1
|
Datta C, Das P, Swaroop S, Bhattacharjee A. Rac1 plays a crucial role in MCP-1-induced monocyte adhesion and migration. Cell Immunol 2024; 401-402:104843. [PMID: 38905771 DOI: 10.1016/j.cellimm.2024.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Monocyte migration is an important process in inflammation and atherogenesis. Identification of the key signalling pathways that regulate monocyte migration can provide prospective targets for prophylactic treatments in inflammatory diseases. Previous research showed that the focal adhesion kinase Pyk2, Src kinase and MAP kinases play an important role in MCP-1-induced monocyte migration. In this study, we demonstrate that MCP-1 induces iPLA2 activity, which is regulated by PKCβ and affects downstream activation of Rac1 and Pyk2. Rac1 interacts directly with iPLA2 and Pyk2, and plays a crucial role in MCP-1-mediated monocyte migration by modulating downstream Pyk2 and p38 MAPK activation. Furthermore, Rac1 is necessary for cell spreading and F-actin polymerization during monocyte adhesion to fibronectin. Finally, we provide evidence that Rac1 controls the secretion of inflammatory mediator vimentin from MCP-1-stimulated monocytes. Altogether, this study demonstrates that the PKCβ/iPLA2/Rac1/Pyk2/p38 MAPK signalling cascade is essential for MCP-1-induced monocyte adhesion and migration.
Collapse
Affiliation(s)
- Chandreyee Datta
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Pradip Das
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Surbhi Swaroop
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India.
| |
Collapse
|
2
|
Freitas LAB, Sousa C, Lima BS, Duarte D, Gomes PATDM, Ramos CGC, Costa VDCM, Pitta MGDR, Rêgo MJBDM, de Simone CA, Videira M, Leite ACL. Thiazolyl-isatin derivatives: Synthesis, in silico studies, in vitro biological profile against breast cancer cells, mRNA expression, P-gp modulation, and interactions of Akt2 and VIM proteins. Chem Biol Interact 2024; 394:110954. [PMID: 38518852 DOI: 10.1016/j.cbi.2024.110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
The literature reports that thiazole and isatin nuclei present a range of biological activities, with an emphasis on anticancer activity. Therefore, our proposal was to make a series of compounds using the molecular hybridization strategy, which has been used by our research group, producing hybrid molecules containing the thiazole and isatin nuclei. After structural planning and synthesis, the compounds were characterized and evaluated in vitro against breast cancer cell lines (T-47D, MCF-7 and MDA-MB-231) and against normal cells (PBMC). The activity profile on membrane proteins involved in chemoresistance and tumorigenic signaling proteins was also evaluated. Among the compounds tested, the compounds 4c and 4a stood out with IC50 values of 1.23 and 1.39 μM, respectively, against the MDA-MB-231 cell line. Both compounds exhibited IC50 values of 0.45 μM for the MCF-7 cell line. Compounds 4a and 4c significantly decreased P-gp mRNA expression levels in MCF-7, 4 and 2 folds respectively. Regarding the impact on tumorigenic signaling proteins, compound 4a inhibited Akt2 in MDA-MB-231 and compound 4c inhibited the mRNA expression of VIM in MCF-7.
Collapse
Affiliation(s)
- Luiz Alberto Barros Freitas
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Carolina Sousa
- Pharmacological and Regulatory Sciences Group (PharmRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal
| | - Beatriz Silva Lima
- Pharmacological and Regulatory Sciences Group (PharmRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal
| | - Denise Duarte
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, 1349-008, Lisboa, Portugal
| | | | - Camila Gabriela Costa Ramos
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | - Maira Galdino da Rocha Pitta
- Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | | | - Carlos Alberto de Simone
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP, Brazil
| | - Mafalda Videira
- Pharmacological and Regulatory Sciences Group (PharmRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|
3
|
Wang Y, Liu Z, Song S, Wang J, Jin C, Jia L, Ma Y, Yuan T, Cai Z, Xiang M. IRF5 governs macrophage adventitial infiltration to fuel abdominal aortic aneurysm formation. JCI Insight 2024; 9:e171488. [PMID: 38175709 PMCID: PMC11143966 DOI: 10.1172/jci.insight.171488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease characterized by the expansion of the aortic wall. One of the most significant features is the infiltration of macrophages in the adventitia, which drives vasculature remodeling. The role of macrophage-derived interferon regulatory factor 5 (IRF5) in macrophage infiltration and AAA formation remains unknown. RNA sequencing of AAA adventitia identified Irf5 as the top significantly increased transcription factor that is predominantly expressed in macrophages. Global and myeloid cell-specific deficiency of Irf5 reduced AAA progression, with a marked reduction in macrophage infiltration. Further cellular investigations indicated that IRF5 promotes macrophage migration by direct regulation of downstream phosphoinositide 3-kinase γ (PI3Kγ, Pik3cg). Pik3cg ablation hindered AAA progression, and myeloid cell-specific salvage of Pik3cg restored AAA progression and macrophage infiltration derived from Irf5 deficiency. Finally, we found that IRF5 and PI3Kγ expression in the adventitia is significantly increased in patients with AAA. These findings reveal that the IRF5-dependent regulation of PI3Kγ is essential for AAA formation.
Collapse
Affiliation(s)
- Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Zhenjie Liu
- Department of Vascular Surgery, The second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfang Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Chunna Jin
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Liangliang Jia
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Yuankun Ma
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Tan Yuan
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Zhejun Cai
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Meixiang Xiang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| |
Collapse
|
4
|
Kraxner J, Köster S. Influence of phosphorylation on intermediate filaments. Biol Chem 2023; 404:821-827. [PMID: 37074314 PMCID: PMC10506380 DOI: 10.1515/hsz-2023-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/31/2023] [Indexed: 04/20/2023]
Abstract
The cytoskeleton of eukaryotes consists of actin filaments, microtubules and intermediate filaments (IF). IFs, in particular, are prone to pronounced phosphorylation, leading to additional charges on the affected amino acids. In recent years, a variety of experiments employing either reconstituted protein systems or living cells have revealed that these altered charge patterns form the basis for a number of very diverse cellular functions and processes, including reversible filament assembly, filament softening, network remodeling, cell migration, interactions with other protein structures, and biochemical signaling.
Collapse
Affiliation(s)
- Julia Kraxner
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, D-13125 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, D-10785 Berlin, Germany
| | - Sarah Köster
- University of Göttingen, Institute for X-Ray Physics, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
5
|
Basta MD, Menko AS, Walker JL. PI3K Isoform-Specific Regulation of Leader and Follower Cell Function for Collective Migration and Proliferation in Response to Injury. Cells 2022; 11:3515. [PMID: 36359913 PMCID: PMC9658457 DOI: 10.3390/cells11213515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 07/29/2023] Open
Abstract
To ensure proper wound healing it is important to elucidate the signaling cues that coordinate leader and follower cell behavior to promote collective migration and proliferation for wound healing in response to injury. Using an ex vivo post-cataract surgery wound healing model we investigated the role of class I phosphatidylinositol-3-kinase (PI3K) isoforms in this process. Our findings revealed a specific role for p110α signaling independent of Akt for promoting the collective migration and proliferation of the epithelium for wound closure. In addition, we found an important role for p110α signaling in orchestrating proper polarized cytoskeletal organization within both leader and wounded epithelial follower cells to coordinate their function for wound healing. p110α was necessary to signal the formation and persistence of vimentin rich-lamellipodia extensions by leader cells and the reorganization of actomyosin into stress fibers along the basal domains of the wounded lens epithelial follower cells for movement. Together, our study reveals a critical role for p110α in the collective migration of an epithelium in response to wounding.
Collapse
Affiliation(s)
- Morgan D. Basta
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A. Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Janice L. Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Zhou S, Liu Z, Kawakami A. A PI3Kγ signal regulates macrophage recruitment to injured tissue for regenerative cell survival. Dev Growth Differ 2022; 64:433-445. [PMID: 36101496 PMCID: PMC9826243 DOI: 10.1111/dgd.12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023]
Abstract
The interaction between immune cells and injured tissues is crucial for regeneration. Previous studies have shown that macrophages attenuate inflammation caused by injuries to support the survival of primed regenerative cells. Macrophage loss in zebrafish mutants like cloche (clo) causes extensive apoptosis in the regenerative cells of the amputated larval fin fold. However, the mechanism of interaction between macrophage and injured tissue is poorly understood. Here, we show that a phosphoinositide 3-kinase gamma (PI3Kγ)-mediated signal is essential for recruiting macrophages to the injured tissue. PI3Kγ inhibition by the PI3Kγ-specific inhibitor, 5-quinoxalin-6-ylmethylene-thiazolidine-2,4-dione (AS605240 or AS), displayed a similar apoptosis phenotype with that observed in clo mutants. We further show that PI3Kγ function during the early regenerative stage is necessary for macrophage recruitment to the injured site. Additionally, protein kinase B (Akt) overexpression in the AS-treated larvae suggested that Akt is not the direct downstream mediator of PI3Kγ for macrophage recruitment, while it independently plays a role for the survival of regenerative cells. Together, our study reveals that PI3Kγ plays a role for recruiting macrophages in response to regeneration.
Collapse
Affiliation(s)
- Siyu Zhou
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Zhengcheng Liu
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Atsushi Kawakami
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
7
|
Xiong W, Jia L, Liang J, Cai Y, Chen Y, Nie Y, Jin J, Zhu J. Investigation into the anti-airway inflammatory role of the PI3Kγ inhibitor JN-PK1: An in vitro and in vivo study. Int Immunopharmacol 2022; 111:109102. [PMID: 35964410 DOI: 10.1016/j.intimp.2022.109102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 12/17/2022]
Abstract
Phosphatidylinositol 3-kinase gamma (PI3Kγ) has been proven to be a potential target for the treatment of inflammatory diseases of the airway; however, there are few reports of selective PI3Kγ inhibitors being used in the field of airway inflammation thus far. Herein, a study employing in vitro and in vivo methodologies was carried out to assess the anti-airway inflammatory effects of JN-PK1, a selective PI3Kγ inhibitor. In RAW264.7 macrophages, JN-PK1 inhibited PI3Kγ-dependent, cellular C5a-induced AKT Ser473 phosphorylation in a concentration- and time-dependent manner and had no significant effect on cell viability.Furthermore, JN-PK1 significantly suppressed LPS-induced, proinflammatory cytokine expression and nitric oxide production through inhibition of the PI3K signaling pathway in RAW264.7 cells. Then, a murine asthma model was established to evaluate the anti-airway inflammation effect of JN-PK1. BALB/c mice were sensitized and challenged with ovalbumin (OVA) to develop an inflammatory response, fibrosis formation, and other airway changes similar to the symptomatology of asthma in humans. Oral administration of JN-PK1 remarkably attenuated OVA-induced asthma in association with the inhibition of the PI3K signaling pathway. That is to say, the oral administration significantly inhibited increases in inflammatory cell counts and reduced T-helper type 2 cytokine production in bronchoalveolar lavage fluid. Pulmonary histological studies showed that oral administration of JN-PK1 not only reduced the infiltration of inflammatory cells but also retarded airway inflammation and fibration. Taken together, JN-PK1 could be developed as a promising candidate for inflammation therapy, and our findings support some potential for therapeutic inhibition of PI3Kγ to treat inflammatory airway diseases.
Collapse
Affiliation(s)
- Wendian Xiong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junjie Liang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Zaki MSA, El-Kott AF, AlGwaiz HIM, Shehata SF, Eldeen MA, Andarawi M, Eid RA, Abd-Ella EM. The possible effects of α-tocopherol against amiodarone-treated lungs in rats: vimentin detection, lipid peroxidation assay, and histological and ultrastructural evaluations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58231-58239. [PMID: 35366726 DOI: 10.1007/s11356-022-19883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to learn more about the pathogenesis of amiodarone (AD) on alveoli and also the possible preventive effect of α-tocopherol (α-T) against these hazards. Rats were divided into 4 groups, one of which acted as a control, the second received α-T, the third AD, and the fourth AD and α-T for 2 weeks. Light microscopy (LM), immunohistochemistry, transmission electron microscopy (TEM), and malondialdehyde (MDA) activity were analyzed in sections of lung tissue. Alveoli of lung tissue AD examined with LM showed dilatation of alveolar spaces, aggregation of red blood cells, and narrowing of alveolar septa. When stained with vimentin (VIM), alveoli showed a positive reaction in the majority and a moderate reaction in others. In the pneumocytes of the type II, some cytoplasmic vesicles had been deflated, whereas others contained lamellar bodies, a damaged nucleus, and vesicles in their heterochromatin. In the interstitial space, collagen fibers with aggregation of red blood cells and a disrupted blood-air barrier were detected. In rat lung alveoli treated with AD and α-T, the alveolar septum thickened and the alveolar spaces expanded as estimated. The alveoli of this group had more or less intact type I and II pneumocytes and a better appearance of the blood-air barrier. In the cells of the alveolar lining, the VIM staining leads to a diffuse positive response. Finally, lung parenchyma also improved, suggesting that α-T may help minimize the effects of AD.
Collapse
Affiliation(s)
- Mohamed Samir Ahmed Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia.
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig, 31527, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Hussah I M AlGwaiz
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11474, Saudi Arabia
| | - Shehata F Shehata
- Department of Family and Community Medicine, King Khalid University, Abha, Saudi Arabia
- Biostatistics Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Muhammad Alaa Eldeen
- Biology Department, Physiology Section, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Mohamed Andarawi
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 62529, Saudi Arabia
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 62529, Saudi Arabia.
| | - Eman M Abd-Ella
- Department of Zoology, College of Science, Fayoum University, Fayoum, Egypt
- Department of Biology, College of Science and Art, Al-Baha University, Al-Mandaq, Saudi Arabia
| |
Collapse
|
9
|
Shutova MS, Boehncke WH. Mechanotransduction in Skin Inflammation. Cells 2022; 11:2026. [PMID: 35805110 PMCID: PMC9265324 DOI: 10.3390/cells11132026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In the process of mechanotransduction, the cells in the body perceive and interpret mechanical stimuli to maintain tissue homeostasis and respond to the environmental changes. Increasing evidence points towards dysregulated mechanotransduction as a pathologically relevant factor in human diseases, including inflammatory conditions. Skin is the organ that constantly undergoes considerable mechanical stresses, and the ability of mechanical factors to provoke inflammatory processes in the skin has long been known, with the Koebner phenomenon being an example. However, the molecular mechanisms and key factors linking mechanotransduction and cutaneous inflammation remain understudied. In this review, we outline the key players in the tissue's mechanical homeostasis, the available data, and the gaps in our current understanding of their aberrant regulation in chronic cutaneous inflammation. We mainly focus on psoriasis as one of the most studied skin inflammatory diseases; we also discuss mechanotransduction in the context of skin fibrosis as a result of chronic inflammation. Even though the role of mechanotransduction in inflammation of the simple epithelia of internal organs is being actively studied, we conclude that the mechanoregulation in the stratified epidermis of the skin requires more attention in future translational research.
Collapse
Affiliation(s)
- Maria S. Shutova
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| |
Collapse
|
10
|
Wang L, Mohanasundaram P, Lindström M, Asghar MN, Sultana G, Misiorek JO, Jiu Y, Chen H, Chen Z, Toivola DM, Cheng F, Eriksson JE. Vimentin Suppresses Inflammation and Tumorigenesis in the Mouse Intestine. Front Cell Dev Biol 2022; 10:862237. [PMID: 35399505 PMCID: PMC8993042 DOI: 10.3389/fcell.2022.862237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 01/03/2023] Open
Abstract
Vimentin has been implicated in wound healing, inflammation, and cancer, but its functional contribution to intestinal diseases is poorly understood. To study how vimentin is involved during tissue injury and repair of simple epithelium, we induced colonic epithelial cell damage in the vimentin null (Vim−/−) mouse model. Vim−/− mice challenged with dextran sodium sulfate (DSS) had worse colitis manifestations than wild-type (WT) mice. Vim−/− colons also produced more reactive oxygen and nitrogen species, possibly contributing to the pathogenesis of gut inflammation and tumorigenesis than in WT mice. We subsequently describe that CD11b+ macrophages served as the mainly cellular source of reactive oxygen species (ROS) production via vimentin-ROS-pSTAT3–interleukin-6 inflammatory pathways. Further, we demonstrated that Vim−/− mice did not develop colitis-associated cancer model upon DSS treatment spontaneously but increased tumor numbers and size in the distal colon in the azoxymethane/DSS model comparing with WT mice. Thus, vimentin has a crucial role in protection from colitis induction and tumorigenesis of the colon.
Collapse
Affiliation(s)
- Linglu Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ponnuswamy Mohanasundaram
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Michelle Lindström
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Muhammad Nadeem Asghar
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Giulia Sultana
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Julia O Misiorek
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Yaming Jiu
- Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhi Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland.,InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| |
Collapse
|
11
|
Abstract
More than 27 yr ago, the vimentin knockout (Vim-/- ) mouse was reported to develop and reproduce without an obvious phenotype, implying that this major cytoskeletal protein was nonessential. Subsequently, comprehensive and careful analyses have revealed numerous phenotypes in Vim-/- mice and their organs, tissues, and cells, frequently reflecting altered responses in the recovery of tissues following various insults or injuries. These findings have been supported by cell-based experiments demonstrating that vimentin intermediate filaments (IFs) play a critical role in regulating cell mechanics and are required to coordinate mechanosensing, transduction, signaling pathways, motility, and inflammatory responses. This review highlights the essential functions of vimentin IFs revealed from studies of Vim-/- mice and cells derived from them.
Collapse
Affiliation(s)
- Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| | - John E Eriksson
- Cell Biology, Faculty of Science and Technology, Åbo Akademi University, FIN-20521 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland
- Euro-Bioimaging European Research Infrastructure Consortium (ERIC), FIN-20521 Turku, Finland
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- University of Newcastle, Newcastle, New South Wales 2300, Australia
| | - Robert D Goldman
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
12
|
Llorente-González C, González-Rodríguez M, Vicente-Manzanares M. Targeting cytoskeletal phosphorylation in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:292-308. [PMID: 36046434 PMCID: PMC9400739 DOI: 10.37349/etat.2021.00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation of cytoskeletal proteins regulates the dynamics of polymerization, stability, and disassembly of the different types of cytoskeletal polymers. These control the ability of cells to migrate and divide. Mutations and alterations of the expression levels of multiple protein kinases are hallmarks of most forms of cancer. Thus, altered phosphorylation of cytoskeletal proteins is observed in most cancer cells. These alterations potentially control the ability of cancer cells to divide, invade and form distal metastasis. This review highlights the emergent role of phosphorylation in the control of the function of the different cytoskeletal polymers in cancer cells. It also addresses the potential effect of targeted inhibitors in the normalization of cytoskeletal function.
Collapse
Affiliation(s)
- Clara Llorente-González
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Marta González-Rodríguez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
13
|
Kraxner J, Lorenz C, Menzel J, Parfentev I, Silbern I, Denz M, Urlaub H, Schwappach B, Köster S. Post-translational modifications soften vimentin intermediate filaments. NANOSCALE 2021; 13:380-387. [PMID: 33351020 DOI: 10.1039/d0nr07322a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The mechanical properties of biological cells are determined by the cytoskeleton, a composite biopolymer network consisting of microtubules, actin filaments and intermediate filaments (IFs). By differential expression of cytoskeletal proteins, modulation of the network architecture and interactions between the filaments, cell mechanics may be adapted to varying requirements on the cell. Here, we focus on the intermediate filament protein vimentin and introduce post-translational modifications as an additional, much faster mechanism for mechanical modulation. We study the impact of phosphorylation on filament mechanics by recording force-strain curves using optical traps. Partial phosphorylation softens the filaments. We show that binding of the protein 14-3-3 to phosphorylated vimentin IFs further enhances this effect and speculate that in the cell 14-3-3 may serve to preserve the softening and thereby the altered cell mechanics. We explain our observation by the additional charges introduced during phosphorylation.
Collapse
Affiliation(s)
- Julia Kraxner
- Institute for X-Ray Physics, University of Göttingen, 37077 Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jin JR, Gogvadze E, Xavier AR, Bohnacker T, Voelzmann J, Wymann MP. PI3K γ Regulatory Protein p84 Determines Mast Cell Sensitivity to Ras Inhibition-Moving Towards Cell Specific PI3K Targeting? Front Immunol 2020; 11:585070. [PMID: 33193405 PMCID: PMC7655736 DOI: 10.3389/fimmu.2020.585070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022] Open
Abstract
Mast cells are the major effector cells in immunoglobulin E (IgE)-mediated allergy. The high affinity IgE receptor FcεRI, as well as G protein-coupled receptors (GPCRs) on the mast cell surface signals to phosphoinositide 3-kinase γ (PI3Kγ) to initiate degranulation, cytokine release, and chemotaxis. PI3Kγ is therefore considered as a target for treatment of allergic disorders. However, leukocyte PI3Kγ is key to many functions in innate and adaptive immunity, and attenuation of host defense mechanisms is an expected adverse effect that complicates treatment of chronic illnesses. PI3Kγ operates as a p110γ/p84 or p110γ/p101 complex, where p110γ/p84 requires Ras activation. Here we investigated if modulation of Ras-isoprenylation could target PI3Kγ activity to attenuate PI3Kγ-dependent mast cell responses without impairment of macrophage functions. In murine bone marrow-derived mast cells, GPCR stimulation triggers activation of N-Ras and H-Ras isoforms, which is followed by the phosphorylation of protein kinase B (PKB/Akt) relayed through PI3Kγ. Although K-Ras is normally not activated in Ras wild-type cells, it is able to compensate for genetically deleted N- and H-Ras isoforms. Inhibition of Ras isoprenylation with farnesyltransferase inhibitor FTI-277 leads to a significant reduction of mast cell degranulation, cytokine production, and migration. Complementation experiments expressing PI3Kγ adaptor proteins p84 or p101 demonstrated a differential sensitivity towards Ras-inhibition depending on PI3Kγ complex composition. Mast cell responses are exclusively p84-dependent and were effectively controlled by FTI-277. Similar results were obtained when GTP-Ras was inactivated by overexpression of the GAP-domain of Neurofibromin-1 (NF-1). Unlike mast cells, macrophages express p84 and p101 but are p101-dominated and thus remain functional under treatment with FTI-277. Our work demonstrates that p101 and p84 have distinct physiological roles, and that Ras dependence of PI3Kγ signaling differs between cell types. FTI-277 reduces GPCR-activated PI3Kγ responses in p84-expressing but not p101-containing bone marrow derived cells. However, prenylation inhibitors have pleiotropic effects beyond Ras and non-tolerable side-effects that disfavor further clinical validation. Statins are, however, clinically well-established drugs that have previously been proposed to block mast cell degranulation by interference with protein prenylation. We show here that Simvastatin inhibits mast cell degranulation, but that this does not occur via Ras-PI3Kγ pathway alterations.
Collapse
|
15
|
Ding I, Ostrowska-Podhorodecka Z, Lee W, Liu RS, Carneiro K, Janmey PA, McCulloch CA. Cooperative roles of PAK1 and filamin A in regulation of vimentin assembly and cell extension formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118739. [DOI: 10.1016/j.bbamcr.2020.118739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
|
16
|
Sharma P, Burch S, Peesay T, M. Hamilla S, H. Hsieh A, Luna Lopez C. Downregulation of vimentin intermediate filaments affect human mesenchymal stem cell adhesion and formation of cellular projections. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Yang Y, Chen Q, Piao HY, Wang B, Zhu GQ, Chen EB, Xiao K, Zhou ZJ, Shi GM, Shi YH, Wu WZ, Fan J, Zhou J, Dai Z. HNRNPAB-regulated lncRNA-ELF209 inhibits the malignancy of hepatocellular carcinoma. Int J Cancer 2019; 146:169-180. [PMID: 31090062 DOI: 10.1002/ijc.32409] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/20/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023]
Abstract
Our previous study demonstrated that heterogeneous nuclear ribonucleoprotein AB (HNRNPAB) is a key gene that facilitates metastasis of hepatocellular carcinoma (HCC). However, the molecular mechanisms behind this relationship are not fully understood. In our study, we utilized long-noncoding RNA (lncRNA) microarrays to identify a HNRNPAB-regulated lncRNA named lnc-ELF209. Our findings from chromatin immunoprecipitation assays indicate that HNRNPAB represses lnc-ELF209 transcription by directly binding to its promoter region. We also analyzed clinical samples from HCC patients and cell lines with quantitative real-time polymerase chain reactions, RNA in situ hybridization and immunohistochemistry, and found that there is a negative relationship between HNRNPAB and lnc-ELF209 expression. Up/downregulation assays and rescue assays indicate that lnc-ELF209 inhibits cell migration, invasion and epithelial-mesenchymal transition regulated by HNRNPAB. This suggests a new regulatory mechanism for HNRNPAB-promoted HCC progression. RNA pull-down and LC-MS/MS were used to determine triosephosphate isomerase, heat shock protein 90-beta and vimentin may be involved in the tumor-suppressed function of lnc-ELF209. Furthermore, we found lnc-ELF209 could stabilize TPI protein expression. We also found that lnc-ELF209 overexpression in HCCLM3 cell resulted in a lower rate of lung metastatic, which suggested a less aggressive HCC phenotype. Collectively, these findings offer new insights into the regulatory mechanisms that underlie HNRNPAB cancer-promoting activities and demonstrate that lnc-ELF209 is a HNRNPAB-regulated lncRNA that may play an important role in the inhibition of HCC progression.
Collapse
Affiliation(s)
- Yi Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Qing Chen
- Department of General Surgery, Zhongshan Hospital (South), Fudan University, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hai-Yan Piao
- Medical Oncology Department of Gastrointestinal cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Er-Bao Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Kun Xiao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Zheng-Jun Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Ying-Hong Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| |
Collapse
|
18
|
Anti-vimentin antibodies in transplant and disease. Hum Immunol 2019; 80:602-607. [PMID: 30926354 DOI: 10.1016/j.humimm.2019.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
Non-HLA antibodies are recognized as a potential source of antibody mediated rejection following transplantation. The epitopes which lead to production of these antibodies are a result of tissue disruption, specifically endothelium, secondary to inflammation and injury. Vimentin is a cytoskeletal protein involved in many aspects of cellular organization, signaling, and proliferation. Recently, antivimentin antibodies have been shown to be important not only for rheumatological autoimmune diseases, but also cardiac and renal transplant dysfunction. In cardiac transplant recipients, antivimentin antibodies are associated with coronary artery vasculopathy and chronic graft loss. In renal transplantation, antivimentin antibodies are detected prior to transplantation and are also correlated with chronic graft dysfunction. In renal transplant recipients, antivimentin antibodies seen prior to transplantation are thought to be secondary to chronic endothelial injury during hemodialysis and therefore more prevalent prior to renal transplant than cardiac transplantation. In this review, we will examine the generation and pathogenesis of antivimentin antibodies. Given that these antibodies appear to be associated with both post-cardiac and -renal transplant dysfunction, developing standard detection paradigms may be important for risk stratification prior to transplantation. Finally, understanding the pathogenesis of antivimentin antibodies may lead to the development potential therapies in order to improve long-term survival.
Collapse
|
19
|
Sánchez-Alegría K, Flores-León M, Avila-Muñoz E, Rodríguez-Corona N, Arias C. PI3K Signaling in Neurons: A Central Node for the Control of Multiple Functions. Int J Mol Sci 2018; 19:ijms19123725. [PMID: 30477115 PMCID: PMC6321294 DOI: 10.3390/ijms19123725] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) signaling contributes to a variety of processes, mediating many aspects of cellular function, including nutrient uptake, anabolic reactions, cell growth, proliferation, and survival. Less is known regarding its critical role in neuronal physiology, neuronal metabolism, tissue homeostasis, and the control of gene expression in the central nervous system in healthy and diseased states. The aim of the present work is to review cumulative evidence regarding the participation of PI3K pathways in neuronal function, focusing on their role in neuronal metabolism and transcriptional regulation of genes involved in neuronal maintenance and plasticity or on the expression of pathological hallmarks associated with neurodegeneration.
Collapse
Affiliation(s)
- Karina Sánchez-Alegría
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| | - Manuel Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| | - Evangelina Avila-Muñoz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| | - Nelly Rodríguez-Corona
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.
| |
Collapse
|
20
|
Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomed Pharmacother 2018; 109:195-207. [PMID: 30396077 DOI: 10.1016/j.biopha.2018.10.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are post-transcriptional mediators of gene expression and regulation, which play influential roles in tumorigenesis and cancer metastasis. The expression of tumor suppressor miR-145 is reduced in various cancer cell lines, containing both solid tumors and blood malignancies. However, the responsible mechanisms of its down-regulation are a complicated network. miR-145 is potentially able to inhbit tumor cell metastasis by targeting of multiple oncogenes, including MUC1, FSCN1, Vimentin, Cadherin, Fibronectin, Metadherin, GOLM1, ARF6, SMAD3, MMP11, Snail1, ZEB1/2, HIF-1α and Rock-1. This distinctive role of miR-145 in the regulation of metastasis-related gene expression may introduce miR-145 as an ideal candidate for controlling of cancer metastasis by miRNA replacement therapy. The present review aims to discuss the current understanding of the different aspects of molecular mechanisms of miR-145 regulation as well as its role in r metastasis regulation.
Collapse
|
21
|
Abstract
Intermediate filaments (IFs) are one of the three major elements of the cytoskeleton. Their stability, intrinsic mechanical properties, and cell type-specific expression patterns distinguish them from actin and microtubules. By providing mechanical support, IFs protect cells from external forces and participate in cell adhesion and tissue integrity. IFs form an extensive and elaborate network that connects the cell cortex to intracellular organelles. They act as a molecular scaffold that controls intracellular organization. However, IFs have been revealed as much more than just rigid structures. Their dynamics is regulated by multiple signaling cascades and appears to contribute to signaling events in response to cell stress and to dynamic cellular functions such as mitosis, apoptosis, and migration.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur Paris, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Paris Cedex 15, France;
| |
Collapse
|
22
|
Wang Z, Divanyan A, Jourd'heuil FL, Goldman RD, Ridge KM, Jourd'heuil D, Lopez-Soler RI. Vimentin expression is required for the development of EMT-related renal fibrosis following unilateral ureteral obstruction in mice. Am J Physiol Renal Physiol 2018; 315:F769-F780. [PMID: 29631355 DOI: 10.1152/ajprenal.00340.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most renal transplants ultimately fail secondary to chronic allograft nephropathy (CAN). Vimentin (vim) is a member of the intermediate filament family of proteins and has been shown to be important in the development of CAN. One of the pathways leading to chronic renal fibrosis after transplant is thought to be epithelial to mesenchymal transition (EMT). Even though vim expression is one of the main steps of EMT, it is unknown whether vim expression is required for EMT leading to renal fibrosis and allograft loss. To this end, the role of vim in renal fibrosis was determined via unilateral ureteral obstruction (UUO) in vim knockout mice (129 svs6 vim -/-). Following UUO, kidneys were recovered and analyzed via Western blotting, immunofluorescence, and transcriptomics. Cultured human proximal renal tubular (HK-2) cells were subjected to lentiviral-driven inhibition of vim expression and then treated with transforming growth factor (TGF)-β to undergo EMT. Immunoblotting as well as wound healing assays were used to determine development of EMT. Western blotting analyses of mice undergoing UUO reveal increased levels of vim soon after UUO. As expected, interstitial collagen deposition increased in control mice following UUO but decreased in vim -/- kidneys. Immunofluorescence analyses also revealed altered localization of β-catenin in vim -/- mice undergoing UUO without significant changes in mRNA levels. However, RNA sequencing revealed a decrease in β-catenin-dependent genes in vim -/- kidneys. Finally, vim-silenced HK-2 cell lines undergoing EMT were shown to have decreased cellular migration during wound healing. We conclude that vim inhibition decreases fibrosis following UUO by possibly altering β-catenin localization and downstream signaling.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York
| | - Alex Divanyan
- Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York
| | - Frances L Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York
| | - Robert D Goldman
- Department of Cellular and Molecular Biology, Northwestern University , Chicago, Illinois
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University , Chicago, Illinois
| | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York
| | - Reynold I Lopez-Soler
- Division of Surgery, Section of Transplantation, Albany Medical Center , Albany, New York
| |
Collapse
|
23
|
Migration-based selections of antibodies that convert bone marrow into trafficking microglia-like cells that reduce brain amyloid β. Proc Natl Acad Sci U S A 2018; 115:E372-E381. [PMID: 29295920 PMCID: PMC5777004 DOI: 10.1073/pnas.1719259115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A migration-based selection system is used to identify antibodies from combinatorial libraries that induce stem cells to both differentiate and selectively traffic to different tissues in adult animals. Significantly, a single agonist antibody induces microglia-like cells, which have the capacity to migrate to the brain and decrease amyloid beta deposition in the brain. One goal of regenerative medicine is to repair damaged tissue. This requires not only generating new cells of the proper phenotype, but also selecting for those that properly integrate into sites of injury. In our laboratory we are using a cell-migration–based in vivo selection system to generate antibodies that induce cells to both differentiate and selectively localize to different tissues. Here we describe an antibody that induces bone marrow stem cells to differentiate into microglia-like cells that traffic to the brain where they organize into typical networks. Interestingly, in the APP/PS1 Alzheimer’s disease mouse model, these induced microglia-like cells are found at sites of plaque formation and significantly reduce their number. These results raise the intriguing question as to whether one can use such antibody-induced differentiation of stem cells to essentially recapitulate embryogenesis in adults to discover cells that can regenerate damaged organ systems.
Collapse
|
24
|
Cheng F, Eriksson JE. Intermediate Filaments and the Regulation of Cell Motility during Regeneration and Wound Healing. Cold Spring Harb Perspect Biol 2017; 9:9/9/a022046. [PMID: 28864602 DOI: 10.1101/cshperspect.a022046] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SUMMARYIntermediate filaments (IFs) comprise a diverse group of flexible cytoskeletal structures, the assembly, dynamics, and functions of which are regulated by posttranslational modifications. Characteristically, the expression of IF proteins is specific for tissues, differentiation stages, cell types, and functional contexts. Recent research has rapidly expanded the knowledge of IF protein functions. From being regarded as primarily structural proteins, it is now well established that IFs act as powerful modulators of cell motility and migration, playing crucial roles in wound healing and tissue regeneration, as well as inflammatory and immune responses. Although many of these IF-associated functions are essential for tissue repair, the involvement of IF proteins has been established in many additional facets of tissue healing and regeneration. Here, we review the recent progress in understanding the multiple functions of cytoplasmic IFs that relate to cell motility in the context of wound healing, taking examples from studies on keratin, vimentin, and nestin. Wound healing and regeneration include orchestration of a broad range of cellular processes, including regulation of cell attachment and migration, proliferation, differentiation, immune responses, angiogenesis, and remodeling of the extracellular matrix. In this respect, IF proteins now emerge as multifactorial and tissue-specific integrators of tissue regeneration, thereby acting as essential guardian biopolymers at the interface between health and disease, the failing of which contributes to a diverse range of pathologies.
Collapse
Affiliation(s)
- Fang Cheng
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.,Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| | - John E Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.,Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| |
Collapse
|
25
|
Lopez-Soler RI, Borgia JA, Kanangat S, Fhied CL, Conti DJ, Constantino D, Ata A, Chan R, Wang Z. Anti-vimentin Antibodies Present at the Time of Transplantation May Predict Early Development of Interstitial Fibrosis/Tubular Atrophy. Transplant Proc 2017; 48:2023-33. [PMID: 27569939 DOI: 10.1016/j.transproceed.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/27/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Anti-vimentin (a cytoskeletal protein) autoantibodies in renal transplant recipients have been correlated with interstitial fibrosis/tubular atrophy (IFTA). In this study, we examine the association between pretransplantation anti-vimentin antibodies and the subsequent development of IFTA. METHODS Sera obtained before renal transplantation from 97 transplant recipients were analyzed for the presence of anti-vimentin antibodies via Luminex assays to determine the concentration of anti-vimentin antibodies. Results were correlated with findings of IFTA on biopsy as well as graft function and patient and graft survival. RESULTS In our patient population, 56 of 97 patients were diagnosed by biopsy with IFTA 2.9 (±2.1) years after renal transplantation. Patients with IFTA on biopsy had higher mean concentration of anti-vimentin antibodies when compared to patients without IFTA (32.2 μg/mL [3.97-269.12 μg/mL] vs 14.57 μg/mL [4.71-87.81 μg/mL]). The risk of developing IFTA with a concentration of anti-vimentin antibody >15 μg/mL before transplantation was 1.96 (95% CI = 1.38-2.79, P = .011). Patients with elevated anti-vimentin antibody concentrations (>15 μg/mL) at the time of transplantation also had a higher risk of developing IFTA (81.4% vs 41.2%; P < .05). In addition, graft function was worse at 1, 3, and 5 years posttransplantation in patients with elevated concentrations of pretransplantation anti-vimentin antibody. Although there were more graft losses in the IFTA groups (49.12% vs 25.64%, P = .021) and the IFTA patients loss their grafts earlier (4.3 years vs 3.6 years), there was no statistical difference in graft loss rates. CONCLUSIONS Pretransplantation anti-vimentin antibody concentrations >15 μg/mL may be a risk factor for IFTA.
Collapse
Affiliation(s)
- R I Lopez-Soler
- Division of Surgery, Section of Transplantation, Albany Medical Center, Albany, New York.
| | - J A Borgia
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois; Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - S Kanangat
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - C L Fhied
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - D J Conti
- Division of Surgery, Section of Transplantation, Albany Medical Center, Albany, New York
| | - D Constantino
- Transplant Immunology Laboratory, Albany Medical College, Albany, New York
| | - A Ata
- Division of Surgery, Section of Transplantation, Albany Medical Center, Albany, New York
| | - R Chan
- Division of Surgery, Section of Transplantation, Albany Medical Center, Albany, New York
| | - Z Wang
- Center For Cardiovascular Sciences, Albany Medical College, Albany, New York
| |
Collapse
|
26
|
Downregulation of vimentin in macrophages infected with live Mycobacterium tuberculosis is mediated by Reactive Oxygen Species. Sci Rep 2016; 6:21526. [PMID: 26876331 PMCID: PMC4753491 DOI: 10.1038/srep21526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 01/22/2016] [Indexed: 01/27/2023] Open
Abstract
Mycobacterium tuberculosis persists primarily in macrophages after infection and manipulates the host defence pathways in its favour. 2D gel electrophoresis results showed that vimentin, an intermediate filament protein, is downregulated in macrophages infected with live Mycobacterium tuberculosis H37Rv when compared to macrophages infected with heat- killed H37Rv. The downregulation was confirmed by Western blot and quantitative RT-PCR. Besides, the expression of vimentin in avirulent strain, Mycobacterium tuberculosis H37Ra- infected macrophages was similar to the expression in heat-killed H37Rv- infected macrophages. Increased expression of vimentin in H2O2- treated live H37Rv-infected macrophages and decreased expression of vimentin both in NAC and DPI- treated heat-killed H37Rv-infected macrophages showed that vimentin expression is positively regulated by ROS. Ectopic expression of ESAT-6 in macrophages decreased both the level of ROS and the expression of vimentin which implies that Mycobacterium tuberculosis-mediated downregulation of vimentin is at least in part due to the downregulation of ROS by the pathogen. Interestingly, the incubation of macrophages with anti-vimentin antibody increased the ROS production and decreased the survival of H37Rv. In addition, we also showed that the pattern of phosphorylation of vimentin in macrophages by PKA/PKC is different from monocytes, emphasizing a role for vimentin phosphorylation in macrophage differentiation.
Collapse
|
27
|
Goto H, Tanaka H, Kasahara K, Inagaki M. Phospho-Specific Antibody Probes of Intermediate Filament Proteins. Methods Enzymol 2016; 568:85-111. [DOI: 10.1016/bs.mie.2015.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Noratto G, Chew BP, Ivanov I. Red raspberry decreases heart biomarkers of cardiac remodeling associated with oxidative and inflammatory stress in obese diabetic db/db mice. Food Funct 2016; 7:4944-4955. [DOI: 10.1039/c6fo01330a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Red raspberries decreased the expression of proteins linked to inflammatory/stress response and cardiac remodeling in hearts of obese diabetic mice.
Collapse
Affiliation(s)
- Giuliana Noratto
- Nutrition and Food Science
- Texas A&M University
- College Station
- USA
- School of Food Science
| | - Boon P. Chew
- Nutrition and Food Science
- Texas A&M University
- College Station
- USA
| | - Ivan Ivanov
- Veterinary Physiology and Pharmacology
- Texas A&M University
- College Station
- USA
| |
Collapse
|
29
|
Ridge KM, Shumaker D, Robert A, Hookway C, Gelfand VI, Janmey PA, Lowery J, Guo M, Weitz DA, Kuczmarski E, Goldman RD. Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments. Methods Enzymol 2015; 568:389-426. [PMID: 26795478 DOI: 10.1016/bs.mie.2015.09.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The type III intermediate filament protein vimentin was once thought to function mainly as a static structural protein in the cytoskeleton of cells of mesenchymal origin. Now, however, vimentin is known to form a dynamic, flexible network that plays an important role in a number of signaling pathways. Here, we describe various methods that have been developed to investigate the cellular functions of the vimentin protein and intermediate filament network, including chemical disruption, photoactivation and photoconversion, biolayer interferometry, soluble bead binding assay, three-dimensional substrate experiments, collagen gel contraction, optical-tweezer active microrheology, and force spectrum microscopy. Using these techniques, the contributions of vimentin to essential cellular processes can be probed in ever further detail.
Collapse
Affiliation(s)
- Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Chicago, Illinois, USA; Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA; Veterans Administration, Chicago, Illinois, USA.
| | - Dale Shumaker
- Division of Pulmonary and Critical Care Medicine, Chicago, Illinois, USA; Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amélie Robert
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline Hookway
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Departments of Physiology and Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason Lowery
- Division of Pulmonary and Critical Care Medicine, Chicago, Illinois, USA
| | - Ming Guo
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA; Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - Edward Kuczmarski
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert D Goldman
- Division of Pulmonary and Critical Care Medicine, Chicago, Illinois, USA; Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
30
|
Hyder CL, Kemppainen K, Isoniemi KO, Imanishi SY, Goto H, Inagaki M, Fazeli E, Eriksson JE, Törnquist K. Sphingolipids inhibit vimentin-dependent cell migration. J Cell Sci 2015; 128:2057-69. [PMID: 25908861 DOI: 10.1242/jcs.160341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
The sphingolipids, sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC), can induce or inhibit cellular migration. The intermediate filament protein vimentin is an inducer of migration and a marker for epithelial-mesenchymal transition. Given that keratin intermediate filaments are regulated by SPC, with consequences for cell motility, we wanted to determine whether vimentin is also regulated by sphingolipid signalling and whether it is a determinant for sphingolipid-mediated functions. In cancer cells where S1P and SPC inhibited migration, we observed that S1P and SPC induced phosphorylation of vimentin on S71, leading to a corresponding reorganization of vimentin filaments. These effects were sphingolipid-signalling-dependent, because inhibition of either the S1P2 receptor (also known as S1PR2) or its downstream effector Rho-associated kinase (ROCK, for which there are two isoforms ROCK1 and ROCK2) nullified the sphingolipid-induced effects on vimentin organization and S71 phosphorylation. Furthermore, the anti-migratory effect of S1P and SPC could be prevented by expressing S71-phosphorylation-deficient vimentin. In addition, we demonstrated, by using wild-type and vimentin-knockout mouse embryonic fibroblasts, that the sphingolipid-mediated inhibition of migration is dependent on vimentin. These results imply that this newly discovered sphingolipid-vimentin signalling axis exerts brake-and-throttle functions in the regulation of cell migration.
Collapse
Affiliation(s)
- Claire L Hyder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Kati Kemppainen
- Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Kimmo O Isoniemi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Environmental Science Lab, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku. Nagoya 468-8503, Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya 464-8681, Japan Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya 466-8550, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya 464-8681, Japan Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya 466-8550, Japan
| | - Elnaz Fazeli
- Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - John E Eriksson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521, Turku, Finland Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Kid Törnquist
- Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
31
|
PI3K signalling in inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:882-97. [PMID: 25514767 DOI: 10.1016/j.bbalip.2014.12.006] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/24/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022]
Abstract
PI3Ks regulate several key events in the inflammatory response to damage and infection. There are four Class I PI3K isoforms (PI3Kα,β,γ,δ), three Class II PI3K isoforms (PI3KC2α, C2β, C2γ) and a single Class III PI3K. The four Class I isoforms synthesise the phospholipid 'PIP3'. PIP3 is a 'second messenger' used by many different cell surface receptors to control cell movement, growth, survival and differentiation. These four isoforms have overlapping functions but each is adapted to receive efficient stimulation by particular receptor sub-types. PI3Kγ is highly expressed in leukocytes and plays a particularly important role in chemokine-mediated recruitment and activation of innate immune cells at sites of inflammation. PI3Kδ is also highly expressed in leukocytes and plays a key role in antigen receptor and cytokine-mediated B and T cell development, differentiation and function. Class III PI3K synthesises the phospholipid PI3P, which regulates endosome-lysosome trafficking and the induction of autophagy, pathways involved in pathogen killing, antigen processing and immune cell survival. Much less is known about the function of Class II PI3Ks, but emerging evidence indicates they can synthesise PI3P and PI34P2 and are involved in the regulation of endocytosis. The creation of genetically-modified mice with altered PI3K signalling, together with the development of isoform-selective, small-molecule PI3K inhibitors, has allowed the evaluation of the individual roles of Class I PI3K isoforms in several mouse models of chronic inflammation. Selective inhibition of PI3Kδ, γ or β has each been shown to reduce the severity of inflammation in one or more models of autoimmune disease, respiratory disease or allergic inflammation, with dual γ/δ or β/δ inhibition generally proving more effective. The inhibition of Class I PI3Ks may therefore offer a therapeutic opportunity to treat non-resolving inflammatory pathologies in humans. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
|
32
|
Kanugula AK, Dhople VM, Völker U, Ummanni R, Kotamraju S. Fluvastatin mediated breast cancer cell death: a proteomic approach to identify differentially regulated proteins in MDA-MB-231 cells. PLoS One 2014; 9:e108890. [PMID: 25268751 PMCID: PMC4182601 DOI: 10.1371/journal.pone.0108890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/04/2014] [Indexed: 01/12/2023] Open
Abstract
Statins are increasingly being recognized as anti-cancer agents against various cancers including breast cancer. To understand the molecular pathways targeted by fluvastatin and its differential sensitivity against metastatic breast cancer cells, we analyzed protein alterations in MDA-MB-231 cells treated with fluvastatin using 2-DE in combination with LC-MS/MS. Results revealed dys-regulation of 39 protein spots corresponding to 35 different proteins. To determine the relevance of altered protein profiles with breast cancer cell death, we mapped these proteins to major pathways involved in the regulation of cell-to-cell signaling and interaction, cell cycle, Rho GDI and proteasomal pathways using IPA analysis. Highly interconnected sub networks showed that vimentin and ERK1/2 proteins play a central role in controlling the expression of altered proteins. Fluvastatin treatment caused proteolysis of vimentin, a marker of epithelial to mesenchymal transition. This effect of fluvastatin was reversed in the presence of mevalonate, a downstream product of HMG-CoA and caspase-3 inhibitor. Interestingly, fluvastatin neither caused an appreciable cell death nor did modulate vimentin expression in normal mammary epithelial cells. In conclusion, fluvastatin alters levels of cytoskeletal proteins, primarily targeting vimentin through increased caspase-3- mediated proteolysis, thereby suggesting a role for vimentin in statin-induced breast cancer cell death.
Collapse
Affiliation(s)
| | - Vishnu M. Dhople
- Interfacultary Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfacultary Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ramesh Ummanni
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- * E-mail: (SK); (RU)
| | - Srigiridhar Kotamraju
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- * E-mail: (SK); (RU)
| |
Collapse
|
33
|
Sullivan DP, Rüffer C, Muller WA. Isolation of the lateral border recycling compartment using a diaminobenzidine-induced density shift. Traffic 2014; 15:1016-29. [PMID: 24915828 DOI: 10.1111/tra.12184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 01/08/2023]
Abstract
The migration of leukocytes across the endothelium and into tissue is critical to mounting an inflammatory response. The lateral border recycling compartment (LBRC), a complex vesicular-tubule invagination of the plasma membrane found at endothelial cell borders, plays an important role in this process. Although a few proteins have been shown to be present in the LBRC, no unique marker is known. Here, we detail methods that can be used to characterize a subcellular compartment that lacks an identifying marker. Initial characterization of the LBRC was performed using standard subcellular fractionation with sucrose gradients and took advantage of the observation that the compartment migrated at a lower density than other membrane compartments. To isolate larger quantities of the compartment, we modified a classic technique known as a diaminobenzidine (DAB)-induced density shift. The DAB-induced density shift allowed for specific isolation of membranes labeled with horseradish peroxidase-conjugated antibody. Because the LBRC could be differentially labeled at 4 °C and 37 °C, we were able to identify proteins that are enriched in the compartment, despite lacking a unique marker. These methods serve as a model to others studying poorly characterized compartments and organelles and are applicable to a wide variety of biological systems.
Collapse
Affiliation(s)
- David P Sullivan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | | | | |
Collapse
|
34
|
Comparison of protein expression profiles between three Perkinsus spp., protozoan parasites of molluscs, through 2D electrophoresis and mass spectrometry. J Invertebr Pathol 2014; 118:47-58. [DOI: 10.1016/j.jip.2014.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 11/24/2022]
|
35
|
Kidd ME, Shumaker DK, Ridge KM. The role of vimentin intermediate filaments in the progression of lung cancer. Am J Respir Cell Mol Biol 2014; 50:1-6. [PMID: 23980547 DOI: 10.1165/rcmb.2013-0314tr] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is an accumulation of evidence in the literature demonstrating the integral role of vimentin intermediate filaments (IFs) in the progression of lung cancers. Vimentin IF proteins have been implicated in many aspects of cancer initiation and progression, including tumorigenesis, epithelial-to-mesenchymal transition (EMT), and the metastatic spread of cancer. Specifically, vimentin IFs have been recognized as an essential component regulating EMT, major signal transduction pathways involved in EMT and tumor progression, cell migration and invasion, the positioning and anchorage of organelles, such as mitochondria, and cell-cell and cell-substrate adhesion. In tumorgenesis, vimentin forms a complex with 14-3-3 and beclin 1 to inhibit autophagy via an AKT-dependent mechanism. Vimentin is a canonical marker of EMT, and recent evidence has shown it to be an important regulator of cellular motility. Transcriptional regulation of vimentin through hypoxia-inducible factor-1 may be a potential driver of EMT. Finally, vimentin regulates 14-3-3 complexes and controls various intracellular signaling and cell cycle control pathways by depleting the availability of free 14-3-3. There are many exciting advances in our understanding of the complex role of vimentin IFs in cancer, pointing to the key role vimentin IFs may play in tumor progression.
Collapse
Affiliation(s)
- Martha E Kidd
- 1 Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; and
| | | | | |
Collapse
|
36
|
Boyle DL, Kim HR, Topolewski K, Bartok B, Firestein GS. Novel phosphoinositide 3-kinase δ,γ inhibitor: potent anti-inflammatory effects and joint protection in models of rheumatoid arthritis. J Pharmacol Exp Ther 2013; 348:271-80. [PMID: 24244039 DOI: 10.1124/jpet.113.205955] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphoinositide 3-kinases γ and δ (PI3Kγ and PI3Kδ) are expressed in rheumatoid arthritis (RA) synovium and regulate innate and adaptive immune responses. We determined the effect of a potent PI3Kδ,γ inhibitor, IPI-145, in two preclinical models of RA. IPI-145 was administered orally in rat adjuvant-induced arthritis (AA) and intraperitoneally in mouse collagen-induced arthritis (CIA). Efficacy was assessed by paw swelling, clinical scores, histopathology and radiography, and microcomputed tomography scanning. Gene expression and Akt phosphorylation in joint tissues were determined by quantitative real-time polymerase chain reaction and Western blot analysis. Serum concentrations of anti-type II collagen (CII) IgG and IgE were measured by immunoassay. T-cell responses to CII were assayed using thymidine incorporation and immunoassay. IPI-145 significantly reduced arthritis severity in both RA models using dosing regimens initiated before onset of clinical disease. Treatment of established arthritis with IPI-145 in AA, but not CIA, significantly decreased arthritis progression. In AA, histology scores, radiographic joint damage, and matrix metalloproteinase (MMP)-13 expression were reduced in IPI-145-treated rats. In CIA, joint histology scores and expression of MMP-3 and MMP-13 mRNA were lower in the IPI-145 early treatment group than in the vehicle group. The ratio of anti-CII IgG2a to total IgG in CIA was modestly reduced. Interleukin-17 production in response to CII was decreased in the IPI-145-treated group, suggesting an inhibitory effect on T-helper cell 17 differentiation. These data show that PI3Kδ,γ inhibition suppresses inflammatory arthritis, as well as bone and cartilage damage, through effects on innate and adaptive immunity and that IPI-145 is a potential therapy for RA.
Collapse
Affiliation(s)
- David L Boyle
- Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of California San Diego, La Jolla, California
| | | | | | | | | |
Collapse
|
37
|
Thiagarajan PS, Akbasli AC, Kinter MT, Willard B, Cathcart MK. Vimentin is a target of PKCβ phosphorylation in MCP-1-activated primary human monocytes. Inflamm Res 2013; 62:991-1001. [PMID: 23974215 DOI: 10.1007/s00011-013-0657-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/08/2013] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE AND DESIGN We designed a study to detect downstream phosphorylation targets of PKCβ in MCP-1-induced human monocytes. METHODS Two-dimensional gel electrophoresis was performed for monocytes treated with MCP-1 in the presence or absence of PKCβ antisense oligodeoxyribonucleotides (AS-ODN) or a PKCβ inhibitor peptide, followed by phospho- and total protein staining. Proteins that stained less intensely with the phospho-stain, when normalized to the total protein stain, in the presence of PKCβ AS-ODN or the PKCβ inhibitor peptide, were sequenced. RESULTS Of the proteins identified, vimentin was consistently identified using both experimental approaches. Upon (32)P-labeling and vimentin immunoprecipitation, increased phosphorylation of vimentin was observed in MCP-1 treated monocytes as compared to the untreated monocytes. Both PKCβ AS-ODN and the PKCβ inhibitor reduced MCP-1-induced vimentin phosphorylation. The IP of monocytes with anti-vimentin antibody and immunoblotting with a PKCβ antibody revealed that increased PKCβ becomes associated with vimentin upon MCP-1 activation. Upon MCP-1 treatment, monocytes were shown to secrete vimentin and secretion depended on PKCβ expression and activity. CONCLUSIONS We conclude that vimentin, a major intermediate filament protein, is a phosphorylation target of PKCβ in MCP-1-treated monocytes and that PKCβ phosphorylation is essential for vimentin secretion. Our recently published studies have implicated vimentin as a potent stimulator of the innate immune receptor Dectin-1 as reported by Thiagarajan et al. (Cardiovasc Res 99:494-504, 2013). Taken together our findings suggest that inhibition of PKCβ regulates vimentin secretion and, thereby, its interaction with Dectin-1 and downstream stimulation of superoxide anion production. Thus, PKCβ phosphorylation of vimentin likely plays an important role in propagating inflammatory responses.
Collapse
Affiliation(s)
- Praveena S Thiagarajan
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | | | | | | | | |
Collapse
|
38
|
Foster JG, Blunt MD, Carter E, Ward SG. Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies. Pharmacol Rev 2013; 64:1027-54. [PMID: 23023033 DOI: 10.1124/pr.110.004051] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The phosphoinositide 3-kinase/mammalian target of rapamycin/protein kinase B (PI3K/mTOR/Akt) signaling pathway is central to a plethora of cellular mechanisms in a wide variety of cells including leukocytes. Perturbation of this signaling cascade is implicated in inflammatory and autoimmune disorders as well as hematological malignancies. Proteins within the PI3K/mTOR/Akt pathway therefore represent attractive targets for therapeutic intervention. There has been a remarkable evolution of PI3K inhibitors in the past 20 years from the early chemical tool compounds to drugs that are showing promise as anticancer agents in clinical trials. The use of animal models and pharmacological tools has expanded our knowledge about the contribution of individual class I PI3K isoforms to immune cell function. In addition, class II and III PI3K isoforms are emerging as nonredundant regulators of immune cell signaling revealing potentially novel targets for disease treatment. Further complexity is added to the PI3K/mTOR/Akt pathway by a number of novel signaling inputs and feedback mechanisms. These can present either caveats or opportunities for novel drug targets. Here, we consider recent advances in 1) our understanding of the contribution of individual PI3K isoforms to immune cell function and their relevance to inflammatory/autoimmune diseases as well as lymphoma and 2) development of small molecules with which to inhibit the PI3K pathway. We also consider whether manipulating other proximal elements of the PI3K signaling cascade (such as class II and III PI3Ks or lipid phosphatases) are likely to be successful in fighting off different immune diseases.
Collapse
Affiliation(s)
- John G Foster
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK.
| | | | | | | |
Collapse
|
39
|
Banham-Hall E, Clatworthy MR, Okkenhaug K. The Therapeutic Potential for PI3K Inhibitors in Autoimmune Rheumatic Diseases. Open Rheumatol J 2012; 6:245-58. [PMID: 23028409 PMCID: PMC3460535 DOI: 10.2174/1874312901206010245] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/16/2011] [Accepted: 11/20/2011] [Indexed: 12/14/2022] Open
Abstract
The class 1 PI3Ks are lipid kinases with key roles in cell surface receptor-triggered signal transduction pathways. Two isoforms of the catalytic subunits, p110γ and p110δ, are enriched in leucocytes in which they promote activation, cellular growth, proliferation, differentiation and survival through the generation of the second messenger PIP3. Genetic inactivation or pharmaceutical inhibition of these PI3K isoforms in mice result in impaired immune responses and reduced susceptibility to autoimmune and inflammatory conditions. We review the PI3K signal transduction pathways and the effects of inhibition of p110γ and/or p110δ on innate and adaptive immunity. Focusing on rheumatoid arthritis and systemic lupus erythematosus we discuss the preclinical evidence and prospects for small molecule inhibitors of p110γ and/or p110δ in autoimmune disease.
Collapse
Affiliation(s)
- Edward Banham-Hall
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, CB22
3AT, UK
| | - Menna R Clatworthy
- Cambridge Institute for Medical Research and the Department of Medicine, University of Cambridge School of Clinical
Medicine, Cambridge CB2 0XY, UK
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, CB22
3AT, UK
| |
Collapse
|
40
|
Niu S, Wang Z, Ge D, Zhang G, Li Y. Prediction of functional phosphorylation sites by incorporating evolutionary information. Protein Cell 2012; 3:675-90. [PMID: 22802047 DOI: 10.1007/s13238-012-2048-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/27/2012] [Indexed: 01/05/2023] Open
Abstract
Protein phosphorylation is a ubiquitous protein post-translational modification, which plays an important role in cellular signaling systems underlying various physiological and pathological processes. Current in silico methods mainly focused on the prediction of phosphorylation sites, but rare methods considered whether a phosphorylation site is functional or not. Since functional phosphorylation sites are more valuable for further experimental research and a proportion of phosphorylation sites have no direct functional effects, the prediction of functional phosphorylation sites is quite necessary for this research area. Previous studies have shown that functional phosphorylation sites are more conserved than non-functional phosphorylation sites in evolution. Thus, in our method, we developed a web server by integrating existing phosphorylation site prediction methods, as well as both absolute and relative evolutionary conservation scores to predict the most likely functional phosphorylation sites. Using our method, we predicted the most likely functional sites of the human, rat and mouse proteomes and built a database for the predicted sites. By the analysis of overall prediction results, we demonstrated that protein phosphorylation plays an important role in all the enriched KEGG pathways. By the analysis of protein-specific prediction results, we demonstrated the usefulness of our method for individual protein studies. Our method would help to characterize the most likely functional phosphorylation sites for further studies in this research area.
Collapse
Affiliation(s)
- Shen Niu
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | | | | | |
Collapse
|
41
|
Poller W, Rother M, Skurk C, Scheibenbogen C. Endogenous migration modulators as parent compounds for the development of novel cardiovascular and anti-inflammatory drugs. Br J Pharmacol 2012; 165:2044-58. [PMID: 22035209 PMCID: PMC3413843 DOI: 10.1111/j.1476-5381.2011.01762.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/18/2011] [Accepted: 09/16/2011] [Indexed: 01/13/2023] Open
Abstract
Development of novel cell migration modulators for anti-inflammatory and cardiovascular therapy is a complex task since any modulator will necessarily interfere with a balanced system of physiological regulators directing proper positioning of diverse immune cell types within the body. Whereas this shall serve efficient pathogen elimination, lack of proper control over these processes may result in counterproductive chronic inflammation and progressive tissue injury instead of healing. Prediction of the therapeutic potential or side effects of any migration modulator is not possible based on theoretical considerations alone but needs to be experimentally evaluated in preclinical disease models and by clinical studies. Here, we briefly summarize basic mechanism of cell migration, and groups of synthetic drugs currently in use for migration modulation. We then discuss one fundamental problem encountered with single-target approaches that arises from the complexity of any inflammation, with multiple interacting and often redundant factors being involved. This issue is likely to arise for any class of therapeutic agent (small molecules, peptides, antibodies, regulatory RNAs) addressing a single gene or protein. Against this background of studies on synthetic migration modulators addressing single targets, we then discuss the potential of endogenous proteins as therapeutic migration modulators, or as parent compounds for the development of mimetic drugs. Regulatory proteins of this type commonly address multiple receptors and signalling pathways and act upon the immune response in a phase-specific manner. Based on recent evidence, we suggest investigation of such endogenous migration modulators as novel starting points for anti-inflammatory and cardiovascular drug development.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology and Pneumology, Campus Benjamin Franklin CBF, Charite - Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
42
|
Carter CJ. Extensive viral mimicry of 22 AIDS-related autoantigens by HIV-1 proteins and pathway analysis of 561 viral/human homologues suggest an initial treatable autoimmune component of AIDS. ACTA ACUST UNITED AC 2012; 63:254-68. [PMID: 22077229 DOI: 10.1111/j.1574-695x.2011.00848.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
HIV-1 viral proteins, particularly the env protein, are homologous to 22 AIDS autoantigens, suggesting their creation by antiviral antibodies subsequently targeting human homologues. They include antibodies to T-cell receptors, CD4 and CD95, complement components, IgG, TNF and other immune-related proteins. Autoantibodies may compromise the immune system via knockdown of these key proteins, and autoimmune attack on the immune system itself, as supported by immune activation in early stages of infection and during the transition to AIDS. Over 500 human proteins contain pentapeptides or longer consensi, identical to viral peptides. Such homology explains the extensive viral/human interactome, likely related to the ability of viral homologues to compete with human counterparts as binding partners. Pathway analysis of these homologous proteins revealed their involvement in immune-related networks (e.g. natural killer cell toxicity/toll, T-cell/B-cell receptor signalling/antigen processing) and viral and bacterial entry and defence pathways (phagosome/lysosome pathways, DNA sensing/NOD/RIG-1 pathways) relevant to AIDS pathogenesis. At its inception, AIDS may have an autoimmune component selectively targeting the immune system. Immunosuppressive therapy or antibody removal, which has already achieved some success, might be therapeutically beneficial, particularly if targeted at removal of the culpable antibodies, via affinity dialysis.
Collapse
Affiliation(s)
- Chris J Carter
- PolygenicPathways, St Leonard's on Sea, East Sussex, UK.
| |
Collapse
|
43
|
Abstract
In the last decade, the availability of genetically modified animals has revealed interesting roles for phosphoinositide 3-kinases (PI3Ks) as signaling platforms orchestrating multiple cellular responses, both in health and pathology. By acting downstream distinct receptor types, PI3Ks nucleate complex signaling assemblies controlling several biological process, ranging from cell proliferation and survival to immunity, cancer, metabolism and cardiovascular control. While the involvement of these kinases in modulating immune reactions and neoplastic transformation has long been accepted, recent progress from our group and others has highlighted new and unforeseen roles of PI3Ks in controlling cardiovascular function. Hence, the view is emerging that pharmacological targeting of distinct PI3K isoforms could be successful in treating disorders such as myocardial infarction and heart failure, besides inflammatory diseases and cancer. Currently, PI3Ks represent attractive drug targets for companies interested in the development of novel and safe treatments for such diseases. Numerous hit and lead compounds are now becoming available and, for some of them, clinical trials can be envisaged in the near future. In the following sections, we will outline the impact of specific PI3K isoforms in regulating different cellular contexts, including immunity, metabolism, cancer and cardiovascular system, both in physiological and disease conditions.
Collapse
|
44
|
Mahimkar R, Alfonso-Jaume MA, Cape LM, Dahiya R, Lovett DH. Graded activation of the MEK1/MT1-MMP axis determines renal epithelial cell tumor phenotype. Carcinogenesis 2011; 32:1806-14. [PMID: 21965271 DOI: 10.1093/carcin/bgr216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of Raf/Ras/mitogen-activated protein kinase (MEK)/mitogen-activated protein kinase signaling and elevated expression of membrane type-1 matrix metalloproteinase (MT1-MMP) are associated with von Hippel-Lindau gene alterations in renal cell carcinoma. We postulated that the degree of MEK activation was related to graded expression of MT1-MMP and the resultant phenotype of renal epithelial tumors. Madin Darby canine kidney epithelial cells transfected with a MEK1 expression plasmid yielded populations with morphologic phenotypes ranging from epithelial, mixed epithelial/mesenchymal to mesenchymal. Clones were analyzed for MEK1 activity, MT1-MMP expression and extent of epithelial-mesenchymal transition. Phenotypes of the MDCK-MEK1 clones were evaluated in vivo with nu/nu mice. Tissue microarray of renal cell cancers was quantitatively assessed for expression of phosphorylated MEK1 and MT1-MMP proteins and correlations drawn to Fuhrman nuclear grade. Graded increases in the MEK signaling module were associated with graded induction of epithelial-mesenchymal transition of the MDCK cells and induction of MT1-MMP transcription and synthesis. Inhibition of MEK1 and MT1-MMP activity reversed the epithelial-mesenchymal transition. Tumors generated by epithelial, mixed epithelial/mesenchymal and mesenchymal MDCK clones demonstrated a gradient of phenotypes extending from well-differentiated, fully encapsulated non-invasive tumors to tumors with an anaplastic morphology, high Fuhrman nuclear score, neoangiogenesis and invasion. Tumor microarray demonstrated a statistically significant association between the extent of phosphorylated MEK1, MT1-MMP expression and nuclear grade. We conclude that graded increases in the MEK1 signaling module are correlated with M1-MMP expression, renal epithelial cell tumor phenotype, invasive activity and nuclear grade. Phosphorylated MEK1 and MT1-MMP may represent novel, and mechanistic, biomarkers for the assessment of renal cell carcinoma.
Collapse
Affiliation(s)
- Rajeev Mahimkar
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | | | | | | | | |
Collapse
|
45
|
Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 2011; 68:3033-46. [PMID: 21637948 PMCID: PMC3162105 DOI: 10.1007/s00018-011-0735-1] [Citation(s) in RCA: 1074] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 02/06/2023]
Abstract
Vimentin, a major constituent of the intermediate filament family of proteins, is ubiquitously expressed in normal mesenchymal cells and is known to maintain cellular integrity and provide resistance against stress. Vimentin is overexpressed in various epithelial cancers, including prostate cancer, gastrointestinal tumors, tumors of the central nervous system, breast cancer, malignant melanoma, and lung cancer. Vimentin's overexpression in cancer correlates well with accelerated tumor growth, invasion, and poor prognosis; however, the role of vimentin in cancer progression remains obscure. In recent years, vimentin has been recognized as a marker for epithelial-mesenchymal transition (EMT). Although EMT is associated with several tumorigenic events, vimentin's role in the underlying events mediating these processes remains unknown. By virtue of its overexpression in cancer and its association with tumor growth and metastasis, vimentin serves as an attractive potential target for cancer therapy; however, more research would be crucial to evaluate its specific role in cancer. Our recent discovery of a vimentin-binding mini-peptide has generated further impetus for vimentin-targeted tumor-specific therapy. Furthermore, research directed toward elucidating the role of vimentin in various signaling pathways would reveal new approaches for the development of therapeutic agents. This review summarizes the expression and functions of vimentin in various types of cancer and suggests some directions toward future cancer therapy utilizing vimentin as a potential molecular target.
Collapse
Affiliation(s)
- Arun Satelli
- Department of Pediatrics, Unit 853, The University of Texas MD Anderson Cancer Center, 1515 Holocombe Blvd, Houston, TX 77030 USA
| | - Shulin Li
- Department of Pediatrics, Unit 853, The University of Texas MD Anderson Cancer Center, 1515 Holocombe Blvd, Houston, TX 77030 USA
- UTMD, Graduate School of Biomedical Science, Houston, TX 77030 USA
| |
Collapse
|
46
|
Sonderegger S, Yap J, Menkhorst E, Weston G, Stanton PG, Dimitriadis E. Interleukin (IL)11 mediates protein secretion and modification in human extravillous trophoblasts. Hum Reprod 2011; 26:2841-9. [DOI: 10.1093/humrep/der259] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
47
|
Rogel MR, Soni PN, Troken JR, Sitikov A, Trejo HE, Ridge KM. Vimentin is sufficient and required for wound repair and remodeling in alveolar epithelial cells. FASEB J 2011; 25:3873-83. [PMID: 21803859 DOI: 10.1096/fj.10-170795] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The physiological and pathophysiological implications of the expression of vimentin, a type III intermediate filament protein, in alveolar epithelial cells (AECs) are unknown. We provide data demonstrating that vimentin is regulated by TGFβ1, a major cytokine released in response to acute lung injury and that vimentin is required for wound repair and remodeling of the alveolar epithelium. Quantitative real-time PCR shows a 16-fold induction of vimentin mRNA in TGFβ1-treated transformed AECs. Luciferase assays identify a Smad-binding element in the 5' promoter of vimentin responsible for TGFβ1-induced transcription. Notably, TGFβ1 induces vimentin protein expression in AECs, which is associated with a 2.5-fold increase in cell motility, resulting in increased rates of migration and wound closure. These effects are independent of cell proliferation. TGFβ1-mediated vimentin protein expression, cell migration, and wound closure are prevented by a pharmacological inhibitor of the Smad pathway and by expression of Ad-shRNA against vimentin. Conversely, overexpression of mEmerald-vimentin is sufficient for increased cell-migration and wound-closure rates. These results demonstrate that vimentin is required and sufficient for increased wound repair in an in vitro model of lung injury.
Collapse
Affiliation(s)
- Micah R Rogel
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
48
|
Helfand BT, Mendez MG, Murthy SNP, Shumaker DK, Grin B, Mahammad S, Aebi U, Wedig T, Wu YI, Hahn KM, Inagaki M, Herrmann H, Goldman RD. Vimentin organization modulates the formation of lamellipodia. Mol Biol Cell 2011; 22:1274-89. [PMID: 21346197 PMCID: PMC3078081 DOI: 10.1091/mbc.e10-08-0699] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The disassembly and withdrawal of vimentin intermediate filaments (VIF) from the plasma membrane induces membrane ruffling and the formation of a lamellipodium. Conversely, lamellipodium formation is inhibited when VIF are present. Vimentin intermediate filaments (VIF) extend throughout the rear and perinuclear regions of migrating fibroblasts, but only nonfilamentous vimentin particles are present in lamellipodial regions. In contrast, VIF networks extend to the entire cell periphery in serum-starved or nonmotile fibroblasts. Upon serum addition or activation of Rac1, VIF are rapidly phosphorylated at Ser-38, a p21-activated kinase phosphorylation site. This phosphorylation of vimentin is coincident with VIF disassembly at and retraction from the cell surface where lamellipodia form. Furthermore, local induction of photoactivatable Rac1 or the microinjection of a vimentin mimetic peptide (2B2) disassemble VIF at sites where lamellipodia subsequently form. When vimentin organization is disrupted by a dominant-negative mutant or by silencing, there is a loss of polarity, as evidenced by the formation of lamellipodia encircling the entire cell, as well as reduced cell motility. These findings demonstrate an antagonistic relationship between VIF and the formation of lamellipodia.
Collapse
Affiliation(s)
- Brian T Helfand
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhou Q, Snider NT, Liao J, Li DH, Hong A, Ku NO, Cartwright CA, Omary MB. Characterization of in vivo keratin 19 phosphorylation on tyrosine-391. PLoS One 2010; 5:e13538. [PMID: 21049038 PMCID: PMC2963603 DOI: 10.1371/journal.pone.0013538] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/29/2010] [Indexed: 02/07/2023] Open
Abstract
Background Keratin polypeptide 19 (K19) is a type I intermediate filament protein that is expressed in stratified and simple-type epithelia. Although K19 is known to be phosphorylated on tyrosine residue(s), conclusive site-specific characterization of these residue(s) and identification potential kinases that may be involved has not been reported. Methodology/Principal Findings In this study, biochemical, molecular and immunological approaches were undertaken in order to identify and characterize K19 tyrosine phosphorylation. Upon treatment with pervanadate, a tyrosine phosphatase inhibitor, human K19 (hK19) was phosphorylated on tyrosine 391, located in the ‘tail’ domain of the protein. K19 Y391 phosphorylation was confirmed using site-directed mutagenesis and cell transfection coupled with the generation of a K19 phospho (p)-Y391-specific rabbit antibody. The antibody also recognized mouse phospho-K19 (K19 pY394). This tyrosine residue is not phosphorylated under basal conditions, but becomes phosphorylated in the presence of Src kinase in vitro and in cells expressing constitutively-active Src. Pervanadate treatment in vivo resulted in phosphorylation of K19 Y394 and Y391 in colonic epithelial cells of non-transgenic mice and hK19-overexpressing mice, respectively. Conclusions/Significance Human K19 tyrosine 391 is phosphorylated, potentially by Src kinase, and is the first well-defined tyrosine phosphorylation site of any keratin protein. The lack of detection of K19 pY391 in the absence of tyrosine phosphatase inhibition suggests that its phosphorylation is highly dynamic.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Medicine, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Natasha T. Snider
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jian Liao
- Applied Biomics, Inc., Hayward, California, United States of America
| | - Daniel H. Li
- Anaspec, Inc., Fremont, California, United States of America
| | - Anita Hong
- Anaspec, Inc., Fremont, California, United States of America
| | - Nam-On Ku
- Department of Biomedical Sciences, Yonsei University, Seoul, South Korea
| | - Christine A. Cartwright
- Department of Medicine, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
50
|
Wang YH, Yan ZQ, Qi YX, Cheng BB, Wang XD, Zhao D, Shen BR, Jiang ZL. Normal shear stress and vascular smooth muscle cells modulate migration of endothelial cells through histone deacetylase 6 activation and tubulin acetylation. Ann Biomed Eng 2010; 38:729-37. [PMID: 20069369 DOI: 10.1007/s10439-009-9896-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 12/29/2009] [Indexed: 12/27/2022]
Abstract
Endothelial cells (ECs) line the innermost of the blood vessel wall and are constantly subjected to shear stress imposed by blood flow. ECs were also influenced by the neighboring vascular smooth muscle cells (VSMCs). The bidirectional communication between ECs and VSMCs modulates vascular homeostasis. In this study, the involvement of histone deacetylase 6 (HDAC6) in modulating migration of ECs co-cultured with VSMCs by the normal level of laminar shear stress (NSS) was investigated. ECs was either cultured alone or co-cultured with VSMCs under static conditions or subjected to NSS of 15 dyne/cm2 by using a parallel-plate co-culture flow chamber system. It was demonstrated that both NSS and VSMCs could increase EC migration. The migration level of ECs co-cultured with VSMCs under NSS was not higher than that under the static condition. The process of EC migration regulated by VSMCs and NSS was associated with the increased expression of HDAC6 and low level of acetylated tubulin. The increase in HDAC6 expression was accompanied by a time-dependent decrease in the acetylation of tubulin in ECs co-cultured with VSMCs. Inhibition of the HDAC6 by siRNA or tributyrin, an inhibitor of HDACs, induced a parallel alteration in the migration and the acetylated tubulin of ECs co-cultured with VSMCs. It was observed by immunofluorescence staining that the acetylated tubulin was distributed mostly around the cell nucleus in ECs co-cultured with VSMCs. The results suggest that the NSS may display a protective function on the vascular homeostasis by modulating EC migration to a normal level in a VSMC-dependent manner. This modulation process involves the down-regulation of acetylated tubulin which results from increased HDAC6 activity in ECs.
Collapse
Affiliation(s)
- Yan-Hua Wang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|