on B cell functions that have been described up to now in order to find new research opportunities and contribute to the understanding of the pathogenesis of MS.
Collapse
Affiliation(s)
- Nele Claes
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| | - Judith Fraussen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| | - Piet Stinissen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| | - Raymond Hupperts
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; Department of Neurology, Academic MS Center Limburg, Zuyderland Medisch Centrum, Sittard, Netherlands
| | - Veerle Somers
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| |
Collapse
|
28
|
Blauth K, Soltys J, Matschulat A, Reiter CR, Ritchie A, Baird NL, Bennett JL, Owens GP. Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid cause demyelination of spinal cord explants. Acta Neuropathol 2015; 130:765-81. [PMID: 26511623 DOI: 10.1007/s00401-015-1500-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022]
Abstract
B cells are implicated in the etiology of multiple sclerosis (MS). Intrathecal IgG synthesis, cerebrospinal fluid (CSF) oligoclonal bands and lesional IgG deposition suggest a role for antibody-mediated pathology. We examined the binding of IgG1 monoclonal recombinant antibodies (rAbs) derived from MS patient CSF expanded B cell clones to central nervous system (CNS) tissue. MS rAbs displaying CNS binding to mouse and human CNS tissue were further tested for their ability to induce complement-mediated tissue injury in ex vivo spinal cord explant cultures. The staining of CNS tissue, primary human astrocytes and human neurons revealed a measurable bias in MS rAb binding to antigens preferentially expressed on astrocytes and neurons. MS rAbs that recognize myelin-enriched antigens were rarely detected. Both myelin-specific and some astrocyte/neuronal-specific MS rAbs caused significant myelin loss and astrocyte activation when applied to spinal cord explant cultures in the presence of complement. Overall, the intrathecal B cell response in multiple sclerosis binds to both glial and neuronal targets and produces demyelination in spinal cord explant cultures implicating intrathecal IgG in MS pathogenesis.
Collapse
|
29
|
Willis SN, Stathopoulos P, Chastre A, Compton SD, Hafler DA, O'Connor KC. Investigating the Antigen Specificity of Multiple Sclerosis Central Nervous System-Derived Immunoglobulins. Front Immunol 2015; 6:600. [PMID: 26648933 PMCID: PMC4663633 DOI: 10.3389/fimmu.2015.00600] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
The central nervous system (CNS) of patients with multiple sclerosis (MS) is the site where disease pathology is evident. Damaged CNS tissue is commonly associated with immune cell infiltration. This infiltrate often includes B cells that are found in multiple locations throughout the CNS, including the cerebrospinal fluid (CSF), parenchyma, and the meninges, frequently forming tertiary lymphoid structures in the latter. Several groups, including our own, have shown that B cells from distinct locations within the MS CNS are clonally related and display the characteristics of an antigen-driven response. However, the antigen(s) driving this response have yet to be conclusively defined. To explore the antigen specificity of the MS B cell response, we produced recombinant human immunoglobulin (rIgG) from a series of expanded B cell clones that we isolated from the CNS tissue of six MS brains. The specificity of these MS-derived rIgG and control rIgG derived from non-MS tissues was then examined using multiple methodologies that included testing individual candidate antigens, screening with high-throughput antigen arrays and evaluating binding to CNS-derived cell lines. We report that while several MS-derived rIgG recognized particular antigens, including neurofilament light and a protocadherin isoform, none were unique to MS, as non-MS-derived rIgG used as controls invariably displayed similar binding specificities. We conclude that while MS CNS resident B cells display the characteristics of an antigen-driven B cell response, the antigen(s) driving this response remain at large.
Collapse
Affiliation(s)
- Simon N Willis
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA ; Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, University of Melbourne , Parkville, VIC , Australia
| | | | - Anne Chastre
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA
| | - Shannon D Compton
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA ; Department of Immunobiology, Yale School of Medicine , New Haven, CT , USA
| | - Kevin C O'Connor
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA
| |
Collapse
|
30
|
Rounds WH, Salinas EA, Wilks TB, Levin MK, Ligocki AJ, Ionete C, Pardo CA, Vernino S, Greenberg BM, Bigwood DW, Eastman EM, Cowell LG, Monson NL. MSPrecise: A molecular diagnostic test for multiple sclerosis using next generation sequencing. Gene 2015; 572:191-7. [PMID: 26172868 PMCID: PMC4702260 DOI: 10.1016/j.gene.2015.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/11/2015] [Accepted: 07/03/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND We have previously demonstrated that cerebrospinal fluid-derived B cells from early relapsing-remitting multiple sclerosis (RRMS) patients that express a VH4 gene accumulate specific replacement mutations. These mutations can be quantified as a score that identifies such patients as having or likely to convert to RRMS. Furthermore, we showed that next generation sequencing is an efficient method for obtaining the sequencing information required by this mutation scoring tool, originally developed using the less clinically viable single-cell Sanger sequencing. OBJECTIVE To determine the accuracy of MSPrecise, the diagnostic test that identifies the presence of the RRMS-enriched mutation pattern from patient cerebrospinal fluid B cells. METHODS Cerebrospinal fluid cell pellets were obtained from RRMS and other neurological disease (OND) patient cohorts. VH4 gene segments were amplified, sequenced by next generation sequencing and analyzed for mutation score. RESULTS The diagnostic test showed a sensitivity of 75% on the RRMS cohort and a specificity of 88% on the OND cohort. The accuracy of the test in identifying RRMS patients or patients that will develop RRMS is 84%. CONCLUSION MSPrecise exhibits good performance in identifying patients with RRMS irrespective of time with RRMS.
Collapse
Affiliation(s)
- William H Rounds
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Edward A Salinas
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Mikhail K Levin
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ann J Ligocki
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carolina Ionete
- Department of Neurology, UMass Memorial Medical Center, Worcester, MA, USA
| | - Carlos A Pardo
- Department of Neurology and Neurosurgery, John Hopkins University, Baltimore, MD, USA
| | - Steven Vernino
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin M Greenberg
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Lindsay G Cowell
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA; Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Sun X, Bakhti M, Fitzner D, Schnaars M, Kruse N, Coskun Ü, Kremser C, Willecke K, Kappos L, Kuhle J, Simons M. Quantified CSF antibody reactivity against myelin in multiple sclerosis. Ann Clin Transl Neurol 2015; 2:1116-23. [PMID: 26734662 PMCID: PMC4693593 DOI: 10.1002/acn3.264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/21/2015] [Accepted: 10/12/2015] [Indexed: 01/26/2023] Open
Abstract
Background Synthesis of clonal IgG is a consistent feature of patients with multiple sclerosis (MS). Whether oligoclonal bands (OCBs) represent unspecific disease bystanders or active components in MS pathology is an open question. The aim of this study was to develop a method to quantify and compare the reactivity of cerebrospinal fluid (CSF) antibodies from patients with and without MS. Methods We collected CSF from 262 patients from two different cohorts, which included 148 patients with MS and 114 with other neurological diseases (OND). We established a highly sensitive electrochemiluminescence (ECL)‐based assay to measure CSF antibody reactivity against purified myelin particles and biotin anchored liposomes. The diagnostic value of the ECL score against myelin particles was assessed with receiver operating characteristic curves. Results CSF from patients with MS have higher reactivity toward purified myelin particles as compared to those with OND with OCBs. Using liposomes with defined lipid compositions and myelin particles from ceramide synthase 2 (CerS2) knockout mice, we find that some of the CSF antibody reactivity is directed against cerebrosides. Conclusion The ECL‐based assay system expands the currently available toolbox for the detection of autoantibodies in MS and related diseases.
Collapse
Affiliation(s)
- Xingwen Sun
- Max Planck Institute of Experimental Medicine Göttingen 37075 Germany; Department of Neurology University of Göttingen Göttingen 37075 Germany
| | - Mostafa Bakhti
- Max Planck Institute of Experimental Medicine Göttingen 37075 Germany; Department of Neurology University of Göttingen Göttingen 37075 Germany; Institute of Diabetes and Regeneration Research Helmholtz Zentrum München Neuherberg Germany
| | - Dirk Fitzner
- Max Planck Institute of Experimental Medicine Göttingen 37075 Germany; Department of Neurology University of Göttingen Göttingen 37075 Germany
| | - Mareike Schnaars
- Max Planck Institute of Experimental Medicine Göttingen 37075 Germany; Department of Neurology University of Göttingen Göttingen 37075 Germany
| | - Niels Kruse
- Department of Neuropathology University of Göttingen Göttingen 37075 Germany
| | - Ünal Coskun
- Laboratory of Membrane Biochemistry Paul Langerhans Institute Dresden Faculty of Medicine Carl Gustav Carus at the TU Dresden Fetscherstrasse 74 Dresden 01307 Germany; German Center for Diabetes Research (DZD) Dresden Germany; Max Planck Institute of Cell Biology and Genetics Dresden 01307 Germany
| | - Christiane Kremser
- Molecular Genetics, Life and Medical Sciences Institute University of Bonn Carl-Troll-Strasse 31 Bonn 53115 Germany
| | - Klaus Willecke
- Molecular Genetics, Life and Medical Sciences Institute University of Bonn Carl-Troll-Strasse 31 Bonn 53115 Germany
| | - Ludwig Kappos
- Departments of Neurology and Biomedicine University Hospital Basel Basel 4031 Switzerland
| | - Jens Kuhle
- Departments of Neurology and Biomedicine University Hospital Basel Basel 4031 Switzerland
| | - Mikael Simons
- Max Planck Institute of Experimental Medicine Göttingen 37075 Germany; Department of Neurology University of Göttingen Göttingen 37075 Germany
| |
Collapse
|
32
|
Ligocki AJ, Rivas JR, Rounds WH, Guzman AA, Li M, Spadaro M, Lahey L, Chen D, Henson PM, Graves D, Greenberg BM, Frohman EM, Ward ES, Robinson W, Meinl E, White CL, Stowe AM, Monson NL. A Distinct Class of Antibodies May Be an Indicator of Gray Matter Autoimmunity in Early and Established Relapsing Remitting Multiple Sclerosis Patients. ASN Neuro 2015; 7:7/5/1759091415609613. [PMID: 26489686 PMCID: PMC4710131 DOI: 10.1177/1759091415609613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
*These authors contributed equally to the work in this manuscript.We have previously identified a distinct class of antibodies expressed by B cells in the cerebrospinal fluid (CSF) of early and established relapsing remitting multiple sclerosis (RRMS) patients that is not observed in healthy donors. These antibodies contain a unique pattern of mutations in six codons along VH4 antibody genes that we termed the antibody gene signature (AGS). In fact, patients who have such B cells in their CSF are identified as either having RRMS or developing RRMS in the future. As mutations in antibody genes increase antibody affinity for particular antigens, the goal for this study was to investigate whether AGS(+) antibodies bind to brain tissue antigens. Single B cells were isolated from the CSF of 10 patients with early or established RRMS. We chose 32 of these B cells that expressed antibodies enriched for the AGS for further study. We generated monoclonal full-length recombinant human antibodies (rhAbs) and used both immunological assays and immunohistochemistry to investigate the capacity of these AGS(+) rhAbs to bind brain tissue antigens. AGS(+) rhAbs did not recognize myelin tracts in the corpus callosum. Instead, AGS(+) rhAbs recognized neuronal nuclei and/or astrocytes, which are prevalent in the cortical gray matter. This pattern was unique to the AGS(+) antibodies from early and established RRMS patients, as AGS(+) antibodies from an early neuromyelitis optica patient did not display the same reactivity. Prevalence of CSF-derived B cells expressing AGS(+) antibodies that bind to these cell types may be an indicator of gray matter-directed autoimmunity in early and established RRMS patients.
Collapse
Affiliation(s)
- Ann J Ligocki
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacqueline R Rivas
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William H Rounds
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alyssa A Guzman
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Li
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melania Spadaro
- Institute of Clinical Neuroimmunology, Ludwig-Maximilian-University, Munich, Germany
| | - Lauren Lahey
- Department of Immunology and Rheumatology, Stanford University, CA, USA
| | - Ding Chen
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul M Henson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donna Graves
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin M Greenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elliot M Frohman
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - E Sally Ward
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William Robinson
- Department of Immunology and Rheumatology, Stanford University, CA, USA
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Ludwig-Maximilian-University, Munich, Germany
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
33
|
Abstract
While over the past decades T cells have been considered key players in the pathogenesis of multiple sclerosis (MS), it has only recently become evident that B cells have a major contributing role. Our understanding of the role of B cells has evolved substantially following the clinical success of B cell-targeting therapies and increasing experimental evidence for significant B cell involvement. Rather than mere antibody-producing cells, it is becoming clear that they are team players with the capacity to prime and regulate T cells, and function both as pro- and anti-inflammatory mediators. However, despite tremendous efforts, the target antigen(s) of B cells in MS have yet to be identified. The first part of this review summarizes the clinical evidence and results from animal studies pointing to the relevance of B cells in the pathogenesis of MS. The second part gives an overview of the currently known potential autoantigen targets. The third part recapitulates and critically appraises the currently available B cell-directed therapies.
Collapse
|
34
|
Palanichamy A, Apeltsin L, Kuo TC, Sirota M, Wang S, Pitts SJ, Sundar PD, Telman D, Zhao LZ, Derstine M, Abounasr A, Hauser SL, von Büdingen HC. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci Transl Med 2015; 6:248ra106. [PMID: 25100740 DOI: 10.1126/scitranslmed.3008930] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In multiple sclerosis (MS), lymphocyte--in particular B cell--transit between the central nervous system (CNS) and periphery may contribute to the maintenance of active disease. Clonally related B cells exist in the cerebrospinal fluid (CSF) and peripheral blood (PB) of MS patients; however, it remains unclear which subpopulations of the highly diverse peripheral B cell compartment share antigen specificity with intrathecal B cell repertoires and whether their antigen stimulation occurs on both sides of the blood-brain barrier. To address these questions, we combined flow cytometric sorting of PB B cell subsets with deep immune repertoire sequencing of CSF and PB B cells. Immunoglobulin (IgM and IgG) heavy chain variable (VH) region repertoires of five PB B cell subsets from MS patients were compared with their CSF Ig-VH transcriptomes. In six of eight patients, we identified peripheral CD27(+)IgD(-) memory B cells, CD27(hi)CD38(hi) plasma cells/plasmablasts, or CD27(-)IgD(-) B cells that had an immune connection to the CNS compartment. Pinpointing Ig class-switched B cells as key component of the immune axis thought to contribute to ongoing MS disease activity strengthens the rationale of current B cell-targeting therapeutic strategies and may lead to more targeted approaches.
Collapse
Affiliation(s)
| | | | - Tracy C Kuo
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Marina Sirota
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Shengzhi Wang
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | - Steven J Pitts
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Purnima D Sundar
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Dilduz Telman
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Lora Z Zhao
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Mia Derstine
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | - Aya Abounasr
- Department of Neurology, UCSF, San Francisco, CA 94148 USA
| | | | | |
Collapse
|
35
|
Stern JNH, Yaari G, Vander Heiden JA, Church G, Donahue WF, Hintzen RQ, Huttner AJ, Laman JD, Nagra RM, Nylander A, Pitt D, Ramanan S, Siddiqui BA, Vigneault F, Kleinstein SH, Hafler DA, O'Connor KC. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med 2015; 6:248ra107. [PMID: 25100741 DOI: 10.1126/scitranslmed.3008879] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by autoimmune-mediated demyelination and neurodegeneration. The CNS of patients with MS harbors expanded clones of antigen-experienced B cells that reside in distinct compartments including the meninges, cerebrospinal fluid (CSF), and parenchyma. It is not understood whether this immune infiltrate initiates its development in the CNS or in peripheral tissues. B cells in the CSF can exchange with those in peripheral blood, implying that CNS B cells may have access to lymphoid tissue that may be the specific compartment(s) in which CNS-resident B cells encounter antigen and experience affinity maturation. Paired tissues were used to determine whether the B cells that populate the CNS mature in the draining cervical lymph nodes (CLNs). High-throughput sequencing of the antibody repertoire demonstrated that clonally expanded B cells were present in both compartments. Founding members of clones were more often found in the draining CLNs. More mature clonal members derived from these founders were observed in the draining CLNs and also in the CNS, including lesions. These data provide new evidence that B cells traffic freely across the tissue barrier, with the majority of B cell maturation occurring outside of the CNS in the secondary lymphoid tissue. Our study may aid in further defining the mechanisms of immunomodulatory therapies that either deplete circulating B cells or affect the intrathecal B cell compartment by inhibiting lymphocyte transmigration into the CNS.
Collapse
Affiliation(s)
- Joel N H Stern
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Gur Yaari
- Department of Pathology, Yale School of Medicine, New Haven, CT 06511, USA. Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Jason A Vander Heiden
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Rogier Q Hintzen
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, and MS Centrum ErasMS, 3000 CA Rotterdam, the Netherlands
| | - Anita J Huttner
- Department of Pathology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Jon D Laman
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, and MS Centrum ErasMS, 3000 CA Rotterdam, the Netherlands
| | - Rashed M Nagra
- Neurology Research, West Los Angeles VA Medical Center, Los Angeles, CA 90073, USA
| | - Alyssa Nylander
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Sriram Ramanan
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Bilal A Siddiqui
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Francois Vigneault
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. AbVitro Incorporated, Boston, MA 02210, USA
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06511, USA. Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA.
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA. Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA.
| | - Kevin C O'Connor
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
36
|
Intrathecal IgG synthesis: a resistant and valuable target for future multiple sclerosis treatments. Mult Scler Int 2015; 2015:296184. [PMID: 25653878 PMCID: PMC4306411 DOI: 10.1155/2015/296184] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/02/2023] Open
Abstract
Intrathecal IgG synthesis is a key biological feature of multiple sclerosis (MS). When acquired early, it persists over time. A growing body of evidence suggests that intrathecal Ig-secreting cells may be pathogenic either by a direct action of toxic IgG or by locally secreting bystander toxic products. Intrathecal IgG synthesis depends on the presence of CNS lymphoid organs, which are strongly linked at anatomical level to cortical subpial lesions and at clinical level to the impairment slope in progressive MS. As a consequence, targeting CNS lymphoid lesions could be a valuable new target in MS, especially during the progressive phase. As intrathecal IgGs are end-products of these lymphoid lesions, intrathecal IgG synthesis may be considered as a specific marker of the persistence of these inflammatory lesions. Here we review the effect upon intrathecal IgG synthesis of all drugs ever used in MS. Except for steroids, all these therapeutic strategies, including rituximab, failed to decrease intrathecal IgG synthesis, with the exception of a questionable incomplete action of natalizumab. Thus, IgG synthesis is a robust marker of persistent intrathecal inflammation and its complete normalization should be one of the goals in future therapeutic strategies.
Collapse
|
37
|
Miyazaki Y, Niino M. Molecular targeted therapy against B cells in multiple sclerosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/cen3.12160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yusei Miyazaki
- Department of Clinical Research; Hokkaido Medical Center; Sapporo Japan
- Department of Neurology; Hokkaido Medical Center; Sapporo Japan
| | - Masaaki Niino
- Department of Clinical Research; Hokkaido Medical Center; Sapporo Japan
| |
Collapse
|
38
|
Fraussen J, Claes N, de Bock L, Somers V. Targets of the humoral autoimmune response in multiple sclerosis. Autoimmun Rev 2014; 13:1126-37. [DOI: 10.1016/j.autrev.2014.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 01/09/2023]
|
39
|
Unaltered regulatory B-cell frequency and function in patients with multiple sclerosis. Clin Immunol 2014; 155:198-208. [PMID: 25267439 DOI: 10.1016/j.clim.2014.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 11/20/2022]
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) typically characterized by the recruitment of T cells into the CNS. However, certain subsets of B cells have been shown to negatively regulate autoimmune diseases and some data support a prominent role for B cells in MS physiopathology. For B cells in MS patients we analyzed subset frequency, cytokine secretion ability and suppressive properties. No differences in the frequencies of the B-cell subsets or in their ability to secrete cytokines were observed between MS and healthy volunteers (HV). Prestimulated B cells from MS patients also inhibited CD4(+)CD25(-) T cell proliferation with a similar efficiency as B cells from HV. Altogether, our data show that, in our MS patient cohort, regulatory B cells have conserved frequency and function.
Collapse
|
40
|
Pietiläinen-Nicklén J, Virtanen JO, Uotila L, Salonen O, Färkkilä M, Koskiniemi M. HHV-6-positivity in diseases with demyelination. J Clin Virol 2014; 61:216-9. [PMID: 25088617 DOI: 10.1016/j.jcv.2014.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND The triggering agent of multiple sclerosis is still unknown and many viruses, including human herpesvirus-6 (HHV-6), are under suspicion. In earlier study we found patients who had HHV-6 reactive OCBs in their CSF. We wanted to investigate whether HHV-6 has an active role in diseases with demyelination. OBJECTIVE To analyze the HHV-6-reactive cases in detail and investigate the possible independent role of HHV-6 in the development of central nervous system involvements with demyelination. STUDY DESIGN We studied serum and CSF samples that were collected over a period of one year, from all patients who had oligoclonal bands (OCB) in cerebrospinal fluid (CSF) and were examined in the Department of Neurology, University Central Hospital of Helsinki, Finland. Clinical evaluation was accomplished blinded of HHV-6 analysis and follow-up time was two years. All patients underwent MRI of the head and clinically indicated CSF analysis. RESULTS The 17 patients with HHV-6-reactive OCBs were significantly younger and had significantly more IgG-OCBs in comparison to patients without HHV-6-reactive OCBs. Initial diagnoses in patients with HHV-6-reactive OCBs remained the same during the follow-up time. CONCLUSION Patients with HHV-6-positive OCBs appear to form a separable group. In progressive neurological diseases HHV-6 may have a role in long-term infection with demyelination.
Collapse
Affiliation(s)
- Jenna Pietiläinen-Nicklén
- Department of Virology, Haartman Institute, University of Helsinki, Finland; Department of Neurology, University of Helsinki, Finland.
| | - Jussi O Virtanen
- Department of Virology, Haartman Institute, University of Helsinki, Finland
| | - Lasse Uotila
- Department of Clinical Chemistry, HUSLAB Laboratory Services, Helsinki, Finland
| | | | | | | |
Collapse
|
41
|
Bankoti J, Apeltsin L, Hauser SL, Allen S, Albertolle ME, Witkowska HE, von Büdingen HC. In multiple sclerosis, oligoclonal bands connect to peripheral B-cell responses. Ann Neurol 2014; 75:266-76. [PMID: 24375699 PMCID: PMC3961546 DOI: 10.1002/ana.24088] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/03/2013] [Accepted: 12/06/2013] [Indexed: 01/13/2023]
Abstract
Objective To determine to what extent oligoclonal band (OCB) specificities are clonally interrelated and to what degree they are associated with corresponding B-cell responses in the peripheral blood (PB) of multiple sclerosis (MS) patients. Methods Mass-spectrometric proteomic analysis of isoelectric focused (IEF) cerebrospinal fluid (CSF) immunoglobulin G (IgG) was used in combination with next-generation deep-immune repertoire sequencing of PB and CSF IgG heavy chain variable regions from MS patients. Results We find evidence for ongoing stimulation and maturation to antibody-expressing B cells to occur primarily inside the central nervous system (CNS) compartment. B cells participating in OCB production can also be identified in PB; these cells appear to migrate across the blood–brain barrier and may also undergo further antigen stimulation in the periphery. In individual patients, different bands comprising OCBs are clonally related. Interpretation Our data provide a high-resolution molecular analysis of OCBs and strongly support the concept that OCBs are not merely the terminal result of a targeted immune response in MS but represent a component of active B cell immunity that is dynamically supported on both sides of the blood-brain barrier.
Collapse
Affiliation(s)
- Jaishree Bankoti
- Departments of Neurology, University of California, San Francisco, San Francisco, CA
| | | | | | | | | | | | | |
Collapse
|
42
|
Hartung HP, Aktas O, Menge T, Kieseier BC. Immune regulation of multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:3-14. [PMID: 24507511 DOI: 10.1016/b978-0-444-52001-2.00001-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Multiple sclerosis (MS) is considered a prototype inflammatory autoimmune disorder of the central nervous system (CNS). The etiology of this disease remains unknown, but an interplay between as yet unidentified environmental factors and susceptibility genes appears most likely. In consequence, these factors trigger a cascade, involving an inflammatory response within the CNS that results in demyelination, oligodendrocyte death, axonal damage, gliosis, and neurodegeneration. How these complex traits translate into the clinical presentation of the disease is a focus of ongoing research. The central hypothesis is that T lymphocytes with receptors for CNS myelin components are driving the disease. The initial activation of autoreactive lymphocytes is thought to take place in the systemic lymphoid organs, most likely through molecular mimickry or nonspecifically through bystander activation. These autoreactive lymphocytes can migrate to the CNS where they become reactivated upon encountering their target antigen, initiating an autoimmune inflammatory attack. This ultimately leads to demyelination and axonal damage. This chapter focuses on the role of T and B lymphocytes in the immunopathogenesis of MS.
Collapse
Affiliation(s)
- Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Til Menge
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Bernd C Kieseier
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
43
|
Bonnan M. Intrathecal immune reset in multiple sclerosis: exploring a new concept. Med Hypotheses 2013; 82:300-9. [PMID: 24417802 DOI: 10.1016/j.mehy.2013.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis impairment is mainly driven by the progressive phase, whose pathology remains elusive. No drug has yet been able to halt this phase so therapeutic management remains challenging. It was recently demonstrated that late disability correlates with the spreading of cortical subpial lesions, and tertiary lymphoid organs (TLO) were identified in close apposition with these lesions. TLO are of crucial importance since they are able to mount a complete local immune response, as observed in the intrathecal compartment from the moment MS is diagnosed (i.e. oligoclonal bands). This article examines the consequences of this intrathecal response: giving a worst clinical prognostic value and bearing arguments for possible direct brain toxicity, intrathecal secretion should be targeted by drugs abating both B-lymphocytes and plasma cells. Another consequence is that intrathecal secretion has value as a surrogate marker of the persistence of an ongoing intrathecal immune reaction after treatment. Although it is still unsure which mechanism or byproduct secreted by TLO triggers cortical lesions, we propose to target TLO components as a new therapeutic avenue in progressive MS. Whereas it was long considered that the inability of therapies to penetrate the blood-brain-barrier was a crucial obstacle, our proposed strategy will take advantage of the properties of the BBB to safely reset the intrathecal immune system in order to halt the slow axonal burning underlying secondary MS. We review the literature in support of the rationale for treating MS with intrathecal drugs dedicated to clearing the local immune response. Since many targets are involved, achieving this goal may require a combination of monoclonal antibodies targeting each cell sub-type. Hope might be rekindled with a one-shot intrathecal multi-drug treatment in progressive MS.
Collapse
Affiliation(s)
- Mickael Bonnan
- Service de Neurologie, Hôpital F. Mitterrand, 4 bd Hauterive, 64046 Pau, France.
| |
Collapse
|
44
|
Singh V, Stoop MP, Stingl C, Luitwieler RL, Dekker LJ, van Duijn MM, Kreft KL, Luider TM, Hintzen RQ. Cerebrospinal-fluid-derived immunoglobulin G of different multiple sclerosis patients shares mutated sequences in complementarity determining regions. Mol Cell Proteomics 2013; 12:3924-34. [PMID: 23970564 DOI: 10.1074/mcp.m113.030346] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
B lymphocytes play a pivotal role in multiple sclerosis pathology, possibly via both antibody-dependent and -independent pathways. Intrathecal immunoglobulin G in multiple sclerosis is produced by clonally expanded B-cell populations. Recent studies indicate that the complementarity determining regions of immunoglobulins specific for certain antigens are frequently shared between different individuals. In this study, our main objective was to identify specific proteomic profiles of mutated complementarity determining regions of immunoglobulin G present in multiple sclerosis patients but absent in healthy controls. To achieve this objective, we purified immunoglobulin G from the cerebrospinal fluid of 29 multiple sclerosis patients and 30 healthy controls and separated the corresponding heavy and light chains via SDS-PAGE. Subsequently, bands were excised, trypsinized, and measured with high-resolution mass spectrometry. We sequenced 841 heavy and 771 light chain variable region peptides. We observed 24 heavy and 26 light chain complementarity determining regions that were solely present in a number of multiple sclerosis patients. Using stringent criteria for the identification of common peptides, we found five complementarity determining regions shared in three or more patients and not in controls. Interestingly, one complementarity determining region with a single mutation was found in six patients. Additionally, one other patient carrying a similar complementarity determining region with another mutation was observed. In addition, we found a skew in the κ-to-λ ratio and in the usage of certain variable heavy regions that was previously observed at the transcriptome level. At the protein level, cerebrospinal fluid immunoglobulin G shares common characteristics in the antigen binding region among different multiple sclerosis patients. The indication of a shared fingerprint may indicate common antigens for B-cell activation.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Neurology, Erasmus University Medical Center, Rotterdam CA 3000, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
von Büdingen HC, Kuo TC, Sirota M, van Belle CJ, Apeltsin L, Glanville J, Cree BA, Gourraud PA, Schwartzburg A, Huerta G, Telman D, Sundar PD, Casey T, Cox DR, Hauser SL. B cell exchange across the blood-brain barrier in multiple sclerosis. J Clin Invest 2012; 122:4533-43. [PMID: 23160197 DOI: 10.1172/jci63842] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 09/27/2012] [Indexed: 01/14/2023] Open
Abstract
In multiple sclerosis (MS) pathogenic B cells likely act on both sides of the blood-brain barrier (BBB). However, it is unclear whether antigen-experienced B cells are shared between the CNS and the peripheral blood (PB) compartments. We applied deep repertoire sequencing of IgG heavy chain variable region genes (IgG-VH) in paired cerebrospinal fluid and PB samples from patients with MS and other neurological diseases to identify related B cells that are common to both compartments. For the first time to our knowledge, we found that a restricted pool of clonally related B cells participated in robust bidirectional exchange across the BBB. Some clusters of related IgG-VH appeared to have undergone active diversification primarily in the CNS, while others have undergone active diversification in the periphery or in both compartments in parallel. B cells are strong candidates for autoimmune effector cells in MS, and these findings suggest that CNS-directed autoimmunity may be triggered and supported on both sides of the BBB. These data also provide a powerful approach to identify and monitor B cells in the PB that correspond to clonally amplified populations in the CNS in MS and other inflammatory states.
Collapse
|
47
|
Krumbholz M, Derfuss T, Hohlfeld R, Meinl E. B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol 2012; 8:613-23. [PMID: 23045237 DOI: 10.1038/nrneurol.2012.203] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B cells and antibodies account for the most prominent immunodiagnostic feature in patients with multiple sclerosis (MS), namely oligoclonal bands. Furthermore, evidence is accumulating that B cells and antibodies contribute to MS pathogenesis in at least a subset of patients. The CNS provides a B-cell-fostering environment that includes B-cell trophic factors such as BAFF (B-cell-activating factor of the TNF family), APRIL (a proliferation-inducing ligand), and the plasma-cell survival factor CXCL12. Owing to this environment, the CNS of patients with MS is not only the target of the immunopathological process, but also becomes the site of local antibody production. B cells can increase or dampen CNS inflammation, but their proinflammatory effects seem to be more prominent in most patients, as B-cell depletion is a promising therapeutic strategy. Other therapies not primarily designed to target B cells have numerous effects on the B-cell compartment. This Review summarizes key features of B-cell biology, the role of B cells and antibodies in CNS inflammation, and current attempts to identify the targets of pathogenic antibodies in MS. We also review the effects of approved and investigational interventions-including CD20-depleting antibodies, BAFF/APRIL-depleting agents, alemtuzumab, natalizumab, FTY720, IFN-β, glatiramer acetate, steroids and plasma exchange-on B-cell immunology.
Collapse
Affiliation(s)
- Markus Krumbholz
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University Munich, Germany
| | | | | | | |
Collapse
|
48
|
Identifying autoantigens in demyelinating diseases: valuable clues to diagnosis and treatment? Curr Opin Neurol 2012; 25:231-8. [PMID: 22487571 DOI: 10.1097/wco.0b013e3283533a64] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Identification of autoantigens in demyelinating diseases is essential for the understanding of the pathogenesis. Immune responses against these antigens could be used as biomarkers for diagnosis, prognosis and treatment responses. Knowledge of antigen-specific immune responses in individual patients is also a prerequisite for antigen-based therapies. RECENT FINDINGS A proportion of patients with demyelinating disease have antibodies to aquaporin 4 (AQP4) or myelin oligodendrocyte glycoprotein (MOG). Patients with anti-AQP4 have the distinct clinical presentation of neuromyelitis optica (NMO), and these patients often also harbour other autoimmune responses. In contrast, anti-MOG is seen in patients with different disease entities such as childhood multiple sclerosis (MS), acute demyelinating encephalomyelitis (ADEM), anti-AQP4 negative NMO, and optic neuritis, but hardly in adult MS. A number of new candidate autoantigens have been identified and await validation. Antigen-based therapies are mainly aimed at tolerizing T-cell responses against myelin basic protein (MBP) and have shown only modest or no clinical benefit so far. SUMMARY Currently, only few patients with demyelinating diseases can be characterized based on their autoantibody profile. The most prominent antigens in this respect are MOG and AQP4. Further research has to focus on the validation of newly discovered antigens as biomarkers.
Collapse
|
49
|
Toubi E, Nussbaum S, Staun-Ram E, Snir A, Melamed D, Hayardeny L, Miller A. Laquinimod modulates B cells and their regulatory effects on T cells in multiple sclerosis. J Neuroimmunol 2012; 251:45-54. [PMID: 22846497 DOI: 10.1016/j.jneuroim.2012.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/08/2012] [Accepted: 07/10/2012] [Indexed: 11/19/2022]
Abstract
Laquinimod is an orally administered drug under development for the treatment of Multiple Sclerosis (MS), lacking a fully elucidated mode of action. We assessed the immunomodulatory effects of laquinimod in vitro on human B cells from healthy or MS patients, cultured alone or with CD4(+) T cells. Laquinimod modulated B cell markers, mainly by increasing the regulatory ones CD25, IL10 and CD86, and decreased IL4, while increasing IL10 and TGFβ in both B and T cells, in a B cell-mediated manner. These findings shed additional light on the mechanisms underlying the effects of laquinimod in MS and potentially other immune-mediated diseases.
Collapse
Affiliation(s)
- Elias Toubi
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
50
|
Quintana FJ, Yeste A, Weiner HL, Covacu R. Lipids and lipid-reactive antibodies as biomarkers for multiple sclerosis. J Neuroimmunol 2012; 248:53-7. [PMID: 22579051 PMCID: PMC3667705 DOI: 10.1016/j.jneuroim.2012.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 12/20/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that targets the central nervous system (CNS). MS initially follows a relapsing-remitting course (RRMS) in which acute attacks are followed by a complete recovery. Eventually, 65% of the RRMS patients go on to develop secondary progressive MS (SPMS), characterized by the progressive and irreversible accumulation of neurological disability. It has been proposed that the transition from RRMS to SPMS results from changes in the nature of the inflammatory response and the progressive accumulation of neurodegeneration. To date, however, there is no reliable method to monitor the activity of the different immune and neurodegenerative processes that contribute to MS pathology. Thus, there is a need for biomarkers useful for the diagnosis, treatment and monitoring of MS patients. In this review, we discuss the potential use of lipids and the immune response against them as biomarkers of inflammation and neurodegeneration for MS.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|