1
|
Wang Q, Han J, Liang Z, Geng X, Du Y, Zhou J, Yao W, Xu T. FSH Is Responsible for Androgen Deprivation Therapy-Associated Atherosclerosis in Mice by Exaggerating Endothelial Inflammation and Monocyte Adhesion. Arterioscler Thromb Vasc Biol 2024; 44:698-719. [PMID: 38205641 PMCID: PMC10880942 DOI: 10.1161/atvbaha.123.319426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is the mainstay treatment for advanced prostate cancer. But ADTs with orchiectomy and gonadotropin-releasing hormone (GnRH) agonist are associated with increased risk of cardiovascular diseases, which appears less significant with GnRH antagonist. The difference of follicle-stimulating hormone (FSH) in ADT modalities is hypothesized to be responsible for ADT-associated cardiovascular diseases. METHODS We administered orchiectomy, GnRH agonist, or GnRH antagonist in male ApoE-/- mice fed with Western diet and manipulated FSH levels by testosterone and FSH supplementation or FSH antibody to investigate the role of FSH elevation on atherosclerosis. By combining lipidomics, in vitro study, and intraluminal FSHR (FSH receptor) inhibition, we delineated the effects of FSH on endothelium and monocytes and the underlying mechanisms. RESULTS Orchiectomy and GnRH agonist, but not GnRH antagonist, induced long- or short-term FSH elevation and significantly accelerated atherogenesis. In orchiectomized and testosterone-supplemented mice, FSH exposure increased atherosclerosis. In GnRH agonist-treated mice, blocking of short FSH surge by anti-FSHβ antibody greatly alleviated endothelial inflammation and delayed atherogenesis. In GnRH antagonist-treated mice, FSH supplementation aggravated atherogenesis. Mechanistically, FSH, synergizing with TNF-α (tumor necrosis factor alpha), exacerbated endothelial inflammation by elevating VCAM-1 (vascular cell adhesion protein 1) expression through the cAMP/PKA (protein kinase A)/CREB (cAMP response element-binding protein)/c-Jun and PI3K (phosphatidylinositol 3 kinase)/AKT (protein kinase B)/GSK-3β (glycogen synthase kinase 3 beta)/GATA-6 (GATA-binding protein 6) pathways. In monocytes, FSH upregulated CD29 (cluster of differentiation 29) expression via the PI3K/AKT/GSK-3β/SP1 (specificity protein 1) pathway and promoted monocyte-endothelial adhesion both in vitro and in vivo. Importantly, FSHR knockdown by shRNA in endothelium of carotid arteries markedly reduced GnRH agonist-induced endothelial inflammation and atherosclerosis in mice. CONCLUSIONS FSH is responsible for ADT-associated atherosclerosis by exaggerating endothelial inflammation and promoting monocyte-endothelial adhesion.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
- Department of Urology, Sichuan Cancer Hospital, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu (Q.W.)
| | - Jingli Han
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| | - Zhenhui Liang
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Xueyu Geng
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Yiqing Du
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| | - Jing Zhou
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China (W.Y.)
| | - Tao Xu
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| |
Collapse
|
2
|
Mizobuchi H. Oral route lipopolysaccharide as a potential dementia preventive agent inducing neuroprotective microglia. Front Immunol 2023; 14:1110583. [PMID: 36969154 PMCID: PMC10033586 DOI: 10.3389/fimmu.2023.1110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
In today's aging society, dementia is an urgent problem to be solved because no treatment or preventive methods have been established. This review focuses on oral administration of lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, as a novel preventive drug for dementia. LPS is also called endotoxin and is well known to induce inflammation when administered systemically. On the other hand, although we humans routinely ingest LPS derived from symbiotic bacteria of edible plants, the effect of oral administration of LPS has hardly been studied. Recently, oral administration of LPS was reported to prevent dementia by inducing neuroprotective microglia. Furthermore, it has been suggested that colony stimulating factor 1 (CSF1) is involved in the dementia prevention mechanism by oral administration of LPS. Thus, in this review, we summarized the previous studies of oral administration of LPS and discussed the predicted dementia prevention mechanism. In addition, we showed the potential of oral LPS administration as a preventive drug for dementia by highlighting research gaps and future issues for clinical application development.
Collapse
|
3
|
Lin QS, Wang Y, Lin MH, Li YX, Chen P. WITHDRAWN: The cerebrospinal fluid-contacting nucleus contributes to depression- like behaviors via MKP-1 in rats. J Affect Disord 2022:S0165-0327(22)01378-7. [PMID: 36521668 DOI: 10.1016/j.jad.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Qing-Song Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350209, Fujian, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Fujian Provincial Clinical Research Center for Neurological Diseases, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Fujian Provincial Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Ying Wang
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | | | - Yu-Xi Li
- Fujian Medical University, China
| | - Ping Chen
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Sevilla LM, Jiménez-Panizo A, Alegre-Martí A, Estébanez-Perpiñá E, Caelles C, Pérez P. Glucocorticoid Resistance: Interference between the Glucocorticoid Receptor and the MAPK Signalling Pathways. Int J Mol Sci 2021; 22:10049. [PMID: 34576214 PMCID: PMC8465023 DOI: 10.3390/ijms221810049] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Endogenous glucocorticoids (GCs) are steroid hormones that signal in virtually all cell types to modulate tissue homeostasis throughout life. Also, synthetic GC derivatives (pharmacological GCs) constitute the first-line treatment in many chronic inflammatory conditions with unquestionable therapeutic benefits despite the associated adverse effects. GC actions are principally mediated through the GC receptor (GR), a ligand-dependent transcription factor. Despite the ubiquitous expression of GR, imbalances in GC signalling affect tissues differently, and with variable degrees of severity through mechanisms that are not completely deciphered. Congenital or acquired GC hypersensitivity or resistance syndromes can impact responsiveness to endogenous or pharmacological GCs, causing disease or inadequate therapeutic outcomes, respectively. Acquired GC resistance is defined as loss of efficacy or desensitization over time, and arises as a consequence of chronic inflammation, affecting around 30% of GC-treated patients. It represents an important limitation in the management of chronic inflammatory diseases and cancer, and can be due to impairment of multiple mechanisms along the GC signalling pathway. Among them, activation of the mitogen-activated protein kinases (MAPKs) and/or alterations in expression of their regulators, the dual-specific phosphatases (DUSPs), have been identified as common mechanisms of GC resistance. While many of the anti-inflammatory actions of GCs rely on GR-mediated inhibition of MAPKs and/or induction of DUSPs, the GC anti-inflammatory capacity is decreased or lost in conditions of excessive MAPK activation, contributing to disease susceptibility in tissue- and disease- specific manners. Here, we discuss potential strategies to modulate GC responsiveness, with the dual goal of overcoming GC resistance and minimizing the onset and severity of unwanted adverse effects while maintaining therapeutic potential.
Collapse
Affiliation(s)
- Lisa M. Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| | - Alba Jiménez-Panizo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Andrea Alegre-Martí
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Eva Estébanez-Perpiñá
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Carme Caelles
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| |
Collapse
|
5
|
Mizobuchi H, Yamamoto K, Yamashita M, Nakata Y, Inagawa H, Kohchi C, Soma GI. Prevention of Diabetes-Associated Cognitive Dysfunction Through Oral Administration of Lipopolysaccharide Derived From Pantoea agglomerans. Front Immunol 2021; 12:650176. [PMID: 34512619 PMCID: PMC8429836 DOI: 10.3389/fimmu.2021.650176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/13/2021] [Indexed: 11/26/2022] Open
Abstract
Diabetes-related cognitive dysfunction (DRCD) is a serious complication induced by diabetes. However, there are currently no specific remedies for DRCD. Here, we show that streptozotocin-induced DRCD can be prevented without causing side effects through oral administration of lipopolysaccharide (LPS) derived from Pantoea agglomerans. Oral administration of LPS (OAL) prevented the cerebral cortex atrophy and tau phosphorylation induced by DRCD. Moreover, we observed that neuroprotective transformation of microglia (brain tissue-resident macrophages) is important for preventing DRCD through OAL. These findings are contrary to the general recognition of LPS as an inflammatory agent when injected systemically. Furthermore, our results strongly suggest that OAL promotes membrane-bound colony stimulating factor 1 (CSF1) expression on peripheral leukocytes, which activates the CSF1 receptor on microglia, leading to their transformation to the neuroprotective phenotype. Taken together, the present study indicates that controlling innate immune modulation through the simple and safe strategy of OAL can be an innovative prophylaxis for intractable neurological diseases such as DRCD. In a sense, for modern people living in an LPS-depleted environment, OAL is like a time machine that returns microglia to the good old LPS-abundant era.
Collapse
Affiliation(s)
- Haruka Mizobuchi
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan
| | - Kazushi Yamamoto
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan
| | - Masashi Yamashita
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan
| | - Yoko Nakata
- Research and Development Department Macrophi Inc., Kagawa, Japan
| | - Hiroyuki Inagawa
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan.,Research and Development Department Macrophi Inc., Kagawa, Japan.,Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Chie Kohchi
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan.,Research and Development Department Macrophi Inc., Kagawa, Japan
| | - Gen-Ichiro Soma
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan.,Research and Development Department Macrophi Inc., Kagawa, Japan.,Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
6
|
Horvath O, Ordog K, Bruszt K, Deres L, Gallyas F, Sumegi B, Toth K, Halmosi R. BGP-15 Protects against Heart Failure by Enhanced Mitochondrial Biogenesis and Decreased Fibrotic Remodelling in Spontaneously Hypertensive Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1250858. [PMID: 33564362 PMCID: PMC7867468 DOI: 10.1155/2021/1250858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/18/2020] [Accepted: 01/15/2021] [Indexed: 01/06/2023]
Abstract
Heart failure (HF) is a complex clinical syndrome with poor clinical outcomes despite the growing number of therapeutic approaches. It is characterized by interstitial fibrosis, cardiomyocyte hypertrophy, activation of various intracellular signalling pathways, and damage of the mitochondrial network. Mitochondria are responsible for supplying the energy demand of cardiomyocytes; therefore, the damage of the mitochondrial network causes cellular dysfunction and finally leads to cell death. BGP-15, a hydroxylamine derivative, is an insulin-sensitizer molecule and has a wide range of cytoprotective effects in animal as well as in human studies. Our recent work was aimed at examining the effects of BGP-15 in a chronic hypertension-induced heart failure model. 15-month-old male SHRs were used in our experiment. The SHR-Baseline group represented the starting point (n = 7). Animals received BGP-15 (SHR-B, n = 7) or placebo (SHR-C, n = 7) for 18 weeks. WKY rats were used as age-matched normotensive controls (n = 7). The heart function was monitored by echocardiography. Histological preparations were made from cardiac tissue. The levels of signalling proteins were determined by Western blot. At the end of the study, systolic and diastolic cardiac function was preserved in the BGP-treated animals. BGP-15 decreased the interstitial collagen deposition via decreasing the activity of TGFβ/Smad signalling factors and prevented the cardiomyocyte hypertrophy in hypertensive animals. BGP-15 enhanced the prosurvival signalling pathways (Akt/Gsk3β). The treatment increased the activity of MKP1 and decreased the activity of p38 and JNK signalling routes. The mitochondrial mass of cardiomyocytes was also increased in BGP-15-treated SHR animals due to the activation of mitochondrial biogenesis. The mitigation of remodelling processes and the preserved systolic cardiac function in hypertension-induced heart failure can be a result-at least partly-of the enhanced mitochondrial biogenesis caused by BGP-15.
Collapse
Affiliation(s)
- Orsolya Horvath
- 1st Department of Medicine, University of Pecs, Medical School, Hungary
- Szentágothai Research Centre, University of Pecs, Hungary
| | - Katalin Ordog
- 1st Department of Medicine, University of Pecs, Medical School, Hungary
- Szentágothai Research Centre, University of Pecs, Hungary
| | - Kitti Bruszt
- 1st Department of Medicine, University of Pecs, Medical School, Hungary
- Szentágothai Research Centre, University of Pecs, Hungary
| | - Laszlo Deres
- 1st Department of Medicine, University of Pecs, Medical School, Hungary
- Szentágothai Research Centre, University of Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
| | - Ferenc Gallyas
- Szentágothai Research Centre, University of Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Hungary
| | - Balazs Sumegi
- Szentágothai Research Centre, University of Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Hungary
| | - Kalman Toth
- 1st Department of Medicine, University of Pecs, Medical School, Hungary
- Szentágothai Research Centre, University of Pecs, Hungary
| | - Robert Halmosi
- 1st Department of Medicine, University of Pecs, Medical School, Hungary
- Szentágothai Research Centre, University of Pecs, Hungary
| |
Collapse
|
7
|
Pratap UP, Hima L, Kannan T, Thyagarajan C, Priyanka HP, Vasantharekha R, Pushparani A, Thyagarajan S. Sex-Based Differences in the Cytokine Production and Intracellular Signaling Pathways in Patients With Rheumatoid Arthritis. Arch Rheumatol 2020; 35:545-557. [PMID: 33758811 PMCID: PMC7945702 DOI: 10.46497/archrheumatol.2020.7481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives
This study aims to investigate lymphoproliferation, cytokine production, and intracellular signaling molecules in peripheral blood mononuclear cells (PBMCs) isolated from healthy individuals and rheumatoid arthritis (RA) patients to understand the extent of the involvement of these pathways in the pathogenesis of RA. Patients and methods
The study included 65 participants (29 males, 36 females; mean age 51.8±10.3 years; range, 37 to 71 years) who were categorized into four groups as healthy males (n=22, mean age 49.8±10.6 years; range, 39 to 65 years), male RA patients (n=7, mean age 51.8±13.9 years; range, 37 to 68 years), healthy females (n=20, mean age 53.7±8.8 years; range, 42 to 67 years), and female RA patients (n=16, mean age 52.9±10.4 years; range, 40 to 71 years). PBMCs were collected from the participants and analyzed for Concanavalin A (Con A)-induced lymphoproliferation using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cytokine production, and phospho-signal transducer and activator of transcription 3 (p-STAT-3), phospho-extracellular-signal-regulated kinase (p-ERK), phospho-cAMP response element binding (p-CREB), and phospho-protein kinase B expressions using enzyme-linked immunosorbent assay. Short form of the Arthritis Impact Measurement Scales 2 and multidimensional health assessment questionnaire were used to measure the level of disability and the quality of life. Results
In RA patients, production of Con A-induced interleukin (IL)-2 and IL-17 was higher in both sexes while interferon-gamma levels decreased in RA females alone. Expression of p-STAT-3 in PBMCs increased in RA males while it was unaltered in RA females. p-ERK expression was not altered while p-CREB expression was enhanced in RA males and females. Protein-protein interaction analyses demonstrated that these and other key signaling molecules were dysregulated in RA patients. Conclusion Our results suggest that sex-based differences in RA pathogenesis result from differential alterations in signaling pathways to influence the inflammatory process.
Collapse
Affiliation(s)
- Uday P Pratap
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Lalgi Hima
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Thangamani Kannan
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Chadrasekaran Thyagarajan
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Hannah P Priyanka
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ramasamy Vasantharekha
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Anand Pushparani
- Department of Anesthesiology, SRM Medical College and Research Center, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Srinivasan Thyagarajan
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
8
|
Wang L, Sun J, Wu Z, Lian X, Han S, Huang S, Yang C, Wang L, Song L. AP-1 regulates the expression of IL17-4 and IL17-5 in the pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2020; 97:554-563. [PMID: 31887409 DOI: 10.1016/j.fsi.2019.12.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
The activator protein-1 (AP-1) plays an important role in inducing the immune effector production in response to cellular stress and bacterial infection. In the present study, an AP-1 was identified from Pacific oyster Crassostrea gigas (designed as CgAP-1) and its function was investigated in response against lipopolysaccharide (LPS) stimulation. CgAP-1 was consisted of 290 amino acids including a Jun domain and a basic region leucine zipper (bZIP) domain. CgAP-1 shared 98.6% similarities with ChAP-1 from oyster C. hongkongensis, and assigned into the branch of invertebrates in the phylogenetic tree. The mRNA transcripts of CgAP-1 gene were detected in all tested tissues with highest expression level in hemocytes, especially in granulocytes. The mRNA expression level of CgAP-1 gene in hemocytes was significantly up-regulated (8.53-fold of that in PBS group, p < 0.01) at 6 h after LPS stimulation. CgAP-1 protein could be translocated into the nucleus of oyster hemocytes after LPS stimulation. The mRNA transcripts of interleukin17s (CgIL17-4 and CgIL17-5) in the hemocytes of CgAP-1-RNAi oysters decreased significantly at 24 h after LPS stimulation, which were 0.37-fold (p < 0.05) and 0.17-fold (p < 0.01) compared with that in EGFP-RNAi oysters, respectively. The results suggested that CgAP-1 played an important role in the immune response of oyster by regulating the expression of CgIL17s.
Collapse
Affiliation(s)
- Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Zhaojun Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xingye Lian
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Shuo Han
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Shu Huang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
9
|
Kim E, Yoon JY, Lee J, Jeong D, Park JG, Hong YH, Kim JH, Aravinthan A, Kim JH, Cho JY. TANK-binding kinase 1 and Janus kinase 2 play important roles in the regulation of mitogen-activated protein kinase phosphatase-1 expression after toll-like receptor 4 activation. J Cell Physiol 2018; 233:8790-8801. [PMID: 29797567 DOI: 10.1002/jcp.26787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Abstract
Inflammation is a response that protects the body from pathogens. Through several inflammatory signaling pathways mediated by various families of transcription factors, such as nuclear factor-κB (NF-κB), activator protein-1 (AP-1), interferon regulatory factors (IRFs), and signal transducers and activators of transcription (STATs), various inflammatory cytokines and chemokines are induced and inflammatory responses are boosted. Simultaneously, inhibitory systems are activated and provide negative feedback. A typical mechanism by which this process occurs is that inflammatory signaling molecules upregulate mitogen-activated protein kinase phosphatase-1 (MKP1) expression. Here, we investigated how kinases regulate MKP1 expression in lipopolysaccharide-triggered cascades. We found that p38 and c-Jun N-terminal kinase (JNK) inhibitors decreased MKP1 expression. Using specific inhibitors, gene knockouts, and gene knockdowns, we also found that tumor necrosis factor receptor-associated factor family member-associated nuclear factor κB activator (TANK)-binding kinase 1 (TBK1) and Janus kinase 2 (JAK2) are involved in the induction of MKP1 expression. By analyzing JAK2-induced activation of STATs, STAT3-specific inhibitors, promoter binding sites, and STAT3-/- cells, we found that STAT3 is directly linked to TBK1-mediated and JAK2-mediated induction of MKP1 expression. Our data suggest that MKP1 expression can be differentially regulated by p38, JNK, and the TBK1-JAK2-STAT3 pathway after activation of toll-like receptor 4 (TLR4). These data also imply crosstalk between the AP-1 pathway and the IRF3 and STAT3 pathways.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Ju Y Yoon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea.,Central Research Institute, Dongkwang Pharmaceutical Company, Seoul, Korea
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Jae G Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Yo H Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Ji H Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Adithan Aravinthan
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Jae Y Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
10
|
Dhananjayan K, Gunawardena D, Hearn N, Sonntag T, Moran C, Gyengesi E, Srikanth V, Münch G. Activation of Macrophages and Microglia by Interferon-γ and Lipopolysaccharide Increases Methylglyoxal Production: A New Mechanism in the Development of Vascular Complications and Cognitive Decline in Type 2 Diabetes Mellitus? J Alzheimers Dis 2018; 59:467-479. [PMID: 28582854 DOI: 10.3233/jad-161152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methylglyoxal (MGO), a dicarbonyl compound derived from glucose, is elevated in diabetes mellitus and contributes to vascular complications by crosslinking collagen and increasing arterial stiffness. It is known that MGO contributes to inflammation as it forms advanced glycation end products (AGEs), which activate macrophages via the receptor RAGE. The aim of study was to investigate whether inflammatory activation can increase MGO levels, thereby completing a vicious cycle. In order to validate this, macrophage (RAW264.7, J774A.1) and microglial (N11) cells were stimulated with IFN-γ and LPS (5 + 5 and 10 + 10 IFN-γ U/ml or μg/ml LPS), and extracellular MGO concentration was determined after derivatization with 5,6-Diamino-2,4-dihydroxypyrimidine sulfate by HPLC. MGO levels in activated macrophage cells (RAW264.7) peaked at 48 h, increasing 2.86-fold (3.14±0.4 μM) at 5 U/ml IFN-γ+5 μg/ml LPS, and 4.74-fold (5.46±0.30 μM) at 10 U/ml IFN-γ+10 μg/ml LPS compared to the non-activated controls (1.15±0.02 μM). The other two cell lines, J774A.1 macrophages and N11 microglia, showed a similar response. We suggest that inflammation increases MGO production, possibly exacerbating arterial stiffness, cardiovascular complications, and diabetes-related cognitive decline.
Collapse
Affiliation(s)
- Karthik Dhananjayan
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Dhanushka Gunawardena
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Nerissa Hearn
- Molecular Medicine Research Group, Western Sydney University, Penrith, NSW, Australia
| | - Tanja Sonntag
- Molecular Medicine Research Group, Western Sydney University, Penrith, NSW, Australia
| | - Chris Moran
- Department of Medicine, Peninsula Health & Peninsula Clinical School, Monash University, VIC, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Velandai Srikanth
- Department of Medicine, Peninsula Health & Peninsula Clinical School, Monash University, VIC, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Molecular Medicine Research Group, Western Sydney University, Penrith, NSW, Australia.,National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
11
|
Jones DS, Jenney AP, Joughin BA, Sorger PK, Lauffenburger DA. Inflammatory but not mitogenic contexts prime synovial fibroblasts for compensatory signaling responses to p38 inhibition. Sci Signal 2018; 11:11/520/eaal1601. [PMID: 29511118 DOI: 10.1126/scisignal.aal1601] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder that causes joint pain, swelling, and loss of function. Development of effective new drugs has proven challenging in part because of the complexities and interconnected nature of intracellular signaling networks that complicate the effects of pharmacological interventions. We characterized the kinase signaling pathways that are activated in RA and evaluated the multivariate effects of targeted inhibitors. Synovial fluids from RA patients activated the kinase signaling pathways JAK, JNK, p38, and MEK in synovial fibroblasts (SFs), a stromal cell type that promotes RA progression. Kinase inhibitors enhanced signaling of "off-target" pathways in a manner dependent on stimulatory context. Inhibitors of p38, which have been widely explored in clinical trials for RA, resulted in undesirable increases in nuclear factor κB (NF-κB), JNK, and MEK signaling in SFs in inflammatory, but not mitogenic, contexts. This was mediated by the transcription factor CREB, which functions in part within a negative feedback loop in MAPK signaling. CREB activation was induced predominately by p38 in response to inflammatory stimuli, but by MEK in response to mitogenic stimuli; hence, the effects of drugs targeting p38 or MEK were markedly different in SFs cultured under mitogenic or inflammatory conditions. Together, these findings illustrate how stimulatory context can alter dominance in pathway cross-talk even for a fixed network topology, thereby providing a rationale for why p38 inhibitors deliver limited benefits in RA and demonstrating the need for careful consideration of p38-targeted drugs in inflammation-related disorders.
Collapse
Affiliation(s)
- Douglas S Jones
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Laboratory of Systems Pharmacology, Library of Integrated Network-based Cellular Signatures Center, Harvard Medical School, Boston, MA 02115, USA
| | - Anne P Jenney
- Laboratory of Systems Pharmacology, Library of Integrated Network-based Cellular Signatures Center, Harvard Medical School, Boston, MA 02115, USA
| | - Brian A Joughin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Library of Integrated Network-based Cellular Signatures Center, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Koch Institute for Integrative Cancer Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Meyer P, Maity P, Burkovski A, Schwab J, Müssel C, Singh K, Ferreira FF, Krug L, Maier HJ, Wlaschek M, Wirth T, Kestler HA, Scharffetter-Kochanek K. A model of the onset of the senescence associated secretory phenotype after DNA damage induced senescence. PLoS Comput Biol 2017; 13:e1005741. [PMID: 29206223 PMCID: PMC5730191 DOI: 10.1371/journal.pcbi.1005741] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/14/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022] Open
Abstract
Cells and tissues are exposed to stress from numerous sources. Senescence is a protective mechanism that prevents malignant tissue changes and constitutes a fundamental mechanism of aging. It can be accompanied by a senescence associated secretory phenotype (SASP) that causes chronic inflammation. We present a Boolean network model-based gene regulatory network of the SASP, incorporating published gene interaction data. The simulation results describe current biological knowledge. The model predicts different in-silico knockouts that prevent key SASP-mediators, IL-6 and IL-8, from getting activated upon DNA damage. The NF-κB Essential Modulator (NEMO) was the most promising in-silico knockout candidate and we were able to show its importance in the inhibition of IL-6 and IL-8 following DNA-damage in murine dermal fibroblasts in-vitro. We strengthen the speculated regulator function of the NF-κB signaling pathway in the onset and maintenance of the SASP using in-silico and in-vitro approaches. We were able to mechanistically show, that DNA damage mediated SASP triggering of IL-6 and IL-8 is mainly relayed through NF-κB, giving access to possible therapy targets for SASP-accompanied diseases.
Collapse
Affiliation(s)
- Patrick Meyer
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | - Andre Burkovski
- Institute of Medical Systems Biology, University of Ulm, Germany
- International Graduate School in Molecular Medicine, University of Ulm, Germany
| | - Julian Schwab
- Institute of Medical Systems Biology, University of Ulm, Germany
- International Graduate School in Molecular Medicine, University of Ulm, Germany
| | - Christoph Müssel
- Institute of Medical Systems Biology, University of Ulm, Germany
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | - Filipa F. Ferreira
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | - Linda Krug
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | | | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, Germany
| | - Hans A. Kestler
- Aging Research Center (ARC), University of Ulm, Germany
- Institute of Medical Systems Biology, University of Ulm, Germany
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| |
Collapse
|
13
|
Barthas F, Humo M, Gilsbach R, Waltisperger E, Karatas M, Leman S, Hein L, Belzung C, Boutillier AL, Barrot M, Yalcin I. Cingulate Overexpression of Mitogen-Activated Protein Kinase Phosphatase-1 as a Key Factor for Depression. Biol Psychiatry 2017; 82:370-379. [PMID: 28359564 DOI: 10.1016/j.biopsych.2017.01.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/11/2017] [Accepted: 01/31/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Depression is frequently associated with chronic pain or chronic stress. Among cortical areas, the anterior cingulate cortex (ACC, areas 24a and 24b) appears to be important for mood disorders and constitutes a neuroanatomical substrate for investigating the underlying molecular mechanisms. The current work aimed at identifying ACC molecular factors subserving depression. METHODS Anxiodepressive-like behaviors in C57BL/6J male mice were induced by neuropathic pain, unpredictable chronic mild stress, and optogenetic ACC stimulation and were evaluated using novelty suppressed feeding, splash, and forced swim tests. ACC molecular changes in chronic pain-induced depression were uncovered through whole-genome expression analysis. Further mechanistic insights were provided by chromatin immunoprecipitation, Western blot, and immunostaining. The causal link between molecular changes and depression was studied using knockout, pharmacological antagonism, and local viral-mediated gene knockdown. RESULTS Under chronic pain-induced depression, gene expression changes in the ACC highlighted the overexpression of a regulator of the mitogen-activated protein kinase pathway, mitogen-activated protein kinase phosphatase-1 (MKP-1). This upregulation is associated with the presence of transcriptionally active chromatin marks (acetylation) at its proximal promoter region as well as increased cyclic adenosine monophosphate response element-mediated transcriptional activity and phosphorylation of cyclic adenosine monophosphate response element binding protein and activating transcription factor. MKP-1 overexpression is also observed with unpredictable chronic mild stress and repeated ACC optogenetic stimulation and is reversed by fluoxetine. A knockout, an antagonist, or a local silencing of MKP-1 attenuates depressive-like behaviors, pointing to an important role of this phosphatase in depression. CONCLUSIONS These data point to ACC MKP-1 as a key factor in the pathophysiology of depression and a potential target for treatment development.
Collapse
Affiliation(s)
- Florent Barthas
- Institute of Cellular and Integrative Neuroscience, National Centre for Scientific Research, Strasbourg; University of Strasbourg, Strasbourg
| | - Muris Humo
- Institute of Cellular and Integrative Neuroscience, National Centre for Scientific Research, Strasbourg; University of Strasbourg, Strasbourg
| | - Ralf Gilsbach
- Institute of Pharmacology and Toxicology, University of Freiburg, and BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Elisabeth Waltisperger
- Institute of Cellular and Integrative Neuroscience, National Centre for Scientific Research, Strasbourg
| | - Meltem Karatas
- Institute of Cellular and Integrative Neuroscience, National Centre for Scientific Research, Strasbourg; University of Strasbourg, Strasbourg
| | - Samuel Leman
- University François Rabelais, French Institute of Health and Medical Research, Tours, France
| | - Lutz Hein
- Institute of Pharmacology and Toxicology, University of Freiburg, and BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Catherine Belzung
- University François Rabelais, French Institute of Health and Medical Research, Tours, France
| | - Anne-Laurence Boutillier
- Laboratory of Cognitive and Adaptive Neuroscience, National Centre for Scientific Research, Strasbourg
| | - Michel Barrot
- Institute of Cellular and Integrative Neuroscience, National Centre for Scientific Research, Strasbourg
| | - Ipek Yalcin
- Institute of Cellular and Integrative Neuroscience, National Centre for Scientific Research, Strasbourg.
| |
Collapse
|
14
|
Beta Interferon Production Is Regulated by p38 Mitogen-Activated Protein Kinase in Macrophages via both MSK1/2- and Tristetraprolin-Dependent Pathways. Mol Cell Biol 2016; 37:MCB.00454-16. [PMID: 27795299 PMCID: PMC5192081 DOI: 10.1128/mcb.00454-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023] Open
Abstract
Autocrine or paracrine signaling by beta interferon (IFN-β) is essential for many of the responses of macrophages to pathogen-associated molecular patterns. This feedback loop contributes to pathological responses to infectious agents and is therefore tightly regulated. We demonstrate here that macrophage expression of IFN-β is negatively regulated by mitogen- and stress-activated kinases 1 and 2 (MSK1/2). Lipopolysaccharide (LPS)-induced expression of IFN-β was elevated in both MSK1/2 knockout mice and macrophages. Although MSK1 and -2 promote the expression of the anti-inflammatory cytokine interleukin 10, it did not strongly contribute to the ability of MSKs to regulate IFN-β expression. Instead, MSK1 and -2 inhibit IFN-β expression via the induction of dual-specificity phosphatase 1 (DUSP1), which dephosphorylates and inactivates the mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK). Prolonged LPS-induced activation of p38 and JNK, phosphorylation of downstream transcription factors, and overexpression of IFN-β mRNA and protein were similar in MSK1/2 and DUSP1 knockout macrophages. Two distinct mechanisms were implicated in the overexpression of IFN-β: first, JNK-mediated activation of c-jun, which binds to the IFN-β promoter, and second, p38-mediated inactivation of the mRNA-destabilizing factor tristetraprolin, which we show is able to target the IFN-β mRNA.
Collapse
|
15
|
Lloberas J, Valverde-Estrella L, Tur J, Vico T, Celada A. Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology. Front Mol Biosci 2016; 3:28. [PMID: 27446931 PMCID: PMC4923182 DOI: 10.3389/fmolb.2016.00028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
Macrophages are necessary in multiple processes during the immune response or inflammation. This review emphasizes the critical role of the mitogen-activated protein kinases (MAPKs) and mitogen kinase phosphatase-1 (MKP-1) in the functional activities of macrophages. While the phosphorylation of MAPKs is required for macrophage activation or proliferation, MKP-1 dephosphorylates these kinases, thus playing a balancing role in the control of macrophage behavior. MKP-1 is a nuclear-localized dual-specificity phosphatase whose expression is regulated at multiple levels, including at the transcriptional and post-transcriptional level. The regulatory role of MKP-1 in the interplay between MAPK phosphorylation/dephosphorylation makes this molecule a critical regulator of macrophage biology and inflammation.
Collapse
Affiliation(s)
- Jorge Lloberas
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Lorena Valverde-Estrella
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Juan Tur
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Tania Vico
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Antonio Celada
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
16
|
Salim T, Sershen CL, May EE. Investigating the Role of TNF-α and IFN-γ Activation on the Dynamics of iNOS Gene Expression in LPS Stimulated Macrophages. PLoS One 2016; 11:e0153289. [PMID: 27276061 PMCID: PMC4898755 DOI: 10.1371/journal.pone.0153289] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/25/2016] [Indexed: 01/09/2023] Open
Abstract
Macrophage produced inducible nitric oxide synthase (iNOS) is known to play a critical role in the proinflammatory response against intracellular pathogens by promoting the generation of bactericidal reactive nitrogen species. Robust and timely production of nitric oxide (NO) by iNOS and analogous production of reactive oxygen species are critical components of an effective immune response. In addition to pathogen associated lipopolysaccharides (LPS), iNOS gene expression is dependent on numerous proinflammatory cytokines in the cellular microenvironment of the macrophage, two of which include interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). To understand the synergistic effect of IFN-γ and TNF-α activation, and LPS stimulation on iNOS expression dynamics and NO production, we developed a systems biology based mathematical model. Using our model, we investigated the impact of pre-infection cytokine exposure, or priming, on the system. We explored the essentiality of IFN-γ priming to the robustness of initial proinflammatory response with respect to the ability of macrophages to produce reactive species needed for pathogen clearance. Results from our theoretical studies indicated that IFN-γ and subsequent activation of IRF1 are essential in consequential production of iNOS upon LPS stimulation. We showed that IFN-γ priming at low concentrations greatly increases the effector response of macrophages against intracellular pathogens. Ultimately the model demonstrated that although TNF-α contributed towards a more rapid response time, measured as time to reach maximum iNOS production, IFN-γ stimulation was significantly more significant in terms of the maximum expression of iNOS and the concentration of NO produced.
Collapse
Affiliation(s)
- Taha Salim
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States of America
| | - Cheryl L. Sershen
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States of America
| | - Elebeoba E. May
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Kang HJ, Hong SH, Kang KH, Park C, Choi YH. Anti-inflammatory effects of Hwang-Heuk-San, a traditional Korean herbal formulation, on lipopolysaccharide-stimulated murine macrophages. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:447. [PMID: 26698114 PMCID: PMC4690236 DOI: 10.1186/s12906-015-0971-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/14/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hwang-Heuk-San (HHS), a Korean traditional herbal formula comprising four medicinal herbs, has been used to treat patients with inflammation syndromes and digestive tract cancer for hundreds of years; however, its anti-inflammatory potential is poorly understood. The aim of the present study was to investigate the anti-inflammatory effects of HHS using a lipopolysaccharide (LPS)-activated RAW 264.7 macrophage model. METHODS The inhibitory effects of HHS on LPS-induced nitric oxide (NO), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) production were examined using Griess reagent and enzyme-linked immunosorbent assay (ELISA) detection kits. The effects of HHS on the expression of inducible NO synthase (iNOS), IL-1β and TNF-α, their upstream signal proteins, including nuclear factor κB (NF-κB), mitogen-activated protein kinases (MAPKs), and activator protein (AP-1), were also investigated. RESULTS A noncytotoxic concentration of HHS significantly reduced the production of NO, IL-1β and TNF-α in LPS-stimulated RAW 264.7 cells, which was correlated with reduced expression of iNOS, IL-1β and TNF-α at the mRNA and protein levels. HHS efficiently blocked the phosphorylation of MAPKs, especially that of extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) but not that of the p38 MAPK. The reduced production of inflammatory molecules by HHS was followed by decreased activity of NF-κB and AP-1. CONCLUSIONS These results suggest that HHS may offer therapeutic potential for treating inflammatory diseases accompanied by macrophage activation.
Collapse
Affiliation(s)
- Hye Joo Kang
- Department of Biochemistry, Dongeui University College of Korean Medicine, 52-57, Yangjeong-ro, Busanjin, Busan, 614-052, Republic of Korea.
- Anti-Aging Research Center, Dongeui University, 176 Eomgwangno Busanjin-gu, Busan, 614-714, Republic of Korea.
| | - Su Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, 52-57, Yangjeong-ro, Busanjin, Busan, 614-052, Republic of Korea.
| | - Kyung-Hwa Kang
- Department of physiology, College of Korean Medicine, Dongeui University, Busan, 614-714, Republic of Korea.
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dongeui University, 176 Eomgwangno Busanjin-gu, Busan, 614-714, Republic of Korea.
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dongeui University, 176 Eomgwangno Busanjin-gu, Busan, 614-714, Republic of Korea.
- Department of Molecular Biology, College of Natural Sciences, Dongeui University, 176 Eomgwangno Busanjin-gu, Busan, 614-714, Republic of Korea.
| |
Collapse
|
18
|
Xin L, Zhang H, Zhang R, Li H, Wang W, Wang L, Wang H, Qiu L, Song L. CgIL17-5, an ancient inflammatory cytokine in Crassostrea gigas exhibiting the heterogeneity functions compared with vertebrate interleukin17 molecules. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:339-348. [PMID: 26257382 DOI: 10.1016/j.dci.2015.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
Interleukin 17 (IL17) is a proinflammatory cytokine that plays an important role in immune response. Recently, five novel IL17 homologs have been identified by screening and analyzing the genome of pacific oyster Crassostrea gigas. In the present study, the functions of CgIL17-5 were investigated by examining the distribution of its mRNA and protein, ligands binding and modulation in immune response. The mRNA expression levels of CgIL17-5 in hemocytes of oysters post twice challenges of Vibrio splendidus were all significantly up-regulated (P < 0.01), while the secondary pathogen infection attenuated the expression level of CgIL17-5 mRNA compared with the primary challenge. CgIL17-5 was found to be located on oyster hemocyte membranes through fluorescence confocal assay. The luciferase reporter assays showed that CgIL17-5 could activate the transfactors NF-κB, CREB and ATF-1, and involve in their signal pathways in HEK293T cells. Meanwhile, CgIL17-5 could augment the IL6 synthesis in HuVEC cells, playing the similar roles as human IL17 in inflammatory response. Additionally, the recombinant CgIL17-5 (rCgIL17-5) could directly bind peptidoglycan (PGN), lipopolysaccharide (LPS), poly (I:C) and β-1,3-glucan, with the highest affinity to PGN, and significantly inhibit the growth of Micrococcus luteus and Escherichia coli. All the results collectively suggested that CgIL17-5, as an ancient inflammatory cytokine, could not only activate signal transduction for the release of other cytokines, but also mediate the clearance of extracellular bacteria in oysters.
Collapse
Affiliation(s)
- Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ran Zhang
- Ningbo University, Ningbo 315211, China
| | - Hui Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
19
|
Li J, Zhang Y, Zhang Y, Xiang Z, Tong Y, Qu F, Yu Z. Genomic characterization and expression analysis of five novel IL-17 genes in the Pacific oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2014; 40:455-465. [PMID: 25090939 DOI: 10.1016/j.fsi.2014.07.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
Interleukin-17 (IL-17) is a proinflammatory cytokine that plays an important role in clearing extracellular bacteria and contributes to the pathology of many autoimmune and allergic conditions. In the present study, five novel IL-17 homologs were identified by searching and analyzing the Pacific oyster genome. All six CgIL-17 members (including a previously reported homolog) contained four conserved cysteines that were used in the formation of disulfide bonds. Phylogenetic analysis showed that all invertebrate IL-17s were clustered into one group, implying that invertebrate IL-17s evolved from one common ancestral gene and subsequently diversified. All CgIL-17s shared the same genomic structure, containing two exons and one intron, except for the CgIL-17-3 and CgIL-17-5 genes, which each had only one exon. The expression pattern of the CgIL-17 genes was analyzed by qRT-PCR in a variety of tissues and at different developmental stages, and these genes were highly expressed in the gill and digestive gland tissues. Moreover, the expression of the CgIL-17 family genes was significantly up-regulated in hemocytes challenged with Pathogen-Associated Molecular Patterns (PAMPs). CgIL-17-3 had a strong response to lipopolysaccharide (LPS) and heat-killed Vibrio alginolyticus (HKVA) challenge, while CgIL-17-5 and CgIL-17-6 can be activated by peptidoglycan (PGN), but not by heat-killed Listeria monocytogenes (HKLM). The distinct, up-regulated transcript levels of the CgIL-17s in response to PAMPs challenge further indicate that CgIL-17s are likely to be significant components of immune responses by playing diversified roles in host defense in the Pacific oyster. These findings suggest that CgIL-17s are involved in innate immune responses and further supports their conserved function in mollusks immunity.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ying Tong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Fufa Qu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
20
|
DUSP1 is a novel target for enhancing pancreatic cancer cell sensitivity to gemcitabine. PLoS One 2014; 9:e84982. [PMID: 24409315 PMCID: PMC3883684 DOI: 10.1371/journal.pone.0084982] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/27/2013] [Indexed: 12/03/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer with a poor prognosis that is characterized by excessive mitogenic pathway activation and marked chemoresistance to a broad spectrum of chemotherapeutic drugs. Dual specificity protein phosphatase 1 (DUSP1) is a key negative regulator of mitogen activated protein kinases (MAPKs). Yet, DUSP1 is overexpressed in pancreatic cancer cells (PCCs) in PDAC where it paradoxically enhances colony formation in soft agar and promotes in vivo tumorigenicity. However, it is not known whether DUSP1 overexpression contributes to PDAC chemoresistance. Using BxPC3 and COLO-357 human PCCs, we show that gemcitabine activates c-JUN N-terminal kinase (JNK) and p38 mitogen activated protein kinase (p38 MAPK), key kinases in two major stress-activated signaling pathways. Gemcitabine-induced JNK and p38 MAPK activation mediates increased apoptosis, but also transcriptionally upregulates DUSP1, as evidenced by increased DUSP1 mRNA levels and RNA polymerase II loading at DUSP1 gene body. Conversely, shRNA-mediated inhibition of DUSP1 enhances JNK and p38 MAPK activation and gemcitabine chemosensitivity. Using doxycycline-inducible knockdown of DUSP1 in established orthotopic pancreatic tumors, we found that combining gemcitabine with DUSP1 inhibition improves animal survival, attenuates angiogenesis, and enhances apoptotic cell death, as compared with gemcitabine alone. Taken together, these results suggest that gemcitabine-mediated upregulation of DUSP1 contributes to a negative feedback loop that attenuates its beneficial actions on stress pathways and apoptosis, raising the possibility that targeting DUSP1 in PDAC may have the advantage of enhancing gemcitabine chemosensitivity while suppressing angiogenesis.
Collapse
|
21
|
Echavarria R, Hussain SNA. Regulation of angiopoietin-1/Tie-2 receptor signaling in endothelial cells by dual-specificity phosphatases 1, 4, and 5. J Am Heart Assoc 2013; 2:e000571. [PMID: 24308939 PMCID: PMC3886752 DOI: 10.1161/jaha.113.000571] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Angiopoietin‐1 (Ang‐1) promotes survival and migration of endothelial cells, in part through the activation of mitogen‐activated protein kinase (MAPK) pathways downstream of Tie‐2 receptors. Dual‐specificity phosphatases (DUSPs) dephosphorylate phosphotyrosine and phosphoserine/phosphothreonine residues on target MAPKs. The mechanisms by which DUSPs modulate MAPK activation in Ang‐1/Tie‐2 receptor signaling are unknown in endothelial cells. Methods and Results Expression of various DUSPs in human umbilical vein endothelial cells exposed to Ang‐1 was measured. The functional roles of DUSPs in Ang‐1‐induced regulation of MAPK activation, endothelial cell survival, migration, differentiation, and permeability were measured using selective siRNA oligos. Ang‐1 differentially induces DUSP1, DUSP4, and DUSP5 in human umbilical vein endothelial cells through activation of the PI‐3 kinase, ERK1/2, p38, and SAPK/JNK pathways. Lack‐of‐function siRNA screening revealed that DUSP1 preferentially dephosphorylates p38 protein and is involved in Ang‐1‐induced cell migration and differentiation. DUSP4 preferentially dephosphorylates ERK1/2, p38, and SAPK/JNK proteins and, under conditions of serum deprivation, is involved in Ang‐1‐induced cell migration, several antiapoptotic effects, and differentiation. DUSP5 preferentially dephosphorylates ERK1/2 proteins and is involved in cell survival and inhibition of permeability. Conclusions DUSP1, DUSP4, and DUSP5 differentially modulate MAPK signaling pathways downstream of Tie‐2 receptors, thus highlighting the importance of these phosphatases to Ang‐1‐induced angiogenesis.
Collapse
Affiliation(s)
- Raquel Echavarria
- Department of Critical Care Medicine, McGill University Health Centre, Montréal, Québec, Canada
| | | |
Collapse
|
22
|
Pereira-Lopes S, Celhar T, Sans-Fons G, Serra M, Fairhurst AM, Lloberas J, Celada A. The exonuclease Trex1 restrains macrophage proinflammatory activation. THE JOURNAL OF IMMUNOLOGY 2013; 191:6128-35. [PMID: 24218451 DOI: 10.4049/jimmunol.1301603] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The three-prime repair exonuclease 1 (TREX1) is the most abundant exonuclease in mammalian cells. Mutations in Trex1 gene are being linked to the development of Aicardi-Goutières syndrome, an inflammatory disease of the brain, and systemic lupus erythematosus. In clinical cases and in a Trex1-deficient murine model, chronic production of type I IFN plays a pathogenic role. In this study, we demonstrate that Trex1(-/-) mice present inflammatory signatures in many different organs, including the brain. Trex1 is highly induced in macrophages in response to proinflammatory stimuli, including TLR7 and TLR9 ligands. Our findings show that, in the absence of Trex1, macrophages displayed an exacerbated proinflammatory response. More specifically, following proinflammatory stimulation, Trex1(-/-) macrophages exhibited an increased TNF-α and IFN-α production, higher levels of CD86, and increased Ag presentation to CD4(+) T cells, as well as an impaired apoptotic T cell clearance. These results evidence an unrevealed function of the Trex1 as a negative regulator of macrophage inflammatory activation and demonstrate that macrophages play a major role in diseases associated with Trex1 mutations, which contributes to the understanding of inflammatory signature in these diseases.
Collapse
Affiliation(s)
- Selma Pereira-Lopes
- Grupo Biología del Macrófago, Departamento de Fisiología e Inmunología, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Korhonen R, Moilanen E. Mitogen-activated protein kinase phosphatase 1 as an inflammatory factor and drug target. Basic Clin Pharmacol Toxicol 2013; 114:24-36. [PMID: 24112275 DOI: 10.1111/bcpt.12141] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/17/2013] [Indexed: 12/28/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are signaling proteins that are activated through phosphorylation, and they regulate many physiological and pathophysiological processes in cells. Mitogen-activated protein kinase phosphatase 1 (MKP-1) is an inducible nuclear phosphatase that dephosphorylates MAPKs, and thus, it is a negative feedback regulator of MAPK activity. MKP-1 has been found as a key endogenous suppressor of innate immune responses, as well as a regulator of the onset and course of adaptive immune responses. Altered MKP-1 signaling is implicated in chronic inflammatory diseases in man. Interestingly, MKP-1 expression and protein function have been found to be regulated by certain anti-inflammatory drugs, namely by glucocorticoids, antirheumatic gold compounds and PDE4 inhibitors, and MKP-1 has been shown to mediate many of their anti-inflammatory effects. In this Mini Review, we summarize the effect of MKP-1 in the regulation of innate and adaptive immune responses and its role as a potential anti-inflammatory drug target and review recent findings concerning the role of MKP-1 in certain anti-inflammatory drug effects.
Collapse
Affiliation(s)
- Riku Korhonen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland; Department of Clinical Pharmacology &Toxicology, University of Tampere School of Medicine, Tampere, Finland
| | | |
Collapse
|
24
|
Rathnasamy G, Ling EA, Kaur C. Hypoxia inducible factor-1α mediates iron uptake which induces inflammatory response in amoeboid microglial cells in developing periventricular white matter through MAP kinase pathway. Neuropharmacology 2013; 77:428-40. [PMID: 24184387 DOI: 10.1016/j.neuropharm.2013.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/04/2013] [Accepted: 10/15/2013] [Indexed: 11/26/2022]
Abstract
Iron accumulation occurs in tissues such as periventricular white matter (PWM) in response to hypoxic injuries, and microglial cells sequester excess iron following hypoxic exposure. As hypoxia has a role in altering the expression of proteins involved in iron regulation, this study was aimed at examining the interaction between hypoxia inducible factor (HIF)-1α and proteins involved in iron transport in microglial cells, and evaluating the mechanistic action of deferoxamine and KC7F2 (an inhibitor of HIF-1α) in iron mediated hypoxic injury. Treating the microglial cultures with KC7F2, led to decreased expression of transferrin receptor and divalent metal transporter-1. Administration of deferoxamine or KC7F2 to hypoxic microglial cells enhanced extracellular signal-regulated kinase (ERK) phosphorylation (p-ERK), but decreased the phosphorylation of p38 (p-p38). The increased p-ERK further phosphorylated the cAMP response element-binding protein (p-CREB) which in turn may have resulted in the increased mitogen activated protein kinase (MAPK) phosphatase 1 (MKP1), known to dephosphorylate MAPKs. Consistent with the decrease in p-p38, the production of pro-inflammatory cytokines TNF-α and IL-1β was reduced in hypoxic microglia treated with deferoxamine and SB 202190, an inhibitor for p38. This suggests that the anti-inflammatory effect exhibited by deferoxamine is by inhibition of p-p38 induced inflammation through the pERK-pCREB-MKP1 pathway, whereas that of KC7F2 requires further investigation. The present results suggest that HIF-1α may mediate iron accumulation in hypoxic microglia and KC7F2, similar to deferoxamine, might provide limited protection against iron induced PWMD.
Collapse
Affiliation(s)
- Gurugirijha Rathnasamy
- Department of Anatomy, MD10, 4 Medical Drive, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Eng-Ang Ling
- Department of Anatomy, MD10, 4 Medical Drive, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Charanjit Kaur
- Department of Anatomy, MD10, 4 Medical Drive, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| |
Collapse
|
25
|
Liu WH, Chen YJ, Cheng TL, Lin SR, Chang LS. Cross talk between p38MAPK and ERK is mediated through MAPK-mediated protein phosphatase 2A catalytic subunit α and MAPK phosphatase-1 expression in human leukemia U937 cells. Cell Signal 2013; 25:1845-51. [DOI: 10.1016/j.cellsig.2013.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/11/2013] [Indexed: 10/26/2022]
|
26
|
Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, Zhu L, Alabsi H, Getachew R, Narasimhan R, Wabl R, Fainberg N, James ML, Wong G, Relton J, Gambhir SS, Pollard JW, Wyss-Coray T. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. ACTA ACUST UNITED AC 2013; 210:157-72. [PMID: 23296467 PMCID: PMC3549715 DOI: 10.1084/jem.20120412] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colony-stimulating factor 1 and IL-34 protect against and partially reverse neurodegeneration in mice in part via promoting CREB signaling. Colony-stimulating factor 1 (CSF1) and interleukin-34 (IL-34) are functional ligands of the CSF1 receptor (CSF1R) and thus are key regulators of the monocyte/macrophage lineage. We discovered that systemic administration of human recombinant CSF1 ameliorates memory deficits in a transgenic mouse model of Alzheimer’s disease. CSF1 and IL-34 strongly reduced excitotoxin-induced neuronal cell loss and gliosis in wild-type mice when administered systemically before or up to 6 h after injury. These effects were accompanied by maintenance of cAMP responsive element–binding protein (CREB) signaling in neurons rather than in microglia. Using lineage-tracing experiments, we discovered that a small number of neurons in the hippocampus and cortex express CSF1R under physiological conditions and that kainic acid–induced excitotoxic injury results in a profound increase in neuronal receptor expression. Selective deletion of CSF1R in forebrain neurons in mice exacerbated excitotoxin-induced death and neurodegeneration. We conclude that CSF1 and IL-34 provide powerful neuroprotective and survival signals in brain injury and neurodegeneration involving CSF1R expression on neurons.
Collapse
Affiliation(s)
- Jian Luo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee JW, Ryu HC, Ng YC, Kim C, Wei JD, Sabaratnam V, Kim JH. 12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid suppresses UV-induced IL-6 synthesis in keratinocytes, exerting an anti-inflammatory activity. Exp Mol Med 2012; 44:378-86. [PMID: 22391335 PMCID: PMC3389076 DOI: 10.3858/emm.2012.44.6.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) is an enzymatic product of prostaglandin H2 (PGH2) derived from cyclooxygenase (COX)-mediated arachidonic acid metabolism. Despite the high level of 12-HHT present in tissues and bodily fluids, its precise function remains largely unknown. In this study, we found that 12-HHT treatment in HaCaT cells remarkably down-regulated the ultraviolet B (UVB) irradiation-induced synthesis of interleukin-6 (IL-6), a pro-inflammatory cytokine associated with cutaneous inflammation. In an approach to identify the down-stream signaling mechanism by which 12-HHT down-regulates UVB-induced IL-6 synthesis in keratinocytes, we observed that 12-HHT inhibits the UVB-stimulated activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB). In addition, we found that 12-HHT markedly up-regulates MAPK phosphatase-1 (MKP-1), a critical negative regulator of p38 MAPK. When MKP-1 was suppressed by siRNA knock-down, the 12-HHT-mediated inhibitory effects on the UVB-stimulated activation of p38 MAPK and NF-κB, as well as the production of IL-6, were attenuated in HaCaT cells. Taken together, our results suggest that 12-HHT exerts anti-inflammatory effect via up-regulation of MKP-1, which negatively regulates p38 MAPK and NF-κB, thus attenuating IL-6 production in UVB-irradiated HaCaT cells. Considering the critical role of IL-6 in cutaneous inflammation, our findings provide the basis for the application of 12-HHT as a potential anti-inflammatory therapeutic agent in UV-induced skin diseases.
Collapse
Affiliation(s)
- Jin-Wook Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Yu T, Moh SH, Kim SB, Yang Y, Kim E, Lee YW, Cho CK, Kim KH, Yoo BC, Cho JY, Yoo HS. HangAmDan-B, an ethnomedicinal herbal mixture, suppresses inflammatory responses by inhibiting Syk/NF-κB and JNK/ATF-2 pathways. J Med Food 2012; 16:56-65. [PMID: 23256447 DOI: 10.1089/jmf.2012.2374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HangAmDan-B (HAD-B) is a powdered mixture of eight ethnopharmacologically characterized folk medicines that is prescribed for solid masses and cancers in Korea. In view of the finding that macrophage-mediated inflammation is a pathophysiologically important phenomenon, we investigated whether HAD-B modulates inflammatory responses and explored the associated molecular mechanisms. The immunomodulatory activity of HAD-B in toll-like receptor-activated macrophages induced by lipopolysaccharide (LPS) was assessed by measuring nitric oxide (NO) and prostaglandin E(2) (PGE(2)) levels. To identify the specific transcription factors (such as nuclear factor [NF]-κB and signaling enzymes) targeted by HAD-B, biochemical approaches, including kinase assays and immunoblot analysis, were additionally employed. HAD-B suppressed the production of PGE(2) and NO in LPS-activated macrophages in a dose-dependent manner. Furthermore, the extract ameliorated HCl/EtOH-induced gastritis symptoms. Moreover, HAD-B significantly inhibited LPS-induced mRNA expression of inducible NO synthase and cyclooxygenase (COX)-2. Interestingly, marked inhibition of NF-κB and activating transcription factor was observed in the presence of HAD-B. Data from direct kinase assays and immunoblot analysis showed that HAD-B suppresses activation of the upstream signaling cascade involving spleen tyrosine kinase, Src, p38, c-Jun N-terminal kinase, and transforming growth factor β-activated kinase 1. Finally, kaempferol, but not quercetin or resveratrol was identified as a bioactive compound in HAD-B. Therefore, our results suggest that HAD-B possesses anti-inflammatory activity that contributes to its anticancer property.
Collapse
Affiliation(s)
- Tao Yu
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bathige SDNK, Whang I, Umasuthan N, Lim BS, Park MA, Kim E, Park HC, Lee J. Interferon regulatory factors 4 and 8 in rock bream, Oplegnathus fasciatus: structural and expressional evidence for their antimicrobial role in teleosts. FISH & SHELLFISH IMMUNOLOGY 2012; 33:857-871. [PMID: 22885028 DOI: 10.1016/j.fsi.2012.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/09/2012] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
The interferon regulatory factor (IRF) members IRF4 and IRF8 contribute to B-lymphocyte development and can act as regulators of immunoglobulin (Ig) light chain gene transcription. These two IRFs are closely interrelated and are expressed at high levels in the lymphoid and myeloid cells of the immune system. In this study, the complete cDNA and genomic sequences of rock bream IRF4 (RbIRF4) and IRF8 (RbIRF8) were identified by homology screening of a multi-tissue normalized cDNA library and a BAC library, respectively, which had been established using Roche 454 GS-FLX™ technology. The full-length RbIRF4 cDNA is composed of 3442 bp and encodes a polypeptide of 462 amino acids; the genomic DNA is 9262 bp in length, consisting of eight exons and seven introns. The full-length RbIRF8 cDNA is composed of 2186 bp and encodes a 422 amino acid polypeptide; the genomic DNA is 4120 bp in length, consisting of nine exons and eight introns. The deduced amino acid sequences of RbIRF4 and RbIRF8 include a conserved DNA-binding domain (DBD) encompassing a tryptophan pentad-repeat and an IRF-association domain (IAD). Several putative transcription factor binding sites were also identified in 5' flanking region of both RbIRF4 and RbIRF8, and include those of immune-related factors. Quantitative real time PCR analysis of healthy rock bream detected the highest expression levels of RbIRF4 and RbIRF8 in lymphomyeloid-rich tissues. In addition, viral (rock bream iridovirus) and bacterial (Edwardsiella tarda and Streptococcus iniae) infection stimulated RbIRF4 and RbIRF8 expressions in head kidney and spleen. These results suggest not only that RbIRF4 and RbIRF8 may have a protective function against virus and bacteria pathogen invasion in rock bream, but also that IRFs may be immunomodulatory factors of teleost fish.
Collapse
Affiliation(s)
- S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Laporte B, Petit D, Rocha D, Boussaha M, Grohs C, Maftah A, Petit JM. Characterization of bovine FUT7 furthers understanding of FUT7 evolution in mammals. BMC Genet 2012; 13:74. [PMID: 22909383 PMCID: PMC3479001 DOI: 10.1186/1471-2156-13-74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/02/2012] [Indexed: 11/10/2022] Open
Abstract
Background The Sialyl-Lewis X (Slex) is a well-known glycan structure involved in leukocyte homing and recruitment to inflammatory sites. SLex is well conserved among species and is mainly synthesized by FucT-VII in vertebrates. The enzyme responsible for its biosynthesis in cattle was not known. Results We cloned a cDNA sequence encoding bovine α3-fucosyltransferase VII that shares 83% identity with its human counterpart. Located at the BTA 11 telomeric region, the 1029 bp open reading frame is spread over two different exons, E1 which also contains the unique 5’-untranslated region and E2 which includes the entire 3’-untranslated region. The bfut7 expression pattern is restricted to thymus and spleen. A single transcript leading to the synthesis of a 342 aa protein was identified. The encoded fucosyltransferase, produced as a recombinant enzyme in COS-1 cells, was shown to be specifically responsible for SLex synthesis in cattle. In addition, we showed that the gene promoter evolved from fish to mammals towards a complex system related to the immune system. But beyond the fact that the gene regulation seems to be conserved among mammals, we also identified 7 SNPs including 3 missense mutations in the coding region in a small panel of animals. Conclusions The FUT7 sequence was highly conserved as well as the specific activity of the encoded protein FucT-VII. In addition, our in silico promoter analysis and the high rate of polymorphism suggested that its function is evolving toward a complex system related to the immune system. Furthermore, comparing bovine to human and mouse sequences, it appeared that a decrease in gene regulation was correlated with an increase in mutation rate and wider tissue expression.
Collapse
Affiliation(s)
- Benoît Laporte
- INRA UMR 1061, Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A, Thomas, Limoges 87060, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Comalada M, Lloberas J, Celada A. MKP-1: A critical phosphatase in the biology of macrophages controlling the switch between proliferation and activation. Eur J Immunol 2012; 42:1938-48. [DOI: 10.1002/eji.201242441] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mònica Comalada
- Macrophage Biology Group; Institute for Research in Biomedicine (IRB Barcelona); Barcelona; Spain
| | | | | |
Collapse
|
32
|
Tothova V, Isola J, Parkkila S, Kopacek J, Pastorek J, Pastorekova S, Gibadulinova A. Glucocorticoid receptor-mediated transcriptional activation of S100P gene coding for cancer-related calcium-binding protein. J Cell Biochem 2012; 112:3373-84. [PMID: 21751241 DOI: 10.1002/jcb.23268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
S100P is a member of the S100 family of calcium-binding proteins involved in calcium sensing and signal transduction. Its abnormal expression and biological activities are linked to tumor phenotype, namely to increased survival, proliferation, invasion and metastatic propensity of tumor cells. Association of S100P with outcome of tumor treatment and preliminary data from S100P promoter analysis prompted us to study regulation of S100P expression by glucocorticoids, which are implicated in tumor response to chemotherapy. We showed that dexamethasone (DX), a representative glucocorticoid, was capable to induce activity of S100P promoter by means of increased expression, nuclear translocation, and transactivation properties of the glucocorticoid receptor (GR). Moreover, DX treatment led to decreased phosphorylation of ERK1/2, reduced transcriptional activity of AP1, and modulated activity of some additional transcription factors. We identified a promoter region responsible for DX-mediated transactivation and proved GR binding to S100P promoter. We found that the effect of DX was enhanced by partial but not complete inhibition of the MAPK/ERK pathway, supporting an active crosstalk between GR and MAPK/ERK signal transduction in control of S100P expression. On the other hand, suppression of GR mRNA level by transient siRNA expression resulted in reduced S100P transcription. The role of GR activation in S100P regulation was supported by co-expression of GR with S100P in cells treated with DX. These data suggest that S100P is a direct transcriptional target of glucocorticoid-mediated signaling in tumor cells that is activated through the interplay of GR and MAPK pathways.
Collapse
Affiliation(s)
- Veronika Tothova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
33
|
Wancket LM, Frazier WJ, Liu Y. Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease. Life Sci 2012; 90:237-48. [PMID: 22197448 PMCID: PMC3465723 DOI: 10.1016/j.lfs.2011.11.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/18/2011] [Accepted: 11/30/2011] [Indexed: 11/16/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression.
Collapse
Affiliation(s)
- Lyn M. Wancket
- Department of Veterinary Bioscience, The Ohio State University College of Veterinary Medicine, Columbus, OH 43221
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| | - W. Joshua Frazier
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| | - Yusen Liu
- Department of Veterinary Bioscience, The Ohio State University College of Veterinary Medicine, Columbus, OH 43221
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| |
Collapse
|
34
|
Yu T, Ahn HM, Shen T, Yoon K, Jang HJ, Lee YJ, Yang HM, Kim JH, Kim C, Han MH, Cha SH, Kim TW, Kim SY, Lee J, Cho JY. Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis beans. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1197-1206. [PMID: 21821108 DOI: 10.1016/j.jep.2011.07.048] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/28/2011] [Accepted: 07/18/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE Phaseolus angularis Wight (adzuki bean) is an ethnopharmacologically well-known folk medicine that is prescribed for infection, edema, and inflammation of the joints, appendix, kidney and bladder in Korea, China and Japan. AIM OF STUDY The anti-inflammatory effect of this plant and its associated molecular mechanisms will be investigated. MATERIALS AND METHODS The immunomodulatory activity of Phaseolus angularis ethanol extract (Pa-EE) in toll like receptor (TLR)-activated macrophages induced by ligands such as lipopolysaccharide (LPS), Poly (I:C), and pam3CSK was investigated by assessing nitric oxide (NO) and prostaglandin (PG)E(2) levels. To identify which transcription factors such as nuclear factor (NF)-κB and their signaling enzymes can be targeted to Pa-EE, biochemical approaches including reporter gene assays, immunoprecipitation, kinase assays, and immunoblot analyses were also employed. Finally, whether Pa-EE was orally available, ethanol (EtOH)/hydrochloric acid (HCl)-induced gastritis model in mice was used. RESULTS Pa-EE dose-dependently suppressed the release of PGE(2) and NO in LPS-, Poly(I:C)-, and pam3CSK-activated macrophages. Pa-EE strongly down-regulated LPS-induced mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Interestingly, Pa-EE markedly inhibited NF-κB, activator protein (AP)-1, and cAMP response element binding protein (CREB) activation; further, according to direct kinase assays and immunoblot analyses, Pa-EE blocked the activation of the upstream signaling molecules spleen tyrosine kinase (Syk), p38, and transforming growth factor β-activated kinase 1 (TAK1). Finally, orally administered Pa-EE clearly ameliorated EtOH/HCl-induced gastritis in mice. CONCLUSION Our results suggest that Pa-EE can be further developed as a promising anti-inflammatory remedy because it targets multiple inflammatory signaling enzymes and transcription factors.
Collapse
Affiliation(s)
- Tao Yu
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Role of RNA-Binding Proteins in MAPK Signal Transduction Pathway. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:109746. [PMID: 21776382 PMCID: PMC3135068 DOI: 10.1155/2011/109746] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/20/2011] [Accepted: 02/09/2011] [Indexed: 01/03/2023]
Abstract
Mitogen-activated protein kinases (MAPKs), which are found in all eukaryotes, are signal transducing enzymes playing a central role in diverse biological processes, such as cell proliferation, sexual differentiation, and apoptosis. The MAPK signaling pathway plays a key role in the regulation of gene expression through the phosphorylation of transcription factors. Recent studies have identified several RNA-binding proteins (RBPs) as regulators of MAPK signaling because these RBPs bind to the mRNAs encoding the components of the MAPK pathway and regulate the stability of their transcripts. Moreover, RBPs also serve as targets of MAPKs because MAPK phosphorylate and regulate the ability of RBPs to bind and stabilize target mRNAs, thus controlling various cellular functions. In this review, we present evidence for the significance of the MAPK signaling in the regulation of RBPs and their target mRNAs, which provides additional information about the regulatory mechanism underlying gene expression. We further present evidence for the clinical importance of the posttranscriptional regulation of mRNA stability and its implications for drug discovery.
Collapse
|
36
|
Ralph JA, Ahmed AU, Santos LL, Clark AR, McMorrow J, Murphy EP, Morand EF. Identification of NURR1 as a mediator of MIF signaling during chronic arthritis: effects on glucocorticoid-induced MKP1. THE AMERICAN JOURNAL OF PATHOLOGY 2010. [PMID: 20829434 DOI: 10.2353/ajpath.2010.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Elucidation of factors regulating glucocorticoid (GC) sensitivity is required for the development of "steroid-sparing" therapies for chronic inflammatory diseases, including rheumatoid arthritis (RA). Accumulating evidence suggests that macrophage migration inhibitory factor (MIF) counterregulates the GC-induction of anti-inflammatory mediators, including mitogen-activated protein kinase phosphatase 1 (MKP1), a critical mitogen-activated protein kinase signaling inhibitor. This observation has yet to be extended to human disease; the molecular mechanisms remain unknown. We investigated NURR1, a GC-responsive transcription factor overexpressed in RA, as a MIF signaling target. We reveal abrogation by recombinant MIF (rMIF) of GC-induced MKP1 expression in RA fibroblast-like synoviocytes (FLS). rMIF enhanced NURR1 expression, artificial NBRE (orphan receptor DNA-binding site) reporter transactivation, and reversed GC-inhibition of NURR1. NURR1 expression was reduced during experimental arthritis in MIF-/- synovium, and silencing MIF reduced RA FLS NURR1 mRNA. Consistent with NBRE identification on the MKP1 gene, MKP1 mRNA was reduced in FLS that ectopically express NURR1, and silencing NURR1 enhanced MKP1 mRNA in RA FLS. rMIF enhanced NBRE binding on the MKP1 gene, and the absence of the NBRE prevented NURR1-repressive effects on basal and GC-induced MKP1 transactivation. This study defines NURR1 as a novel MIF target in chronic inflammation and demonstrates a role for NURR1 in regulating the anti-inflammatory mediator, MKP1. We propose a MIF-NURR1 signaling axis as a regulator of the GC sensitivity of MKP1.
Collapse
Affiliation(s)
- Jennifer A Ralph
- Centre for Inflammatory Diseases, Monash University, Department of Medicine, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Ralph JA, Ahmed AU, Santos LL, Clark AR, McMorrow J, Murphy EP, Morand EF. Identification of NURR1 as a mediator of MIF signaling during chronic arthritis: effects on glucocorticoid-induced MKP1. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2366-78. [PMID: 20829434 DOI: 10.2353/ajpath.2010.091204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Elucidation of factors regulating glucocorticoid (GC) sensitivity is required for the development of "steroid-sparing" therapies for chronic inflammatory diseases, including rheumatoid arthritis (RA). Accumulating evidence suggests that macrophage migration inhibitory factor (MIF) counterregulates the GC-induction of anti-inflammatory mediators, including mitogen-activated protein kinase phosphatase 1 (MKP1), a critical mitogen-activated protein kinase signaling inhibitor. This observation has yet to be extended to human disease; the molecular mechanisms remain unknown. We investigated NURR1, a GC-responsive transcription factor overexpressed in RA, as a MIF signaling target. We reveal abrogation by recombinant MIF (rMIF) of GC-induced MKP1 expression in RA fibroblast-like synoviocytes (FLS). rMIF enhanced NURR1 expression, artificial NBRE (orphan receptor DNA-binding site) reporter transactivation, and reversed GC-inhibition of NURR1. NURR1 expression was reduced during experimental arthritis in MIF-/- synovium, and silencing MIF reduced RA FLS NURR1 mRNA. Consistent with NBRE identification on the MKP1 gene, MKP1 mRNA was reduced in FLS that ectopically express NURR1, and silencing NURR1 enhanced MKP1 mRNA in RA FLS. rMIF enhanced NBRE binding on the MKP1 gene, and the absence of the NBRE prevented NURR1-repressive effects on basal and GC-induced MKP1 transactivation. This study defines NURR1 as a novel MIF target in chronic inflammation and demonstrates a role for NURR1 in regulating the anti-inflammatory mediator, MKP1. We propose a MIF-NURR1 signaling axis as a regulator of the GC sensitivity of MKP1.
Collapse
Affiliation(s)
- Jennifer A Ralph
- Centre for Inflammatory Diseases, Monash University, Department of Medicine, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne 3168, Australia
| | | | | | | | | | | | | |
Collapse
|