1
|
Liu R, Zhang J, Chen S, Xiao Y, Hu J, Zhou Z, Xie L. Intestinal mucosal immunity and type 1 diabetes: Non-negligible communication between gut and pancreas. Diabetes Obes Metab 2025; 27:1045-1064. [PMID: 39618164 PMCID: PMC11802406 DOI: 10.1111/dom.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 02/08/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated pancreatic β cell loss, resulting in lifelong absolute insulin deficiency and hyperglycaemia. Environmental factors are recognized as a key contributor to the development of T1D, with the gut serving as a primary interface for environmental stimuli. Recent studies have revealed that the alterations in the intestinal microenvironment profoundly affect host immune responses, contributing to the aetiology and pathogenesis of T1D. However, the dominant intestinal immune cells and the underlying mechanisms remain incompletely elucidated. In this review, we provide an overview of the possible mechanisms of the intestinal mucosal system that underpin the pathogenesis of T1D, shedding light on the roles of both non-classical and classical immune cells in T1D. Our goal is to gain insights into how modulating these immune components may hold potential implications for T1D prevention and provide novel perspectives for immune-mediated therapy.
Collapse
Affiliation(s)
- Ruonan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jing Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
2
|
Yosri M, Dokhan M, Aboagye E, Al Moussawy M, Abdelsamed HA. Mechanisms governing bystander activation of T cells. Front Immunol 2024; 15:1465889. [PMID: 39669576 PMCID: PMC11635090 DOI: 10.3389/fimmu.2024.1465889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
The immune system is endowed with the capacity to distinguish between self and non-self, so-called immune tolerance or "consciousness of the immune system." This type of awareness is designed to achieve host protection by eliminating cells expressing a wide range of non-self antigens including microbial-derived peptides. Such a successful immune response is associated with the secretion of a whole spectrum of soluble mediators, e.g., cytokines and chemokines, which not only contribute to the clearance of infected host cells but also activate T cells that are not specific to the original cognate antigen. This kind of non-specific T-cell activation is called "bystander activation." Although it is well-established that this phenomenon is cytokine-dependent, there is evidence in the literature showing the involvement of peptide/MHC recognition depending on the type of T-cell subset (naive vs. memory). Here, we will summarize our current understanding of the mechanism(s) of bystander T-cell activation as well as its biological significance in a wide range of diseases including microbial infections, cancer, auto- and alloimmunity, and chronic inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Mohamed Dokhan
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
| | - Elizabeth Aboagye
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
| | - Mouhamad Al Moussawy
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hossam A. Abdelsamed
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
- Department of Physiology, Augusta University, Augusta, GA, United States
| |
Collapse
|
3
|
Hansen CHF, Jozipovic D, Zachariassen LF, Nielsen DS, Hansen AK, Buschard K. Probiotic treatment with viable α-galactosylceramide-producing Bacteroides fragilis reduces diabetes incidence in female nonobese diabetic mice. J Diabetes 2024; 16:e13593. [PMID: 39136533 PMCID: PMC11320754 DOI: 10.1111/1753-0407.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/02/2024] [Accepted: 05/23/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND We aimed to investigate whether alpha-galactosylceramide (α-GalCer)-producing Bacteroides fragilis could induce natural killer T (NKT) cells in nonobese diabetic (NOD) mice and reduce their diabetes incidence. METHODS Five-week-old female NOD mice were treated orally with B. fragilis, and islet pathology and diabetes onset were monitored. Immune responses were analyzed by flow cytometry and multiplex technology. Effects of ultraviolet (UV)-killed α-GalCer-producing B. fragilis and their culture medium on invariant NKT (iNKT) cells were tested ex vivo on murine splenocytes, and the immunosuppressive capacity of splenocytes from B. fragilis-treated NOD mice were tested by adoptive transfer to nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. RESULTS B. fragilis reduced the diabetes incidence from 69% to 33% and the percent of islets with insulitis from 40% to 7%, which doubled the serum insulin level compared with the vehicle-treated control mice. Furthermore, the early treatment reduced proinflammatory mediators in the serum, whereas the proportion of CD4+ NKT cell population was increased by 33%. B. fragilis growth media stimulated iNKT cells and anti-inflammatory M2 macrophages ex vivo in contrast to UV-killed bacteria, which had no effect, strongly indicating an α-GalCer-mediated effect. Adoptive transfer of splenocytes from B. fragilis-treated NOD mice induced a similar diabetes incidence as splenocytes from untreated NOD mice. CONCLUSIONS B. fragilis induced iNKT cells and M2 macrophages and reduced type 1 diabetes in NOD mice. The protective effect seemed to be more centered on gut-pancreas interactions rather than a systemic immunosuppression. B. fragilis should be considered for probiotic use in individuals at risk of developing type 1 diabetes.
Collapse
Affiliation(s)
- Camilla H. F. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Danica Jozipovic
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Line F. Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark
| | - Axel K. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Karsten Buschard
- Department of PathologyThe Bartholin Institute, RigshospitaletCopenhagenDenmark
| |
Collapse
|
4
|
Akhter S, Tasnim FM, Islam MN, Rauf A, Mitra S, Emran TB, Alhumaydhi FA, Khalil AA, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M. Role of Th17 and IL-17 Cytokines on Inflammatory and Auto-immune Diseases. Curr Pharm Des 2023; 29:2078-2090. [PMID: 37670700 DOI: 10.2174/1381612829666230904150808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND The IL-17 (interleukin 17) family consists of six structurally related pro-inflammatory cytokines, namely IL-17A to IL-17F. These cytokines have garnered significant scientific interest due to their pivotal role in the pathogenesis of various diseases. Notably, a specific subset of T-cells expresses IL-17 family members, highlighting their importance in immune responses against microbial infections. INTRODUCTION IL-17 cytokines play a critical role in host defense mechanisms by inducing cytokines and chemokines, recruiting neutrophils, modifying T-cell differentiation, and stimulating the production of antimicrobial proteins. Maintaining an appropriate balance of IL-17 is vital for overall health. However, dysregulated production of IL-17A and other members can lead to the pathogenesis of numerous inflammatory and autoimmune diseases. METHOD This review provides a comprehensive overview of the IL-17 family and its involvement in several inflammatory and autoimmune diseases. Relevant literature and research studies were analyzed to compile the data presented in this review. RESULTS IL-17 cytokines, particularly IL-17A, have been implicated in the development of various inflammatory and autoimmune disorders, including multiple sclerosis, Hashimoto's thyroiditis, systemic lupus erythematosus, pyoderma gangrenosum, autoimmune hepatic disorders, rheumatoid arthritis, psoriasis, psoriatic arthritis, ankylosing spondylitis, osteoarthritis, and graft-versus-host disease. Understanding the role of IL-17 in these diseases is crucial for developing targeted therapeutic strategies. CONCLUSION The significant involvement of IL-17 cytokines in inflammatory and autoimmune diseases underscores their potential as therapeutic targets. Current treatments utilizing antibodies against IL-17 cytokines and IL-17RA receptors have shown promise in managing these conditions. This review consolidates the understanding of IL-17 family members and their roles, providing valuable insights for the development of novel immunomodulators to effectively treat inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Saima Akhter
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Farhin Muntaha Tasnim
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritionals Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Abstract
Autoimmune disease is known to be caused by unregulated self-antigen-specific T cells, causing tissue damage. Although antigen specificity is an important mechanism of the adaptive immune system, antigen non-related T cells have been found in the inflamed tissues in various conditions. Bystander T cell activation refers to the activation of T cells without antigen recognition. During an immune response to a pathogen, bystander activation of self-reactive T cells via inflammatory mediators such as cytokines can trigger autoimmune diseases. Other antigen-specific T cells can also be bystander-activated to induce innate immune response resulting in autoimmune disease pathogenesis along with self-antigen-specific T cells. In this review, we summarize previous studies investigating bystander activation of various T cell types (NKT, γδ T cells, MAIT cells, conventional CD4+, and CD8+ T cells) and discuss the role of innate-like T cell response in autoimmune diseases. In addition, we also review previous findings of bystander T cell function in infection and cancer. A better understanding of bystander-activated T cells versus antigen-stimulated T cells provides a novel insight to control autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Chae-Hyeon Shim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sookyung Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young-Mi Shin
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Institute for Rheumatology Research, Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
6
|
Shim CH, Cho S, Shin YM, Choi JM. Emerging role of bystander T cell activation in autoimmune diseases. BMB Rep 2022; 55:57-64. [PMID: 35000675 PMCID: PMC8891623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 02/21/2025] Open
Abstract
Autoimmune disease is known to be caused by unregulated selfantigen-specific T cells, causing tissue damage. Although antigen specificity is an important mechanism of the adaptive immune system, antigen non-related T cells have been found in the inflamed tissues in various conditions. Bystander T cell activation refers to the activation of T cells without antigen recognition. During an immune response to a pathogen, bystander activation of self-reactive T cells via inflammatory mediators such as cytokines can trigger autoimmune diseases. Other antigen-specific T cells can also be bystander-activated to induce innate immune response resulting in autoimmune disease pathogenesis along with self-antigen-specific T cells. In this review, we summarize previous studies investigating bystander activation of various T cell types (NKT, γδ T cells, MAIT cells, conventional CD4+, and CD8+ T cells) and discuss the role of innate-like T cell response in autoimmune diseases. In addition, we also review previous findings of bystander T cell function in infection and cancer. A better understanding of bystander-activated T cells versus antigenstimulated T cells provides a novel insight to control autoimmune disease pathogenesis. [BMB Reports 2022; 55(2): 57-64].
Collapse
Affiliation(s)
- Chae-Hyeon Shim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sookyung Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young-Mi Shin
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Institute for Rheumatology Research, Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
7
|
Maas-Bauer K, Lohmeyer JK, Hirai T, Ramos TL, Fazal FM, Litzenburger UM, Yost KE, Ribado JV, Kambham N, Wenokur AS, Lin PY, Alvarez M, Mavers M, Baker J, Bhatt AS, Chang HY, Simonetta F, Negrin RS. Invariant natural killer T-cell subsets have diverse graft-versus-host-disease-preventing and antitumor effects. Blood 2021; 138:858-870. [PMID: 34036317 PMCID: PMC8432044 DOI: 10.1182/blood.2021010887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a T-cell subset with potent immunomodulatory properties. Experimental evidence in mice and observational studies in humans indicate that iNKT cells have antitumor potential as well as the ability to suppress acute and chronic graft-versus-host-disease (GVHD). Murine iNKT cells differentiate during thymic development into iNKT1, iNKT2, and iNKT17 sublineages, which differ transcriptomically and epigenomically and have subset-specific developmental requirements. Whether distinct iNKT sublineages also differ in their antitumor effect and their ability to suppress GVHD is currently unknown. In this work, we generated highly purified murine iNKT sublineages, characterized their transcriptomic and epigenomic landscape, and assessed specific functions. We show that iNKT2 and iNKT17, but not iNKT1, cells efficiently suppress T-cell activation in vitro and mitigate murine acute GVHD in vivo. Conversely, we show that iNKT1 cells display the highest antitumor activity against murine B-cell lymphoma cells both in vitro and in vivo. Thus, we report for the first time that iNKT sublineages have distinct and different functions, with iNKT1 cells having the highest antitumor activity and iNKT2 and iNKT17 cells having immune-regulatory properties. These results have important implications for the translation of iNKT cell therapies to the clinic for cancer immunotherapy as well as for the prevention and treatment of GVHD.
Collapse
Affiliation(s)
- Kristina Maas-Bauer
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
- Department of Hematology, Oncology, and Stem Cell Transplantation, University of Freiburg Medical Center, Freiburg, Germany
| | - Juliane K Lohmeyer
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | - Toshihito Hirai
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | - Teresa Lopes Ramos
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | | | | | | | | | | | - Arielle S Wenokur
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | - Po-Yu Lin
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | - Maite Alvarez
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | - Melissa Mavers
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
- Division of Stem Cell Transplantation and Regenerative Medicine, Bass Center for Childhood Cancer and Blood Diseases, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | - Ami S Bhatt
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
- Department of Genetics, and
- Division of Hematology and
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes
- Howard Hughes Medical Institute, Stanford University, Stanford, CA
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; and
- Translational Research Center for Oncohematology, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| |
Collapse
|
8
|
Bertrand L, Toubal A, Lehuen A. Macrophages make the bed for early iNKT cells. Nat Immunol 2021; 22:681-682. [PMID: 34040227 DOI: 10.1038/s41590-021-00938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Léo Bertrand
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Paris, France
| | - Amine Toubal
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Laboratoire d'Excellence Inflamex, Paris, France
| | - Agnès Lehuen
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France. .,Laboratoire d'Excellence Inflamex, Paris, France.
| |
Collapse
|
9
|
Foray AP, Dietrich C, Pecquet C, Machavoine F, Chatenoud L, Leite-de-Moraes M. IL-4 and IL-17 Are Required for House Dust Mite-Driven Airway Hyperresponsiveness in Autoimmune Diabetes-Prone Non-Obese Diabetic Mice. Front Immunol 2021; 11:595003. [PMID: 33643284 PMCID: PMC7904896 DOI: 10.3389/fimmu.2020.595003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
Allergic asthma is characterized by airway inflammation with a Th2-type cytokine profile, hyper-IgE production, mucus hypersecretion, and airway hyperreactivity (AHR). It is increasingly recognized that asthma is a heterogeneous disease implicating complex immune mechanisms resulting in distinct endotypes observed in patients. In this study, we showed that non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, undergo more severe allergic asthma airway inflammation and AHR than pro-Th2 BALB/c mice upon house dust mite (HDM) sensitization and challenge. The use of IL-4-deficient NOD mice and the in vivo neutralization of IL-17 demonstrated that both IL-4 and IL-17 are responsible by the exacerbated airway inflammation and AHR observed in NOD mice. Overall, our findings indicate that autoimmune diabetes-prone NOD mice might become useful as a new HDM-induced asthma model to elucidate allergic dysimmune mechanisms involving Th2 and Th17 responses that could better mimic some asthmatic endoytpes.
Collapse
Affiliation(s)
- Anne-Perrine Foray
- Université de Paris, Paris, France.,Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and Inserm UMR1151, Paris, France
| | - Céline Dietrich
- Université de Paris, Paris, France.,Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and Inserm UMR1151, Paris, France
| | - Coralie Pecquet
- Université de Paris, Paris, France.,Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and Inserm UMR1151, Paris, France
| | - François Machavoine
- Université de Paris, Paris, France.,Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and Inserm UMR1151, Paris, France
| | - Lucienne Chatenoud
- Université de Paris, Paris, France.,Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and Inserm UMR1151, Paris, France
| | - Maria Leite-de-Moraes
- Université de Paris, Paris, France.,Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and Inserm UMR1151, Paris, France
| |
Collapse
|
10
|
Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. Evaluating the Causal Role of Gut Microbiota in Type 1 Diabetes and Its Possible Pathogenic Mechanisms. Front Endocrinol (Lausanne) 2020; 11:125. [PMID: 32265832 PMCID: PMC7105744 DOI: 10.3389/fendo.2020.00125] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial autoimmune disease mediated by genetic, epigenetic, and environmental factors. In recent years, the emergence of high-throughput sequencing has allowed us to investigate the role of gut microbiota in the development of T1D. Significant changes in the composition of gut microbiome, also termed dysbiosis, have been found in subjects with clinical or preclinical T1D. However, whether the dysbiosis is a cause or an effect of the disease remains unclear. Currently, increasing evidence has supported a causal link between intestine microflora and T1D development. The current review will focus on recent research regarding the associations between intestine microbiome and T1D progression with an intention to evaluate the causality. We will also discuss the possible mechanisms by which imbalanced gut microbiota leads to the development of T1D.
Collapse
|
11
|
De Giorgi L, Sorini C, Cosorich I, Ferrarese R, Canducci F, Falcone M. Increased iNKT17 Cell Frequency in the Intestine of Non-Obese Diabetic Mice Correlates With High Bacterioidales and Low Clostridiales Abundance. Front Immunol 2018; 9:1752. [PMID: 30105027 PMCID: PMC6077215 DOI: 10.3389/fimmu.2018.01752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/16/2018] [Indexed: 11/17/2022] Open
Abstract
iNKT cells play different immune function depending on their cytokine-secretion phenotype. iNKT17 cells predominantly secrete IL-17 and have an effector and pathogenic role in the pathogenesis of autoimmune diseases such as type 1 diabetes (T1D). In line with this notion, non-obese diabetic (NOD) mice that spontaneously develop T1D have an increased percentage of iNKT17 cells compared to non-autoimmune strains of mice. The factors that regulate iNKT cell expansion and acquisition of a specific iNKT17 cell phenotype are unclear. Here, we demonstrate that the percentage of iNKT17 cells is increased in the gut more than peripheral lymphoid organs of NOD mice, thus suggesting that the intestinal environment promotes iNKT17 cell differentiation in these mice. Increased intestinal iNKT17 cell differentiation in NOD mice is associated with the presence of pro-inflammatory IL-6-secreting dendritic cells that could contribute to iNKT cell expansion and iNKT17 cell differentiation. In addition, we found that increased iNKT17 cell differentiation in the large intestine of NOD mice is associated with a specific gut microbiota profile. We demonstrated a positive correlation between percentage of intestinal iNKT17 cells and bacterial strain richness (α-diversity) and relative abundance of Bacterioidales strains. On the contrary, the relative abundance of the anti-inflammatory Clostridiales strains negatively correlates with the intestinal iNKT17 cell frequency. Considering that iNKT17 cells play a key pathogenic role in T1D, our data support the notion that modulation of iNKT17 cell differentiation through gut microbiota changes could have a beneficial effect in T1D.
Collapse
Affiliation(s)
- Lorena De Giorgi
- Experimental Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Sorini
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ilaria Cosorich
- Experimental Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Ferrarese
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Filippo Canducci
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marika Falcone
- Experimental Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Mendes-da-Cruz DA, Lemos JP, Passos GA, Savino W. Abnormal T-Cell Development in the Thymus of Non-obese Diabetic Mice: Possible Relationship With the Pathogenesis of Type 1 Autoimmune Diabetes. Front Endocrinol (Lausanne) 2018; 9:381. [PMID: 30050502 PMCID: PMC6052664 DOI: 10.3389/fendo.2018.00381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of insulin-producing cells in the pancreas, by direct interactions with autoreactive pancreas infiltrating T lymphocytes (PILs). One of the most important animal models for this disease is the non-obese diabetic (NOD) mouse. Alterations in the NOD mouse thymus during the pathogenesis of the disease have been reported. From the initial migratory disturbances to the accumulation of mature thymocytes, including regulatory Foxp3+ T cells, important mechanisms seem to regulate the repertoire of T cells that leave the thymus to settle in peripheral lymphoid organs. A significant modulation of the expression of extracellular matrix and soluble chemoattractant molecules, in addition to integrins and chemokine receptors, may contribute to the progressive accumulation of mature thymocytes and consequent formation of giant perivascular spaces (PVS) that are observed in the NOD mouse thymus. Comparative large-scale transcriptional expression and network analyses involving mRNAs and miRNAs of thymocytes, peripheral T CD3+ cells and PILs provided evidence that in PILs chemokine receptors and mRNAs are post-transcriptionally regulated by miR-202-3p resulting in decreased activity of these molecules during the onset of T1D in NOD mice. In this review, we discuss the abnormal T-cell development in NOD mice in the context of intrathymic expression of different migration-related molecules, peptides belonging to the family of insulin and insulin-like growth factors as well as the participation of miRNAs as post-transcriptional regulators and their possible influence on the onset of aggressive autoimmunity during the pathogenesis of T1D.
Collapse
Affiliation(s)
- Daniella A. Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Julia P. Lemos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Geraldo A. Passos
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Medical School, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Racine JJ, Stewart I, Ratiu J, Christianson G, Lowell E, Helm K, Allocco J, Maser RS, Chen YG, Lutz CM, Roopenian D, Schloss J, DiLorenzo TP, Serreze DV. Improved Murine MHC-Deficient HLA Transgenic NOD Mouse Models for Type 1 Diabetes Therapy Development. Diabetes 2018; 67:923-935. [PMID: 29472249 PMCID: PMC5909999 DOI: 10.2337/db17-1467] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/12/2018] [Indexed: 02/04/2023]
Abstract
Improved mouse models for type 1 diabetes (T1D) therapy development are needed. T1D susceptibility is restored to normally resistant NOD.β2m-/- mice transgenically expressing human disease-associated HLA-A*02:01 or HLA-B*39:06 class I molecules in place of their murine counterparts. T1D is dependent on pathogenic CD8+ T-cell responses mediated by these human class I variants. NOD.β2m-/--A2.1 mice were previously used to identify β-cell autoantigens presented by this human class I variant to pathogenic CD8+ T cells and for testing therapies to attenuate such effectors. However, NOD.β2m-/- mice also lack nonclassical MHC I family members, including FcRn, required for antigen presentation, and maintenance of serum IgG and albumin, precluding therapies dependent on these molecules. Hence, we used CRISPR/Cas9 to directly ablate the NOD H2-Kd and H2-Db classical class I variants either individually or in tandem (cMHCI-/-). Ablation of the H2-Ag7 class II variant in the latter stock created NOD mice totally lacking in classical murine MHC expression (cMHCI/II-/-). NOD-cMHCI-/- mice retained nonclassical MHC I molecule expression and FcRn activity. Transgenic expression of HLA-A2 or -B39 restored pathogenic CD8+ T-cell development and T1D susceptibility to NOD-cMHCI-/- mice. These next-generation HLA-humanized NOD models may provide improved platforms for T1D therapy development.
Collapse
|
14
|
Azuma MM, Gomes-Filho JE, Prieto AKC, Samuel RO, de Lima VMF, Sumida DH, Ervolino E, Cintra LTA. Diabetes increases interleukin-17 levels in periapical, hepatic, and renal tissues in rats. Arch Oral Biol 2017; 83:230-235. [DOI: 10.1016/j.archoralbio.2017.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
|
15
|
Kurioka A, Jahun AS, Hannaway RF, Walker LJ, Fergusson JR, Sverremark-Ekström E, Corbett AJ, Ussher JE, Willberg CB, Klenerman P. Shared and Distinct Phenotypes and Functions of Human CD161++ Vα7.2+ T Cell Subsets. Front Immunol 2017; 8:1031. [PMID: 28912775 PMCID: PMC5582200 DOI: 10.3389/fimmu.2017.01031] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/09/2017] [Indexed: 01/03/2023] Open
Abstract
Human mucosal-associated invariant T (MAIT) cells are an important T cell subset that are enriched in tissues and possess potent effector functions. Typically such cells are marked by their expression of Vα7.2-Jα33/Jα20/Jα12 T cell receptors, and functionally they are major histocompatibility complex class I-related protein 1 (MR1)-restricted, responding to bacterially derived riboflavin synthesis intermediates. MAIT cells are contained within the CD161++ Vα7.2+ T cell population, the majority of which express the CD8 receptor (CD8+), while a smaller fraction expresses neither CD8 or CD4 coreceptor (double negative; DN) and a further minority are CD4+. Whether these cells have distinct homing patterns, phenotype and functions have not been examined in detail. We used a combination of phenotypic staining and functional assays to address the similarities and differences between these CD161++ Vα7.2+ T cell subsets. We find that most features are shared between CD8+ and DN CD161++ Vα7.2+ T cells, with a small but detectable role evident for CD8 binding in tuning functional responsiveness. By contrast, the CD4+ CD161++ Vα7.2+ T cell population, although showing MR1-dependent responsiveness to bacterial stimuli, display reduced T helper 1 effector functions, including cytolytic machinery, while retaining the capacity to secrete interleukin-4 (IL-4) and IL-13. This was consistent with underlying changes in transcription factor (TF) expression. Although we found that only a proportion of CD4+ CD161++ Vα7.2+ T cells stained for the MR1-tetramer, explaining some of the heterogeneity of CD4+ CD161++ Vα7.2+ T cells, these differences in TF expression were shared with CD4+ CD161++ MR1-tetramer+ cells. These data reveal the functional diversity of human CD161++ Vα7.2+ T cells and indicate potentially distinct roles for the different subsets in vivo.
Collapse
Affiliation(s)
- Ayako Kurioka
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Aminu S Jahun
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Rachel F Hannaway
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Lucy J Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joannah R Fergusson
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Pathogenic Role of IL-17-Producing Immune Cells in Obesity, and Related Inflammatory Diseases. J Clin Med 2017; 6:jcm6070068. [PMID: 28708082 PMCID: PMC5532576 DOI: 10.3390/jcm6070068] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022] Open
Abstract
Obesity is associated with low-grade chronic inflammation. Indeed, adipose tissues (AT) in obese individuals are the former site of progressive infiltration by pro-inflammatory immune cells, which together with increased inflammatory adipokine secretion induce adipocyte insulin resistance. IL-17-producing T (Th17) cells are part of obese AT infiltrating cells, and are likely to be promoted by adipose tissue-derived mesenchymal stem cells, as previously reported by our team. Whereas Th17 cell are physiologically implicated in the neutralization of fungal and bacterial pathogens through activation of neutrophils, they may also play a pivotal role in the onset and/or progression of chronic inflammatory diseases, or cancer, in which obesity is recognized as a risk factor. In this review, we will highlight the pathogenic role of IL-17A producing cells in the mechanisms leading to inflammation in obesity and to progression of obesity-related inflammatory diseases.
Collapse
|
17
|
Jaiswal AK, Sadasivam M, Hamad ARA. Syndecan-1-coating of interleukin-17-producing natural killer T cells provides a specific method for their visualization and analysis. World J Diabetes 2017; 8:130-134. [PMID: 28465789 PMCID: PMC5394732 DOI: 10.4239/wjd.v8.i4.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
Natural killer T cells (NKT cells) are innate-like T cells that acquire effector functions while developing in the thymus, polarize into three distinct functional subsets viz. NKT1, NKT2 and NKT17 cells that produce interferon (IFN)-γ, interleukin (IL)-4 and IL-17, respectively. However, there has been no unique surface markers that define each subsets, forcing investigators to use intracellular staining of transcription factors and cytokines in combination of surface markers to distinguish among these subsets. Intracellular staining, however, causes apoptosis and prevents subsequent utilization of NKT cells in functional in vitro and in vivo assays that require viable cells. This limitation has significantly impeded understanding the specific properties of each subset and their interactions with each other. Therefore, there has been fervent efforts to find a specific markers for each NKT cell subset. We have recently identified that syndecan-1 (SDC-1; CD138) as a specific surface marker of NKT17 cells. This discovery now allows visualization of NKT17 in situ and study of their peripheral tissue distribution, characteristics of their TCR and viable sorting for in vitro and in vivo analysis. In addition, it lays the ground working for investigating significance of SDC-1 expression on this particular subset in regulating their roles in host defense and glucose metabolism.
Collapse
|
18
|
Di Pietro C, De Giorgi L, Cosorich I, Sorini C, Fedeli M, Falcone M. MicroRNA-133b Regulation of Th-POK Expression and Dendritic Cell Signals Affect NKT17 Cell Differentiation in the Thymus. THE JOURNAL OF IMMUNOLOGY 2016; 197:3271-3280. [PMID: 27605013 DOI: 10.4049/jimmunol.1502238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
NKT17 cells represent a functional subset of Vα14 invariant NKT (iNKT) cells with important effector functions in infections and autoimmune diseases. The mechanisms that drive NKT17 cell differentiation in the thymus are still largely unknown. The percentage of NKT17 cells has a high variability between murine strains due to differential thymic differentiation. For example, the NOD strain carries a high percentage and absolute numbers of NKT17 cells compared with other strains. In this study, we used the NOD mouse model to analyze what regulates NKT17 cell frequency in the thymus and peripheral lymphoid organs. In accordance with previous studies showing that the zinc finger transcription factor Th-POK is a key negative regulator of thymic NKT17 cell differentiation in the thymus, our data indicate that excessive NKT17 cell frequency in NOD mice correlates with defective Th-POK expression by thymic Vα14iNKT cells. Moreover, we found that Th-POK expression is under epigenetic regulation mediated by microRNA-133b whose expression is reduced in Vα14iNKT cells of NOD mice. We also demonstrated in a conditional knockout model of dendritic cell (DC) depletion (CD11cCreXDTA.B6 and CD11cCreRosa26DTA.NOD mice) that DCs play a crucial role in regulating Vα14iNKT cell maturation and their acquisition of an NKT17 cytokine secretion phenotype in the thymus. Overall, our data show that mechanisms regulating NKT17 cell differentiation are unique and completely different from those of Vα14iNKT cells. Specifically, we found that epigenetic regulation through microRNA-133b-regulated Th-POK expression and signals provided by DCs are fundamental for thymic NKT17 cell differentiation.
Collapse
Affiliation(s)
- Caterina Di Pietro
- Experimental Diabetes Unit-Diabetes Research Institute, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; and
| | - Lorena De Giorgi
- Experimental Diabetes Unit-Diabetes Research Institute, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; and
| | - Ilaria Cosorich
- Experimental Diabetes Unit-Diabetes Research Institute, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; and
| | - Chiara Sorini
- Experimental Diabetes Unit-Diabetes Research Institute, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; and
| | - Maya Fedeli
- Experimental Immunology Unit, Division of Immunology, Transplantation, and Infectious Diseases, Institute for Research, Hospitalization, and Health Care, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marika Falcone
- Experimental Diabetes Unit-Diabetes Research Institute, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy; and
| |
Collapse
|
19
|
Affiliation(s)
- Isabelle Nel
- INSERM U1016 and Centre National de la Recherche Scientifique UMR8104, Institut Cochin, and Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Agnes Lehuen
- INSERM U1016 and Centre National de la Recherche Scientifique UMR8104, Institut Cochin, and Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
20
|
Michel ML, Lenoir C, Massot B, Diem S, Pasquier B, Sawa S, Rignault-Bricard R, Lehuen A, Eberl G, Veillette A, Leite-de-Moraes M, Latour S. SLAM-associated protein favors the development of iNKT2 over iNKT17 cells. Eur J Immunol 2016; 46:2162-74. [PMID: 27338553 DOI: 10.1002/eji.201646313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/11/2016] [Accepted: 06/20/2016] [Indexed: 11/09/2022]
Abstract
Invariant NKT (iNKT) cells differentiate in the thymus into three distinct lineages defined by their cytokine and transcription factor expression. Signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) is essential for early stages of iNKT cell development, but its role during terminal differentiation of iNKT1, iNKT2, or iNKT17 cells remains unclear. Taking advantage of SAP-deficient mice expressing a Vα14-Jα18 TCRα transgene, we found that SAP is critical not only for IL-4 production but also for the terminal differentiation of IL-4-producing iNKT2 cells. Furthermore, without SAP, the IL-17 producing subset is expanded, while IFN-γ-producing iNKT1 differentiation is only moderately compromised. Lack of SAP reduced the expression of the transcription factors GATA-3 and promyelocytic leukemia zinc finger, but enhanced the levels of retinoic acid receptor-related orphan receptor γt. In the absence of SAP, lineage commitment was actually shifted toward the emergence of iNKT17 over iNKT2 cells. Collectively, our data unveil a new critical regulatory function for SAP in thymic iNKT cell fate decisions.
Collapse
Affiliation(s)
- Marie-Laure Michel
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Institut des Maladies Génétiques, Hôpital Necker-Enfants Malades, Paris, France
| | - Bérangère Massot
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Séverine Diem
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Benoit Pasquier
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Institut des Maladies Génétiques, Hôpital Necker-Enfants Malades, Paris, France
| | - Shinichiro Sawa
- Lymphoid Tissue Development Unit, Institut Pasteur, Paris, France
| | - Rachel Rignault-Bricard
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Agnès Lehuen
- Hôpital Cochin-St. Vincent de Paul, INSERM UMR 986, Paris, France
| | - Gérard Eberl
- Lymphoid Tissue Development Unit, Institut Pasteur, Paris, France
| | - André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Québec, Canada
| | - Maria Leite-de-Moraes
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Institut des Maladies Génétiques, Hôpital Necker-Enfants Malades, Paris, France. .,Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
21
|
Tard C, Rouxel O, Lehuen A. Regulatory role of natural killer T cells in diabetes. Biomed J 2016; 38:484-95. [PMID: 27013448 PMCID: PMC6138260 DOI: 10.1016/j.bj.2015.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/24/2015] [Indexed: 01/02/2023] Open
Abstract
Type 1 and type 2 diabetes are growing public health problems. Despite having different pathophysiologies, both diseases are associated with defects in immune regulation. Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipids presented by CD1d. These cells not only play a key role in the defense against pathogens, but also exert potent immunoregulatory functions. The regulatory role of iNKT cells in the prevention of type 1 diabetes has been demonstrated in murine models and analyzed in diabetic patients. The decreased frequency of iNKT cells in non-obese diabetic mice initially suggested the regulatory role of this cell subset. Increasing the frequency or the activation of iNKT cells with agonists protects non-obese diabetic mice from the development of diabetes. Several mechanisms mediate iNKT regulatory functions. They can rapidly produce immunoregulatory cytokines, interleukin (IL)-4 and IL-10. They induce tolerogenic dendritic cells, thereby inducing the anergy of autoreactive anti-islet T cells and increasing the frequency of T regulatory cells (Treg cells). Synthetic agonists are able to activate iNKT cells and represent potential therapeutic treatment in order to prevent type 1 diabetes. Growing evidence points to a role of immune system in glucose intolerance and type 2 diabetes. iNKT cells are resident cells of adipose tissue and their local and systemic frequencies are reduced in obese patients, suggesting their involvement in local and systemic inflammation during obesity. With the discovery of potential continuity between type 1 and type 2 diabetes in some patients, the role of iNKT cells in these diseases deserves further investigation.
Collapse
Affiliation(s)
- Celine Tard
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France
| | - Ophelie Rouxel
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France
| | - Agnes Lehuen
- Laboratory "Immunology of Diabetes", U1016 INSERM-Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; DHU Authors, Hôpital Cochin, 75014, Paris, France.
| |
Collapse
|
22
|
Tong Z, Liu W, Yan H, Dong C. Interleukin-17A deficiency ameliorates streptozotocin-induced diabetes. Immunology 2015. [PMID: 26211676 DOI: 10.1111/imm.12512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interleukin-17 (IL-17) is a cytokine with critical functions in multiple autoimmune diseases. However, its roles in type I diabetes and the underlying mechanisms remain to be fully elucidated. In the current study, we investigated the impact of IL-17 deficiency on streptozotocin (STZ) -induced diabetes. Il-17(-/-) mice exhibited attenuated hyperglycaemia and insulitis after STZ treatment compared with control mice. The Il-17(-/-) mice had fewer CD8(+) cells infiltrating the pancreas than wild-type controls after STZ injection. Wild-type mice showed increased percentage and number of splenic CD8(+) cells and decreased Gr1(+) CD11b(+) myeloid-derived suppressor cells (MDSC) after STZ treatment, but Il-17(-/-) mice maintained the percentages and numbers of splenic CD8(+) cells and MDSC, suggesting that IL-17 is implicated in STZ-induced cellular immune responses in the spleen. We further purified the MDSC from spleens of STZ-treated mice. Il-17(-/-) MDSC showed increased ability to suppress CD8(+) cell proliferation in vitro compared with wild-type MDSC. Transfer of MDSC to diabetic mice showed that MDSC from Il-17(-/-) mice could ameliorate hyperglycaemia. Moreover, recipients with MDSC from Il-17(-/-) mice had a decreased percentage of CD8(+) cell in the spleen compared with recipients with MDSC from wild-type mice. These data suggest that IL-17 is required in splenic MDSC function after STZ delivery. In summary, our study has revealed a pathogenic role of IL-17 in an STZ-induced diabetes model with important implications for our understanding of IL-17 function in autoimmune diseases.
Collapse
Affiliation(s)
- Zan Tong
- School of Basic Medical Sciences, Wuhan University, Wuha, China
| | - Weihuang Liu
- School of Basic Medical Sciences, Wuhan University, Wuha, China
| | - Huichao Yan
- Zhongshan Hospital of Hubei Province, Wuha, China
| | - Chen Dong
- School of Medicines, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Magalhaes I, Kiaf B, Lehuen A. iNKT and MAIT Cell Alterations in Diabetes. Front Immunol 2015; 6:341. [PMID: 26191063 PMCID: PMC4489333 DOI: 10.3389/fimmu.2015.00341] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/18/2015] [Indexed: 12/29/2022] Open
Abstract
Type 1 diabetes (T1D) and type 2 diabetes (T2D) are multifactorial diseases with different etiologies in which chronic inflammation takes place. Defects in invariant natural killer T (iNKT) cell populations have been reported in both T1D and T2D patients, mouse models and our recent study revealed mucosal-associated invariant T (MAIT) cell defects in T2D and obese patients. Regarding iNKT cells many studies in non-obese diabetic mice demonstrated their protective role against T1D whereas their potential role in human T1D is still under debate. Studies in mouse models and patients suggest that iNKT cells present in adipose tissue (AT) could exert a regulatory role against obesity and associated metabolic disorders, such as T2D. Scarce data are yet available on MAIT cells; however, we recently described MAIT cell abnormalities in the blood and ATs from obese and T2D patients. These data show that a link between MAIT cells and metabolic disorders pave the way for further investigations on MAIT cells in T1D and T2D in humans and mouse models. Furthermore, we hypothesize that the gut microbiota alterations associated with T1D and T2D could modulate iNKT and MAIT cell frequency and functions. The potential role of iNKT and MAIT cells in the regulation of metabolic pathways and their cross-talk with microbiota represent exciting new lines of research.
Collapse
Affiliation(s)
- Isabelle Magalhaes
- INSERM U1016, Institut Cochin , Paris , France ; UMR8104, CNRS , Paris , France ; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Badr Kiaf
- INSERM U1016, Institut Cochin , Paris , France ; UMR8104, CNRS , Paris , France ; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Agnès Lehuen
- INSERM U1016, Institut Cochin , Paris , France ; UMR8104, CNRS , Paris , France ; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Département de Diabétologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris , Paris , France
| |
Collapse
|
24
|
Abstract
Type 1 and type 2 diabetes are growing public health problems. Despite having different pathophysiologies, both diseases are associated with defects in immune regulation. Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipids presented by CD1d. These cells not only play a key role in the defense against pathogens, but also exert potent immunoregulatory functions. The regulatory role of iNKT cells in the prevention of type 1 diabetes has been demonstrated in murine models and analyzed in diabetic patients. The decreased frequency of iNKT cells in non-obese diabetic mice initially suggested the regulatory role of this cell subset. Increasing the frequency or the activation of iNKT cells with agonists protects non-obese diabetic mice from the development of diabetes. Several mechanisms mediate iNKT regulatory functions. They can rapidly produce immunoregulatory cytokines, interleukin (IL)-4 and IL-10. They induce tolerogenic dendritic cells, thereby inducing the anergy of autoreactive anti-islet T cells and increasing the frequency of T regulatory cells (Treg cells). Synthetic agonists are able to activate iNKT cells and represent potential therapeutic treatment in order to prevent type 1 diabetes. Growing evidence points to a role of immune system in glucose intolerance and type 2 diabetes. iNKT cells are resident cells of adipose tissue and their local and systemic frequencies are reduced in obese patients, suggesting their involvement in local and systemic inflammation during obesity. With the discovery of potential continuity between type 1 and type 2 diabetes in some patients, the role of iNKT cells in these diseases deserves further investigation.
Collapse
Affiliation(s)
| | | | - Agnes Lehuen
- Laboratory "Immunology of Diabetes" U1016 INSERM Institut Cochin; CNRS UMR8104; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité; DHU Authors, Hôpital Cochin, 75014, Paris, France
| |
Collapse
|
25
|
Berzins SP, Ritchie DS. Natural killer T cells: drivers or passengers in preventing human disease? Nat Rev Immunol 2014; 14:640-6. [PMID: 25103356 DOI: 10.1038/nri3725] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural killer T (NKT) cells are credited with regulatory roles in immunity against cancers, autoimmune diseases, allergies, and bacterial and viral infections. Studies in mice and observational research in patient groups have suggested that NKT cell-based therapies could be used to prevent or treat these diseases, yet the translation into clinical settings has been disappointing. We support the view that NKT cells have regulatory characteristics that could be exploited in clinical settings, but there are doubts about the natural roles of NKT cells in vivo and whether NKT cell defects are fundamental drivers of disease in humans. In this Opinion article, we discuss the uncertainties and opportunities regarding NKT cells in humans, and the potential for NKT cells to be manipulated to prevent or treat disease.
Collapse
Affiliation(s)
- Stuart P Berzins
- School of Health Sciences, Federation University, Ballarat, Victoria 3350, Australia, the Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia, and the Department of Microbiology and Immunology, the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David S Ritchie
- Department of Clinical Hematology and Bone Marrow Transplant Service, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
26
|
Li S, Joseph C, Becourt C, Klibi J, Luce S, Dubois-Laforgue D, Larger E, Boitard C, Benlagha K. Potential role of IL-17-producing iNKT cells in type 1 diabetes. PLoS One 2014; 9:e96151. [PMID: 24788601 PMCID: PMC4005752 DOI: 10.1371/journal.pone.0096151] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/03/2014] [Indexed: 01/02/2023] Open
Abstract
We explored in this study the status and potential role of IL-17-producing iNKT cells (iNKT17) in type 1 diabetes (T1D) by analyzing these cells in patients with T1D, and in NOD mice, a mouse model for T1D. Our analysis in mice showed an increase of iNKT17 cells in NOD vs control C57BL/6 mice, partly due to a better survival of these cells in the periphery. We also found a higher frequency of these cells in autoimmune-targeted organs with the occurrence of diabetes, suggesting their implication in the disease development. In humans, though absent in fresh PMBCs, iNKT17 cells are detected in vitro with a higher frequency in T1D patients compared to control subjects in the presence of the proinflammatory cytokine IL-1β, known to contribute to diabetes occurrence. These IL-1β-stimulated iNKT cells from T1D patients keep their potential to produce IFN-γ, a cytokine that drives islet β-cell destruction, but not IL-4, with a reverse picture observed in healthy volunteers. On the whole, our results argue in favour of a potential role of IL-17-producing iNKT cells in T1D and suggest that inflammation in T1D patients could induce a Th1/Th17 cytokine secretion profile in iNKT cells promoting disease development.
Collapse
Affiliation(s)
- Shamin Li
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
- INSERM UMR1160, Paris, France
| | - Claudine Joseph
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
- INSERM UMR1160, Paris, France
| | - Chantal Becourt
- Univ Paris Descartes, Sorbonne Paris Cité, Institut Cochin, Paris, France
- INSERM U1016, Paris, France
| | - Jihene Klibi
- Département de Bactériologie, Institut Pasteur, Paris, France
| | - Sandrine Luce
- Univ Paris Descartes, Sorbonne Paris Cité, Institut Cochin, Paris, France
- INSERM U1016, Paris, France
| | - Daniele Dubois-Laforgue
- Univ Paris Descartes, Sorbonne Paris Cité, Institut Cochin, Paris, France
- INSERM U1016, Paris, France
- Service de Diabétologie, Hôtel Dieu, GH Cochin-Hôtel Dieu-Broca, APHP et Univ Paris Descartes, Paris, France
| | - Etienne Larger
- Univ Paris Descartes, Sorbonne Paris Cité, Institut Cochin, Paris, France
- INSERM U1016, Paris, France
- Service de Diabétologie, Hôtel Dieu, GH Cochin-Hôtel Dieu-Broca, APHP et Univ Paris Descartes, Paris, France
| | - Christian Boitard
- Univ Paris Descartes, Sorbonne Paris Cité, Institut Cochin, Paris, France
- INSERM U1016, Paris, France
- Service de Diabétologie, Hôtel Dieu, GH Cochin-Hôtel Dieu-Broca, APHP et Univ Paris Descartes, Paris, France
| | - Kamel Benlagha
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
- INSERM UMR1160, Paris, France
- * E-mail:
| |
Collapse
|
27
|
Invariant NKT cell development: focus on NOD mice. Curr Opin Immunol 2014; 27:83-8. [PMID: 24637104 DOI: 10.1016/j.coi.2014.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/05/2014] [Indexed: 02/07/2023]
Abstract
Natural killer T (NKT) cells are non-conventional T lymphocytes expressing a TCRαβ and several NK cell markers. Once activated, they can rapidly secrete large amounts of cytokines such as IFN-γ and IL-4. As a result they can favor both Th1 and Th2 immune responses and play a critical role in anti-pathogenic immune responses as well as in regulation of autoimmune diseases. It has now been clearly established that iNKT cells can be subdivided into three subpopulations: iNKT1, iNKT2 and iNKT17 cells. Each of these populations is characterized by the expression of a particular transcription factor, surface markers and cytokines making them functionally distinct. Interestingly, NOD mice developing autoimmune diabetes exhibit a high frequency of iNKT17 cells, which can participate in the disease.
Collapse
|
28
|
Beaudoin L, Diana J, Ghazarian L, Simoni Y, Boitard C, Lehuen A. Plasmacytoid dendritic cells license regulatory T cells, upon iNKT-cell stimulation, to prevent autoimmune diabetes. Eur J Immunol 2014; 44:1454-66. [PMID: 24481989 DOI: 10.1002/eji.201343910] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/17/2013] [Accepted: 01/27/2014] [Indexed: 12/26/2022]
Abstract
Invariant NKT (iNKT)-cell stimulation with exogenous specific ligands prevents the development of type 1 diabetes (T1D) in NOD mice. Studies based on anti-islet T-cell transfer showed that iNKT cells prevent the differentiation of these T cells into effector T cells in the pancreatic lymph nodes (PLNs). We hypothesize that this defective priming could be explained by the ability of iNKT cells to induce tolerogenic dendritic cells (DCs) in the PLNs. We evaluated the effect of iNKT-cell stimulation on T1D development by transferring naïve diabetogenic BDC2.5 T cells into proinsulin 2(-/-) NOD mice treated with a long-lasting α-galactosylceramide regimen. In this context, iNKT cells induce the conversion of BDC2.5 T cells into Foxp3(+) Treg cells in the PLNs accumulating in the pancreatic islets. Furthermore, tolerogenic plasmacytoid DCs (pDCs) characterized by low MHC class II molecule expression and TGF-β production are critical in the PLNs for the recruitment of Treg cells into the pancreatic islets by inducing CXCR3 expression. Accordingly, pDC depletion in α-galactosylceramide-treated proinsulin 2(-/-) NOD mice abrogates the protection against T1D. These findings reveal that upon repetitive iNKT-cell stimulation, pDCs are critical for the recruitment of Treg cells in the pancreatic islets and the prevention of T1D development.
Collapse
Affiliation(s)
- Lucie Beaudoin
- INSERM U1016, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | | | | | | | | |
Collapse
|
29
|
Ghazarian L, Simoni Y, Pingris K, Beaudoin L, Lehuen A. [Regulatory role of NKT cells in the prevention of type 1 diabetes]. Med Sci (Paris) 2013; 29:722-8. [PMID: 24005626 DOI: 10.1051/medsci/2013298010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease resulting from the destruction of pancreatic β cells by the immune system. NKT cells are innate-like T cells that can exert potent immuno-regulatory functions. The regulatory role of NKT cells was initially proposed after the observed decreased frequency of this subset in mouse models of type 1 diabetes, as well as in patients developing various autoimmune pathologies. Increasing NKT cell frequency and function prevent the development of type 1 diabetes in mouse models. Several mechanisms including IL-4 and IL-10 production by NKT cells and the accumulation of tolerogenic dendritic cells are critical for the dampening of pathogenic anti-islet T cell responses by NKT cells. Importantly, these cells can at the same time prevent diabetes and promote efficient immune responses against infectious agents. These results strengthen the potential role of NKT cells as a key target for the development of therapeutic strategies against type 1 diabetes.
Collapse
|
30
|
Sørensen JØ, Buschard K, Brogren CH. The preventive role of type 2 NKT cells in the development of type 1 diabetes. APMIS 2013; 122:167-82. [PMID: 23992281 DOI: 10.1111/apm.12140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
In the last two decades, natural killer T (NKT) cells have emerged as an important factor in preventing type 1 diabetes (T1D) when investigated in the experimental non-obese diabetic (NOD) mouse model. So far, investigations have largely focused on type 1 NKT cells with invariant T-cell receptors, whereas the role of type 2 NKT cells with diverse T-cell receptors is less well understood. However, there have been several findings which indicate that in fact type 2 NKT cells may regulate the progression of type 1 diabetes in NOD mice, including a fraction of these cells which recognize β-cell-enriched sulfatide. Therefore, the focus for this review is to present the current evidence of the effect of type 2 NKT cells on the development of T1D. In general, there is still uncertainty surrounding the mechanism of activation and function of NKT cells. Here, we present two models of the effector mechanisms, respectively, Th1/Th2 polarization and the induction of tolerogenic dendritic cells (DC). In conclusion, this review points to the importance of immunoregulation by type 2 NKT cells in preventing the development of T1D and highlights the induction of tolerogenic DC as a likely mechanism. The possible therapeutic role of type 1 and type 2 NKT cells are evaluated and future experiments concerning type 2 NKT cells and T1D are proposed.
Collapse
Affiliation(s)
- Jakob Ørskov Sørensen
- The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaloesvej 5, Copenhagen, Denmark
| | | | | |
Collapse
|
31
|
Genetic control of murine invariant natural killer T cells maps to multiple type 1 diabetes regions. Genes Immun 2013; 14:380-6. [PMID: 23719031 PMCID: PMC3766462 DOI: 10.1038/gene.2013.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 02/06/2023]
Abstract
Reduced frequency of invariant natural killer T (iNKT)-cells has been indicated as a contributing factor to type 1 diabetes (T1D) development in NOD mice. To further understand the genetic basis of the defect, we generated (NOD X ICR)F2 mice to map genes that control iNKT-cell development. We determined frequencies of thymic and splenic iNKT-cells as well as the ratio of CD4-positive and -negative subsets in the spleens of 209 F2 males. Quantitative trait loci (QTL) analysis revealed 5 loci that exceed the significant threshold for the frequency of thymic and/or splenic iNKT-cells on Chromosomes (Chr) 1, 5, 6, 12, and 17. Three significant loci on Chr 1, 4, and 5 were found for the ratio of CD4-positive and -negative splenic iNKT-cells. Comparisons to previously known mouse T1D susceptibility (Idd) loci revealed two significant QTL peak locations respectively mapped to Idd regions on Chr 4 and 6. The peak marker location of the significant Chr 12 iNKT QTL maps to within 0.5Mb of a syntenic human T1D locus. Collectively, our results reveal several novel loci controlling iNKT-cell development and provide additional information for future T1D genetic studies.
Collapse
|
32
|
Jordan-Williams KL, Poston S, Taparowsky EJ. BATF regulates the development and function of IL-17 producing iNKT cells. BMC Immunol 2013; 14:16. [PMID: 23537103 PMCID: PMC3621619 DOI: 10.1186/1471-2172-14-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/05/2013] [Indexed: 02/08/2023] Open
Abstract
Background BATF plays important roles in the function of the immune system. Batf null mice are deficient in both CD4+ Th17 cells and T follicular helper cells and possess an intrinsic B cell defect that leads to the complete absence of class switched Ig. In this study, Tg mice overexpressing BATF in T cells were used together with Batf null mice to investigate how altering levels of BATF expression in T cells impacts the development and function of a recently characterized population of iNKT cells expressing IL-17 (iNKT-17). Results BATF has a direct impact on IL-17 expression by iNKT cells. However, in contrast to the Th17 lineage where BATF activates IL-17 expression and leads to the expansion of the lineage, BATF overexpression restricts overall iNKT cell numbers while skewing the compartment in vivo and in vitro toward an iNKT-17 phenotype. Conclusions This work is the first to demonstrate that BATF joins RORγt as the molecular signature for all IL-17 producing cells in vivo and identifies BATF as a component of the nuclear protein network that could be targeted to regulate IL-17-mediated disease. Interestingly, these studies also reveal that while the Il17a gene is a common target for BATF regulation in Th17 and iNKT-17 cells, this regulation is accompanied by opposite effects on the growth and expansion of these two cell lineages.
Collapse
Affiliation(s)
- Kimberly L Jordan-Williams
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
33
|
Simoni Y, Diana J, Ghazarian L, Beaudoin L, Lehuen A. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality? Clin Exp Immunol 2013. [PMID: 23199318 DOI: 10.1111/j.1365-2249.2012.04625.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
T cells reactive to lipids and restricted by major histocompatibility complex (MHC) class I-like molecules represent more than 15% of all lymphocytes in human blood. This heterogeneous population of innate cells includes the invariant natural killer T cells (iNK T), type II NK T cells, CD1a,b,c-restricted T cells and mucosal-associated invariant T (MAIT) cells. These populations are implicated in cancer, infection and autoimmunity. In this review, we focus on the role of these cells in autoimmunity. We summarize data obtained in humans and preclinical models of autoimmune diseases such as primary biliary cirrhosis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, psoriasis and atherosclerosis. We also discuss the promise of NK T cell manipulations: restoration of function, specific activation, depletion and the relevance of these treatments to human autoimmune diseases.
Collapse
Affiliation(s)
- Y Simoni
- INSERM, U986, Hospital Cochin/St Vincent de Paul, Université Paris Descartes, Paris, France
| | | | | | | | | |
Collapse
|
34
|
Novak J, Novakova L. Prevention and treatment of type 1 diabetes mellitus by the manipulation of invariant natural killer T cells. Clin Exp Med 2012; 13:229-37. [PMID: 22825586 DOI: 10.1007/s10238-012-0199-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 07/04/2012] [Indexed: 01/11/2023]
Abstract
Invariant natural killer T (iNKT) cells are CD1d-restricted T cells with regulatory functions. iNKT cells are numerically and functionally deficient in experimental models of type 1 diabetes mellitus (T1DM). Moreover, various experimental strategies correcting the defect of or stimulating iNKT cells prevent T1DM. Here, we review the data on the role of iNKT cells in the development of T1DM and discuss indications, obstacles and prospects of the use of iNKT cell manipulations in the prevention and treatment of human T1DM.
Collapse
Affiliation(s)
- Jan Novak
- 3rd Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00, Prague 10, Czech Republic,
| | | |
Collapse
|
35
|
|