1
|
Isoda B, Kandori S, Sazuka T, Kojima T, Nitta S, Shiga M, Nagumo Y, Fujimoto A, Arai T, Sato H, Mathis BJ, Wu CL, Jan YH, Ichikawa T, Nishiyama H. TNFSF9 Is Associated with Favorable Tumor Immune Microenvironment in Patients with Renal Cell Carcinoma Who Are Treated with the Combination Therapy of Nivolumab and Ipilimumab. Int J Mol Sci 2024; 25:7444. [PMID: 39000552 PMCID: PMC11242552 DOI: 10.3390/ijms25137444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Combination therapy of nivolumab and ipilimumab (NIVO + IPI) for metastatic renal cell carcinoma (mRCC) has shown efficacy, but approximately 20% of patients experience disease progression in the early stages of treatment. No useful biomarkers have been reported to date. Therefore, it is desirable to identify biomarkers to predict treatment responses in advance. We examined the tumor microenvironment (TME)-related gene expression in mRCC patients treated with NIVO + IPI, between the response and non-response groups, using tumor tissues, before administering NIVO + IPI. In TME-related genes, TNFSF9 expression was identified as a candidate for the predictive biomarker. Its expression discriminated between the response and non-response groups with 88.89% sensitivity and 87.50% specificity (AUC = 0.9444). We further analyzed the roles of TNFSF9 in TME using bioinformatics from The Cancer Genome Atlas (TCGA) cohort. An adaptive immune response was activated in the TNFSF9-high-expression tumors. Indeed, T follicular helper cells, plasma B cells, and tumor-infiltrating CD8+ T cells were increased in the tumors, which indicates the promotion of humoral immunity due to enhanced T-B interactions. However, as the number of regulatory T cells (Treg) increased in the tumors, the percentage of dysfunctional T cells also increased. This suggests that not only PD-1 but also CTLA-4 inhibition may have suppressed Treg activation and improved the therapeutic effect in the TNFSF9 high-expression tumors. Therefore, TNFSF9 may predict the therapeutic efficacy of NIVO + IPI for mRCC and allow more appropriate patient selection.
Collapse
Affiliation(s)
- Bunpei Isoda
- Department of Urology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (B.I.); (S.N.); (M.S.); (Y.N.); (H.N.)
| | - Shuya Kandori
- Department of Urology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (B.I.); (S.N.); (M.S.); (Y.N.); (H.N.)
| | - Tomokazu Sazuka
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Chiba, Japan; (T.S.); (A.F.); (T.A.); (H.S.); (T.I.)
| | - Takahiro Kojima
- Department of Urology, Aichi Cancer Center, Nagoya 464-8681, Aichi, Japan;
| | - Satoshi Nitta
- Department of Urology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (B.I.); (S.N.); (M.S.); (Y.N.); (H.N.)
| | - Masanobu Shiga
- Department of Urology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (B.I.); (S.N.); (M.S.); (Y.N.); (H.N.)
| | - Yoshiyuki Nagumo
- Department of Urology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (B.I.); (S.N.); (M.S.); (Y.N.); (H.N.)
| | - Ayumi Fujimoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Chiba, Japan; (T.S.); (A.F.); (T.A.); (H.S.); (T.I.)
| | - Takayuki Arai
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Chiba, Japan; (T.S.); (A.F.); (T.A.); (H.S.); (T.I.)
| | - Hiroaki Sato
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Chiba, Japan; (T.S.); (A.F.); (T.A.); (H.S.); (T.I.)
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, Tsukuba 305-8576, Ibaraki, Japan;
| | - Chia-Ling Wu
- ACT Genomics, Co., Ltd., Taipei 114, Taiwan; (C.-L.W.); (Y.-H.J.)
| | - Yi-Hua Jan
- ACT Genomics, Co., Ltd., Taipei 114, Taiwan; (C.-L.W.); (Y.-H.J.)
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Chiba, Japan; (T.S.); (A.F.); (T.A.); (H.S.); (T.I.)
| | - Hiroyuki Nishiyama
- Department of Urology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (B.I.); (S.N.); (M.S.); (Y.N.); (H.N.)
| |
Collapse
|
2
|
Nickles E, Xia R, Sun R, Schwarz H. Methods for generating the CD137L-DC-EBV-VAX anti-cancer vaccine. Methods Cell Biol 2023; 183:187-202. [PMID: 38548412 DOI: 10.1016/bs.mcb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Dendritic cells (DC) are professional antigen presenting cells (APCs) that can efficiently present captured antigens to cytotoxic T cells and initiate powerful antigen-specific responses. Therefore, DC have been explored for cancer immunotherapy. However, due to the scarcity of DCs in the peripheral blood, ex-vivo expansion is required to generate sufficient DCs before use. The majority of DC-based tumor vaccines utilize monocyte-derived DC (mo-DC) that are generated with GM-CSF and IL-4. Here, we describe the generation of a novel type of DC, CD137L-DC, which are generated from monocytes by stimulation with a CD137 ligand agonist, and that proved to be more potent than classical mo-DC in inducing cytotoxic responses against tumor associated viruses, such as EBV and HBV in vitro. In a phase I clinical trial on patients with locally recurrent or metastatic NPC, a CD137L-DC-EBV vaccine showed good tolerability and prolonged patient survival, providing a basis for further development of CD137L-DC vaccines for immunotherapy.
Collapse
Affiliation(s)
- Emily Nickles
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Runze Xia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Rui Sun
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Fendl B, Berghoff AS, Preusser M, Maier B. Macrophage and monocyte subsets as new therapeutic targets in cancer immunotherapy. ESMO Open 2023; 8:100776. [PMID: 36731326 PMCID: PMC10024158 DOI: 10.1016/j.esmoop.2022.100776] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 02/04/2023] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) for the treatment of solid cancers dramatically turned the tables in clinical routine. However, therapy success is still limited with up to 70% of non-responders in patients with ICI treatment. Traditionally, most immunotherapy approaches aim at directly stimulating anti-tumor T cell responses. More recently, tumor-associated macrophages have come into focus due to their predominance in solid tumors. Intensive cross-talk with tumor cells and immune as well as stromal cells within the tumor microenvironment can drive either pro- or anti-tumorigenic macrophage phenotypes. In turn, tumor-associated macrophages strongly shape cytokine and metabolite levels in the tumor microenvironment and thus are central players in anti-tumor immunity. Thus, ambivalent macrophage populations exist which raises therapeutic possibilities to either enhance or diminish their functionality. However, molecular signals controlling tumor-associated macrophage polarization are incompletely understood. Gaining in-depth understanding of monocyte/macrophage properties both in circulation and within distinct tumor microenvironments would (i) allow the development of new therapeutic approaches, and (ii) could additionally aid our understanding of underlying mechanisms limiting current therapy with the option of combinatorial therapies to increase efficacy. In this review, we summarize recent data addressing heterogeneity of tumor-associated macrophage populations and we discuss strategies to target macrophages using known molecular pathways with the potential for straight-forward clinical application.
Collapse
Affiliation(s)
- B Fendl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - A S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - M Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - B Maier
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
4
|
Wu J, Wang Y. Role of TNFSF9 bidirectional signal transduction in antitumor immunotherapy. Eur J Pharmacol 2022; 928:175097. [PMID: 35714694 DOI: 10.1016/j.ejphar.2022.175097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
The complex structure of the tumor microenvironment leads to the poor efficacy of tumor immunotherapy. The therapeutic adjuvant designed to enhance the effect of T cells by acting on the costimulatory molecule tumor necrosis factor superfamily member 9 (TNFSF9) has achieved good results. However, because some tumors are characterized by reduced T-cell infiltration, adjuvants acting on T cells alone may have limitations. On the other hand, the blockade of TNFSF9 reverse signalling can have an antitumor effect by reshaping the tumor microenvironment. Therefore, this paper mainly discusses the current status and potential of TNFSF9 bidirectional signalling in antitumor immunotherapy to provide new ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Jiao Wu
- Departments of Gastroenterology, Mianyang Central Hospital, Sichuan, 621000, China
| | - Yunpeng Wang
- Departments of Cardiology, Mianyang Central Hospital, Sichuan, 621000, China.
| |
Collapse
|
5
|
Fournier B, Hoshino A, Bruneau J, Bachelet C, Fusaro M, Klifa R, Lévy R, Lenoir C, Soudais C, Picard C, Blanche S, Castelle M, Moshous D, Molina T, Defachelles AS, Neven B, Latour S. Inherited TNFSF9 deficiency causes broad Epstein-Barr virus infection with EBV+ smooth muscle tumors. J Exp Med 2022; 219:213262. [PMID: 35657354 PMCID: PMC9170382 DOI: 10.1084/jem.20211682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
Epstein-Barr virus (EBV) can infect smooth muscle cells causing smooth muscle tumors (SMTs) or leiomyoma. Here, we report a patient with a heterozygous 22q11.2 deletion/DiGeorge syndrome who developed a unique, broad, and lethal susceptibility to EBV characterized by EBV-infected T and B cells and disseminated EBV+SMT. The patient also harbored a homozygous missense mutation (p.V140G) in TNFSF9 coding for CD137L/4-1BBL, the ligand of the T cell co-stimulatory molecule CD137/4-1BB, whose deficiency predisposes to EBV infection. We show that wild-type CD137L was up-regulated on activated monocytes and dendritic cells, EBV-infected B cells, and SMT. The CD137LV140G mutant was weakly expressed on patient cells or when ectopically expressed in HEK and P815 cells. Importantly, patient EBV-infected B cells failed to trigger the expansion of EBV-specific T cells, resulting in decreased T cell effector responses. T cell expansion was recovered when CD137L expression was restored on B cells. Therefore, these results highlight the critical role of the CD137-CD137L pathway in anti-EBV immunity, in particular in the control of EBV+SMT.
Collapse
Affiliation(s)
- Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Akihiro Hoshino
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France
| | - Julie Bruneau
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Camille Bachelet
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France
| | - Mathieu Fusaro
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Roman Klifa
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Romain Lévy
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France
| | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Stéphane Blanche
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Martin Castelle
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Despina Moshous
- Paris Cité University, Imagine Institute, Paris, France,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Thierry Molina
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | | | - Bénédicte Neven
- Paris Cité University, Imagine Institute, Paris, France,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Correspondence to Sylvain Latour:
| |
Collapse
|
6
|
Dendritic cell therapy with CD137L-DC-EBV-VAX in locally recurrent or metastatic nasopharyngeal carcinoma is safe and confers clinical benefit. Cancer Immunol Immunother 2021; 71:1531-1543. [PMID: 34661709 DOI: 10.1007/s00262-021-03075-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Epstein-Barr virus (EBV) is associated with nasopharyngeal carcinoma (NPC), and provides a target for a dendritic cell (DC) vaccine. CD137 ligand (CD137L) expressed on antigen presenting cells, costimulates CD137-expressing T cells, and reverse CD137L signaling differentiates monocytes to CD137L-DC, a type of DC, which is more potent than classical DC in stimulating T cells. METHODS In this phase I study, patients with locally recurrent or metastatic NPC were administered CD137L-DC pulsed with EBV antigens (CD137L-DC-EBV-VAX). RESULTS Of the 12 patients treated, 9 received full 7 vaccine doses with a mean administered cell count of 23.9 × 106 per dose. Treatment was well tolerated with only 4 cases of grade 1 related adverse events. A partial response was obtained in 1 patient, and 4 patients are still benefitting from a progression free survival (PFS) of currently 2-3 years. The mean pre-treatment neutrophil: lymphocyte ratio was 3.4 and a value of less than 3 was associated with prolonged median PFS. Progressors were characterized by a high frequency of naïve T cells but a low frequency of CD8+ effector T cells while patients with a clinical benefit (CB) had a high frequency of memory T cells. Patients with CB had lower plasma EBV DNA levels, and a reduction after vaccination. CONCLUSION CD137L-DC-EBV-VAX was well tolerated. The use of CD137L-DC-EBV-VAX is demonstrated to be safe. Consistent results were obtained from all 12 patients, indicating that CD137L-DC-EBV-VAX induces an anti-EBV and anti-NPC immune response, and warranting further studies in patients post effective chemotherapy. PRECIS The first clinical testing of CD137L-DC, a new type of monocyte-derived DC, finds that CD137L-DC are safe, and that they can induce an immune response against Epstein-Barr virus-associated nasopharyngeal carcinoma that leads to tumor regression or prevents tumor progression.
Collapse
|
7
|
Hashimoto K. CD137 as an Attractive T Cell Co-Stimulatory Target in the TNFRSF for Immuno-Oncology Drug Development. Cancers (Basel) 2021; 13:2288. [PMID: 34064598 PMCID: PMC8150789 DOI: 10.3390/cancers13102288] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors have altered the treatment landscape significantly in several cancers, yet not enough for many cancer patients. T cell costimulatory receptors have been pursued as targets for the next generation of cancer immunotherapies, however, sufficient clinical efficacy has not yet been achieved. CD137 (TNFRSF9, 4-1BB) provides co-stimulatory signals and activates cytotoxic effects of CD8+ T cells and helps to form memory T cells. In addition, CD137 signalling can activate NK cells and dendritic cells which further supports cytotoxic T cell activation. An agonistic monoclonal antibody to CD137, urelumab, provided promising clinical efficacy signals but the responses were achieved above the maximum tolerated dose. Utomilumab is another CD137 monoclonal antibody to CD137 but is not as potent as urelumab. Recent advances in antibody engineering technologies have enabled mitigation of the hepato-toxicity that hampered clinical application of urelumab and have enabled to maintain similar potency to urelumab. Next generation CD137 targeting molecules currently in clinical trials support T cell and NK cell expansion in patient samples. CD137 targeting molecules in combination with checkpoint inhibitors or ADCC-enhancing monoclonal antibodies have been sought to improve both clinical safety and efficacy. Further investigation on patient samples will be required to provide insights to understand compensating pathways for future combination strategies involving CD137 targeting agents to optimize and maintain the T cell activation status in tumors.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Crescendo Biologics, Ltd., Meditrina Building 260, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
8
|
Identification of differentially expressed genes and the role of PDK4 in CD14+ monocytes of coronary artery disease. Biosci Rep 2021; 41:228119. [PMID: 33739370 PMCID: PMC8024870 DOI: 10.1042/bsr20204124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/22/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Background. Coronary artery disease (CAD) is a chronic inflammatory disease caused by development of atherosclerosis (AS), which is the leading cause of mortality and disability. Our study aimed to identify the differentially expressed genes (DEGs) in CD14+ monocytes from CAD patients compared with those from non-CAD controls, which might pave the way to diagnosis and treatment for CAD. Methods. The RNA-sequencing (RNA-seq) was performed by BGISEQ-500, followed by analyzing with R package to screening DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed by R package. In addition, we validated the results of RNA-seq using real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, we explored the function of selected ten genes in LDL-treated CD14+ monocytes by RT-qPCR. Results. a total of 2897 DEGs were identified, including 753 up- and 2144 down-regulated genes in CD14+ monocytes from CAD patients. These DEGs were mainly enriched in plasma membrane and cell periphery of cell component, immune system process of biological process, NF-κB signaling pathway, cell adhesion molecules signaling pathway and cytokine–cytokine receptor interaction signaling pathway. In LDL-treated CD14+ monocytes, the mRNA expression of pyruvate dehydrogenase kinase 4 (PDK4) was significantly up-regulated. Conclusion. In the present study, we suggested that PDK4 might play a role in progression of CAD. The study will provide some pieces of evidence to investigate the role and mechanism of key genes in the pathogenesis of CAD.
Collapse
|
9
|
Lee KY, Wong HY, Zeng Q, Le Lin J, Cheng MS, Kuick CH, Chang KTE, Loh AHP, Schwarz H. Ectopic CD137 expression by rhabdomyosarcoma provides selection advantages but allows immunotherapeutic targeting. Oncoimmunology 2021; 10:1877459. [PMID: 33643694 PMCID: PMC7872024 DOI: 10.1080/2162402x.2021.1877459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a heterogeneous soft tissue neoplasm most frequently found in children and adolescents. As the prognosis for recurrent and metastatic RMS remains poor, immunotherapies are hoped to improve quality of life and survival. CD137 is a member of tumor necrosis factor receptor family and a T cell costimulatory molecule which induces potent cellular immune responses that are able to eliminate malignant cells. Therefore, it was puzzling to find expression of CD137 on an RMS tissue microarray by multiplex staining. CD137 is not only expressed by infiltrating T cells but also by malignant RMS cells. Functional in vitro experiments demonstrate that CD137 on RMS cells is being transferred to adjacent antigen-presenting cells by trogocytosis, where it downregulates CD137 ligand, and thereby reduces T cell costimulation which results in reduced killing of RMS cells. The transfer of CD137 and the subsequent downregulation of CD137 ligand is a physiological negative feedback mechanism that is likely usurped by RMS, and may facilitate its escape from immune surveillance. In addition, CD137 signals into RMS cells and induces IL-6 and IL-8 secretion, which are linked to RMS metastasis and poor prognosis. However, the ectopic expression of CD137 on RMS cells is an Achilles’ heel that may be utilized for immunotherapy. Natural killer cells expressing an anti-CD137 chimeric antigen receptor specifically kill CD137-expressing RMS cells. Our study implicates ectopic CD137 expression as a pathogenesis mechanism in RMS, and it demonstrates that CD137 may be a novel target for immunotherapy of RMS.
Collapse
Affiliation(s)
- Kang Yi Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Hiu Yi Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Qun Zeng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Jia Le Lin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Man Si Cheng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | | | | | | | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
10
|
Innamarato P, Asby S, Morse J, Mackay A, Hall M, Kidd S, Nagle L, Sarnaik AA, Pilon-Thomas S. Intratumoral Activation of 41BB Costimulatory Signals Enhances CD8 T Cell Expansion and Modulates Tumor-Infiltrating Myeloid Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2893-2904. [PMID: 33020146 DOI: 10.4049/jimmunol.2000759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
The activation of 41BB costimulatory signals by agonistic Abs enhances the expansion and function of tumor-infiltrating lymphocytes (TILs) for treating cancer patients with adoptive cell therapy. However, the impact of 41BB agonism is not limited to enhancing the activity of T cells, and the mechanism by which additional activation of this costimulatory axis in tumor-associated myeloid cells is poorly understood. In this study, we describe that the intratumoral administration of 41BB agonistic Abs led to increases in CD8 T cell infiltration followed by tumor regression in murine models. We found that granulocytes and monocytes rapidly replaced macrophages and dendritic cells in tumors following administration of anti-41BB Abs. Overall, myeloid cells from anti-41BB-treated tumors had an improved capacity to stimulate T cells in comparison with control-treated tumors. In human coculture systems, we demonstrated that the agonism of the 41BB-41BBL axis enhanced costimulatory signals and effector functions among APC and autologous TILs. Overall, these findings suggest that the effect of 41BB agonistic Abs are supported by additional costimulatory signals from tumor-associated myeloid cells,v leading to enhanced TIL expansion and function.
Collapse
Affiliation(s)
- Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620; and
| | - Sarah Asby
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Jennifer Morse
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Amy Mackay
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - MacLean Hall
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33620; and
| | - Scott Kidd
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Luz Nagle
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Amod A Sarnaik
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612.,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612;
| |
Collapse
|
11
|
Castella M, Caballero-Baños M, Ortiz-Maldonado V, González-Navarro EA, Suñé G, Antoñana-Vidósola A, Boronat A, Marzal B, Millán L, Martín-Antonio B, Cid J, Lozano M, García E, Tabera J, Trias E, Perpiña U, Canals JM, Baumann T, Benítez-Ribas D, Campo E, Yagüe J, Urbano-Ispizua Á, Rives S, Delgado J, Juan M. Point-Of-Care CAR T-Cell Production (ARI-0001) Using a Closed Semi-automatic Bioreactor: Experience From an Academic Phase I Clinical Trial. Front Immunol 2020; 11:482. [PMID: 32528460 PMCID: PMC7259426 DOI: 10.3389/fimmu.2020.00482] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Development of semi-automated devices that can reduce the hands-on time and standardize the production of clinical-grade CAR T-cells, such as CliniMACS Prodigy from Miltenyi, is key to facilitate the development of CAR T-cell therapies, especially in academic institutions. However, the feasibility of manufacturing CAR T-cell products from heavily pre-treated patients with this system has not been demonstrated yet. Here we report and characterize the production of 28 CAR T-cell products in the context of a phase I clinical trial for CD19+ B-cell malignancies (NCT03144583). The system includes CD4-CD8 cell selection, lentiviral transduction and T-cell expansion using IL-7/IL-15. Twenty-seven out of 28 CAR T-cell products manufactured met the full list of specifications and were considered valid products. Ex vivo cell expansion lasted an average of 8.5 days and had a mean transduction rate of 30.6 ± 13.44%. All products obtained presented cytotoxic activity against CD19+ cells and were proficient in the secretion of pro-inflammatory cytokines. Expansion kinetics was slower in patient's cells compared to healthy donor's cells. However, product potency was comparable. CAR T-cell subset phenotype was highly variable among patients and largely determined by the initial product. TCM and TEM were the predominant T-cell phenotypes obtained. 38.7% of CAR T-cells obtained presented a TN or TCM phenotype, in average, which are the subsets capable of establishing a long-lasting T-cell memory in patients. An in-depth analysis to identify individual factors contributing to the optimal T-cell phenotype revealed that ex vivo cell expansion leads to reduced numbers of TN, TSCM, and TEFF cells, while TCM cells increase, both due to cell expansion and CAR-expression. Overall, our results show for the first time that clinical-grade production of CAR T-cells for heavily pre-treated patients using CliniMACS Prodigy system is feasible, and that the obtained products meet the current quality standards of the field. Reduced ex vivo expansion may yield CAR T-cell products with increased persistence in vivo.
Collapse
Affiliation(s)
- Maria Castella
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Blood and Tissue Bank (BST), Barcelona, Spain
| | - Miguel Caballero-Baños
- Department of Immunology, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain.,Hospital Sant Joan de Déu, Barcelona, Spain
| | - Valentín Ortiz-Maldonado
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Guillermo Suñé
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Asier Antoñana-Vidósola
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna Boronat
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Immunology, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Berta Marzal
- Department of Immunology, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Lucía Millán
- Department of Immunology, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Beatriz Martín-Antonio
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Cid
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Hemotherapy and Hemostasis, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Miquel Lozano
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Hemotherapy and Hemostasis, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Enric García
- Blood and Tissue Bank (BST), Barcelona, Spain.,Apheresis Unit, Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
| | - Jaime Tabera
- Blood and Tissue Bank (BST), Barcelona, Spain.,Unit of Advanced Therapies, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Esteve Trias
- Unit of Advanced Therapies, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Unai Perpiña
- Stem Cells and Regenerative Medicine Laboratory, Department of Biomedical Sciences, Production and Validation Center of Advanced Therapies (Creatio), Universitat de Barcelona, Barcelona, Spain
| | - Josep Ma Canals
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Stem Cells and Regenerative Medicine Laboratory, Department of Biomedical Sciences, Production and Validation Center of Advanced Therapies (Creatio), Universitat de Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Tycho Baumann
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Daniel Benítez-Ribas
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Immunology, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Elías Campo
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain.,Department of Pathology, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomedical en Red de Cancer, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avancats, Barcelona, Spain
| | - Jordi Yagüe
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Immunology, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Álvaro Urbano-Ispizua
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain.,Department of Biomedicine, School of Medicine, Josep Carreras Leukemia Research Institute, Universitat de Barcelona, Barcelona, Spain.,Immunotherapy Unit Blood and Tissue Bank-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Susana Rives
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Julio Delgado
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomedical en Red de Cancer, Barcelona, Spain
| | - Manel Juan
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Blood and Tissue Bank (BST), Barcelona, Spain.,Department of Immunology, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain.,Hospital Sant Joan de Déu, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain.,Immunotherapy Unit Blood and Tissue Bank-Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
CD137 ligand interacts with CD32a to trigger reverse CD137 ligand signaling. Cell Mol Immunol 2020; 17:1188-1189. [PMID: 32076121 DOI: 10.1038/s41423-020-0370-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/22/2022] Open
|
13
|
Zeng Q, Zhou Y, Schwarz H. CD137L-DCs, Potent Immune-Stimulators-History, Characteristics, and Perspectives. Front Immunol 2019; 10:2216. [PMID: 31632390 PMCID: PMC6783506 DOI: 10.3389/fimmu.2019.02216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022] Open
Abstract
Dendritic cell (DC)-based immunotherapies are being explored for over 20 years and found to be very safe. Most often, granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4)-induced monocyte-derived DCs (moDCs) are being used, which have demonstrated some life-prolonging benefit to patients of multiple tumors. However, the limited clinical response and efficacy call for the development of more potent DCs. CD137L-DC may meet this demand. CD137L-DCs are a novel type of monocyte-derived inflammatory DCs that are induced by CD137 ligand (CD137L) agonists. CD137L is expressed on the surface of antigen-presenting cells, including monocytes, and signaling of CD137L into monocytes induces their differentiation to CD137L-DCs. CD137L-DCs preferentially induce type 1 T helper (Th1) cell polarization and strong type 1 CD8+ T cell (Tc1) responses against tumor-associated viral antigens. The in vitro T cell-stimulatory capacity of CD137L-DCs is superior to that of conventional moDCs. The transcriptomic profile of CD137L-DC is highly similar to that of in vivo DCs at sites of inflammation. The strict activation dependence of CD137 expression and its restricted expression on activated T cells, NK cells, and vascular endothelial cells at inflammatory sites make CD137 an ideally suited signal for the induction of monocyte-derived inflammatory DCs in vivo. These findings and their potency encouraged a phase I clinical trial of CD137L-DCs against Epstein-Barr virus-associated nasopharyngeal carcinoma. In this review, we introduce and summarize the history, the characteristics, and the transcriptional profile of CD137L-DC, and discuss the potential development and applications of CD137L-DC.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Yubin Zhou
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
The Progress of Investigating the CD137-CD137L Axis as a Potential Target for Systemic Lupus Erythematosus. Cells 2019; 8:cells8091044. [PMID: 31500130 PMCID: PMC6770642 DOI: 10.3390/cells8091044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/30/2022] Open
Abstract
Costimulatory molecules facilitate cross-talks among leukocytes via mutual stimulatory and inhibitory signalling, contributing to diverse immunological outcomes in normal physiological responses and pathological conditions. Systemic lupus erythematosus (SLE) is a complex multi-systemic autoimmune condition in which cellular communication through the involvement of costimulatory molecules is crucial in driving proinflammatory responses from the stage of autoantigen presentation to the subsequent process of pathogenic autoantibody production. While the physiology of the costimulatory systems including OX40-OX40L, CD28/CTLA-4-CD80/86, ICOS-B7RP1 and CD70-CD27 has been relatively well studied in SLE, recent data on the immunopathology of the CD137-CD137 ligand (CD137L) system in murine lupus models and patients with SLE highlight the critical role of this costimulatory system in initiating and perpetuating the diverse clinical and serological phenotypes of SLE. CD137, a membrane-bound receptor which belongs to the tumour necrosis factor receptor superfamily, is mainly expressed on activated T cells. Activation of the CD137 receptor via its interaction with CD137L which is expressed on antigen present cells (APC) including B cells, triggers bi-directional signalling; that is, signalling through CD137 as well as signalling through CD137L (reverse signalling), which further activates T cells and polarizes them to the Th1/Tc1 pathway. Further, via reverse CD137L signalling it enhances differentiation and maturation of the APC, particularly of dendritic cells, which subsequently drive proinflammatory cytokine production. In this review, recent data including our experience in the manipulation of CD137L signalling pertaining to the pathophysiology of SLE will be critically reviewed. More in-depth understanding of the biology of the CD137-CD137L co-stimulation system opens an opportunity to identify new prognostic biomarkers and the design of novel therapeutic approaches for advancing the management of SLE.
Collapse
|
15
|
Ding AS, Routkevitch D, Jackson C, Lim M. Targeting Myeloid Cells in Combination Treatments for Glioma and Other Tumors. Front Immunol 2019; 10:1715. [PMID: 31396227 PMCID: PMC6664066 DOI: 10.3389/fimmu.2019.01715] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells constitute a significant part of the immune system in the context of cancer, exhibiting both immunostimulatory effects, through their role as antigen presenting cells, and immunosuppressive effects, through their polarization to myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages. While they are rarely sufficient to generate potent anti-tumor effects on their own, myeloid cells have the ability to interact with a variety of immune populations to aid in mounting an appropriate anti-tumor immune response. Therefore, myeloid therapies have gained momentum as a potential adjunct to current therapies such as immune checkpoint inhibitors (ICIs), dendritic cell vaccines, oncolytic viruses, and traditional chemoradiation to enhance therapeutic response. In this review, we outline critical pathways involved in the recruitment of the myeloid population to the tumor microenvironment and in their polarization to immunostimulatory or immunosuppressive phenotypes. We also emphasize existing strategies of modulating myeloid recruitment and polarization to improve anti-tumor immune responses. We then summarize current preclinical and clinical studies that highlight treatment outcomes of combining myeloid targeted therapies with other immune-based and traditional therapies. Despite promising results from reports of limited clinical trials thus far, there remain challenges in optimally harnessing the myeloid compartment as an adjunct to enhancing anti-tumor immune responses. Further large Phase II and ultimately Phase III clinical trials are needed to elucidate the treatment benefit of combination therapies in the fight against cancer.
Collapse
Affiliation(s)
| | | | | | - Michael Lim
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Wu M, Wong HY, Lin JL, Moliner A, Schwarz H. Induction of CD137 expression by viral genes reduces T cell costimulation. J Cell Physiol 2019; 234:21076-21088. [DOI: 10.1002/jcp.28710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Meihui Wu
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| | - Hiu Yi Wong
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| | - Jia Le Lin
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| | - Annalena Moliner
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| | - Herbert Schwarz
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| |
Collapse
|
17
|
Zeng Q, Mallilankaraman K, Schwarz H. Increased Akt-Driven Glycolysis Is the Basis for the Higher Potency of CD137L-DCs. Front Immunol 2019; 10:868. [PMID: 31068941 PMCID: PMC6491642 DOI: 10.3389/fimmu.2019.00868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/04/2019] [Indexed: 12/21/2022] Open
Abstract
CD137 ligand-induced dendritic cells (CD137L-DCs) are a new type of dendritic cells (DCs) that induce strong cytotoxic T cell responses. Investigating the metabolic activity as a potential contributing factor for their potency, we find a significantly higher rate of glycolysis in CD137L-DCs than in granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin 4 induced monocyte-derived DCs (moDCs). Using unbiased screening, Akt-mTORC1 activity was found to be significantly higher throughout the differentiation and maturation of CD137L-DCs than that of moDCs. Furthermore, this higher activity of the Akt-mTORC1 pathway is responsible for the significantly higher glycolysis rate in CD137L-DCs than in moDCs. Inhibition of Akt during maturation or inhibition of glycolysis during and after maturation resulted in suppression of inflammatory DCs, with mature CD137L-DCs being the most affected ones. mTORC1, instead, was indispensable for the differentiation of both CD137L-DCs and moDCs. In contrast to its role in supporting lipid synthesis in murine bone marrow-derived DCs (BMDCs), the higher glycolysis rate in CD137L-DCs does not lead to a higher lipid content but rather to an accumulation of succinate and serine. These data demonstrate that the increased Akt-driven glycolysis underlies the higher activity of CD137L-DCs.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Lee WH, Seo D, Lim SG, Suk K. Reverse Signaling of Tumor Necrosis Factor Superfamily Proteins in Macrophages and Microglia: Superfamily Portrait in the Neuroimmune Interface. Front Immunol 2019; 10:262. [PMID: 30838001 PMCID: PMC6389649 DOI: 10.3389/fimmu.2019.00262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily (TNFSF) is a protein superfamily of type II transmembrane proteins commonly containing the TNF homology domain. The superfamily contains more than 20 protein members, which can be released from the cell membrane by proteolytic cleavage. Members of the TNFSF function as cytokines and regulate diverse biological processes, including immune responses, proliferation, differentiation, apoptosis, and embryogenesis, by binding to TNFSF receptors. Many TNFSF proteins are also known to be responsible for the regulation of innate immunity and inflammation. Both receptor-mediated forward signaling and ligand-mediated reverse signaling play important roles in these processes. In this review, we discuss the functional expression and roles of various reverse signaling molecules and pathways of TNFSF members in macrophages and microglia in the central nervous system (CNS). A thorough understanding of the roles of TNFSF ligands and receptors in the activation of macrophages and microglia may improve the treatment of inflammatory diseases in the brain and periphery. In particular, TNFSF reverse signaling in microglia can be exploited to gain further insights into the functions of the neuroimmune interface in physiological and pathological processes in the CNS.
Collapse
Affiliation(s)
- Won-Ha Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Donggun Seo
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Su-Geun Lim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
19
|
Huber A, Dammeijer F, Aerts JGJV, Vroman H. Current State of Dendritic Cell-Based Immunotherapy: Opportunities for in vitro Antigen Loading of Different DC Subsets? Front Immunol 2018; 9:2804. [PMID: 30559743 PMCID: PMC6287551 DOI: 10.3389/fimmu.2018.02804] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC) based cancer immunotherapy aims at the activation of the immune system, and in particular tumor-specific cytotoxic T lymphocytes (CTLs) to eradicate the tumor. DCs represent a heterogeneous cell population, including conventional DCs (cDCs), consisting of cDC1s, cDC2s, plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs). These DC subsets differ both in ontogeny and functional properties, such as the capacity to induce CD4+ and CD8+ T-cell activation. MoDCs are most frequently used for vaccination purposes, based on technical aspects such as availability and in vitro expansion. However, whether moDCs are superior over other DC subsets in inducing anti-tumor immune responses, is unknown, and likely depends on tumor type and composition of the tumor microenvironment. In this review, we discuss cellular aspects essential for DC vaccination efficacy, and the most recent findings on different DC subsets that could be used for DC-based cancer immunotherapy. This can prove valuable for the future design of more effective DC vaccines by choosing different DC subsets, and sheds light on the working mechanism of DC immunotherapy.
Collapse
Affiliation(s)
- Anne Huber
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Erasmus Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Joachim G. J. V. Aerts
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Erasmus Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Erasmus Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
20
|
Dendritic cell maturation in the corneal epithelium with onset of type 2 diabetes is associated with tumor necrosis factor receptor superfamily member 9. Sci Rep 2018; 8:14248. [PMID: 30250206 PMCID: PMC6155153 DOI: 10.1038/s41598-018-32410-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/03/2018] [Indexed: 12/29/2022] Open
Abstract
Type 2 diabetes mellitus is characterized by a low-grade inflammation; however, mechanisms leading to this inflammation in specific tissues are not well understood. The eye can be affected by diabetes; thus, we hypothesized that inflammatory changes in the eye may parallel the inflammation that develops with diabetes. Here, we developed a non-invasive means to monitor the status of inflammatory dendritic cell (DC) subsets in the corneal epithelium as a potential biomarker for the onset of inflammation in type 2 diabetes. In an age-matched cohort of 81 individuals with normal and impaired glucose tolerance and type 2 diabetes, DCs were quantified from wide-area maps of the corneal epithelial sub-basal plexus, obtained using clinical in vivo confocal microscopy (IVCM). With the onset of diabetes, the proportion of mature, antigen-presenting DCs increased and became organized in clusters. Out of 92 plasma proteins analysed in the cohort, tumor necrosis factor receptor super family member 9 (TNFRSF9) was associated with the observed maturation of DCs from an immature to mature antigen-presenting phenotype. A low-grade ocular surface inflammation observed in this study, where resident immature dendritic cells are transformed into mature antigen-presenting cells in the corneal epithelium, is a process putatively associated with TNFRSF9 signalling and may occur early in the development of type 2 diabetes. IVCM enables this process to be monitored non-invasively in the eye.
Collapse
|
21
|
Dharmadhikari B, Nickles E, Harfuddin Z, Ishak NDB, Zeng Q, Bertoletti A, Schwarz H. CD137L dendritic cells induce potent response against cancer-associated viruses and polarize human CD8 + T cells to Tc1 phenotype. Cancer Immunol Immunother 2018; 67:893-905. [PMID: 29508025 PMCID: PMC11028277 DOI: 10.1007/s00262-018-2144-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/27/2018] [Indexed: 12/14/2022]
Abstract
Therapeutic tumor vaccination based on dendritic cells (DC) is safe; however, its efficacy is low. Among the reasons for only a subset of patients benefitting from DC-based immunotherapy is an insufficient potency of in vitro generated classical DCs (cDCs), made by treating monocytes with GM-CSF + IL-4 + maturation factors. Recent studies demonstrated that CD137L (4-1BBL, TNFSF9) signaling differentiates human monocytes to a highly potent novel type of DC (CD137L-DCs) which have an inflammatory phenotype and are closely related to in vivo DCs. Here, we show that CD137L-DCs induce potent CD8+ T-cell responses against Epstein-Barr virus (EBV) and Hepatitis B virus (HBV), and that T cells primed by CD137L-DCs more effectively lyse EBV+ and HBV+ target cells. The chemokine profile of CD137L-DCs identifies them as inflammatory DCs, and they polarize CD8+ T cells to a Tc1 phenotype. Expression of exhaustion markers is reduced on T cells activated by CD137L-DCs. Furthermore, these T cells are metabolically more active and have a higher capacity to utilize glucose. CD137L-induced monocyte to DC differentiation leads to the formation of AIM2 inflammasome, with IL-1beta contributing to CD137L-DCs possessing a stronger T cell activation ability. CD137L-DCs are effective in crosspresentation. PGE2 as a maturation factor is required for enhancing migration of CD137L-DCs but does not significantly reduce their potency. This study shows that CD137L-DCs have a superior ability to activate T cells and to induce potent Tc1 responses against the cancer-causing viruses EBV and HBV which suggest CD137L-DCs as promising candidates for DC-based tumor immunotherapy.
Collapse
Affiliation(s)
- Bhushan Dharmadhikari
- Department of Physiology and Immunology Programme, National University of Singapore (NUS), 2 Medical Dr., Singapore, 117593, Singapore
| | - Emily Nickles
- Department of Physiology and Immunology Programme, National University of Singapore (NUS), 2 Medical Dr., Singapore, 117593, Singapore
| | - Zulkarnain Harfuddin
- Department of Physiology and Immunology Programme, National University of Singapore (NUS), 2 Medical Dr., Singapore, 117593, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Nur Diana Binte Ishak
- Department of Physiology and Immunology Programme, National University of Singapore (NUS), 2 Medical Dr., Singapore, 117593, Singapore
| | - Qun Zeng
- Department of Physiology and Immunology Programme, National University of Singapore (NUS), 2 Medical Dr., Singapore, 117593, Singapore
| | | | - Herbert Schwarz
- Department of Physiology and Immunology Programme, National University of Singapore (NUS), 2 Medical Dr., Singapore, 117593, Singapore.
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
22
|
Shen YL, Gan Y, Gao HF, Fan YC, Wang Q, Yuan H, Song YF, Wang JD, Tu H. TNFSF9 exerts an inhibitory effect on hepatocellular carcinoma. J Dig Dis 2017; 18:395-403. [PMID: 28547807 DOI: 10.1111/1751-2980.12489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/07/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Tumor necrosis factor superfamily member 9 (TNFSF9), also known as 4-1BBL and CD137L, has been implicated in cancer immunotherapy due to its function as a T-cell co-stimulator. We aimed to investigate the role of TNFSF9 in the cancer pathogenesis in hepatocellular carcinoma (HCC). METHODS TNFSF9 expression was examined by immunohistochemistry in 106 pairs of HCC and adjacent non-tumorous tissues, and by quantitative polymerase chain reaction and Western blot in HCC cell lines. The impact of TNFSF9 on the proliferation, migration and invasion of HCC cells was determined using the 3-(4,5-diethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) and transwell assays in vitro. We also assessed the influence of TNFSF9 on the growth and metastasis of HCC tumors in an orthotopic mouse model of human HCC. RESULTS TNFSF9 expression was downregulated in approximately 70% of HCC tissues. A decreased expression of TNFSF9 was also consistently observed in all the four HCC cell lines. Either the overexpression of TNFSF9 or treatment with recombinant TNFSF9 protein could significantly inhibit the proliferation, migration and invasion of Huh7 and SMMC-7721 HCC cells in vitro. The inhibitory effect of TNFSF9 on HCC was further confirmed in vivo. Mice orthotopically transplanted with TNFSF9-overexpressing Huh7 cells developed significantly smaller tumors with less intrahepatic metastasis and distant metastasis compared with the control group. CONCLUSIONS TNFSF9 may be a tumor suppressor in HCC. Based on its immune stimulatory aspect and the tumor inhibition property, TNFSF9 may be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Yu Ling Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hai Feng Gao
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Chao Fan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yuan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Fang Song
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Dong Wang
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Mazorra Z, Lavastida A, Concha-Benavente F, Valdés A, Srivastava RM, García-Bates TM, Hechavarría E, González Z, González A, Lugiollo M, Cuevas I, Frómeta C, Mestre BF, Barroso MC, Crombet T, Ferris RL. Nimotuzumab Induces NK Cell Activation, Cytotoxicity, Dendritic Cell Maturation and Expansion of EGFR-Specific T Cells in Head and Neck Cancer Patients. Front Pharmacol 2017; 8:382. [PMID: 28674498 PMCID: PMC5474456 DOI: 10.3389/fphar.2017.00382] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022] Open
Abstract
Survival benefit and long-term duration of clinical response have been seen using the epidermal growth factor receptor (EGFR)-targeted monoclonal antibody (mAb) nimotuzumab. Blocking EGFR signaling may not be the only mechanism of action underlying its efficacy. As an IgG1 isotype mAb, nimotuzumab's capacity of killing tumor cells by antibody dependent cellular cytotoxicity (ADCC) and to induce an immune response in cancer patients have not been studied. ADCC-induced by nimotuzumab was determined using a 51Cr release assay. The in vitro effect of nimotuzumab on natural killer (NK) cell activation and dendritic cell (DC) maturation and the in vivo frequency of circulating regulatory T cells (Tregs) and NK cells were assessed by flow cytometry. Cytokine levels in supernatants were determined by ELISA. ELISpot was carried out to quantify EGFR-specific T cells in nimotuzumab-treated head and neck cancer (HNSCC) patients. Nimotuzumab was able to kill EGFR+ tumor cells by NK cell-mediated ADCC. Nimotuzumab-activated NK cells promoted DC maturation and EGFR-specific CD8+ T cell priming. Interestingly, nimotuzumab led to upregulation of some immune checkpoint molecules on NK cells (TIM-3) and DC (PD-L1), to a lower extent than another EGFR mAb, cetuximab. Furthermore, circulating EGFR-specific T cells were identified in nimotuzumab-treated HNSCC patients. Notably, nimotuzumab combined with cisplatin-based chemotherapy and radiation increased the frequency of peripheral CD4+CD39+FOXP3+Tregs which otherwise were decreased to baseline values when nimotuzumab was used as monotherapy. The frequency of circulating NK cells remained constant during treatment. Nimotuzumab-induced, NK cell-mediated DC priming led to induction of anti-EGFR specific T cells in HNSCC patients. The association between EGFR-specific T cells and patient clinical benefit with nimotuzumab treatment should be investigated.
Collapse
Affiliation(s)
- Zaima Mazorra
- Department of Clinical Immunology, Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Anabel Lavastida
- Department of Clinical Immunology, Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | | | - Anet Valdés
- Department of Clinical Immunology, Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | | | - Tatiana M García-Bates
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, PittsburghPA, United States
| | - Esperanza Hechavarría
- Department of Clinical Immunology, Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Zuyen González
- Department of Clinical Immunology, Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Amnely González
- Department of Clinical Immunology, Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | | | - Iván Cuevas
- National Institute of Oncology and RadiobiologyHavana, Cuba
| | - Carlos Frómeta
- National Institute of Oncology and RadiobiologyHavana, Cuba
| | | | - Maria C Barroso
- Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Tania Crombet
- Clinical Direction, Center of Molecular ImmunologyHavana, Cuba
| | - Robert L Ferris
- Department of Immunology, University of Pittsburgh, PittsburghPA, United States.,Department of Otolaryngology, University of Pittsburgh, PittsburghPA, United States.,Cancer Immunology Program, University of Pittsburgh Cancer Institute, PittsburghPA, United States
| |
Collapse
|
24
|
Mitsuki YY, Tuen M, Hioe CE. Differential effects of HIV transmission from monocyte-derived dendritic cells vs. monocytes to IL-17+CD4+ T cells. J Leukoc Biol 2016; 101:339-350. [PMID: 27531931 DOI: 10.1189/jlb.4a0516-216r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/07/2016] [Accepted: 07/26/2016] [Indexed: 12/23/2022] Open
Abstract
HIV infection leads to CD4 helper T cell (Th) loss, but not all Th cells are equally depleted. The contribution of other immune cells in the Th depletion also remains unclear. This study investigates HIV transmission from monocyte-derived dendritic cells (MDDCs) vs. monocytes to Th17 and Th1 cells using an allogeneic coculture model. The addition of HIV to MDDCs increased the expression of the negative regulatory molecule PD-L1 and decreased the expression of the activation markers HLA-DR and CD86, whereas the virus up-regulated HLA-DR and CD86, but not PD-L1, on monocytes. Coculturing of CD4+ T cells with MDDCs pretreated with HIV led to the decline of Th17, but not Th1, responses. In contrast, pretreatment of monocytes with HIV increased Th17 without affecting Th1 responses. The enhanced Th17 responses in the cocultures with HIV-treated monocytes were also accompanied by high numbers of virus-infected CD4+ T cells. The Th17 expansion arose from memory CD4+ T cells with minimal contribution from naïve CD4+ T cells. The Th17-enhancing activity was mediated by the HIV envelope and did not require productive virus infection. Comparison of MDDCs and monocytes further showed that, although HIV-treated MDDCs reduced Th proliferation and increased the activation of the apoptosis mediator caspase-3, HIV-treated monocytes enhanced Th proliferation without increasing the active caspase-3 levels. This study indicates the potential role of distinct myeloid cell populations in shaping Th17 responses during HIV infection.
Collapse
Affiliation(s)
- Yu-Ya Mitsuki
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Tuen
- Veterans Affairs New York Harbor Healthcare System, Manhattan, New York, USA.,Department of Pathology, New York University Langone Medical Center, New York, New York, USA; and
| | - Catarina E Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; .,James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
25
|
Reactive Oxygen Species Regulate T Cell Immune Response in the Tumor Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1580967. [PMID: 27547291 PMCID: PMC4980531 DOI: 10.1155/2016/1580967] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 12/21/2022]
Abstract
Reactive oxygen species (ROS) produced by cellular metabolism play an important role as signaling messengers in immune system. ROS elevated in the tumor microenvironment are associated with tumor-induced immunosuppression. T cell-based therapy has been recently approved to be effective for cancer treatment. However, T cells often become dysfunctional after reaching the tumor site. It has been reported that ROS participate extensively in T cells activation, apoptosis, and hyporesponsiveness. The sensitivity of T cells to ROS varies among different subsets. ROS can be regulated by cytokines, amino acid metabolism, and enzymatic activity. Immunosuppressive cells accumulate in the tumor microenvironment and induce apoptosis and functional suppression of T cells by producing ROS. Thus, modulating the level of ROS may be important to prolong survival of T cells and enhance their antitumor function. Combining T cell-based therapy with antioxidant treatment such as administration of ROS scavenger should be considered as a promising strategy in cancer treatment, aiming to improve antitumor T cells immunity.
Collapse
|
26
|
Harfuddin Z, Dharmadhikari B, Wong SC, Duan K, Poidinger M, Kwajah S, Schwarz H. Transcriptional and functional characterization of CD137L-dendritic cells identifies a novel dendritic cell phenotype. Sci Rep 2016; 6:29712. [PMID: 27431276 PMCID: PMC4949477 DOI: 10.1038/srep29712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/17/2016] [Indexed: 12/24/2022] Open
Abstract
The importance of monocyte-derived dendritic cells (DCs) is evidenced by the fact that they are essential for the elimination of pathogens. Although in vitro DCs can be generated by treatment of monocytes with GM-CSF and IL-4, it is unknown what stimuli induce differentiation of DCs in vivo. CD137L-DCs are human monocyte-derived DC that are generated by CD137 ligand (CD137L) signaling. We demonstrate that the gene signature of in vitro generated CD137L-DCs is most similar to those of GM-CSF and IL-4-generated immature DCs and of macrophages. This is reminiscent of in vivo inflammatory DC which also have been reported to share gene signatures with monocyte-derived DCs and macrophages. Performing direct comparison of deposited human gene expression data with a CD137L-DC dataset revealed a significant enrichment of CD137L-DC signature genes in inflammatory in vivo DCs. In addition, surface marker expression and cytokine secretion by CD137L-DCs resemble closely those of inflammatory DCs. Further, CD137L-DCs express high levels of adhesion molecules, display strong attachment, and employ the adhesion molecule ALCAM to stimulate T cell proliferation. This study characterizes the gene expression profile of CD137L-DCs, and identifies significant similarities of CD137L-DCs with in vivo inflammatory monocyte-derived DCs and macrophages.
Collapse
Affiliation(s)
- Zulkarnain Harfuddin
- Department of Physiology, National University of Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Bhushan Dharmadhikari
- Department of Physiology, National University of Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Siew Cheng Wong
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Michael Poidinger
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Shaqireen Kwajah
- Department of Physiology, National University of Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, National University of Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
27
|
Dharmadhikari B, Wu M, Abdullah NS, Rajendran S, Ishak ND, Nickles E, Harfuddin Z, Schwarz H. CD137 and CD137L signals are main drivers of type 1, cell-mediated immune responses. Oncoimmunology 2015; 5:e1113367. [PMID: 27141396 DOI: 10.1080/2162402x.2015.1113367] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022] Open
Abstract
CD137 is expressed on activated T cells and NK cells, among others, and is a potent co-stimulator of antitumor immune responses. CD137 ligand (CD137L) is expressed by antigen presenting cells (APC), and CD137L reverse signaling into APC enhances their activity. CD137-CD137L interactions as main driver of type 1, cell-mediated immune responses explains the puzzling observation that CD137 agonists which enhance antitumor immune responses also ameliorate autoimmune diseases. Upon co-stimulation by CD137, Th1 CD4+ T cells together with Tc1 CD8+ T cells and NK cells inhibit other T cell subsets, thereby promoting antitumor responses and mitigating non-type 1 auto-immune diseases.
Collapse
Affiliation(s)
- Bhushan Dharmadhikari
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Meihui Wu
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Nur Sharalyn Abdullah
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Sakthi Rajendran
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Nur Diana Ishak
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Emily Nickles
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Zulkarnain Harfuddin
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
28
|
Shao Z, Harfuddin Z, Pang WL, Nickles E, Koh LK, Schwarz H. Trogocytic CD137 transfer causes an internalization of CD137 ligand on murine APCs leading to reduced T cell costimulation. J Leukoc Biol 2015; 97:909-919. [DOI: 10.1189/jlb.3a0213-079rrr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
CD137 ligand (CD137L) is expressed on APCs and crosslinks CD137, a powerful costimulatory molecule on T cells during cognate interactions, and thereby greatly enhances immune responses. We report that CD137 can be transferred from activated T cells and from tumor cells that express CD137 to other cells via trogocytosis. This trogocytic transfer is independent of CD137L expression by the recipient cell. However, if CD137L is present on the recipient cell, the transferred CD137 binds to CD137L and the CD137-CD137L complex becomes internalized. The removal of CD137L from the surface of APCs lowers their ability to costimulate T cells, as evidenced by a reduced IFN-γ secretion. Removal of CD137L on APCs by trogocytic transfer of CD137 occurs within 1 h and requires cell-cell contact and the continuous presence of CD137-expressing cells. Bidirectional signaling exists for the CD137 receptor/ligand system, because CD137L also signals into APCs. We propose that the trogocytic transfer of CD137 from activated T cells to APCs and the subsequent removal of CD137L from APCs is a physiologic regulatory mechanism that limits immune activity. Furthermore, we hypothesize that the trogocytic transfer of CD137 occurs in cancers and quenches the activity of APCs, contributing to the cancer cells escaping immune surveillance. Taken together, our findings demonstrate that the trogocytic transfer of CD137 leads to an internalization of CD137L on APCs and a reduction in immune activity.
Collapse
Affiliation(s)
- Zhe Shao
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Zulkarnain Harfuddin
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore , Singapore
| | - Wan Lu Pang
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Emily Nickles
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Liang Kai Koh
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Herbert Schwarz
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore , Singapore
| |
Collapse
|
29
|
CD137 ligand-mediated reverse signaling inhibits proliferation and induces apoptosis in non-small cell lung cancer. Med Oncol 2015; 32:44. [DOI: 10.1007/s12032-015-0499-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
30
|
Differential effects of agonistic 4-1BB (CD137) monoclonal antibody on the maturation and functions of hypoxic dendritic cells. Int Immunopharmacol 2014; 23:609-16. [PMID: 25466269 DOI: 10.1016/j.intimp.2014.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 11/20/2022]
Abstract
Agonistic 4-1BB monoclonal antibody (mAb), a promising approach for tumor immunotherapy, has entered clinical trials for some tumors due to its immunostimulatory effects on immune cells. Hypoxia, the hallmark of tumor microenvironment, influences functions of immune cells including dendritic cells (DCs). It remains unestablished whether 4-1BB mAb takes effects on DCs in hypoxic microenvironment. This study aims to examine the role of agonistic 4-1BB mAb in the maturation and functions of murine hypoxic DCs. As expected, hypoxia suppressed the maturation and activation of DCs, as suggested by down-regulation of class II MHC, co-stimulatory molecules and proinflammatory cytokines. These inhibitory effects of hypoxia were partially reversed by triggering 4-1BB on DCs with agonistic mAb, as evidenced by elevated co-stimulatory molecules CD80, CD86, and proinflammatory cytokines such as IL-6, TNF-α. Unexpectedly, the ability of hypoxic DCs to stimulate CD4+T cell proliferation seemed not to be affected by agonistic 4-1BB mAb. These data demonstrate that agonistic 4-1BB mAb partially restores the phenotypic maturation and proinflammatory function of hypoxic DCs, but fails to rescue their ability to stimulate T cell response. Collectively, our study provides evidence on the efficiency of agonistic 4-1BB mAb in hypoxic microenvironment, deserving of further consideration for clinic application.
Collapse
|
31
|
Tang Q, Jiang D, Harfuddin Z, Cheng K, Moh MC, Schwarz H. Regulation of myelopoiesis by CD137L signaling. Int Rev Immunol 2014; 33:454-69. [PMID: 24941289 DOI: 10.3109/08830185.2014.921163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD137 ligand (CD137L) has emerged as a powerful regulator of myelopoiesis that links emergency situations, such as infections, to the generation of additional myeloid cells, and to their activation and maturation. CD137L is expressed on the cell surface of hematopoietic stem and progenitor cells (HSPC) and antigen presenting cells (APC) as a transmembrane protein. The signaling of CD137L into HSPC induces their proliferation and differentiation to monocytes and macrophages, and in monocytes CD137L signaling induces differentiation to potent dendritic cells (DC). CD137L signaling is initiated by CD137 which is expressed by T cells, once they become activated. Some of these activated, CD137-expressing T cells migrate from the site of infection to the bone marrow where they interact with HSPC to induce myelopoiesis, or they induce monocyte to DC differentiation locally at the site of infection. Therapeutically, induction of CD137L signaling can be utilized to reinitiate myeloid differentiation in acute myeloid leukemia cells, and to generate potent DC for immunotherapy.
Collapse
|
32
|
Tang Q, Koh LK, Jiang D, Schwarz H. CD137 ligand reverse signaling skews hematopoiesis towards myelopoiesis during aging. Aging (Albany NY) 2014; 5:643-52. [PMID: 23945137 PMCID: PMC3808697 DOI: 10.18632/aging.100588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CD137 is a costimulatory molecule expressed on activated T cells. Its ligand, CD137L, is expressed on the surface of hematopoietic progenitor cells, and upon binding to CD137 induces reverse signaling into hematopoietic progenitor cells promoting their activation, proliferation and myeloid differentiation. Since aging is associated with an increasing number of myeloid cells we investigated the role of CD137 and CD137L on myelopoiesis during aging. Comparing 3 and 12 months old WT, CD137−/− and CD137L−/− mice we found significantly more granulocytes and monocytes in the bone marrow of older WT mice, while this age-dependent increase was absent in CD137−/− and CD137L−/− mice. Instead, the bone marrow of 12 months old CD137−/− and CD137L−/− mice was characterized by an accumulation of hematopoietic progenitor cells, suggesting that the differentiation of hematopoietic progenitor cells became arrested in the absence of CD137L signaling. CD137L signaling is initiated by activated CD137-expressing, CD4+ T cells. These data identify a novel molecular mechanisms underlying immune aging by demonstrating that CD137-expressing CD4+ T cells in the bone marrow engage CD137L on hematopoietic progenitor cells, and that this CD137L signaling biases hematopoiesis towards myelopoiesis during aging.
Collapse
|
33
|
Yang LC, Hsieh CC, Lu TJ, Lin WC. Structurally characterized arabinogalactan from Anoectochilus formosanus as an immuno-modulator against CT26 colon cancer in BALB/c mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:647-655. [PMID: 24315348 DOI: 10.1016/j.phymed.2013.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/31/2013] [Indexed: 06/02/2023]
Abstract
In this study, the innate immuno-modulatory effects and anti-cancer action of arabinogalactan (AG), a derivative of a well-known orchid, Anoectochilus formosanus, were investigated. The innate immuno-modulatory effects of AG were determined in vitro using RAW 264.7 cells for microarray analysis, and in vivo using BALB/c mice administrated with AG at 5 and 15 mg/kg intra-peritoneally for 3 weeks. The anti-cancer activity of AG was evaluated by CT26 colon cancer-bearing BALB/c mice. The microarray analysis was performed to evaluate the innate immunity and demonstrated that AG significantly induced the expression of cytokines, chemokines, and co-stimulatory receptors, such as IL-1α, CXCL2, and CD69. An intraperitoneal injection of AG in mice increased the spleen weight, but not the body weight. The treatment of mitogen, LPS significantly stimulated splenocyte proliferation in AG treated groups. The AG treatment also promoted splenocyte cytotoxicity against YAC-1 cells and increased the percentage of CD3(+)CD8(+) cytotoxic T cells in innate immunity test. Our experiments revealed that AG significantly decreased both tumour size and tumour weight. Besides, AG increased the percentage of DC, CD3(+)CD8(+) T cells, CD49b(+)CD3(-) NK cells among splenocytes, and cytotoxicity activity in tumour-bearing mice. In addition, the immunohistochemistry of the tumour demonstrated that the AG treatments increased the tumour-filtrating NK and cytotoxic T-cell. These results demonstrated that AG, a polysaccharide derived from a plant source, has potent innate immuno-modulatory and anti-cancer activity. AG may therefore be used for cancer immunotherapy.
Collapse
Affiliation(s)
- Li-Chan Yang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chang-Chi Hsieh
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Ting-Jang Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wen-Chuan Lin
- School of Medicine, Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
34
|
Cheng K, Wong SC, Linn YC, Ho LP, Chng WJ, Schwarz H. CD137 ligand signalling induces differentiation of primary acute myeloid leukaemia cells. Br J Haematol 2014; 165:134-44. [PMID: 24428589 DOI: 10.1111/bjh.12732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023]
Abstract
CD137 ligand (CD137L), a member of the tumour necrosis factor family, is expressed as a cell surface molecule. Engagement of CD137L on haematopoietic progenitor cells induces monocytic differentiation, and in peripheral monocytes CD137L signalling promotes differentiation to mature dendritic cells. We hypothesized that CD137L signalling would also induce differentiation in transformed myeloid cells. Here we show that recombinant CD137 protein, which crosslinks CD137L and initiates reverse CD137L signalling in myeloid cells, induces morphological changes (adherence, spreading), loss of progenitor markers (CD117), expression of maturation markers (CD11b, CD13) and secretion of cytokines that are indicative of myeloid differentiation. Under the influence of CD137L signalling, acute myeloid leukaemia (AML) cells acquired expression of co-stimulatory molecules (CD80, CD86, CD40), the dendritic cell marker CD83 and dendritic cell activities, enabling them to stimulate T cells. CD137L signalling induced differentiation in 71% (15 of 21) of AML samples, irrespective of French-American-British classification and CD137L expression level. However, the type of response varied with the AML subtype and patient sample. In summary, this study demonstrated that CD137L signalling induced differentiation in malignant cells of AML patients, and suggests that it may be worthwhile to investigate treatment with recombinant CD137 protein as a potential novel therapeutic approach for AML.
Collapse
Affiliation(s)
- Kin Cheng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | | | | | | | | | | |
Collapse
|
35
|
Juhász K, Buzás K, Duda E. Importance of reverse signaling of the TNF superfamily in immune regulation. Expert Rev Clin Immunol 2014; 9:335-48. [DOI: 10.1586/eci.13.14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Harfuddin Z, Kwajah S, Chong Nyi Sim A, Macary PA, Schwarz H. CD137L-stimulated dendritic cells are more potent than conventional dendritic cells at eliciting cytotoxic T-cell responses. Oncoimmunology 2013; 2:e26859. [PMID: 24482752 DOI: 10.4161/onci.26859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/06/2023] Open
Abstract
Dendritic cells (DCs) are highly potent initiators of adaptive immune responses and, as such, represent promising tools for immunotherapeutic applications. Despite their potential, the current efficacy of DC-based immunotherapies is poor. CD137 ligand (CD137L) signaling has been used to derive a novel type of DCs from human peripheral blood monocytes, termed CD137L-DCs. Here, we report that CD137L-DCs induce more potent cytotoxic T-cell responses than classical DCs (cDCs). Furthermore, in exploring several DC maturation factors for their ability to enhance the potency of CD137L-DCs, we found the combination of interferon γ (IFNγ) and the mixed Toll-like receptor (TLR)7/8 agonist R848, to display the highest efficacy in potentiating the T-cell co-stimulatory activity of CD137L-DCs. Of particular importance, CD137L-DCs were found to be more efficient than cDCs in activating autologous T cells targeting the cytomegalovirus (CMV)-derived protein pp65. Specifically, CD137L-DC-stimulated T cells were found to secrete higher levels of IFNγ and killed 2-3 times more HLA-matched, pp65-pulsed target cells than T cells activated by cDCs. Finally, in addition to stimulating CD8+ T cells, CD137L-DCs efficiently activated CD4+ T cells. Taken together, these findings demonstrate the superior potency of CD137L-stimulated DCs in activating CMV-specific, autologous T cells, and encourage the further development of CD137L-DCs for antitumor immunotherapy.
Collapse
Affiliation(s)
- Zulkarnain Harfuddin
- Department of Physiology; National University of Singapore; Singapore ; Immunology Programme; National University of Singapore; Singapore ; NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| | - Shaqireen Kwajah
- Department of Physiology; National University of Singapore; Singapore
| | - Adrian Chong Nyi Sim
- Department of Microbiology; National University of Singapore; Singapore ; Immunology Programme; National University of Singapore; Singapore
| | - Paul Anthony Macary
- Department of Microbiology; National University of Singapore; Singapore ; Immunology Programme; National University of Singapore; Singapore ; NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| | - Herbert Schwarz
- Department of Physiology; National University of Singapore; Singapore ; Immunology Programme; National University of Singapore; Singapore ; NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| |
Collapse
|
37
|
Moh MC, Lorenzini PA, Gullo C, Schwarz H. Tumor necrosis factor receptor 1 associates with CD137 ligand and mediates its reverse signaling. FASEB J 2013; 27:2957-66. [PMID: 23620528 DOI: 10.1096/fj.12-225250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reverse signaling through CD137 ligand (CD137L) potently activates monocytes. However, the underlying mechanism is not well elucidated. This study provides evidence that tumor necrosis factor receptor 1 (TNFR1) acts as a coreceptor for CD137L and mediates CD137L signaling. CD137L colocalizes with TNFR1 on the plasma membrane and binds directly to TNFR1 via its extracellular domain. Using the human monocytic THP-1 cell line, we demonstrate that engagement of CD137L by recombinant CD137 protein promotes cell adhesion, apoptosis, expression of CD14, and production of IL-8 and tumor necrosis factor (TNF). Concomitantly, the expression of TNFR1 protein is down-regulated in response to CD137L activation, due to enhanced extracellular release and internalization of TNFR1. Activation of TNFR1 by TNF protein additively augments CD137L-induced IL-8 expression. Conversely, inhibition of TNFR1 activity by a TNFR1-neutralizing antibody inhibits CD137L-mediated cell adhesion, cell death, CD14 expression, and IL-8 production. Taken together, these data show that TNFR1 associates with CD137L and is required for CD137L reverse signaling.
Collapse
Affiliation(s)
- Mei Chung Moh
- Department of Physiology, Duke–National University of Singapore Graduate Medical School, Singapore, Singapore
| | | | | | | |
Collapse
|
38
|
Tang Q, Jiang D, Alonso S, Pant A, Martínez Gómez JM, Kemeny DM, Chen L, Schwarz H. CD137 ligand signaling enhances myelopoiesis during infections. Eur J Immunol 2013; 43:1555-67. [DOI: 10.1002/eji.201243071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/30/2013] [Accepted: 03/15/2013] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | - Lieping Chen
- Department of Immunobiology; Yale University School of Medicine; New Haven; CT; USA
| | | |
Collapse
|
39
|
Ho WT, Pang WL, Chong SM, Castella A, Al-Salam S, Tan TE, Moh MC, Koh LK, Gan SU, Cheng CK, Schwarz H. Expression of CD137 on Hodgkin and Reed–Sternberg Cells Inhibits T-cell Activation by Eliminating CD137 Ligand Expression. Cancer Res 2012. [DOI: 10.1158/0008-5472.can-12-3849] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Yeo YA, Martínez Gómez JM, Croxford JL, Gasser S, Ling EA, Schwarz H. CD137 ligand activated microglia induces oligodendrocyte apoptosis via reactive oxygen species. J Neuroinflammation 2012; 9:173. [PMID: 22799524 PMCID: PMC3420242 DOI: 10.1186/1742-2094-9-173] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/16/2012] [Indexed: 11/10/2022] Open
Abstract
CD137 (4-1BB, TNFRSF9), a member of the tumor necrosis factor (TNF) receptor family, is a potent T cell co-stimulatory molecule. CD137 ligand (CD137L) is expressed by antigen presenting cells (APC) as a transmembrane protein and transmits activating signals into APC. In this study we investigated the effects of CD137L signaling in microglia, the resident APC in the central nervous system. In vitro, the murine microglia cell lines BV-2 and N9, as well as primary murine microglia responded with activation as evidenced by adherence and secretion of proinflammatory cytokines, MMP-9, and soluble intercellular adhesion molecule (ICAM). CD137L signaling is also important for microglia activation in vivo, since CD137L-deficient mice exhibited profoundly less microglia activation during experimental autoimmune encephalomyelitis (EAE) which is a well-established murine model for neuroinflammation and human multiple sclerosis (MS). Also CD137 is expressed in the CNS of mice during EAE. Activated microglia has been reported to mediate the destruction of axonal myelin sheaths and cause the death of oligodendrocytes, the main pathogenic mechanisms in EAE and MS. Corresponding to the lower microglia activation there were also fewer apoptotic oligodendrocytes in the CNS of CD137L-deficient mice. In vitro co-culture confirmed that CD137L-activated microglia induces apoptosis in oligodendrocytes, and identified reactive oxygen species as the mechanism of apoptosis induction. These data demonstrate activating effects of CD137L signaling to microglia, and show for the first time that the CD137 receptor/ligand system may be a mediator of neuroinflammatory and neurodegenerative disease, by activating microglia which in turn kill oligodendrocytes.
Collapse
Affiliation(s)
- Yee Andy Yeo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive #14-02T, Singapore, 117599, Singapore
| | | | | | | | | | | |
Collapse
|
41
|
Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J. Altered T cell responses in children with autism. Brain Behav Immun 2011; 25:840-9. [PMID: 20833247 PMCID: PMC3039713 DOI: 10.1016/j.bbi.2010.09.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/04/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022] Open
Abstract
Autism spectrum disorders (ASD) are characterized by impairment in social interactions, communication deficits, and restricted repetitive interests and behaviors. A potential etiologic role for immune dysfunction in ASD has been suggested. Dynamic adaptive cellular immune function was investigated in 66 children with a confirmed diagnosis of ASD and 73 confirmed typically developing (TD) controls 2-5 years-of-age. In vitro stimulation of peripheral blood mononuclear cells with PHA and tetanus was used to compare group-associated cellular responses. The production of GM-CSF, TNFα, and IL-13 were significantly increased whereas IL-12p40 was decreased following PHA stimulation in ASD relative to TD controls. Induced cytokine production was associated with altered behaviors in ASD children such that increased pro-inflammatory or T(H)1 cytokines were associated with greater impairments in core features of ASD as well as aberrant behaviors. In contrast, production of GM-CSF and T(H)2 cytokines were associated with better cognitive and adaptive function. Following stimulation, the frequency of CD3(+), CD4(+) and CD8(+) T cells expressing activation markers CD134 and CD25 but not CD69, HLA-DR or CD137 were significantly reduced in ASD, and suggests an altered activation profile for T cells in ASD. Overall these data indicate significantly altered adaptive cellular immune function in children with ASD that may reflect dysfunctional immune activation, along with evidence that these perturbations may be linked to disturbances in behavior and developmental functioning. Further longitudinal analyzes of cellular immunity profiles would delineate the relationship between immune dysfunction and the progression of behavioral and developmental changes throughout the course of this disorder.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California at Davis, CA, USA.
| | - Paula Krakowiak
- Department of Public Health Sciences, Division of Epidemiology, University of California, Davis, CA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, Division of Epidemiology, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| | - Robin Hansen
- Department of Pediatrics, School of Medicine, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| |
Collapse
|
42
|
Positive correlation between CD137 expression and complex stenosis morphology in patients with acute coronary syndromes. Clin Chim Acta 2011; 412:993-8. [PMID: 21396356 DOI: 10.1016/j.cca.2011.02.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 11/23/2022]
Abstract
BACKGROUND CD137, a member of the tumor necrosis factor receptor superfamily, has been reported to be expressed highly in patients with acute coronary syndromes. However, limited information is available on the relationship between CD137 expression and complex stenosis morphology in patients with acute coronary syndromes. METHODS Our study included normal controls (n=50), patients with stable angina (SA) (n=80) and patients with acute coronary syndromes (ACS), including unstable angina (UA) (n=70) and acute myocardial infarction (AMI) (n=100). The expression of CD137 in peripheral monocytes was analyzed by flow cytometry. Serum soluble CD137 (sCD137), MMP-9 and MMP-3 levels were measured by enzyme-linked immunosorbent assay kit. All coronary stenoses with ≥50% diameter reduction were assessed by angiographic coronary stenosis morphology. RESULTS Patients with ACS(n=170) showed a significant increase of CD137 [23.6±5.7 mean fluorescence intensity (MFI)] expression in peripheral monocytes compared with control (8.4±2.6 MFI) and SA group (7.9±2.1 MFI) (p<0.001). sCD137 also showed higher level in patients with ACS(30.2±8.7 ng/ml) than in control (6.2±1.8 ng/ml) and SA group (7.1±2.1 ng/ml) (p<0.001). Serum MMP-3 and MMP-9 in patients with ACS were 2-times greater than those in control and SA group. A positive correlation was found between MMP-9, MMP-3 and CD137 expression in peripheral monocytes as well as sCD137 levels. An obvious correlation was also observed between soluble or membrane-bound CD137 expression and complex coronary stenoses (r1=0.5548, r2=0.4652, and p<0.001). In the logistic regression model, the independent predictors of ACS were sCD137 (odds ratio 2.671, 95% CI 1.718-4.153, P=0.000), MMP-9 (1.431, 1.043-1.964, P=0.026) and MMP-3 (1.368, 1.038-1.817, P=0.018). CONCLUSION Patients with ACS showed significantly positive correlation between CD137 expression and complex coronary stenosis morphology. We speculate that the increased CD137 expression might represent or reflect an instability of atherosclerotic plaques in patients with ACS.
Collapse
|
43
|
Tang Q, Jiang D, Shao Z, Martínez Gómez JM, Schwarz H. Species difference of CD137 ligand signaling in human and murine monocytes. PLoS One 2011; 6:e16129. [PMID: 21264248 PMCID: PMC3021528 DOI: 10.1371/journal.pone.0016129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/12/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Stimulation of CD137 ligand on human monocytes has been shown to induce DC differentiation, and these CD137L-DCs are more potent than classical DCs, in stimulating T cell responses in vitro. To allow an in vivo evaluation of the potency of CD137L-DCs in murine models we aimed at generating murine CD137L-DCs. METHODOLOGY/PRINCIPAL FINDINGS When stimulated through CD137 ligand murine monocytes responded just as human monocytes with an increased adherence, morphological changes, proliferation and an increase in viable cell numbers. But CD137 ligand signaling did not induce expression of inflammatory cytokines and costimulatory molecules in murine monocytes and these cells had no T cell stimulatory activity. Murine monocytes did not differentiate to inflammatory DCs upon CD137 ligand signaling. Furthermore, while CD137 ligand signaling induces maturation of human immature classical DCs it failed to do so with murine immature classical DCs. CONCLUSIONS/SIGNIFICANCE These data demonstrate that both human and murine monocytes become activated by CD137 ligand signaling but only human and not murine monocytes differentiate to inflammatory DCs.
Collapse
Affiliation(s)
- Qianqiao Tang
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Dongsheng Jiang
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhe Shao
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julia M. Martínez Gómez
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
44
|
Jiang D, Schwarz H. Regulation of granulocyte and macrophage populations of murine bone marrow cells by G-CSF and CD137 protein. PLoS One 2010; 5:e15565. [PMID: 21179444 PMCID: PMC3001479 DOI: 10.1371/journal.pone.0015565] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 11/12/2010] [Indexed: 11/25/2022] Open
Abstract
Background Granulocytes and monocytes/macrophages differentiate from common myeloid progenitor cells. Granulocyte colony-stimulating factor (G-CSF) and CD137 (4-1BB, TNFRSF9) are growth and differentiation factors that induce granulocyte and macrophage survival and differentiation, respectively. This study describes the influence of G-CSF and recombinant CD137-Fc protein on myelopoiesis. Methodology/Principal Findings Both, G-CSF and CD137 protein support proliferation and survival of murine bone marrow cells. G-CSF enhances granulocyte numbers while CD137 protein enhances macrophage numbers. Both growth factors together give rise to more cells than each factor alone. Titration of G-CSF and CD137 protein dose-dependently changes the granulocyte/macrophage ratio in bone marrow cells. Both factors individually induce proliferation of hematopoietic progenitor cells (lin-, c-kit+) and differentiation to granulocytes and macrophages, respectively. The combination of G-CSF and CD137 protein further increases proliferation, and results in a higher number of macrophages than CD137 protein alone, and a lower number of granulocytes than G-CSF alone demonstrating that CD137 protein-induced monocytic differentiation is dominant over G-CSF-induced granulocytic differentiation. CD137 protein induces monocytic differentiation even in early hematopoietic progenitor cells, the common myeloid progenitors and the granulocyte macrophage progenitors. Conclusions/Significance This study confirms earlier data on the regulation of myelopoiesis by CD137 receptor - ligand interaction, and extends them by demonstrating the restriction of this growth promoting influence to the monocytic lineage.
Collapse
Affiliation(s)
- Dongsheng Jiang
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
45
|
Shao Z, Schwarz H. CD137 ligand, a member of the tumor necrosis factor family, regulates immune responses via reverse signal transduction. J Leukoc Biol 2010; 89:21-9. [PMID: 20643812 DOI: 10.1189/jlb.0510315] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
CD137 (4-1BB, TNFR superfamily 9) and its ligand are members of the TNFR and TNF families, respectively, and are involved in the regulation of a wide range of immune activities. CD137 ligand cross-links its receptor, CD137, which is expressed on activated T cells, and costimulates T cell activities. CD137 ligand can also be expressed as a transmembrane protein on the cell surface and transmit signals into the cells on which it is expressed (reverse signaling). CD137 ligand expression is found on most types of leukocytes and on some nonimmune cells. In monocytic cells (monocytes, macrophages, and DCs), CD137 ligand signaling induces activation, migration, survival, and differentiation. The activities of T cells, B cells, hematopoietic progenitor cells, and some malignant cells are also influenced by CD137 ligand, but the physiological significance is understood only partly. As CD137 and CD137 ligand are regarded as valuable targets for immunotherapy, it is pivotal to determine which biological effects are mediated by which of the 2 molecules.
Collapse
Affiliation(s)
- Zhe Shao
- Department of Physiology and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|