1
|
Hinshaw DC, Patel M, Shevde LA. A Metabolic Axis of Immune Intractability. Cancer Immunol Res 2024; 12:282-286. [PMID: 38126910 PMCID: PMC10936744 DOI: 10.1158/2326-6066.cir-23-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Immune cells in the tumor niche robustly influence disease progression. Remarkably, in cancer, developmental pathways are reenacted. Many parallels between immune regulation of embryonic development and immune regulation of tumor progression can be drawn, with evidence clearly supporting an immune-suppressive microenvironment in both situations. In these ecosystems, metabolic and bioenergetic circuits guide and regulate immune cell differentiation, plasticity, and functional properties of suppressive and inflammatory immune subsets. As such, there is an emerging pattern of intersection across the dynamic process of ontogeny and the ever-evolving tumor neighborhood. In this article, we focus on the convergence of immune programming during ontogeny and in the tumor microenvironment. Exemplifying dysregulation of Hedgehog (Hh) activity, a key player during ontogeny, we highlight a critical convergence of these fields and the metabolic axis of the nutrient sensing hexosamine biosynthetic pathway (HBP) that integrates glucose, glutamine, amino acids, acetyl CoA, and uridine-5'-triphosphate (UTP), culminating in the synthesis of UDP-GlcNAc, a metabolite that functions as a metabolic and bioenergetic sensor. We discuss an emerging pattern of immune regulation, orchestrated by O-GlcNAcylation of key transcriptional regulators, spurring suppressive activity of dysfunctional immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Dominique C. Hinshaw
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Meet Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Senior author
| |
Collapse
|
2
|
Krenn PW, Aberger F. Targeting cancer hallmark vulnerabilities in hematologic malignancies by interfering with Hedgehog/GLI signaling. Blood 2023; 142:1945-1959. [PMID: 37595276 DOI: 10.1182/blood.2021014761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
Understanding the genetic alterations, disrupted signaling pathways, and hijacked mechanisms in oncogene-transformed hematologic cells is critical for the development of effective and durable treatment strategies against liquid tumors. In this review, we focus on the specific involvement of the Hedgehog (HH)/GLI pathway in the manifestation and initiation of various cancer features in hematologic malignancies, including multiple myeloma, T- and B-cell lymphomas, and lymphoid and myeloid leukemias. By reviewing canonical and noncanonical, Smoothened-independent HH/GLI signaling and summarizing preclinical in vitro and in vivo studies in hematologic malignancies, we elucidate common molecular mechanisms by which HH/GLI signaling controls key oncogenic processes and cancer hallmarks such as cell proliferation, cancer stem cell fate, genomic instability, microenvironment remodeling, and cell survival. We also summarize current clinical trials with HH inhibitors and discuss successes and challenges, as well as opportunities for future combined therapeutic approaches. By providing a bird's eye view of the role of HH/GLI signaling in liquid tumors, we suggest that a comprehensive understanding of the general oncogenic effects of HH/GLI signaling on the formation of cancer hallmarks is essential to identify critical vulnerabilities within tumor cells and their supporting remodeled microenvironment, paving the way for the development of novel and efficient personalized combination therapies for hematologic malignancies.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
3
|
Li Y, Ming M, Li C, Liu S, Zhang D, Song T, Tan J, Zhang J. The emerging role of the hedgehog signaling pathway in immunity response and autoimmune diseases. Autoimmunity 2023; 56:2259127. [PMID: 37740690 DOI: 10.1080/08916934.2023.2259127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
The Hedgehog (Hh) family is a prototypical morphogen involved in embryonic patterning, multi-lineage differentiation, self-renewal, morphogenesis, and regeneration. There are studies that have demonstrated that the Hh signaling pathway differentiates developing T cells into MHC-restricted self-antigen tolerant T cells in a concentration-dependent manner in the thymus. Whereas Hh signaling pathway is not required in the differentiation of B cells but is indispensable in maintaining the regeneration of hematopoietic stem cells (HSCs) and the viability of germinal centers (GCs) B cells. The Hh signaling pathway exerts both positive and negative effects on immune responses, which involves activating human peripheral CD4+ T cells, regulating the accumulation of natural killer T (NKT) cells, recruiting and activating macrophages, increasing CD4+Foxp3+ regulatory T cells in the inflammation sites to sustain homeostasis. Hedgehog signaling is involved in the patterning of the embryo, as well as homeostasis of adult tissues. Therefore, this review aims to highlight evidence for Hh signaling in the differentiation, function of immune cells and autoimmune disease. Targeting Hh signaling promises to be a novel, alternative or adjunct approach to treating tumors and autoimmune diseases.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Min Ming
- Department of Immunology, Zunyi Medical University, Zunyi, China
- People's Hospital of Qingbaijiang District, Chengdu, China
| | - Chunyang Li
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Songpo Liu
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
He YH, Pan JX, Xu LM, Gu T, Chen YW. Ductular reaction in non-alcoholic fatty liver disease: When Macbeth is perverted. World J Hepatol 2023; 15:725-740. [PMID: 37397935 PMCID: PMC10308290 DOI: 10.4254/wjh.v15.i6.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 06/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic (dysfunction)-associated fatty liver disease is the leading cause of chronic liver diseases defined as a disease spectrum comprising hepatic steatosis, non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis, and hepatic carcinoma. NASH, characterized by hepatocyte injury, steatosis, inflammation, and fibrosis, is associated with NAFLD prognosis. Ductular reaction (DR) is a common compensatory reaction associated with liver injury, which involves the hepatic progenitor cells (HPCs), hepatic stellate cells, myofibroblasts, inflammatory cells (such as macrophages), and their secreted substances. Recently, several studies have shown that the extent of DR parallels the stage of NASH and fibrosis. This review summarizes previous research on the correlation between DR and NASH, the potential interplay mechanism driving HPC differentiation, and NASH progression.
Collapse
Affiliation(s)
- Yang-Huan He
- Department of Gastroenterology and Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jia-Xing Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lei-Ming Xu
- Department of Gastroenterology, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, China
| | - Ting Gu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yuan-Wen Chen
- Department of Gastroenterology and Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
5
|
Cao Q, Shan H, Zhao J, Deng J, Xu M, Kang H, Li T, Zhao Y, Liu H, Jiang J. Liver fibrosis in fish research: From an immunological perspective. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108885. [PMID: 37290612 DOI: 10.1016/j.fsi.2023.108885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Liver fibrosis is a pathological process whereby the liver is subjected to various acute and chronic injuries, resulting in the activation of hepatic stellate cells (HSCs), an imbalance of extracellular matrix generation and degradation, and deposition in the liver. This review article summarizes the current understanding of liver fibrosis in fish research. Liver fibrosis is a common pathological condition that occurs in fish raised in aquaculture. It is often associated with poor water quality, stressful conditions, and the presence of pathogens. The review describes the pathophysiology of liver fibrosis in fish, including the roles of various cells and molecules involved in the development and progression of the disease. The review also covers the various methods used to diagnose and assess the severity of liver fibrosis in fish, including histological analysis, biochemical markers, and imaging techniques. In addition, the article discusses the current treatment options for liver fibrosis in fish, including dietary interventions, pharmaceuticals, and probiotics. This review highlights the need for more in-depth research in this area to better understand the mechanisms by which liver fibrosis in fish occurs and to develop effective prevention and treatment strategies. Finally, improved management practices and the development of new treatments will be critical to the sustainability of aquaculture and the health of farmed fish.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongying Shan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ju Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinhe Deng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Man Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
6
|
Fan J, Tong G, Chen X, Li S, Yu Y, Zhu S, Zhu K, Hu Z, Dong Y, Chen R, Zhu J, Gong W, Hu Z, Zhou B, Chen Y, Jin L, Cong W. CK2 blockade alleviates liver fibrosis by suppressing activation of hepatic stellate cells via the Hedgehog pathway. Br J Pharmacol 2023; 180:44-61. [PMID: 36070072 DOI: 10.1111/bph.15945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Liver fibrosis is a serious cause of morbidity and mortality worldwide characterized by accumulation of extracellular matrix produced by hepatic stellate cells (HSCs). The protein kinase CK2 is a pro-survival kinase overexpressed in human tumours. However, the biological role of CK2 in liver fibrosis is largely unknown. We aimed to investigate the mechanism by which CK2 promotes liver fibrosis. EXPERIMENTAL APPROACH In vitro, LX-2 cells were stimulated with transforming growth factor-β (TGF-β). HSCs were also isolated for research. In vivo, the adeno-associated virus AAV-sh-csnk2a1 was used to knockdown CK2α specifically in HSCs, and CX-4945 was used to pharmacologically inhibit the enzymatic activity of CK2 in murine models of fibrosis induced by carbon tetrachloride (CCl4 ) and a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet. Histological and biochemical analyses were performed to study the involvement of CK2 in regulation of fibrogenic and fibrolytic factors as well as activation properties of HSCs. KEY RESULTS HSC-specific genetic invalidation of CK2α or pharmacological inhibition of CK2 protected mice treated with CCl4 or fed a DDC diet against liver fibrosis and HSC accumulation. Mechanistically, CK2α, which bound to Smoothened (SMO), was a positive regulator of the Hedgehog signal transduction pathway. CK2 prevented ubiquitination and proteasomal degradation of SMO, which was abolished by knockdown of CK2α or pharmacological inhibition of CK2. CONCLUSIONS AND IMPLICATIONS CK2 activation is critical to sustain the activated and fibrogenic phenotype of HSCs via SMO stabilization. Therefore, inactivation of CK2 by CX-4945 may be of therapeutic interest for liver fibrotic diseases.
Collapse
Affiliation(s)
- Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xixi Chen
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Santie Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Yu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shunan Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kunxuan Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zijing Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yonggan Dong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhicheng Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Zhou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiming Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Mesenchymal Stem Cells Influence Activation of Hepatic Stellate Cells, and Constitute a Promising Therapy for Liver Fibrosis. Biomedicines 2021; 9:biomedicines9111598. [PMID: 34829827 PMCID: PMC8615475 DOI: 10.3390/biomedicines9111598] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a common feature of chronic liver disease. Activated hepatic stellate cells (HSCs) are the main drivers of extracellular matrix accumulation in liver fibrosis. Hence, a strategy for regulating HSC activation is crucial in treating liver fibrosis. Mesenchymal stem cells (MSCs) are multipotent stem cells derived from various post-natal organs. Therapeutic approaches involving MSCs have been studied extensively in various diseases, including liver disease. MSCs modulate hepatic inflammation and fibrosis and/or differentiate into hepatocytes by interacting directly with immune cells, HSCs, and hepatocytes and secreting modulators, thereby contributing to reduced liver fibrosis. Cell-free therapy including MSC-released secretomes and extracellular vesicles has elicited extensive attention because they could overcome MSC transplantation limitations. Herein, we provide basic information on hepatic fibrogenesis and the therapeutic potential of MSCs. We also review findings presenting the effects of MSC itself and MSC-based cell-free treatments in liver fibrosis, focusing on HSC activation. Growing evidence supports the anti-fibrotic function of either MSC itself or MSC modulators, although the mechanism underpinning their effects on liver fibrosis has not been established. Further studies are required to investigate the detailed mechanism explaining their functions to expand MSC therapies using the cell itself and cell-free treatments for liver fibrosis.
Collapse
|
8
|
Reinmuth L, Hsiao CC, Hamann J, Rosenkilde M, Mackrill J. Multiple Targets for Oxysterols in Their Regulation of the Immune System. Cells 2021; 10:cells10082078. [PMID: 34440846 PMCID: PMC8391951 DOI: 10.3390/cells10082078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Oxysterols, or cholesterol oxidation products, are naturally occurring lipids which regulate the physiology of cells, including those of the immune system. In contrast to effects that are mediated through nuclear receptors or by epigenetic mechanism, which take tens of minutes to occur, changes in the activities of cell-surface receptors caused by oxysterols can be extremely rapid, often taking place within subsecond timescales. Such cell-surface receptor effects of oxysterols allow for the regulation of fast cellular processes, such as motility, secretion and endocytosis. These cellular processes play critical roles in both the innate and adaptive immune systems. This review will survey the two broad classes of cell-surface receptors for oxysterols (G-protein coupled receptors (GPCRs) and ion channels), the mechanisms by which cholesterol oxidation products act on them, and their presence and functions in the different cell types of the immune system. Overall, this review will highlight the potential of oxysterols, synthetic derivatives and their receptors for physiological and therapeutic modulation of the immune system.
Collapse
Affiliation(s)
- Lisa Reinmuth
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Mette Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| | - John Mackrill
- Department of Physiology, School of Medicine, BioSciences Institute, University College Cork, College Road, Cork T12 YT20, Ireland
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| |
Collapse
|
9
|
Mengrelis K, Lau CI, Rowell J, Solanki A, Norris S, Ross S, Ono M, Outram S, Crompton T. Sonic Hedgehog Is a Determinant of γδ T-Cell Differentiation in the Thymus. Front Immunol 2019; 10:1629. [PMID: 31379834 PMCID: PMC6658896 DOI: 10.3389/fimmu.2019.01629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/01/2019] [Indexed: 01/03/2023] Open
Abstract
Here we investigate the function of Hedgehog (Hh) signaling in thymic γδ T-cell maturation and subset differentiation. Analysis of Hh mutants showed that Hh signaling promotes γδ T-cell development in the thymus and influences γδ T-cell effector subset distribution. Hh-mediated transcription in thymic γδ cells increased γδ T-cell number, and promoted their maturation and increased the γδNKT subset, whereas inhibition of Hh-mediated transcription reduced the thymic γδ T-cell population and increased expression of many genes that are normally down-regulated during γδ T-cell maturation. These changes were also evident in spleen, where increased Hh signaling increased γδNKT cells, but reduced CD27-CD44+ and Vγ2+ populations. Systemic in vivo pharmacological Smoothened-inhibition reduced γδ T-cell and γδNKT cells in the thymus, and also reduced splenic γδ T-cell and γδNKT populations, indicating that Hh signaling also influences homeostasis of peripheral γδ T-cell populations. Taken together our data indicate that Sonic Hedgehog is an important determinant of γδ T-cell effector subset differentiation.
Collapse
Affiliation(s)
| | - Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jasmine Rowell
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Anisha Solanki
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sonia Norris
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Susan Outram
- Department of Natural Sciences, Middlesex University, London, United Kingdom
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
10
|
Giuffrida P, Caprioli F, Facciotti F, Di Sabatino A. The role of interleukin-13 in chronic inflammatory intestinal disorders. Autoimmun Rev 2019; 18:549-555. [DOI: 10.1016/j.autrev.2019.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
|
11
|
Naggie S, Swiderska-Syn M, Choi S, Lusk S, Lan A, Ferrari G, Syn WK, Guy CD, Diehl AM. Markers of Tissue Repair and Cellular Aging Are Increased in the Liver Tissue of Patients With HIV Infection Regardless of Presence of HCV Coinfection. Open Forum Infect Dis 2018; 5:ofy138. [PMID: 29992177 PMCID: PMC6030967 DOI: 10.1093/ofid/ofy138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/08/2018] [Indexed: 01/28/2023] Open
Abstract
Liver disease is a leading cause of HIV-related mortality. Hepatitis C virus (HCV)–related fibrogenesis is accelerated in the setting of HIV coinfection, yet the mechanisms underlying this aggressive pathogenesis are unclear. We identified formalin-fixed paraffin-embedded liver tissue for HIV-infected patients, HCV-infected patients, HIV/HCV-coinfected patients, and controls at Duke University Medical Center. De-identified sections were stained for markers against the wound repair Hedgehog (Hh) pathway, resident T-lymphocytes, and immune activation and cellular aging. HIV infection was independently associated with Hh activation and markers of immune dysregulation in the liver tissue.
Collapse
Affiliation(s)
- Susanna Naggie
- Duke University School of Medicine, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | | | - Steve Choi
- Duke University School of Medicine, Durham, North Carolina.,Durham VA Medical Center, Durham, North Carolina
| | - Sam Lusk
- Duke Clinical Research Institute, Durham, North Carolina
| | - Audrey Lan
- University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Guido Ferrari
- Duke University School of Medicine, Durham, North Carolina
| | - Wing-Kin Syn
- Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Cynthia D Guy
- Duke University School of Medicine, Durham, North Carolina
| | - Anna Mae Diehl
- Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
12
|
Kim MY. [The Progression of Liver Fibrosis in Non-alcoholic Fatty Liver Disease]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2018. [PMID: 28637102 DOI: 10.4166/kjg.2017.69.6.341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the pathogenesis of non-alcoholic steatohepatitis (NASH) and its fibrosis progression is still evolving. Nonetheless, current evidence suggests that mechanisms involved are very complex parallel processes with multiple metabolic factors. Lipotoxicity related with excess saturated free fatty acids, obesity, and insulin resistance acts as the central driver of cellular injury via oxidative stress. Hepatocyte apoptosis and/or senescence are also contribute to the activation of inflammasome via various intra- and inter-cellular signaling mechanisms that lead to fibrosis. Current evidence suggests that periportal components, including ductular reaction and expansion of the hepatic progenitor cell compartment, may be involved and that the T-helper 17 cell response may mediate disease progression. This review aims to provide a brief overview of the pathogenesis of NASH and fibrosis progression from inflammation to fibrosis.
Collapse
Affiliation(s)
- Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
13
|
Verdelho Machado M, Diehl AM. The hedgehog pathway in nonalcoholic fatty liver disease. Crit Rev Biochem Mol Biol 2018; 53:264-278. [PMID: 29557675 DOI: 10.1080/10409238.2018.1448752] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of obesity-associated liver diseases and it has become the major cause of cirrhosis in the Western world. The high prevalence of NAFLD-associated advanced liver disease reflects both the high prevalence of obesity-related fatty liver (hepatic steatosis) and the lack of specific treatments to prevent hepatic steatosis from progressing to more serious forms of liver damage, including nonalcoholic steatohepatitis (NASH), cirrhosis, and primary liver cancer. The pathogenesis of NAFLD is complex, and not fully understood. However, compelling evidence demonstrates that dysregulation of the hedgehog (Hh) pathway is involved in both the pathogenesis of hepatic steatosis and the progression from hepatic steatosis to more serious forms of liver damage. Inhibiting hedgehog signaling enhances hepatic steatosis, a condition which seldom results in liver-related morbidity or mortality. In contrast, excessive Hh pathway activation promotes development of NASH, cirrhosis, and primary liver cancer, the major causes of liver-related deaths. Thus, suppressing excessive Hh pathway activity is a potential approach to prevent progressive liver damage in NAFLD. Various pharmacologic agents that inhibit Hh signaling are available and approved for cancer therapeutics; more are being developed to optimize the benefits and minimize the risks of inhibiting this pathway. In this review we will describe the Hh pathway, summarize the evidence for its role in NAFLD evolution, and discuss the potential role for Hh pathway inhibitors as therapies to prevent NASH, cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- a Division of Gastroenterology, Department of Medicine , Duke University Medical Center , Durham , NC , USA.,b Department of Gastroenterology , Hospital de Santa Maria, CHLN , Lisbon , Portugal
| | - Anna Mae Diehl
- a Division of Gastroenterology, Department of Medicine , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
14
|
Machado MV, Diehl AM. Hedgehog signalling in liver pathophysiology. J Hepatol 2018; 68:550-562. [PMID: 29107151 PMCID: PMC5957514 DOI: 10.1016/j.jhep.2017.10.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
Liver disease remains a leading cause of mortality worldwide despite recent successes in the field of viral hepatitis, because increases in alcohol consumption and obesity are fuelling an epidemic of chronic fatty liver disease for which there are currently no effective medical therapies. About 20% of individuals with chronic liver injury ultimately develop end-stage liver disease due to cirrhosis. Hence, treatments to prevent and reverse cirrhosis in individuals with ongoing liver injury are desperately needed. The development of successful treatments requires an improved understanding of the mechanisms controlling liver disease progression. The liver responds to diverse insults with a conserved wound healing response, suggesting that it might be generally beneficial to optimise pathways that are crucial for effective liver repair. The Hedgehog pathway has emerged as a potential target based on compelling preclinical and clinical data, which demonstrate that it critically regulates the liver's response to injury. Herein, we will summarise evidence of the Hedgehog pathway's role in liver disease and discuss how modulating pathway activity might be applied to improve liver disease outcomes.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA,Gastroenterology Department, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Gao L, Zhang Z, Zhang P, Yu M, Yang T. Role of canonical Hedgehog signaling pathway in liver. Int J Biol Sci 2018; 14:1636-1644. [PMID: 30416378 PMCID: PMC6216024 DOI: 10.7150/ijbs.28089] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh) signaling pathway plays an important role in embryonic development. It becomes reactivated in many types of acute and chronic liver injuries. Hh signaling is required for liver regeneration, regulates capillarisation, controls the fates of hepatic stellate cells, promotes liver fibrosis and liver cancers. In this review, we summarize the current knowledge of the role of canonical Hh signaling pathway in adult liver. This help to understand the pathogenesis of liver diseases and find out the new effective targeted therapeutic strategies for liver diseases treatments.
Collapse
Affiliation(s)
- Lili Gao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zhenya Zhang
- Department of general surgery, Hebei Medical University Fourth Hospital, Shijiazhuang, 050011, China
| | - Peng Zhang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Minghua Yu
- Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- ✉ Corresponding authors: Dr. Minghua Yu, Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China. Phone: 86-21-68030812; E-mail: and Dr. Tao Yang, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China. Phone: 86-21-68036516; E-mail:
| | - Tao Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
- ✉ Corresponding authors: Dr. Minghua Yu, Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China. Phone: 86-21-68030812; E-mail: and Dr. Tao Yang, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China. Phone: 86-21-68036516; E-mail:
| |
Collapse
|
16
|
Abstract
The Hedgehog (Hh) signaling pathway plays an essential role in the growth, development, and homeostatis of many tissues in vertebrates and invertebrates. Much of what is known about Hh signaling is in the context of embryonic development and tumor formation. However, a growing body of evidence is emerging indicating that Hh signaling is also involved in postnatal processes such as tissue repair and adult immune responses. To that extent, Hh signaling has also been shown to be a target for some pathogens that presumably utilize the pathway to control the local infected environment. In this review, we discuss what is currently known regarding pathogenic interactions with Hh signaling and speculate on the reasons for this pathway being a target. We also hope to shed light on the possibility of using small molecule modulators of Hh signaling as effective therapies for a wider range of human diseases beyond their current use in a limited number of cancers.
Collapse
|
17
|
Shen X, Peng Y, Li H. The Injury-Related Activation of Hedgehog Signaling Pathway Modulates the Repair-Associated Inflammation in Liver Fibrosis. Front Immunol 2017; 8:1450. [PMID: 29163520 PMCID: PMC5681491 DOI: 10.3389/fimmu.2017.01450] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis is a wound healing response initiated by inflammation responding for different iterative parenchymal damages caused by diverse etiologies. Immune cells, which exert their ability of either inducing injury or promoting repair, have been regarded as crucial participants in the fibrogenic response. A characteristic feature of the fibrotic microenvironment associated with chronic liver injury is aberrant activation of hedgehog (Hh) signaling pathway. Growing evidence from a number of different studies in vivo and in vitro has indicated that immune-mediated events involved in liver fibrogenesis are regulated by Hh signaling pathway. In this review, we emphasize the impacts of injury-activated Hh signaling on liver fibrogenesis through modulating repair-related inflammation and focus on the regulatory action of aberrant Hh signaling on repair-related inflammatory responses mediated by hepatic classical and non-classical immune cell populations in the progression of liver fibrosis. Moreover, we also assess the potentiality of Hh pathway inhibitors as good candidates for anti-fibrotic therapeutic agents because of their immune regulation actions for fibrogenic liver repair. The identification of immune-modulatory mechanisms of Hh signaling pathway underlying the fibrotic process of chronic liver diseases might provide a basis for Hh-centered therapeutic strategies for liver fibrosis.
Collapse
Affiliation(s)
- Xin Shen
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yu Peng
- Department of Information Engineering, Hubei University of Chinese Medicine, Wuhan, China
| | - Hanmin Li
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
18
|
Jia G, Chandriani S, Abbas AR, DePianto DJ, N'Diaye EN, Yaylaoglu MB, Moore HM, Peng I, DeVoss J, Collard HR, Wolters PJ, Egen JG, Arron JR. CXCL14 is a candidate biomarker for Hedgehog signalling in idiopathic pulmonary fibrosis. Thorax 2017; 72:780-787. [PMID: 28250200 DOI: 10.1136/thoraxjnl-2015-207682] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is associated with aberrant expression of developmental pathways, including Hedgehog (Hh). As Hh signalling contributes to multiple pro-fibrotic processes, Hh inhibition may represent a therapeutic option for IPF. However, no non-invasive biomarkers are available to monitor lung Hh activity. METHODS We assessed gene and protein expression in IPF and control lung biopsies, mouse lung, fibroblasts stimulated in vitro with sonic hedgehog (SHh), and plasma in IPF patients versus controls, and cancer patients before and after treatment with vismodegib, a Hh inhibitor. RESULTS Lung tissue from IPF patients exhibited significantly greater expression of Hh-related genes versus controls. The gene most significantly upregulated in both IPF lung biopsies and fibroblasts stimulated in vitro with SHh was CXCL14, which encodes a soluble secreted chemokine whose expression is inhibited in vitro by the addition of vismodegib. CXCL14 expression was induced by SHh overexpression in mouse lung. Circulating CXCL14 protein levels were significantly higher in plasma from IPF patients than controls. In cancer patients, circulating CXCL14 levels were significantly reduced upon vismodegib treatment. CONCLUSIONS CXCL14 is a systemic biomarker that could be used to identify IPF patients with increased Hh pathway activity and monitor the pharmacodynamic effects of Hh antagonist therapy in IPF. TRIAL REGISTRATION NUMBER Post-results, NCT00968981.
Collapse
Affiliation(s)
- Guiquan Jia
- Genentech, Inc., South San Francisco, California, USA
| | | | | | | | | | | | | | - Ivan Peng
- Genentech, Inc., South San Francisco, California, USA
| | - Jason DeVoss
- Genentech, Inc., South San Francisco, California, USA
| | - Harold R Collard
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Paul J Wolters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | | | | |
Collapse
|
19
|
Grzelak CA, Sigglekow ND, Tirnitz-Parker JEE, Hamson EJ, Warren A, Maneck B, Chen J, Patkunanathan B, Boland J, Cheng R, Shackel NA, Seth D, Bowen DG, Martelotto LG, Watkins DN, McCaughan GW. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease. PLoS One 2017; 12:e0171480. [PMID: 28187190 PMCID: PMC5302813 DOI: 10.1371/journal.pone.0171480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/20/2017] [Indexed: 12/13/2022] Open
Abstract
Canonical Hedgehog (Hh) signaling in vertebrate cells occurs following Smoothened activation/translocation into the primary cilia (Pc), followed by a GLI transcriptional response. Nonetheless, GLI activation can occur independently of the canonical Hh pathway. Using a murine model of liver injury, we previously identified the importance of canonical Hh signaling within the Pc+ liver progenitor cell (LPC) population and noted that SMO-independent, GLI-mediated signals were important in multiple Pc-ve GLI2+ intrahepatic populations. This study extends these observations to human liver tissue, and analyses the effect of GLI inhibition on LPC viability/gene expression. Human donor and cirrhotic liver tissue specimens were evaluated for SHH, GLI2 and Pc expression using immunofluorescence and qRT-PCR. Changes to viability and gene expression in LPCs in vitro were assessed following GLI inhibition. Identification of Pc (as a marker of canonical Hh signaling) in human cirrhosis was predominantly confined to the ductular reaction and LPCs. In contrast, GLI2 was expressed in multiple cell populations including Pc-ve endothelium, hepatocytes, and leukocytes. HSCs/myofibroblasts (>99%) expressed GLI2, with only 1.92% displaying Pc. In vitro GLI signals maintained proliferation/viability within LPCs and GLI inhibition affected the expression of genes related to stemness, hepatocyte/biliary differentiation and Hh/Wnt signaling. At least two mechanisms of GLI signaling (Pc/SMO-dependent and Pc/SMO-independent) mediate chronic liver disease pathogenesis. This may have significant ramifications for the choice of Hh inhibitor (anti-SMO or anti-GLI) suitable for clinical trials. We also postulate GLI delivers a pro-survival signal to LPCs whilst maintaining stemness.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Jane Hamson
- Liver Injury and Cancer, Centenary Institute, Camperdown, New South Wales, Australia
| | - Alessandra Warren
- Ageing and Alzheimers Institute, Centre for Education and Research on Ageing, University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
| | - Bharvi Maneck
- Liver Injury and Cancer, Centenary Institute, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, R.P.A.H., Camperdown, New South Wales, Australia
| | - Jinbiao Chen
- Liver Injury and Cancer, Centenary Institute, Camperdown, New South Wales, Australia
| | | | - Jade Boland
- Liver Injury and Cancer, Centenary Institute, Camperdown, New South Wales, Australia
| | - Robert Cheng
- Liver Injury and Cancer, Centenary Institute, Camperdown, New South Wales, Australia
| | - Nicholas Adam Shackel
- Liver Injury and Cancer, Centenary Institute, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, R.P.A.H., Camperdown, New South Wales, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Devanshi Seth
- Liver Injury and Cancer, Centenary Institute, Camperdown, New South Wales, Australia
| | - David Geoffrey Bowen
- Liver Injury and Cancer, Centenary Institute, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, R.P.A.H., Camperdown, New South Wales, Australia
| | - Luciano Gastón Martelotto
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - D. Neil Watkins
- The Kinghorn Cancer Centre, Garvan Institute, Darlinghurst, New South Wales, Australia
| | - Geoffrey William McCaughan
- Liver Injury and Cancer, Centenary Institute, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, R.P.A.H., Camperdown, New South Wales, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
20
|
Verdelho Machado M, Diehl AM. Role of Hedgehog Signaling Pathway in NASH. Int J Mol Sci 2016; 17:E857. [PMID: 27258259 PMCID: PMC4926391 DOI: 10.3390/ijms17060857] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/18/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease in the Western world. Although only a minority of patients will ultimately develop end-stage liver disease, it is not yet possible to efficiently predict who will progress and, most importantly, effective treatments are still unavailable. Better understanding of the pathophysiology of this disease is necessary to improve the clinical management of NAFLD patients. Epidemiological data indicate that NAFLD prognosis is determined by an individual's response to lipotoxic injury, rather than either the severity of exposure to lipotoxins, or the intensity of liver injury. The liver responds to injury with a synchronized wound-healing response. When this response is abnormal, it leads to pathological scarring, resulting in progressive fibrosis and cirrhosis, rather than repair. The hedgehog pathway is a crucial player in the wound-healing response. In this review, we summarize the pre-clinical and clinical evidence, which demonstrate the role of hedgehog pathway dysregulation in NAFLD pathogenesis, and the preliminary data that place the hedgehog pathway as a potential target for the treatment of this disease.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
- Gastroenterology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte (CHLN), Lisboa 1649-035, Portugal.
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Abstract
The liver is an organ that has the largest amount of natural killer T(NKT) cells, which play critical roles in the pathogenesis of liver diseases. In this article, the authors summarize recent findings about the roles of NKT cells in liver injury, inflammation, fibrosis, regeneration and cancer. In brief, NKT cells accelerate liver injury by producing pro-inflammatory cytokines and directly killing hepatocytes. NKT cells are involved in complex roles in liver fibrogenesis. For instance, NKT cells inhibit liver fibrosis via suppressing hepatic stellate cell activation and can also promote liver fibrosis via enhancing liver inflammation and injury. Inactivated or weakly activated NKT cells play a minimal role in controlling liver regeneration, whilst activated NKT cells have an inhibitory effect on liver regeneration. In liver cancer, NKT cells play both pro-tumor and anti-tumor roles in controlling tumor progress.
Collapse
Affiliation(s)
- Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | | |
Collapse
|
22
|
Hu L, Lin X, Lu H, Chen B, Bai Y. An overview of hedgehog signaling in fibrosis. Mol Pharmacol 2014; 87:174-82. [PMID: 25395043 DOI: 10.1124/mol.114.095141] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Hedgehog (Hh) signaling pathway plays a key role during embryogenesis and tissue regeneration. Recently, studies revealed that overactivated Hh signaling leads to fibrogenesis in many types of tissues. The activation of Hh signaling is involved in the epithelial-mesenchymal transition and excessive extracellular matrix deposition. Blockade of Hh signaling abolishes the induction of the epithelial-mesenchymal transition and ameliorates tissue fibrosis. Therefore, new therapeutic targets to alleviate fibrosis based on the Hh signaling have attracted a great deal of attention. This is a new strategy for treating fibrosis and other related diseases. In this review, we discuss the crucial role of Hh signaling in fibrogenesis to provide a better understanding of their relationship and to encourage the study of novel targeted therapies.
Collapse
Affiliation(s)
- Liping Hu
- Department of Laboratory Medicine, First Affiliated Hospital, Wenzhou Medical University, Wenzhou (L.H., X.L., H.L.); Department of Laboratory Medicine, JianLi County People's Hospital, Jingzhou (L.H.); and Wenzhou Key Laboratory of Surgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou (B.C., Y.B.), People's Republic of China
| | - Xiangyang Lin
- Department of Laboratory Medicine, First Affiliated Hospital, Wenzhou Medical University, Wenzhou (L.H., X.L., H.L.); Department of Laboratory Medicine, JianLi County People's Hospital, Jingzhou (L.H.); and Wenzhou Key Laboratory of Surgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou (B.C., Y.B.), People's Republic of China
| | - Hong Lu
- Department of Laboratory Medicine, First Affiliated Hospital, Wenzhou Medical University, Wenzhou (L.H., X.L., H.L.); Department of Laboratory Medicine, JianLi County People's Hospital, Jingzhou (L.H.); and Wenzhou Key Laboratory of Surgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou (B.C., Y.B.), People's Republic of China
| | - Bicheng Chen
- Department of Laboratory Medicine, First Affiliated Hospital, Wenzhou Medical University, Wenzhou (L.H., X.L., H.L.); Department of Laboratory Medicine, JianLi County People's Hospital, Jingzhou (L.H.); and Wenzhou Key Laboratory of Surgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou (B.C., Y.B.), People's Republic of China
| | - Yongheng Bai
- Department of Laboratory Medicine, First Affiliated Hospital, Wenzhou Medical University, Wenzhou (L.H., X.L., H.L.); Department of Laboratory Medicine, JianLi County People's Hospital, Jingzhou (L.H.); and Wenzhou Key Laboratory of Surgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou (B.C., Y.B.), People's Republic of China
| |
Collapse
|
23
|
Yang JJ, Tao H, Li J. Hedgehog signaling pathway as key player in liver fibrosis: new insights and perspectives. Expert Opin Ther Targets 2014; 18:1011-21. [PMID: 24935558 DOI: 10.1517/14728222.2014.927443] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in liver fibrosis. Therefore, improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for liver fibrosis. Greater knowledge of the role of the hedgehog signaling pathway in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. AREAS COVERED The aim of this review is to describe the present knowledge about the hedgehog signaling pathway, which significantly participates in liver fibrosis and HSC activation, and look ahead on new perspectives of hedgehog signaling pathway research. Moreover, we will discuss the different interactions with hedgehog signaling pathway-regulated liver fibrosis. EXPERT OPINION The hedgehog pathway modulates several important aspects of function, including cell proliferation, activation and differentiation. Targeting the hedgehog pathway can be a promising direction in liver fibrosis treatment. We discuss new perspectives of hedgehog signaling pathway activation in liver fibrosis and HSC fate, including DNA methylation, methyl CpG binding protein 2, microRNA, irradiation and metabolism that influence hedgehog signaling pathway transduction. These findings identify the hedgehog pathway as a potentially important for biomarker development and therapeutic targets in liver fibrosis. Future studies are needed in order to find safer and more effective hedgehog-based drugs.
Collapse
Affiliation(s)
- Jing-Jing Yang
- The Second Hospital of Anhui Medical University, Department of Pharmacology , Hefei 230601 , China
| | | | | |
Collapse
|
24
|
Peverill W, Powell LW, Skoien R. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci 2014; 15:8591-638. [PMID: 24830559 PMCID: PMC4057750 DOI: 10.3390/ijms15058591] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/20/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis and inflammation and, in some patients, progressive fibrosis leading to cirrhosis. An understanding of the pathogenesis of NASH is still evolving but current evidence suggests multiple metabolic factors critically disrupt homeostasis and induce an inflammatory cascade and ensuing fibrosis. The mechanisms underlying these changes and the complex inter-cellular interactions that mediate fibrogenesis are yet to be fully elucidated. Lipotoxicity, in the setting of excess free fatty acids, obesity, and insulin resistance, appears to be the central driver of cellular injury via oxidative stress. Hepatocyte apoptosis and/or senescence contribute to activation of the inflammasome via a variety of intra- and inter-cellular signalling mechanisms leading to fibrosis. Current evidence suggests that periportal components, including the ductular reaction and expansion of the hepatic progenitor cell compartment, may be involved and that the Th17 response may mediate disease progression. This review aims to provide an overview of the pathogenesis of NASH and summarises the evidence pertaining to key mechanisms implicated in the transition from steatosis and inflammation to fibrosis. Currently there are limited treatments for NASH although an increasing understanding of its pathogenesis will likely improve the development and use of interventions in the future.
Collapse
Affiliation(s)
- William Peverill
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| | - Lawrie W Powell
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| | - Richard Skoien
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| |
Collapse
|
25
|
Cellular and molecular mechanisms in liver fibrogenesis. Arch Biochem Biophys 2014; 548:20-37. [PMID: 24631571 DOI: 10.1016/j.abb.2014.02.015] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/07/2014] [Accepted: 02/26/2014] [Indexed: 02/07/2023]
Abstract
Liver fibrogenesis is a dynamic and highly integrated molecular, tissue and cellular process, potentially reversible, that drives the progression of chronic liver diseases (CLD) towards liver cirrhosis and hepatic failure. Hepatic myofibroblasts (MFs), the pro-fibrogenic effector cells, originate mainly from activation of hepatic stellate cells and portal fibroblasts being characterized by a proliferative and survival attitude. MFs also contract in response to vasoactive agents, sustain angiogenesis and recruit and modulate activity of cells of innate or adaptive immunity. Chronic activation of wound healing and oxidative stress as well as derangement of epithelial-mesenchymal interactions are "major" pro-fibrogenic mechanisms, whatever the etiology. However, literature has outlined a complex network of pro-fibrogenic factors and mediators proposed to modulate CLD progression, with some of them being at present highly debated in the field, including the role of epithelial to mesenchymal transition and Hedgehog signaling pathways. Hypoxia and angiogenesis as well as inflammasomes are recently emerged as ubiquitous pro-inflammatory and pro-fibrogenic determinants whereas adipokines are mostly involved in CLD related to metabolic disturbances (metabolic syndrome and/or obesity and type 2 diabetes). Finally, autophagy as well as natural killer and natural killer-T cells have been recently proposed to significantly affect fibrogenic CLD progression.
Collapse
|
26
|
The intrahepatic signalling niche of hedgehog is defined by primary cilia positive cells during chronic liver injury. J Hepatol 2014; 60:143-51. [PMID: 23978713 DOI: 10.1016/j.jhep.2013.08.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/02/2013] [Accepted: 08/05/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS In vertebrates, canonical Hedgehog (Hh) pathway activation requires Smoothened (SMO) translocation to the primary cilium (Pc), followed by a GLI-mediated transcriptional response. In addition, a similar gene regulation occurs in response to growth factors/cytokines, although independently of SMO signalling. The Hh pathway plays a critical role in liver fibrosis/regeneration, however, the mechanism of activation in chronic liver injury is poorly understood. This study aimed to characterise Hh pathway activation upon thioacetamide (TAA)-induced chronic liver injury in vivo by defining Hh-responsive cells, namely cells harbouring Pc and Pc-localised SMO. METHODS C57BL/6 mice (wild-type or Ptc1(+/-)) were TAA-treated. Liver injury and Hh ligand/pathway mRNA and protein expression were assessed in vivo. SMO/GLI manipulation and SMO-dependent/independent activation of GLI-mediated transcriptional response in Pc-positive (Pc(+)) cells were studied in vitro. RESULTS In vivo, Hh activation was progressively induced following TAA. At the epithelial-mesenchymal interface, injured hepatocytes produced Hh ligands. Progenitors, myofibroblasts, leukocytes and hepatocytes were GLI2(+). Pc(+) cells increased following TAA, but only EpCAM(+)/GLI2(+) progenitors were Pc(+)/SMO(+). In vitro, SMO knockdown/hGli3-R overexpression reduced proliferation/viability in Pc(+) progenitors, whilst increased proliferation occurred with hGli1 overexpression. HGF induced GLI transcriptional activity independently of Pc/SMO. Ptc1(+/-) mice exhibited increased progenitor, myofibroblast and fibrosis responses. CONCLUSIONS In chronic liver injury, Pc(+) progenitors receive Hh ligand signals and process it through Pc/SMO-dependent activation of GLI-mediated transcriptional response. Pc/SMO-independent GLI activation likely occurs in Pc(-)/GLI2(+) cells. Increased fibrosis in Hh gain-of-function mice likely occurs by primary progenitor expansion/proliferation and secondary fibrotic myofibroblast expansion, in close contact with progenitors.
Collapse
|
27
|
Abstract
The mechanisms that drive non-alcoholic fatty liver disease (NAFLD) progression from simple steatosis to non-alcoholic steatohepatitis (NASH) and NASH-fibrosis and/or cirrhosis are complex. Recent studies suggest that the liver progenitor cell (ie liver stem cell) population expands during chronic liver injury, and is an essential component of the repair process. Hedgehog (Hh) is a developmental morphogen that has an important role in the adult tissue repair (and progenitor) response. Accumulating data in mice and human show that resurrection of the Hh pathway occurs during progressive NAFLD, and that activity of this pathway correlates with NASH-fibrosis stage. Importantly, Hh ligands secreted by dying (or stressed) hepatocytes, hepatic stellate cells (i.e. myofibroblasts), cholangiocytes and recruited immune cells can act on neighbouring cells to perpetuate the fibrogenic response. Intriguingly, Hh ligands can also stimulate cholangiocytes to secrete chemokines that recruit immune cell subsets (such as natural killer T cells), which could explain why fibrosis generally occurs in the context of chronic inflammation (i.e. fibrosis-associated inflammatory response). Finally, the administration of Hh inhibitors led to reduced fibrosis in a model of NASH. Future studies are needed to evaluate the utility of these inhibitors in other models of chronic liver disease. If successful, this could pave the way for the development of new therapy for patients with NASH, because Hh pathway inhibitors have now been licensed for use in patients with advanced basal cell carcinoma.
Collapse
Affiliation(s)
- Wing-Kin Syn
- The Institute of Hepatology, Foundation for Liver Research, London UK
| |
Collapse
|
28
|
Vonghia L, Michielsen P, Francque S. Immunological mechanisms in the pathophysiology of non-alcoholic steatohepatitis. Int J Mol Sci 2013; 14:19867-90. [PMID: 24084730 PMCID: PMC3821591 DOI: 10.3390/ijms141019867] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/11/2013] [Accepted: 09/22/2013] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by the presence of steatosis, inflammation and hepatocyte injury and constitutes hepatic manifestation of the metabolic syndrome. The pathogenesis of NASH is complex and implicates cross-talk between different metabolically active sites, such as liver and adipose tissue. Obesity is considered a chronic low-grade inflammatory state and the liver has been recognized as being an "immunological organ". The complex role of the immune system in the pathogenesis of NASH is currently raising great interest, also in view of the possible therapeutic potential of immunotherapy in NASH. This review focuses on the disturbances of the cells constituting the innate and adaptive immune system in the liver and in adipose tissue.
Collapse
Affiliation(s)
- Luisa Vonghia
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Wilrijkstraat 10, Edegem 2650, Belgium; E-Mails: (P.M.); (S.F.)
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, Bari 70100, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +32-3821-3323; Fax: +32-3821-4478
| | - Peter Michielsen
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Wilrijkstraat 10, Edegem 2650, Belgium; E-Mails: (P.M.); (S.F.)
| | - Sven Francque
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Wilrijkstraat 10, Edegem 2650, Belgium; E-Mails: (P.M.); (S.F.)
| |
Collapse
|
29
|
|
30
|
Onishi H, Morisaki T, Kiyota A, Koya N, Tanaka H, Umebayashi M, Katano M. The Hedgehog inhibitor cyclopamine impairs the benefits of immunotherapy with activated T and NK lymphocytes derived from patients with advanced cancer. Cancer Immunol Immunother 2013; 62:1029-39. [PMID: 23591983 PMCID: PMC11029486 DOI: 10.1007/s00262-013-1419-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/20/2013] [Indexed: 01/02/2023]
Abstract
Hedgehog (Hh) signaling is activated in various types of cancer and contributes to the progression, proliferation, and invasiveness of cancer cells. Many Hh inhibitors are undergoing clinical trial and show promise as anticancer drugs. Hh signaling is also induced in the activated T and NK (TNK) lymphocytes that are used in immunotherapy. Activated TNK lymphocyte therapy is anticipated to work well within a tumor's hypoxic environment. However, most studies on the immunobiological functions of activated TNK lymphocytes have been conducted on healthy donor samples, under normoxic conditions. In the present study, we evaluated the effects of Hh inhibition and oxygen concentrations on the function of activated TNK lymphocytes derived from patients with advanced cancer. Proliferation, migration, surface NKG2D expression, and cytotoxicity were all significantly inhibited, and IFN-γ secretion was significantly increased upon Hh inhibitor treatment of activated TNK lymphocytes under hypoxic conditions in vitro. Tumors from mice injected with cyclopamine-treated activated TNK lymphocytes showed a significant increase in tumor size and had fewer apoptotic cells compared with the tumors in mice injected with control activated TNK lymphocytes. These results suggest that Hh signaling plays a pivotal role in activated TNK lymphocyte cell function. Combination therapy using Hh inhibitors and activated TNK lymphocytes derived from patients with advanced cancer may not be advantageous.
Collapse
Affiliation(s)
- Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Xie G, Choi SS, Syn WK, Michelotti GA, Swiderska-Syn M, Karaca G, Chan IS, Chen Y, Diehl AM. Hedgehog signalling regulates liver sinusoidal endothelial cell capillarisation. Gut 2013; 62:299-309. [PMID: 22362915 PMCID: PMC3595101 DOI: 10.1136/gutjnl-2011-301494] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Vascular remodelling during liver damage involves loss of healthy liver sinusoidal endothelial cell (LSEC) phenotype via capillarisation. Hedgehog (Hh) signalling regulates vascular development and increases during liver injury. This study therefore examined its role in capillarisation. DESIGN Primary LSEC were cultured for 5 days to induce capillarisation. Pharmacological, antibody-mediated and genetic approaches were used to manipulate Hh signalling. Effects on mRNA and protein expression of Hh-regulated genes and capillarisation markers were evaluated by quantitative reverse transcription PCR and immunoblot. Changes in LSEC function were assessed by migration and tube forming assay, and gain/loss of fenestrae was examined by electron microscopy. Mice with acute or chronic liver injury were treated with Hh inhibitors; effects on capillarisation were assessed by immunohistochemistry. RESULTS Freshly isolated LSEC expressed Hh ligands, Hh receptors and Hh ligand antagonist Hhip. Capillarisation was accompanied by repression of Hhip and increased expression of Hh-regulated genes. Treatment with Hh agonist further induced expression of Hh ligands and Hh-regulated genes, and upregulated capillarisation-associated genes; whereas Hh signalling antagonist or Hh ligand neutralising antibody each repressed expression of Hh target genes and capillarisation markers. LSEC isolated from Smo(loxP/loxP) transgenic mice that had been infected with adenovirus expressing Cre-recombinase to delete Smoothened showed over 75% knockdown of Smoothened. During culture, Smoothened-deficient LSEC had inhibited Hh signalling, less induction of capillarisation-associated genes and retention of fenestrae. In mice with injured livers, inhibiting Hh signalling prevented capillarisation. CONCLUSIONS LSEC produce and respond to Hh ligands, and use Hh signalling to regulate complex phenotypic changes that occur during capillarisation.
Collapse
Affiliation(s)
- Guanhua Xie
- Division of Gastroenterology, Duke University Medical Center, Durham, NC
| | - Steve S. Choi
- Division of Gastroenterology, Duke University Medical Center, Durham, NC
,Section of Gastroenterology, Department of Medicine, Durham Veteran Affairs Medical Center, Durham, NC
| | - Wing-Kin Syn
- Division of Gastroenterology, Duke University Medical Center, Durham, NC
,Section of Regeneration and Repair, Institute of Hepatology,, London, UK
| | | | | | - Gamze Karaca
- Division of Gastroenterology, Duke University Medical Center, Durham, NC
| | - Isaac S. Chan
- Division of Gastroenterology, Duke University Medical Center, Durham, NC
| | - Yuping Chen
- Division of Gastroenterology, Duke University Medical Center, Durham, NC
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University Medical Center, Durham, NC
| |
Collapse
|
32
|
Pereira TA, Xie G, Choi SS, Syn WK, Voieta I, Lu J, Chan IS, Swiderska M, Amaral KB, Antunes CM, Secor WE, Witek RP, Lambertucci JR, Pereira FL, Diehl AM. Macrophage-derived Hedgehog ligands promotes fibrogenic and angiogenic responses in human schistosomiasis mansoni. Liver Int 2013; 33:149-61. [PMID: 23121638 PMCID: PMC3518740 DOI: 10.1111/liv.12016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 08/01/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Schistosomiasis mansoni is a major cause of portal fibrosis and portal hypertension. The Hedgehog pathway regulates fibrogenic repair in some types of liver injury. AIMS Determine if Hedgehog pathway activation occurs during fibrosis progression in schistosomiasis and to determine if macrophage-related mechanisms are involved. METHODS Immunohistochemistry was used to characterize the cells that generate and respond to Hedgehog ligands in 28 liver biopsies from patients with different grades of schistosomiasis fibrosis staged by ultrasound. Cultured macrophages (RAW264.7 and primary rat Kupffer cells) and primary rat liver sinusoidal endothelial cells (LSEC) were treated with schistosome egg antigen (SEA) and evaluated using qRT-PCR. Inhibition of the Hedgehog pathway was used to investigate its role in alternative activation of macrophages (M2) and vascular tube formation. RESULTS Patients with schistosomiasis expressed more ligands (Shh and Ihh) and target genes (Patched and Gli2) than healthy individuals. Activated LSEC and myofibroblasts were Hedgehog responsive [Gli2(+)] and accumulated in parallel with fibrosis stage (P < 0.05). Double IHC for Ihh/CD68 showed that Ihh(+) cells were macrophages. In vitro studies demonstrated that SEA-stimulated macrophages to express Ihh and Shh mRNA (P < 0.05). Conditioned media from such macrophages induced luciferase production by Shh-LightII cells (P < 0.001) and Hedgehog inhibitors blocked this effect (P < 0.001). SEA-treated macrophages also up-regulated their own expression of M2 markers, and Hh pathway inhibitors abrogated this response (P < 0.01). Inhibition of the Hedgehog pathway in LSEC blocked SEA-induced migration and tube formation. CONCLUSION SEA stimulates liver macrophages to produce Hh ligands, which promote alternative activation of macrophages, fibrogenesis and vascular remodelling in schistosomiasis.
Collapse
Affiliation(s)
- Thiago A. Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
,Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil
| | - Guanhua Xie
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Steve S. Choi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
,Section of Gastroenterology, Department of Medicine, Durham Veteran Affairs Medical Center, Durham, NC, USA
| | - Wing-Kin Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
,Foundation for Liver Research, Institute of Hepatology, London, UK
| | - Izabela Voieta
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jiuyi Lu
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Isaac S. Chan
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Marzena Swiderska
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | - Fausto L. Pereira
- Núcleo de Doenças Infecciosas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
,Corresponding Author: Florence McAlister Professor & Chief, Division of Gastroenterology Duke University Snyderman Building (GSRB-1) 595 LaSalle Street, Suite 1073 Durham, North Carolina 27710 Phone: 919-684-4173 Fax: 919-684-4183
| |
Collapse
|
33
|
Bolaños AL, Milla CM, Lira JC, Ramírez R, Checa M, Barrera L, García-Alvarez J, Carbajal V, Becerril C, Gaxiola M, Pardo A, Selman M. Role of Sonic Hedgehog in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2012; 303:L978-90. [PMID: 23023967 DOI: 10.1152/ajplung.00184.2012] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease of unknown etiology and uncertain pathogenic mechanisms. Recent studies indicate that the pathogenesis of the disease may involve the abnormal expression of certain developmental pathways. Here we evaluated the expression of Sonic Hedgehog (SHH), Patched-1, Smoothened, and transcription factors glioma-associated oncogene homolog (GLI)1 and GLI2 by RT-PCR, as well as their localization in IPF and normal lungs by immunohistochemistry. The effects of SHH on fibroblast proliferation, migration, collagen and fibronectin production, and apoptosis were analyzed by WST-1, Boyden chamber chemotaxis, RT-PCR, Sircol, and annexin V-propidium iodide binding assays, respectively. Our results showed that all the main components of the Sonic signaling pathway were overexpressed in IPF lungs. With the exception of Smoothened, they were also upregulated in IPF fibroblasts. SHH and GLI2 localized to epithelial cells, whereas Patched-1, Smoothened, and GLI1 were observed mainly in fibroblasts and inflammatory cells. No staining was detected in normal lungs. Recombinant SHH increased fibroblast proliferation (P < 0.05), collagen synthesis, (2.5 ± 0.2 vs. 4.5 ± 1.0 μg of collagen/ml; P < 0.05), fibronectin expression (2-3-fold over control), and migration (190.3 ± 12.4% over control, P < 0.05). No effect was observed on α-smooth muscle actin expression. SHH protected lung fibroblasts from TNF-α/IFN-γ/Fas-induced apoptosis (14.5 ± 3.2% vs. 37.3 ± 7.2%, P < 0.0001). This protection was accompanied by modifications in several apoptosis-related proteins, including increased expression of X-linked inhibitor of apoptosis. These findings indicate that the SHH pathway is activated in IPF lungs and that SHH may contribute to IPF pathogenesis by increasing the proliferation, migration, extracellular matrix production, and survival of fibroblasts.
Collapse
Affiliation(s)
- Alfredo Lozano Bolaños
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Syn WK, Agboola KM, Swiderska M, Michelotti G, Liaskou E, Pang H, Xie G, Philips G, Chan IS, Karaca GF, Pereira TA, Chen Y, Mi Z, Kuo PC, Choi SS, Guy CD, Abdelmalek MF, Diehl AM. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 2012; 61:1323-9. [PMID: 22427237 PMCID: PMC3578424 DOI: 10.1136/gutjnl-2011-301857] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Immune responses are important in dictating non-alcoholic steatohepatitis (NASH) outcome. We previously reported that upregulation of hedgehog (Hh) and osteopontin (OPN) occurs in NASH, that Hh-regulated accumulation of natural killer T (NKT) cells promotes hepatic stellate cell (HSC) activation, and that cirrhotic livers harbour large numbers of NKT cells. DESIGN The hypothesis that activated NKT cells drive fibrogenesis during NASH was evaluated by assessing if NKT depletion protects against NASH fibrosis; identifying the NKT-associated fibrogenic factors; and correlating plasma levels of the NKT cell-associated factor OPN with fibrosis severity in mice and humans. RESULTS When fed methionine-choline-deficient (MCD) diets for 8 weeks, wild type (WT) mice exhibited Hh pathway activation, enhanced OPN expression, and NASH-fibrosis. Ja18-/- and CD1d-/- mice which lack NKT cells had significantly attenuated Hh and OPN expression and dramatically less fibrosis. Liver mononuclear cells (LMNCs) from MCD diet fed WT mice contained activated NKT cells, generated Hh and OPN, and stimulated HSCs to become myofibroblasts; neutralising these factors abrogated the fibrogenic actions of WT LMNCs. LMNCs from NKT-cell-deficient mice were deficient in fibrogenic factors, failing to activate collagen gene expression in HSCs. Human NASH livers with advanced fibrosis contained more OPN and Hh protein than those with early fibrosis. Plasma levels of OPN mirrored hepatic OPN expression and correlated with fibrosis severity. CONCLUSION Hepatic NKT cells drive production of OPN and Hh ligands that promote fibrogenesis during NASH. Associated increases in plasma levels of OPN may provide a biomarker of NASH fibrosis.
Collapse
Affiliation(s)
- Wing-Kin Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA,Centre for Liver Research, University of Birmingham, Edgbaston, Birmingham, UK,Foundation for Liver Research, Institute of Hepatology, London
| | - Kola M Agboola
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Marzena Swiderska
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Gregory Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Evaggelia Liaskou
- Centre for Liver Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Herbert Pang
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Guanhua Xie
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - George Philips
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Isaac S Chan
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Gamze F Karaca
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Thiago A Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA,Nucleo de Deoncas Infecciosas, Centro de Ciencias da Caude, Universidade Federal do Espirito Santo, Espirito Santo, Brazil
| | - Yuping Chen
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Zhiyong Mi
- Department of Surgery, Loyola University Chicago
| | - Paul C Kuo
- Department of Surgery, Loyola University Chicago
| | - Steve S Choi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA,Section of Gastroenterology, Department of Medicine, Durham Veteran Affairs Medical Center, Durham, NC, USA
| | - Cynthia D Guy
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Manal F Abdelmalek
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
35
|
Abstract
The incidence of nonalcoholic fatty liver disease is increasing at an astonishing rate in the US population. Although only a small proportion of these patients develop steatohepatitis (NASH), those who do have a greater likelihood of developing end-stage liver disease and complications. Research on liver fibrosis and NASH progression shows that hedgehog (Hh) is reactivated after liver injury to assist in liver repair and regeneration. When the process of tissue repair and regeneration is prolonged or when Hh ligand and related genes are aberrantly regulated and excessive, tissue repair goes awry and NASH progresses to cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Brittany N Bohinc
- Department of Endocrinology, Diabetes and Metabolism, Duke University Hospital, Durham, NC 27710, USA
| | | |
Collapse
|
36
|
Furmanski AL, Saldana JI, Rowbotham NJ, Ross SE, Crompton T. Role of Hedgehog signalling at the transition from double-positive to single-positive thymocyte. Eur J Immunol 2011; 42:489-99. [PMID: 22101858 PMCID: PMC3378705 DOI: 10.1002/eji.201141758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/12/2011] [Accepted: 11/09/2011] [Indexed: 01/28/2023]
Abstract
In the thymus, developing T cells receive signals that determine lineage choice, specificity, MHC restriction and tolerance to self-antigen. One way in which thymocytes receive instruction is by secretion of Sonic hedgehog (Shh) from thymic epithelial cells. We have previously shown that Hedgehog (Hh) signalling in the thymus decreases the CD4:CD8 single-positive (SP) thymocyte ratio. Here, we present data indicating that double-positive (DP) thymocytes are Hh-responsive and that thymocyte-intrinsic Hh signalling plays a role in modulating the production of CD4(+) (SP4), CD8(+) (SP8) and unconventional T-cell subsets. Repression of physiological Hh signalling in thymocytes altered the proportions of DP and SP4 cells. Thymocyte-intrinsic Hh-dependent transcription also attenuated both the production of mature SP4 and SP8 cells, and the establishment of peripheral T-cell compartments in TCR-transgenic mice. Additionally, stimulation or withdrawal of Hh signals in the WT foetal thymus impaired or enhanced upregulation of the CD4 lineage-specific transcription factor Gata3 respectively. These data together suggest that Hh signalling may play a role in influencing the later stages of thymocyte development.
Collapse
Affiliation(s)
- Anna L Furmanski
- Immunobiology Unit, Institute of Child Health, University College London, London, UK.
| | | | | | | | | |
Collapse
|
37
|
Seth D, Haber PS, Syn WK, Diehl AM, Day CP. Pathogenesis of alcohol-induced liver disease: classical concepts and recent advances. J Gastroenterol Hepatol 2011; 26:1089-105. [PMID: 21545524 DOI: 10.1111/j.1440-1746.2011.06756.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is a primary consequence of heavy and prolonged drinking. ALD contributes to the bulk of liver disease burden worldwide. Progression of ALD is a multifactorial and multistep process that includes many genetic and environmental risk factors. The molecular pathogenesis of ALD involves alcohol metabolism and secondary mechanisms such as oxidative stress, endotoxin, cytokines and immune regulators. The histopathological manifestation of ALD occurs as an outcome of complex but controlled interactions between hepatic cell types. Hepatic stellate cells (HSCs) are the key drivers of fibrogenesis, but transformation of hepatocytes to myofibroblastoids also implicate parenchymal cells as playing an active role in hepatic fibrogenesis. Recent discoveries indicate that lipogenesis during the early stages of ALD is a risk for advancement to cirrhosis. Other recently identified novel molecules and physiological/cell signaling pathways include fibrinolysis, osteopontin, transforming growth factor-β-SMAD and hedgehog signaling, and involvement of novel cytokines in hepatic fibrogenesis. The observation that ALD and non-alcoholic steatohepatitis share common pathways and genetic polymorphisms suggests operation of parallel pathogenic mechanisms. Future research involving genomics, epigenomics, deep sequencing and non-coding regulatory elements holds promise to identify novel diagnostic and therapeutic targets for ALD. There is also a need for adequate animal models to study pathogenic mechanisms at the molecular level and targeted therapy.
Collapse
Affiliation(s)
- Devanshi Seth
- Drug Health Services, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
38
|
Omenetti A, Choi S, Michelotti G, Diehl AM. Hedgehog signaling in the liver. J Hepatol 2011; 54:366-73. [PMID: 21093090 PMCID: PMC3053023 DOI: 10.1016/j.jhep.2010.10.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/05/2010] [Accepted: 10/07/2010] [Indexed: 12/13/2022]
Abstract
Reactivation of Hedgehog (Hh), a morphogenic signaling pathway that controls progenitor cell fate and tissue construction during embryogenesis occurs during many types of liver injury in adult. The net effects of activating the Hedgehog pathway include expansion of liver progenitor populations to promote liver regeneration, but also hepatic accumulation of inflammatory cells, liver fibrogenesis, and vascular remodeling. All of these latter responses are known to be involved in the pathogenesis of cirrhosis. In addition, Hh signaling may play a role in primary liver cancers, such as cholangiocarcinoma and hepatocellular carcinoma. Study of Hedgehog signaling in liver cells is in its infancy. Additional research in this area is justified given growing experimental and clinical data supporting a role for the pathway in regulating outcomes of liver injury.
Collapse
|
39
|
Syn WK, Choi SS, Liaskou E, Karaca GF, Agboola KM, Oo YH, Mi Z, Pereira TA, Zdanowicz M, Malladi P, Chen Y, Moylan C, Jung Y, Bhattacharya SD, Teaberry V, Omenetti A, Abdelmalek MF, Guy CD, Adams DH, Kuo PC, Michelotti GA, Whitington PF, Diehl AM. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology 2011; 53:106-15. [PMID: 20967826 PMCID: PMC3025083 DOI: 10.1002/hep.23998] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/13/2010] [Indexed: 01/18/2023]
Abstract
UNLABELLED Nonalcoholic steatohepatitis (NASH) is a leading cause of cirrhosis. Recently, we showed that NASH-related cirrhosis is associated with Hedgehog (Hh) pathway activation. The gene encoding osteopontin (OPN), a profibrogenic extracellular matrix protein and cytokine, is a direct transcriptional target of the Hh pathway. Thus, we hypothesize that Hh signaling induces OPN to promote liver fibrosis in NASH. Hepatic OPN expression and liver fibrosis were analyzed in wild-type (WT) mice, Patched-deficient (Ptc(+/-) ) (overly active Hh signaling) mice, and OPN-deficient mice before and after feeding methionine and choline-deficient (MCD) diets to induce NASH-related fibrosis. Hepatic OPN was also quantified in human NASH and nondiseased livers. Hh signaling was manipulated in cultured liver cells to assess direct effects on OPN expression, and hepatic stellate cells (HSCs) were cultured in medium with different OPN activities to determine effects on HSC phenotype. When fed MCD diets, Ptc(+/-) mice expressed more OPN and developed worse liver fibrosis (P < 0.05) than WT mice, whereas OPN-deficient mice exhibited reduced fibrosis (P < 0.05). In NASH patients, OPN was significantly up-regulated and correlated with Hh pathway activity and fibrosis stage. During NASH, ductular cells strongly expressed OPN. In cultured HSCs, SAG (an Hh agonist) up-regulated, whereas cyclopamine (an Hh antagonist) repressed OPN expression (P < 0.005). Cholangiocyte-derived OPN and recombinant OPN promoted fibrogenic responses in HSCs (P < 0.05); neutralizing OPN with RNA aptamers attenuated this (P < 0.05). CONCLUSION OPN is Hh-regulated and directly promotes profibrogenic responses. OPN induction correlates with Hh pathway activity and fibrosis stage. Therefore, OPN inhibition may be beneficial in NASH.
Collapse
Affiliation(s)
- Wing-Kin Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pereira TDA, Witek RP, Syn WK, Choi SS, Bradrick S, Karaca GF, Agboola KM, Jung Y, Omenetti A, Moylan CA, Yang L, Fernandez-Zapico ME, Jhaveri R, Shah VH, Pereira FE, Diehl AM. Viral factors induce Hedgehog pathway activation in humans with viral hepatitis, cirrhosis, and hepatocellular carcinoma. J Transl Med 2010; 90:1690-703. [PMID: 20697376 PMCID: PMC2980808 DOI: 10.1038/labinvest.2010.147] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (Hh) pathway activation promotes many processes that occur during fibrogenic liver repair. Whether the Hh pathway modulates the outcomes of virally mediated liver injury has never been examined. Gene-profiling studies of human hepatocellular carcinomas (HCCs) demonstrate Hh pathway activation in HCCs related to chronic infection with hepatitis B virus (HBV) or hepatitis C virus (HCV). Because most HCCs develop in cirrhotic livers, we hypothesized that Hh pathway activation occurs during fibrogenic repair of liver damage due to chronic viral hepatitis, and that Hh-responsive cells mediate disease progression and hepatocarciongenesis in chronic viral hepatitis. Immunohistochemistry and qRT-PCR analysis were used to analyze Hh pathway activation and identify Hh-responsive cell types in liver biopsies from 45 patients with chronic HBV or HCV. Hh signaling was then manipulated in cultured liver cells to directly assess the impact of Hh activity in relevant cell types. We found increased hepatic expression of Hh ligands in all patients with chronic viral hepatitis, and demonstrated that infection with HCV stimulated cultured hepatocytes to produce Hh ligands. The major cell populations that expanded during cirrhosis and HCC (ie, liver myofibroblasts, activated endothelial cells, and progenitors expressing markers of tumor stem/initiating cells) were Hh responsive, and higher levels of Hh pathway activity associated with cirrhosis and HCC. Inhibiting pathway activity in Hh-responsive target cells reduced fibrogenesis, angiogenesis, and growth. In conclusion, HBV/HCV infection increases hepatocyte production of Hh ligands and expands the types of Hh-responsive cells that promote liver fibrosis and cancer.
Collapse
Affiliation(s)
- Thiago de Almeida Pereira
- Division of Gastroenterology, Duke University, Durham, NC, USA
- Núcleo de Doenças Infecciosas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Rafal P. Witek
- Division of Gastroenterology, Duke University, Durham, NC, USA
| | - Wing-Kin Syn
- Division of Gastroenterology, Duke University, Durham, NC, USA
| | - Steve S. Choi
- Division of Gastroenterology, Duke University, Durham, NC, USA
| | - Shelton Bradrick
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Gamze F Karaca
- Division of Gastroenterology, Duke University, Durham, NC, USA
| | | | - Youngmi Jung
- Division of Gastroenterology, Duke University, Durham, NC, USA
| | | | | | - Liu Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Martin E. Fernandez-Zapico
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Ravi Jhaveri
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Fausto E. Pereira
- Núcleo de Doenças Infecciosas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University, Durham, NC, USA
| |
Collapse
|
41
|
Choi SS, Omenetti A, Syn WK, Diehl AM. The role of Hedgehog signaling in fibrogenic liver repair. Int J Biochem Cell Biol 2010; 43:238-44. [PMID: 21056686 DOI: 10.1016/j.biocel.2010.10.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 09/14/2010] [Accepted: 10/28/2010] [Indexed: 12/13/2022]
Abstract
Repair of adult liver, like many tissues, involves the coordinated response of a number of different cell types. In adult livers, fibroblastic cells, ductular cells, inflammatory cells, and progenitor cells contribute to this process. Our studies demonstrate that the fates of such cells are dictated, at least in part, by Hedgehog, a fetal morphogenic pathway that was once thought to be active mainly during embryogenesis. Studies of injured adult human and rodent livers demonstrate that injury-related activation of the Hedgehog pathway modulates several important aspects of repair, including the growth of hepatic progenitor populations, hepatic accumulation of myofibroblasts, repair-related inflammatory responses, vascular remodeling, liver fibrosis and hepatocarcinogenesis. These findings identify the Hedgehog pathway as a potentially important target for biomarker development and therapeutic manipulation, and emphasize the need for further research to advance knowledge about how this pathway is regulated by and interacts with other signals that regulate adult liver repair.
Collapse
Affiliation(s)
- Steve S Choi
- Division of Gastroenterology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
42
|
Federico A, D’Aiuto E, Borriello F, Barra G, Gravina AG, Romano M, De Palma R. Fat: A matter of disturbance for the immune system. World J Gastroenterol 2010; 16:4762-72. [PMID: 20939104 PMCID: PMC2955245 DOI: 10.3748/wjg.v16.i38.4762] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Obesity is increasingly being recognized as a risk factor for a number of benign and malignant gastrointestinal conditions. However, literature on the underlying pathophysiological mechanisms is sparse and ambiguous. There is compelling evidence that both overnutrition and undernutrition negatively interfere with the immune system. Overnutrition has been found to increase susceptibility to the development of inflammatory diseases, autoimmune diseases and cancer. In the regulation of immune and inflammatory processes, white adipose tissue plays a critical role, not only as an energy store but also as an important endocrine organ. The obese state is characterised by a low-grade systemic inflammation, mainly as a result of increased adipocytes as well as fat resident- and recruited-macrophage activity. In the past few years, various products of adipose tissue including adipokines and cytokines have been characterised and a number of pathways linking adipose tissue metabolism with the immune system have been identified. Activation of the innate immune system plays a major role in hepatic steatosis. Non-alcoholic fatty liver disease includes a wide spectrum of diseases, from pure steatosis to non-alcoholic steatohepatitis in the absence of significant alcohol consumption. Although steatosis is considered a non-progressive disease, non-alcoholic steatohepatitis may deteriorate in advanced chronic liver diseases, cirrhosis, and hepatocellular carcinoma. An important parallel between obesity-related pathology of adipose tissue and liver pertains to the emerging role of macrophages, and growing evidence suggests that Kupffer cells critically contribute to progression of non-alcoholic fatty liver disease. Moreover, a close link between specific immune activation and atherosclerosis has been well established, suggesting that fat can directly trigger immune responses. This review discusses the role of fat as “a matter of disturbance for the immune system” with a focus on hepatic steatosis.
Collapse
|
43
|
Choi SS, Witek RP, Yang L, Omenetti A, Syn WK, Moylan CA, Jung Y, Karaca GF, Teaberry VS, Pereira TA, Wang J, Ren XR, Diehl AM. Activation of Rac1 promotes hedgehog-mediated acquisition of the myofibroblastic phenotype in rat and human hepatic stellate cells. Hepatology 2010; 52:278-90. [PMID: 20578145 PMCID: PMC2920128 DOI: 10.1002/hep.23649] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatic accumulation of myofibroblastic hepatic stellate cells (MF-HSCs) is pivotal in the pathogenesis of cirrhosis. Two events are necessary for MF-HSCs to accumulate in damaged livers: transition of resident, quiescent hepatic stellate cells (Q-HSCs) to MF-HSCs and expansion of MF-HSC numbers through increased proliferation and/or reduced apoptosis. In this study, we identified two novel mediators of MF-HSC accumulation: Ras-related C3 botulinum toxin substrate 1 (Rac1) and Hedgehog (Hh). It is unclear whether Rac1 and Hh interact to regulate the accumulation of MF-HSCs. We evaluated the hypothesis that Rac1 promotes activation of the Hh pathway, thereby stimulating signals that promote transition of Q-HSCs into MF-HSCs and enhance the viability of MF-HSCs. Using both in vitro and in vivo model systems, Rac1 activity was manipulated through adenoviral vector-mediated delivery of constitutively active or dominant-negative rac1. Rac1-transgenic mice with targeted myofibroblast expression of a mutated human rac1 transgene that produces constitutively active Rac1 were also examined. Results in all models demonstrated that activating Rac1 in HSC enhanced Hh signaling, promoted acquisition/maintenance of the MF-HSC phenotype, increased MF-HSC viability, and exacerbated fibrogenesis. Conversely, inhibiting Rac1 with dominant-negative rac1 reversed these effects in all systems examined. Pharmacologic manipulation of Hh signaling demonstrated that profibrogenic actions of Rac1 were mediated by its ability to activate Hh pathway-dependent mechanisms that stimulated myofibroblastic transition of HSCs and enhanced MF-HSC viability. CONCLUSION These findings demonstrate that interactions between Rac1 and the Hh pathway control the size of MF-HSC populations and have important implications for the pathogenesis of cirrhosis.
Collapse
Affiliation(s)
- Steve S. Choi
- Division of Gastroenterology, Duke University, Durham, NC,Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NC
| | - Rafal P. Witek
- Division of Gastroenterology, Duke University, Durham, NC
| | - Liu Yang
- Division of Gastroenterology, Duke University, Durham, NC,Department of Medicine, Mayo Clinic, Rochester, MN
| | | | - Wing-Kin Syn
- Division of Gastroenterology, Duke University, Durham, NC
| | - Cynthia A. Moylan
- Division of Gastroenterology, Duke University, Durham, NC,Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NC
| | - Youngmi Jung
- Division of Gastroenterology, Duke University, Durham, NC
| | | | | | - Thiago A. Pereira
- Division of Gastroenterology, Duke University, Durham, NC,Núcleo de Doenças Infecciosas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Jiangbo Wang
- Division of Gastroenterology, Duke University, Durham, NC
| | - Xiu-Rong Ren
- Division of Gastroenterology, Duke University, Durham, NC
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University, Durham, NC
| |
Collapse
|
44
|
Syn WK, Oo YH, Pereira TA, Karaca GF, Jung Y, Omenetti A, Witek RP, Choi SS, Guy CD, Fearing CM, Teaberry V, Pereira FEL, Adams DH, Diehl AM. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 2010; 51:1998-2007. [PMID: 20512988 PMCID: PMC2920131 DOI: 10.1002/hep.23599] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Liver inflammation is greater in nonalcoholic steatohepatitis (NASH) than steatosis, suggesting that immune responses contribute to nonalcoholic fatty liver disease (NAFLD) progression. Livers normally contain many natural killer T (NKT) cells that produce factors that modulate inflammatory and fibrogenic responses. Such cells are relatively depleted in steatosis, but their status in more advanced NAFLD is uncertain. We hypothesized that NKT cells accumulate and promote fibrosis progression in NASH. We aimed to determine if livers become enriched with NKT cells during NASH-related fibrosis; identify responsible mechanisms; and assess if NKT cells stimulate fibrogenesis. NKT cells were analyzed in wildtype mice and Patched-deficient (Ptc(+/-)) mice with an overly active Hedgehog (Hh) pathway, before and after feeding methionine choline-deficient (MCD) diets to induce NASH-related fibrosis. Effects of NKT cell-derived factors on hepatic stellate cells (HSC) were examined and fibrogenesis was evaluated in CD1d-deficient mice that lack NKT cells. NKT cells were quantified in human cirrhotic and nondiseased livers. During NASH-related fibrogenesis in wildtype mice, Hh pathway activation occurred, leading to induction of factors that promoted NKT cell recruitment, retention, and viability, plus liver enrichment with NKT cells. Ptc(+/-) mice accumulated more NKT cells and developed worse liver fibrosis; CD1d-deficient mice that lack NKT cells were protected from fibrosis. NKT cell-conditioned medium stimulated HSC to become myofibroblastic. Liver explants were 2-fold enriched with NKT cells in patients with non-NASH cirrhosis, and 4-fold enriched in patients with NASH cirrhosis. CONCLUSION Hh pathway activation leads to hepatic enrichment with NKT cells that contribute to fibrosis progression in NASH.
Collapse
Affiliation(s)
- Wing-Kin Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ye Htun Oo
- Centre for Liver Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Thiago A Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA,Núcleo de Doenças Infecciosas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gamze F Karaca
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Youngmi Jung
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Alessia Omenetti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Rafal P Witek
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Steve S Choi
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA,Section of Gastroenterology, Department of Medicine, Durham Veteran Affairs Medical Center, Durham, NC, USA
| | - Cynthia D Guy
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Caitlin M Fearing
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Vanessa Teaberry
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Fausto E L Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - David H Adams
- Centre for Liver Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|