1
|
Mao J, Tan L, Tian C, Wang W, Zou Y, Zhu Z, Li Y. Systemic investigation of the mechanism underlying the therapeutic effect of Astragalus membranaceus in ulcerative colitis. Am J Med Sci 2025; 369:238-251. [PMID: 39009282 DOI: 10.1016/j.amjms.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Whether Astragalus membranaceus is an effective drug in the treatment of ulcerative colitis (UC) is unknown and how it exhibits activity in UC is unclear. METHODS TCMSP, GeneCards, String, and DAVID databases were used to screen target genes in PPI network and we performed GO and KEGG pathway enrichment analysis. Molecular docking and animal experiments were performed. The body weight and disease activity index (DAI) of mice were recorded. ELISA kits were used to detect the levels of CAT, SOD, MDA and IL-6, IL-10, TNF-α in the blood of mice. Western blot kits were utilized to measure the expression of MAPK14, RB1, MAPK1, JUN, ATK1, and IL2 proteins. RESULTS The active components of Astragalus membranaceus mainly include 7-O-methylisomucronulatol, quercetin, kaempferol, formononetin and isrhamnetin. Astragalus membranaceus may inhibit the expression of TNF-α, IL-6, MDA, while promoting the expression of CAT, SOD, and IL-10. The expression levels of MAPK14, RB1, MAPK1, JUN and ATK1 proteins were significantly decreased while IL2 protein increased after administration of Astragalus membranaceus. CONCLUSIONS Astragalus membranaceus may be an effective drug in the treatment of UC by acting on targets with anti-UC effect via its antioxidant action and by regulating the balance of pro-inflammatory and anti-inflammatory factors.
Collapse
Affiliation(s)
- Jingxin Mao
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Cheng Tian
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Wenxiang Wang
- College of pharmacy, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - YanLin Zou
- College of pharmacy, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Zhaojing Zhu
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Yan Li
- Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China.
| |
Collapse
|
2
|
Wu H, Shi C, Li Q, Wang L, Wang R, Chen F, Li R, Guo X, Chen Y, She J. Oral Administration of Bioactive Nanoparticulates for Inflammatory Bowel Disease Therapy by Mitigating Oxidative Stress and Restoring Intestinal Microbiota Homeostasis. Mol Pharm 2024. [PMID: 39462848 DOI: 10.1021/acs.molpharmaceut.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The management of inflammatory bowel disease (IBD) continues to pose significant challenges due to the absence of curative therapies and a high rate of recurrence. Therefore, it is imperative to explore novel approaches to enhance the efficacy of IBD therapy. Herein, a bioactive nanoparticulate s is tailored designed to achieve a "Pull-Push" approach for efficient and safe IBD treatment by integrating reactive oxygen species (ROS) scavenging (Pull) with anti-inflammatory agent delivery (Push) in the inflammatory microenvironment. The multifunctional nanomedicine, designated MON-PAMAM@SASP, is developed through the encapsulation of sulfasalazine (SASP), a widely utilized clinical drug for the treatment of IBD, within cationic diselenide-bridged mesoporous organosilica nanoparticles (MONs) that possess significant antioxidant properties. Herein, poly(amidoamine) (PAMAM) endows the original MONs with positive charge characteristics. The MON-PAMAM@SASP not only displays the remarkable capability of neutralizing ROS to ameliorates intestinal damage, but also achieves controllable release of SASP to mitigate intestinal inflammation. Consequently, this nanomedicine effectively mitigates IBD by colitis in mouse models, and our current research has not identified any significant drug toxicity. Beyond regulating inflammatory microenvironment in intestine, treatment with MON-PAMAM@SASP results in increased richness and restores intestinal microbiota homeostasis, thereby mitigating IBD to a certain extent. Together, our work provides a highly versatile "Pull-Push" approach for IBD management and encourages the development of similar nanomedicine to treating multiple inflammatory diseases of gastrointestinal tract.
Collapse
Affiliation(s)
- Hong Wu
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Third Department of General Surgery, Xi'an Daxing Hospital Affiliated to Yan'an University, Xi'an 710016, China
| | - Chengxin Shi
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qixin Li
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lizhao Wang
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ruochen Wang
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Ruizhe Li
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaolong Guo
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Yinnan Chen
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Junjun She
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
3
|
Lippi BK, Fernandes GAB, Azevedo GA, Negreiros NGS, Soares AW, Landgraf MA, Fernandes JPS, Landgraf RG. The histamine H 4 receptor antagonist 1-[(5-chloro-2,3-dihydro-1-benzofuran-2-yl)methyl]-4-methyl-piperazine(LINS01007) prevents the development of DSS-induced colitis in mice. Int Immunopharmacol 2024; 133:112128. [PMID: 38652966 DOI: 10.1016/j.intimp.2024.112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with growing incidence worldwide. Our group reported the compound 5-choro-1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine (LINS01007) as H4R antagonist (pKi 6.2) and therefore the effects and pharmacological efficacy on a DSS-induced mice model of UC were assessed in this work. Experimental acute colitis was induced in male BALB/c mice (n = 5-10) by administering 3 % DSS in the drinking water for six days. The test compound LINS01007 was administered daily i.p. (5 mg/kg) and compared to control group without treatment. Body weight, water and food consumption, and the presence of fecal blood were monitored during 7-day treatment period. The levels of inflammatory markers (PGE2, COX-2, IL-6, NF-κB and STAT3) were also analyzed. Animals subjected to the acute colitis protocol showed a reduction in water and food intake from the fourth day (p < 0.05) and these events were prevented by LINS01007. Histological signs of edema, hyperplasia and disorganized intestinal crypts, as well as neutrophilic infiltrations, were found in control mice while these findings were significantly reduced in animals treated with LINS01007. Significant reductions in the levels of PGE2, COX-2, IL-6, NF-κB and STAT3 were observed in the serum and tissue of treated animals. The results demonstrated the significant effects of LINS01007 against DSS-induced colitis, highlighting the potential of H4R antagonism as promising treatment for this condition.
Collapse
Affiliation(s)
- Beatriz K Lippi
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Gustavo A B Fernandes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Gabriela A Azevedo
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil; Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Nathani G S Negreiros
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Antonio W Soares
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil; Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - João Paulo S Fernandes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil.
| | - Richardt G Landgraf
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil.
| |
Collapse
|
4
|
Wagner F, Schreiber S, Bagger Y, Bruzelius K, Falahati A, Sternebring O, Ravi A, Pinton P. Safety, tolerability, and pharmacokinetics of single- and multiple-ascending doses of olamkicept: Results from randomized, placebo-controlled, first-in-human phase I trials. Clin Transl Sci 2024; 17:e13832. [PMID: 38769747 PMCID: PMC11106552 DOI: 10.1111/cts.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
Olamkicept selectively inhibits the cytokine interleukin-6 (IL-6) trans-signaling pathway without blocking the classic pathway and is a promising immunoregulatory therapy for inflammatory bowel disease (IBD). These first-in-human, randomized, placebo-controlled, single- (SAD) and multiple-ascending dose (MAD) trials evaluated olamkicept safety, tolerability, pharmacokinetic, and pharmacodynamic characteristics. Doses tested in the SAD trial included seven single intravenous doses (0.75, 7.5, 75, 150, 300, 600, and 750 mg) and one subcutaneous (SC) dose (60 mg) given to healthy subjects (N = 64), and three intravenous doses (75 mg, 300 mg, and 750 mg) given to patients with Crohn's disease (CD; N = 24). Doses tested in the MAD trial included multiple intravenous doses (75, 300, and 600 mg once weekly for 4 weeks) given to healthy subjects (N = 24). No severe or serious treatment-emergent adverse events (TEAEs) were recorded. The most common TEAEs were headache, nasopharyngitis, and myalgia in the SAD trial, and diarrhea, headache, and cough in the MAD trial. Infusion-related reactions occurred in one and two subjects in the SAD and MAD trial, respectively, leading to treatment discontinuation in the MAD trial. Olamkicept showed dose-independent pharmacokinetics after single and multiple administrations, and there was no major difference in systemic exposure between healthy subjects and patients with CD. Complete target engagement (inhibition of phosphorylation of signal transducer and activator of transcription-3) was achieved in blood around or above olamkicept serum concentrations of 1-5 μg/mL. Overall, these results suggest that olamkicept is safe and well-tolerated in healthy subjects and patients with CD after single intravenous/SC and multiple intravenous administrations.
Collapse
Affiliation(s)
| | - Stefan Schreiber
- Kiel University Institute of Clinical Molecular BiologyKielGermany
| | - Yu Bagger
- Clinical and Translational SciencesFerring PharmaceuticalsKastrupDenmark
| | | | - Ali Falahati
- Global BiometricsFerring PharmaceuticalsKastrupDenmark
| | - Ola Sternebring
- Clinical and Translational SciencesFerring PharmaceuticalsKastrupDenmark
| | - Arjun Ravi
- Clinical and Translational SciencesFerring PharmaceuticalsKastrupDenmark
| | - Philippe Pinton
- Clinical and Translational SciencesFerring PharmaceuticalsKastrupDenmark
| |
Collapse
|
5
|
Li Q, Zheng S, Niu K, Qiao Y, Liu Y, Zhang Y, Li B, Zheng C, Yu B. Paeoniflorin improves ulcerative colitis via regulation of PI3K‑AKT based on network pharmacology analysis. Exp Ther Med 2024; 27:125. [PMID: 38414786 PMCID: PMC10895587 DOI: 10.3892/etm.2024.12414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/24/2023] [Indexed: 02/29/2024] Open
Abstract
Paeoniflorin (PF) is the primary component derived from Paeonia lactiflora and white peony root and has been used widely for the treatment of ulcerative colitis (UC) in China. UC primarily manifests as a chronic inflammatory response in the intestine. In the present study, a network pharmacology approach was used to explore the specific effects and underlying mechanisms of action of PF in the treatment of UC. A research strategy based on network pharmacology, combining target prediction, network construction, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and molecular docking simulation was used to predict the targets of PF. A total of 288 potential targets of PF and 599 UC-related targets were identified. A total of 60 therapeutic targets of PF against UC were identified. Of these, 20 core targets were obtained by protein-protein interaction network construction. GO and KEGG pathway analyses showed that PF alleviated UC through EGFR tyrosine kinase inhibitor resistance, the IL-17 signaling pathway, and the PI3K/AKT signaling pathway. Molecular docking simulation showed that AKT1 and EGFR had good binding energy with PF. Animal-based experiments revealed that the administration of PF ameliorated the colonic pathological damage in a dextran sulfate sodium-induced mouse model, resulting in lower levels of proinflammatory cytokines including IL-1β, IL-6, and TNF-α, and higher levels of IL-10 and TGF-β. PF decreased the mRNA and protein expression levels of AKT1, EGFR, mTOR, and PI3K. These findings suggested that PF plays a therapeutic protective role in the treatment of UC by regulating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Qifang Li
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272069, P.R. China
| | - Shuyue Zheng
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Kai Niu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yi Qiao
- School of Public Health, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yuan Liu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Ying Zhang
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Bingbing Li
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Canlei Zheng
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Bin Yu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
6
|
Dai J, Jiang M, Wang X, Lang T, Wan L, Wang J. Human-derived bacterial strains mitigate colitis via modulating gut microbiota and repairing intestinal barrier function in mice. BMC Microbiol 2024; 24:96. [PMID: 38521930 PMCID: PMC10960398 DOI: 10.1186/s12866-024-03216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Unbalanced gut microbiota is considered as a pivotal etiological factor in colitis. Nevertheless, the precise influence of the endogenous gut microbiota composition on the therapeutic efficacy of probiotics in colitis remains largely unexplored. RESULTS In this study, we isolated bacteria from fecal samples of a healthy donor and a patient with ulcerative colitis in remission. Subsequently, we identified three bacterial strains that exhibited a notable ability to ameliorate dextran sulfate sodium (DSS)-induced colitis, as evidenced by increased colon length, reduced disease activity index, and improved histological score. Further analysis revealed that each of Pediococcus acidilactici CGMCC NO.17,943, Enterococcus faecium CGMCC NO.17,944 and Escherichia coli CGMCC NO.17,945 significantly attenuated inflammatory responses and restored gut barrier dysfunction in mice. Mechanistically, bacterial 16S rRNA gene sequencing indicated that these three strains partially restored the overall structure of the gut microbiota disrupted by DSS. Specially, they promoted the growth of Faecalibaculum and Lactobacillus murinus, which were positively correlated with gut barrier function, while suppressing Odoribacter, Rikenella, Oscillibacter and Parasutterella, which were related to inflammation. Additionally, these strains modulated the composition of short chain fatty acids (SCFAs) in the cecal content, leading to an increase in acetate and a decrease in butyrate. Furthermore, the expression of metabolites related receptors, such as receptor G Protein-coupled receptor (GPR) 43, were also affected. Notably, the depletion of endogenous gut microbiota using broad-spectrum antibiotics completely abrogated these protective effects. CONCLUSIONS Our findings suggest that selected human-derived bacterial strains alleviate experimental colitis and intestinal barrier dysfunction through mediating resident gut microbiota and their metabolites in mice. This study provides valuable insights into the potential therapeutic application of probiotics in the treatment of colitis.
Collapse
Affiliation(s)
- Juanjuan Dai
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Mingjie Jiang
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xiaoxin Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Lang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leilei Wan
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Jiang R, Fang Z, Lai Y, Li L, Tan J, Yu C, Fan M, Tao L, Shen W, Xu C, Sun D, Cheng H. Sophocarpine alleviates intestinal fibrosis via inhibition of inflammation and fibroblast into myofibroblast transition by targeting the Sirt1/p65 signaling axis. Eur J Pharmacol 2024; 967:176318. [PMID: 38309678 DOI: 10.1016/j.ejphar.2024.176318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
In this study, we used alkaloids from Sophora flavescens to inhibit the SASP, leading to fibroblast-into-myofibroblast transition (FMT) to maintain intestinal mucosal homeostasis in vitro and in vivo. We used western blotting (WB) and immunofluorescence staining (IF) to assess whether five kinds of alkaloids inhibit the major inflammatory pathways and chose the most effective compound (sophocarpine; SPC) to ameliorate colorectal inflammation in a dextran sulfate sodium (DSS)-induced UC mouse model. IF, Immunohistochemistry staining (IHC), WB, disease activity index (DAI), and enzyme-linked immunosorbent assay (ELISA) were conducted to investigate the mechanism of action of this compound. Next, we detected the pharmacological activity of SPC on the senescence-associated secretory phenotypes (SASP) and FMT in interleukin 6 (IL-6)-induced senescence-like fibroblasts and discussed the mucosal protection ability of SPC on a fibroblast-epithelium/organoid coculture system and organ-on-chip system. Taken together, our results provide evidence that SPC alleviates the inflammatory response, improves intestinal fibrosis and maintains intestinal mucosal homeostasis in vivo. Meanwhile, SPC was able to prevent IL-6-induced SASP and FMT in fibroblasts, maintain the expression of TJ proteins, and inhibit inflammation and genomic stability of colonic mucosal epithelial cells by activating SIRT1 in vitro. In conclusion, SPC treatment attenuates intestinal fibrosis by regulating SIRT1/NF-κB p65 signaling, and it might be a promising therapeutic agent for inflammatory bowel disease.
Collapse
Affiliation(s)
- Ruiyang Jiang
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Zihan Fang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Yueyang Lai
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Liu Li
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Jiani Tan
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Chengtao Yu
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Minmin Fan
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Lihuiping Tao
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Weixing Shen
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China
| | - Changliang Xu
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China.
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Haibo Cheng
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, China; Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, China.
| |
Collapse
|
8
|
Yinhe S, Lixiang L, Yan L, Xiang G, Yanqing L, Xiuli Z. Bacteroides thetaiotaomicron and its inactivated bacteria ameliorate colitis by inhibiting macrophage activation. Clin Res Hepatol Gastroenterol 2024; 48:102276. [PMID: 38158154 DOI: 10.1016/j.clinre.2023.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Studies have demonstrated that Bacteroides thetaiotaomicron (BT) has protective effect against colon inflammation in murine models. Macrophages play an important role in gut immunity. However, the specific mechanisms of BT on macrophage are still unelucidated. Thus, our study investigates the anti-inflammatory effect of BT and its heat-treated inactivated bacteria on experimental colitis and macrophages. METHODS A dextran sulfate sodium (DSS)-induced acute colitis model with male C57BL/6 mice, BT (ATCC29148) strain, THP1 cell lines were used in this study. Live and heat-treated inactivated BT (IBT) solution (1 × 10^9cfu/ml) were intragastrically gavaged daily for 14 days. Colonic inflammation was determined by the disease activity index (DAI) score, colon length, histological score, and inflammatory factors. THP1 cells were induced towards M1, then treated with different concentrations of inactivated BT solution and p38 inhibitor. Western blotting, immunohistochemistry, immunofluorescence and qRT-PCR were performed to assess the levels of inflammatory cytokines and molecules of MAPK pathway including IL-6, TNF-α, IL-1β, IL-22, p38 and phosphor-p38 expressions. Moreover, 16S rRNA sequencing of colitis murine fecal samples was applied to investigate the influence of supplementation of BT to the gut microbiota homeostasis. RESULTS Both live and heat-treated inactivated BT decreased the DAI and histological scores as well as levels of inflammatory factors, particularly IL-6 while increasing IL-22 of DSS-induced colitis murine models. The cell experiments showed that inactivated BT downregulates IL-6 expression in THP1 via inhibiting p38 phosphorylation and affecting M1 polarization. Moreover, the 16S rRNA sequencing results showed that BT and IBT gavage could increase beta-diversity of gut flora in DSS-induced colitis mice. Furthermore, the significance test for differences between the groups showed that BT could increase Faecalebaculum, Lactobacillus and Bacteroides, while decreasing Akkermansia. CONCLUSION In summary, our findings imply that BT and its heat-treated inactivated bacteria exert a protective effect by suppressing macrophage-induced IL-6 through the inhibition of p38 MAPK pathway and ameliorating intestinal gut dysbiosis in experimental colitis.
Collapse
Affiliation(s)
- Sikong Yinhe
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Department of Gastroenterology, Qilu Hospital of Shandong University Qingdao, Qingdao, Shandong, PR China
| | - Li Lixiang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for digestive disease, Shandong, PR China
| | - Li Yan
- Department of Gastroenterology, Qilu Hospital of Shandong University Qingdao, Qingdao, Shandong, PR China
| | - Gu Xiang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Li Yanqing
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Department of Gastroenterology, Qilu Hospital of Shandong University Qingdao, Qingdao, Shandong, PR China; Shandong Provincial Clinical Research Center for digestive disease, Shandong, PR China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zuo Xiuli
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Department of Gastroenterology, Qilu Hospital of Shandong University Qingdao, Qingdao, Shandong, PR China; Shandong Provincial Clinical Research Center for digestive disease, Shandong, PR China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
9
|
Yen LJ, Chen YC, Wang KC, Shih MC, Li CL, Yu SJ, Lu LY. Hydroxychloroquine exacerbates imiquimod-induced psoriasis-like dermatitis through stimulating overexpression of IL-6 in keratinocytes. Immunopharmacol Immunotoxicol 2024; 46:128-137. [PMID: 38059657 DOI: 10.1080/08923973.2023.2281283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Hydroxychloroquine (HCQ) is a US Food and Drug Administration (FDA)-approved treatment for systemic lupus erythematosus (SLE) through inhibition of antigen presentation and subsequent reduction in T cell activation. Psoriasis relapse after antimalarial therapy have been reported in up to 18% of patients with psoriasis. Here, we explored the role of HCQ on exacerbating dermatitis utilizing an imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model. METHODS Thirty-six C57BL/6 female mice were divided into six groups: wild-type control, IMQ-Only, pre-treat HCQ (30 mg/kg and 60 mg/kg HCQ), and co-treat HCQ with IMQ (30 mg/kg and 60 mg/kg HCQ). Besides control, all were topically treated with IMQ for 5 days. Pharmacological effects and mechanisms of HCQ were assessed by clinical severity of dermatitis, histopathology, and flow cytometry. HaCaT cells were co-treated with both HCQ and recombinant IL-17A, followed by the detection of proinflammatory cytokine expression and gene profiles through enzyme-linked immunosorbent assay and next-generation sequencing. RESULTS In the pre-treated and co-treated HCQ groups, skin redness and scaling were significantly increased compared to the IMQ-Only group, and Th17 cell expression was also upregulated. Acanthosis and CD11b+IL23+ dendritic cell (DC) infiltration were observed in the HCQ treatment group. IL-6 overexpression was detected in both the HaCaT cells and skin from the experimental mice. Psoriasis-related genes were regulated after being co-treated with HCQ and recombinant IL-17A in HaCaT cells. CONCLUSIONS HCQ exacerbates psoriasis-like skin inflammation by increasing the expression of IL-6, stimulating DC infiltration, and promoting Th17 expression in the microenvironment of the skin. KEY MESSAGES This study provided possible mechanisms for inducing psoriasis during HCQ treatment through an animal model.
Collapse
Affiliation(s)
- Ling-Jung Yen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, Taiwan
- Department of Nursing, Meiho University, Pingtung City, Taiwan
| | - Ying-Chin Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - Kai-Chun Wang
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, Taiwan
- The Doctoral Program of Clinical and Experimental Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Meng-Chieh Shih
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - Chia-Ling Li
- Children's Medical Center, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Sheng-Jie Yu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ling-Ying Lu
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| |
Collapse
|
10
|
Derakhshan Nazari MH, Shahrokh S, Ghanbari-Maman L, Maleknia S, Ghorbaninejad M, Meyfour A. Prediction of anti-TNF therapy failure in ulcerative colitis patients by ensemble machine learning: A prospective study. Heliyon 2023; 9:e21154. [PMID: 37928018 PMCID: PMC10623293 DOI: 10.1016/j.heliyon.2023.e21154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Nowadays, anti-TNF therapy remarkably improves the medical management of ulcerative colitis (UC), but approximately 40 % of patients do not respond to this treatment. In this study, we used 79 anti-TNF-naive patients with moderate-to-severe UC from four cohorts to discover alternative therapeutic targets and develop a personalized medicine approach that can diagnose UC non-responders (UCN) prior to receiving anti-TNF therapy. To this end, two microarray data series were integrated to create a discovery cohort with 35 UC samples. A comprehensive gene expression and functional analysis was performed and identified 313 significantly altered genes, among which IL6 and INHBA were highlighted as overexpressed genes in the baseline mucosal biopsies of UCN, whose cooperation may lead to a decrease in the Tregs population. Besides, screening the abundances of immune cell subpopulations showed neutrophils' accumulation increasing the inflammation. Furthermore, the correlation of KRAS signaling activation with unresponsiveness to anti-TNF mAb was observed using network analysis. Using 50x repeated 10-fold cross-validation LASSO feature selection and a stack ensemble machine learning algorithm, a five-mRNA prognostic panel including IL13RA2, HCAR3, CSF3, INHBA, and MMP1 was introduced that could predict the response of UC patients to anti-TNF antibodies with an average accuracy of 95.3 %. The predictive capacity of the introduced biomarker panel was also validated in two independent cohorts (44 UC patients). Moreover, we presented a distinct immune cell landscape and gene signature for UCN to anti-TNF drugs and further studies should be considered to make this predictive biomarker panel and therapeutic targets applicable in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Hossein Derakhshan Nazari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Research Center for Gastroenterology and Liver Diseases, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Ghanbari-Maman
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Computer Science, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Rodrigues VMM, Bitencourt KCQM, Schapochnik A, de Souza V, da Palma Cruz M, Damazo AS, Ferreira CM, Cecatto RB, Hamblin MR, Destro Rodrigues MFS, Lino-Dos-Santos-Franco A. Comparison between local abdominal and transcutaneous tail vein photobiomodulation in experimental rat model of ulcerative colitis. Lasers Med Sci 2023; 38:247. [PMID: 37897531 DOI: 10.1007/s10103-023-03910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disease that impacts the quality of life, but current pharmacological treatments are limited. Photobiomodulation (PBM) is a light-based treatment that can be applied either locally or systemically. Here, we compare the effects of local and vascular PBM (VPBM) in an experimental rat model of UC. Male Wistar rats were induced with UC by rectal instillation of acetic acid and treated with either local abdominal PBM or VPBM to the tail vein using a 660-nm LED. The findings indicated that local PBM but not VPBM reduced intestinal histological scores. Both local and VPBM increased mucus production, decreased mast cell degranulation, and modulated TNF-α and IL-1 β levels in the intestines. Local PBM also affected the expression of the mRNAs for IL-6, TNF-α, and IFN-γ. In conclusion, we suggest that local PBM appears to be more promising than VPBM for treating UC. However, further research is needed to fully understand the mechanisms and to optimize the parameters of PBM for UC treatment.
Collapse
Affiliation(s)
- Virgínia Mendes Matias Rodrigues
- Post Graduate Program in Biophotonics Medicine, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, 01504-000, Brazil
| | | | - Adriana Schapochnik
- Post Graduate Program in Biophotonics Medicine, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, 01504-000, Brazil
| | - Vanessa de Souza
- Post Graduate Program in Biophotonics Medicine, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, 01504-000, Brazil
| | - Marlon da Palma Cruz
- Post Graduate Program in Biophotonics Medicine, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, 01504-000, Brazil
| | - Amílcar Sabino Damazo
- Department of Basic Science in Health, Faculty of Medical Sciences, Federal University of Cuiabá, Cuiabá, Brazil
| | | | - Rebeca Boltes Cecatto
- Post Graduate Program in Biophotonics Medicine, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, 01504-000, Brazil
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | | | - Adriana Lino-Dos-Santos-Franco
- Post Graduate Program in Biophotonics Medicine, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, 01504-000, Brazil.
| |
Collapse
|
12
|
Feilstrecker Balani G, dos Santos Cortez M, Picasky da Silveira Freitas JE, Freire de Melo F, Zarpelon-Schutz AC, Teixeira KN. Immune response modulation in inflammatory bowel diseases by Helicobacter pylori infection. World J Gastroenterol 2023; 29:4604-4615. [PMID: 37662864 PMCID: PMC10472898 DOI: 10.3748/wjg.v29.i30.4604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Many studies point to an association between Helicobacter pylori (H. pylori) infection and inflammatory bowel diseases (IBD). Although controversial, this association indicates that the presence of the bacterium somehow affects the course of IBD. It appears that H. pylori infection influences IBD through changes in the diversity of the gut microbiota, and hence in local chemical characteristics, and alteration in the pattern of gut immune response. The gut immune response appears to be modulated by H. pylori infection towards a less aggressive inflammatory response and the establishment of a targeted response to tissue repair. Therefore, a T helper 2 (Th2)/macrophage M2 response is stimulated, while the Th1/macrophage M1 response is suppressed. The immunomodulation appears to be associated with intrinsic factors of the bacteria, such as virulence factors - such oncogenic protein cytotoxin-associated antigen A, proteins such H. pylori neutrophil-activating protein, but also with microenvironmental changes that favor permanence of H. pylori in the stomach. These changes include the increase of gastric mucosal pH by urease activity, and suppression of the stomach immune response promoted by evasion mechanisms of the bacterium. Furthermore, there is a causal relationship between H. pylori infection and components of the innate immunity such as the NLR family pyrin domain containing 3 inflammasome that directs IBD toward a better prognosis.
Collapse
Affiliation(s)
| | | | | | - Fabrício Freire de Melo
- Campus Anísio Teixeira, Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Ana Carla Zarpelon-Schutz
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
- Programa de Pós-graduação em Biotecnologia - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| |
Collapse
|
13
|
Choi Y, Kim N. Inflammatory Bowel Diseases. SEX/GENDER-SPECIFIC MEDICINE IN THE GASTROINTESTINAL DISEASES 2022:281-299. [DOI: 10.1007/978-981-19-0120-1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Dasgupta S, Maricic I, Tang J, Wandro S, Weldon K, Carpenter CS, Eckmann L, Rivera-Nieves J, Sandborn W, Knight R, Dorrestein P, Swafford AD, Kumar V. Class Ib MHC-Mediated Immune Interactions Play a Critical Role in Maintaining Mucosal Homeostasis in the Mammalian Large Intestine. Immunohorizons 2021; 5:953-971. [PMID: 34911745 PMCID: PMC10026853 DOI: 10.4049/immunohorizons.2100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Lymphocytes within the intestinal epithelial layer (IEL) in mammals have unique composition compared with their counterparts in the lamina propria. Little is known about the role of some of the key colonic IEL subsets, such as TCRαβ+CD8+ T cells, in inflammation. We have recently described liver-enriched innate-like TCRαβ+CD8αα regulatory T cells, partly controlled by the non-classical MHC molecule, Qa-1b, that upon adoptive transfer protect from T cell-induced colitis. In this study, we found that TCRαβ+CD8αα T cells are reduced among the colonic IEL during inflammation, and that their activation with an agonistic peptide leads to significant Qa-1b-dependent protection in an acute model of colitis. Cellular expression of Qa-1b during inflammation and corresponding dependency in peptide-mediated protection suggest that Batf3-dependent CD103+CD11b- type 1 conventional dendritic cells control the protective function of TCRαβ+CD8αα T cells in the colonic epithelium. In the colitis model, expression of the potential barrier-protective gene, Muc2, is enhanced upon administration of a Qa-1b agonistic peptide. Notably, in steady state, the mucin metabolizing Akkermansia muciniphila was found in significantly lower abundance amid a dramatic change in overall microbiome and metabolome, increased IL-6 in explant culture, and enhanced sensitivity to dextran sulfate sodium in Qa-1b deficiency. Finally, in patients with inflammatory bowel disease, we found upregulation of HLA-E, a Qa-1b analog with inflammation and biologic non-response, in silico, suggesting the importance of this regulatory mechanism across species.
Collapse
Affiliation(s)
- Suryasarathi Dasgupta
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Igor Maricic
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jay Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Stephen Wandro
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Kelly Weldon
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Carolina S Carpenter
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Lars Eckmann
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jesus Rivera-Nieves
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - William Sandborn
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA; and
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Peter Dorrestein
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
| | - Austin D Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Vipin Kumar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA;
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| |
Collapse
|
15
|
Wang L, Chen Y, Zhou W, Miao X, Zhou H. Utilization of physiologically-based pharmacokinetic model to assess disease-mediated therapeutic protein-disease-drug interaction in immune-mediated inflammatory diseases. Clin Transl Sci 2021; 15:464-476. [PMID: 34581012 PMCID: PMC8841519 DOI: 10.1111/cts.13164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022] Open
Abstract
It is known that interleukin-6 (IL-6) can significantly modulate some key drug-metabolizing enzymes, such as phase I cytochrome P450s (CYPs). In this study, a physiologically-based pharmacokinetic (PBPK) model was developed to assess CYPs mediated therapeutic protein drug interactions (TP-DIs) in patients with immune-mediated inflammatory diseases (IMIDs) with elevated systemic IL-6 levels when treated by anti-IL-6 therapies. Literature data of IL-6 levels in various diseases were incorporated in SimCYP to construct respective virtual patient populations. The modulation effects of systemic IL-6 level and local IL-6 level in the gastrointestinal tract (GI) on CYPs activities were assessed. Upon blockade of the IL-6 signaling pathway by an anti-IL-6 treatment, the area under plasma concentration versus time curves (AUCs) of S-warfarin, omeprazole, and midazolam were predicted to decrease by up to 40%, 42%, and 46%, respectively. In patients with Crohn's disease and ulcerative colitis treated with an anti-IL-6 therapy, the lowering of the elevated IL-6 levels in the local GI tissue were predicted to result in further decreases in AUCs of those CYP substrates. The propensity of TP-DIs under comorbidity conditions, such as in patients with cancer with IMID, were also explored. With further validation with relevant clinical data, this PBPK model may provide an in silico way to quantify the magnitude of potential TP-DI in patients with elevated IL-6 levels when an anti-IL-6 therapeutic is used with concomitant small-molecule drugs. This model may be further adapted to evaluate the CYP modulation effect by other therapeutic modalities, which would significantly alter levels of proinflammatory cytokines during the treatment period.
Collapse
Affiliation(s)
- Lujing Wang
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yang Chen
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Wangda Zhou
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Xin Miao
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Honghui Zhou
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| |
Collapse
|
16
|
Abstract
Dendritic cells (DCs) are efficient antigen-presenting cells that serve as a link between the innate and adaptive immune systems. These cells are broadly involved in cellular and humoral immune responses by presenting antigens to initiate T cell reactions, cytokine and chemokine secretion, T cell differentiation and expansion, B cell activation and regulation, and the mediation of immune tolerance. The functions of DCs depend on their activation status, which is defined by the stages of maturation, phenotype differentiation, and migration ability, among other factors. IL-6 is a soluble mediator mainly produced by a variety of immune cells, including DCs, that exerts pleiotropic effects on immune and inflammatory responses through interaction with specific receptors expressed on the surface of target cells. Here, we review the role of IL-6, when generated in an inflammatory context or as derived from DCs, in modulating the biologic function and activation status of DCs and emphasize the importance of searching for novel strategies to target the IL-6/IL-6 signaling pathway as a means to diminish the inflammatory activity of DCs in immune response or to prime the immunogenic activity of DCs in immunosuppressive conditions.
Collapse
Affiliation(s)
- Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mi Cheng
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pan-Pan Shang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Qing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Lin DP, Jin YL, Hu DY, Ying SJ, Jiang Y. Influence of TRAIL Deficiency on Th17 Cells and Colonic Microbiota in Experimental Colitis Mouse Model. Am J Med Sci 2021; 362:188-197. [PMID: 33932348 DOI: 10.1016/j.amjms.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/21/2020] [Accepted: 04/21/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The abnormalities of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) are implicated in various autoimmune disorders and tumors. This study investigated the influence of TRAIL deficiency on Th17 cells and colonic microbiota in experimental colitis mouse model. METHODS Mice were randomly divided into 4 groups: wild-type, TRAIL gene knock-out (TRAIL-/-), wild-type colitis and TRAIL-/- colitis groups. Colitis was induced by oral administration of 3.5% dextran sulfate sodium (DSS) for 7 consecutive days. Mice were given scores for disease severity both clinically and histopathologically. Th17 cells in peripheral blood and mesenteric lymph nodes (MLNs) were assessed using flow cytometry. The expression levels of Th17 cell markers IL-17A and ROR-γt were evaluated by quantitative real-time polymerase chain reaction. The colonic samples were also analyzed for microbiota profile by 16s-rDNA gene sequencing on variable V4 region. RESULTS Compared with wild-type counterparts, TRAIL-/- mice developed more severe colitis after DSS treatment. Colitis TRAIL-/- mice had increased proportion of Th17 cells and elevated mRNA expression levels of IL-17A and ROR-γt in peripheral blood and MLNs compared with colitis wild-type mice. In contrast to colitis wild-type mice, the composition of colonic microbiota was shifted in colitis TRAIL-/- mice, and was characterized by increased alpha diversity, increased TM7, deferribacteres and tenericutes, and decreased proteobacteria at the phylum level. CONCLUSIONS These findings suggested that TRAIL deficiency not only aggravated DSS-induced colitis, but also led to enhanced Th17 cell response and altered colonic microbiota composition.
Collapse
Affiliation(s)
- Dao-Po Lin
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying-Li Jin
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ding-Yuan Hu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shi-Jie Ying
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
18
|
Rafeeq M, Murad HAS, Abdallah HM, El-Halawany AM. Protective effect of 6-paradol in acetic acid-induced ulcerative colitis in rats. BMC Complement Med Ther 2021; 21:28. [PMID: 33441125 PMCID: PMC7805070 DOI: 10.1186/s12906-021-03203-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background Ulcerative colitis is a gut inflammatory disorder due to altered immune response to gut microbiome, with interplay of environmental and genetic factors. TNF-α activates inflammatory response through a cascade of immune responses, augmenting pro-inflammatory mediators and proteases, activating chemotaxis, and infiltration of inflammatory cells, leading to ulceration and haemorrhage through cytotoxic reactive oxygen species. 6-Paradol, a dietary component in several plants belonging to the Zingiberaceae family, has shown anti-inflammatory and antioxidant activities. Current study evaluates the effect of 6-paradol in amelioration of ulcerative colitis in rats for the first time. Methods 6-Paradol (95% purity) was obtained from seeds of Aframomum melegueta. Rats were divided randomly into six groups (n = 8). Group one was administered normal saline; group two was treated with the vehicle only; group three, sulfasalazine 500 mg/kg; and groups four, five, and six, were given 6-paradol (50, 100, 200, respectively) mg/kg orally through gastric gavage for 7 days. Colitis was induced on 4th day by intrarectal administration of 2 ml acetic acid (3%), approximately 3 cm from anal verge. On 8th day, rats were sacrificed, and distal one-third of the colon extending proximally up to 4 cm from anal orifice was taken for biochemical and gross examination. Two centimetres of injured mucosal portion was taken for histopathological investigations. SPSS (ver.26) was used for statistical analysis. Results Colonic and serum glutathione (GSH) levels decreased, while colonic and serum malondialdehyde (MDA), colonic myeloperoxidase (MPO) activity, serum interleukin-6 (IL-6), serum tumour necrosis factor-α (TNF-α) levels, and colon weight to length ratio were increased significantly in the colitis untreated group compared to normal control. Treatment with 6-paradol considerably improved all these parameters, especially at a dose of 200 mg/kg (p < 0.001), revealing non-significant differences with sulfasalazine 500 mg/kg and normal control (p = 0.998). Sulfasalazine and 6-paradol in a dose dependent manner also markedly reversed mucosal oedema, atrophy and inflammation, cryptic damage, haemorrhage, and ulceration. There were non-significant differences between low and medium doses and between medium and high doses of 6-paradol for IL-6 and serum MDA levels. Conclusion 6-Paradol demonstrated protection against acetic acid-induced ulcerative colitis, probably by anti-inflammatory and antioxidant actions. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03203-7.
Collapse
Affiliation(s)
- Misbahuddin Rafeeq
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University (KAU), Rabigh Campus, Jeddah, 21589, Saudi Arabia.
| | - Hussam Aly Sayed Murad
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University (KAU), Rabigh Campus, Jeddah, 21589, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, 11562, Egypt
| | - Hossam Mohammed Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, KAU, Jeddah, 21589, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ali M El-Halawany
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, KAU, Jeddah, 21589, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
19
|
Arranz E, De Prado Á, Fiz-López A, Arribas E, Garrote JA, Bernardo D. Human intestinal dendritic cell and macrophage subsets in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:85-104. [PMID: 33707058 DOI: 10.1016/bs.ircmb.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DC) and macrophages (Mϕ) constitute the most abundant antigen presenting cells in the human intestinal mucosa. In resting conditions, they are essential to maintain the mechanisms of immune tolerance toward food antigens and commensals, at the time that they keep the capacity to initiate and maintain antigen-specific pro-inflammatory immune responses toward invading pathogens. Nevertheless, this delicate equilibrium between immunity and tolerance is not perfect, like in coeliac disease (CD), where DC and Mϕ drive the development of antigen-specific immune responses toward dietary gluten peptides. In this review, we provide therefore a comprehensive discussion about CD pathogenesis, the human intestinal immune system and the biology of intestinal DC and Mϕ both in resting conditions and in CD. Last, but not least, we discuss about all the remaining issues pending to be studied regarding DC and Mϕ contribution toward CD pathogenesis. This may allow the identification of unique and specific factors which may be useful in the clinical practice, as well as identify new therapeutic targets in order to reestablish the loss intestinal homeostasis in CD.
Collapse
Affiliation(s)
- Eduardo Arranz
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Ángel De Prado
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Aida Fiz-López
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Elisa Arribas
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - José A Garrote
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain; Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Valladolid, Spain
| | - David Bernardo
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain.
| |
Collapse
|
20
|
A Systematic Review and Meta-Analysis of Hospitalised Current Smokers and COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207394. [PMID: 33050574 PMCID: PMC7601505 DOI: 10.3390/ijerph17207394] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is a new coronavirus that has caused a worldwide pandemic. It produces severe acute respiratory disease (COVID-19), which is fatal in many cases, characterised by the cytokine release syndrome (CRS). According to the World Health Organization, those who smoke are likely to be more vulnerable to infection. Here, in order to clarify the epidemiologic relationship between smoking and COVID-19, we present a systematic literature review until 28th April 2020 and a meta-analysis. We included 18 recent COVID-19 clinical and epidemiological studies based on smoking patient status from 720 initial studies in China, the USA, and Italy. The percentage of hospitalised current smokers was 7.7% (95% CI: 6.9-8.4) in China, 2.3% (95% CI: 1.7-2.9) in the USA and 7.6% (95% CI: 4.2-11.0) in Italy. These percentages were compared to the smoking prevalence of each country and statistically significant differences were found in them all (p < 0.0001). By means of the meta-analysis, we offer epidemiological evidence showing that smokers were statistically less likely to be hospitalised (OR = 0.18, 95% CI: 0.14-0.23, p < 0.01). In conclusion, the analysis of data from 18 studies shows a much lower percentage of hospitalised current smokers than expected. As more studies become available, this trend should be checked to obtain conclusive results and to explore, where appropriate, the underlying mechanism of the severe progression and adverse outcomes of COVID-19.
Collapse
|
21
|
Majster M, Lira-Junior R, Höög CM, Almer S, Boström EA. Salivary and Serum Inflammatory Profiles Reflect Different Aspects of Inflammatory Bowel Disease Activity. Inflamm Bowel Dis 2020; 26:1588-1596. [PMID: 32725166 PMCID: PMC7500518 DOI: 10.1093/ibd/izaa190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) can manifest both macroscopically and microscopically in the oral cavity; however, little is known about salivary changes in IBD. Therefore, this study aimed to assess salivary and circulatory inflammatory profiles in IBD and to compare their potential to reflect the presence and activity of IBD. METHODS We measured 92 known inflammatory proteins in serum and in unstimulated and stimulated whole saliva samples from patients with IBD with active intestinal inflammation (n = 21) and matched control patients (n = 22) by proximity extension assay. Fifteen of the patients with IBD returned 10 to 12 weeks after treatment escalation for resampling. RESULTS Sixty-seven of the proteins were detected in all 3 sample fluids but formed distinct clusters in serum and saliva. Twenty-one inflammatory proteins were significantly increased and 4 were significantly decreased in the serum of patients with IBD compared with that of the control patients. Two of the increased serum proteins, IL-6 and MMP-10, were also significantly increased in stimulated saliva of patients with IBD and correlated positively to their expressions in serum. None of the investigated proteins in serum or saliva were significantly altered by IBD treatment at follow-up. Overall, inflammatory proteins in serum correlated to biochemical status, and salivary proteins correlated positively to clinical parameters reflecting disease activity. CONCLUSIONS Saliva and serum inflammatory profiles in IBD share a similar composition but reflect different aspects of disease activity. The oral cavity reflects IBD through elevated IL-6 and MMP-10 in stimulated saliva.
Collapse
Affiliation(s)
- Mirjam Majster
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ronaldo Lira-Junior
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte M Höög
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,GHP Stockholm Gastro Center, Stockholm, Sweden
| | - Sven Almer
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Division of Gastroenterology, Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth A Boström
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden,Address correspondence to: Elisabeth A. Boström, DDS, PhD, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, SE-141 52, Huddinge, Sweden ()
| |
Collapse
|
22
|
Durant L, Stentz R, Noble A, Brooks J, Gicheva N, Reddi D, O’Connor MJ, Hoyles L, McCartney AL, Man R, Pring ET, Dilke S, Hendy P, Segal JP, Lim DNF, Misra R, Hart AL, Arebi N, Carding SR, Knight SC. Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease. MICROBIOME 2020; 8:88. [PMID: 32513301 PMCID: PMC7282036 DOI: 10.1186/s40168-020-00868-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/13/2020] [Indexed: 06/09/2023]
Abstract
BACKGROUND Bacteroides thetaiotaomicron (Bt) is a prominent member of the human intestinal microbiota that, like all gram-negative bacteria, naturally generates nanosized outer membrane vesicles (OMVs) which bud off from the cell surface. Importantly, OMVs can cross the intestinal epithelial barrier to mediate microbe-host cell crosstalk involving both epithelial and immune cells to help maintain intestinal homeostasis. Here, we have examined the interaction between Bt OMVs and blood or colonic mucosa-derived dendritic cells (DC) from healthy individuals and patients with Crohn's disease (CD) or ulcerative colitis (UC). RESULTS In healthy individuals, Bt OMVs stimulated significant (p < 0.05) IL-10 expression by colonic DC, whereas in peripheral blood-derived DC they also stimulated significant (p < 0.001 and p < 0.01, respectively) expression of IL-6 and the activation marker CD80. Conversely, in UC Bt OMVs were unable to elicit IL-10 expression by colonic DC. There were also reduced numbers of CD103+ DC in the colon of both UC and CD patients compared to controls, supporting a loss of regulatory DC in both diseases. Furthermore, in CD and UC, Bt OMVs elicited a significantly lower proportion of DC which expressed IL-10 (p < 0.01 and p < 0.001, respectively) in blood compared to controls. These alterations in DC responses to Bt OMVs were seen in patients with inactive disease, and thus are indicative of intrinsic defects in immune responses to this commensal in inflammatory bowel disease (IBD). CONCLUSIONS Overall, our findings suggest a key role for OMVs generated by the commensal gut bacterium Bt in directing a balanced immune response to constituents of the microbiota locally and systemically during health which is altered in IBD patients. Video Abstract.
Collapse
Affiliation(s)
- Lydia Durant
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Régis Stentz
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
| | - Alistair Noble
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Johanne Brooks
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ UK
| | - Nadezhda Gicheva
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
| | - Durga Reddi
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Matthew J. O’Connor
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS UK
| | - Anne L. McCartney
- Food Microbial Sciences Unit, University of Reading, Whiteknights, Reading, RG6 6UR UK
| | - Ripple Man
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - E. Tobias Pring
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Stella Dilke
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Philip Hendy
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Jonathan P. Segal
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Dennis N. F. Lim
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Ravi Misra
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Ailsa L. Hart
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Naila Arebi
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ UK
| | - Stella C. Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| |
Collapse
|
23
|
Affiliation(s)
- Ankur Singh
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
24
|
Targeting the mTOR pathway uncouples the efficacy and toxicity of PD-1 blockade in renal transplantation. Nat Commun 2019; 10:4712. [PMID: 31624262 PMCID: PMC6797722 DOI: 10.1038/s41467-019-12628-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) use remains a challenge in patients with solid organ allografts as most would undergo rejection. In a melanoma patient in whom programmed-death 1 (PD-1) blockade resulted in organ rejection and colitis, the addition of the mTOR inhibitor sirolimus resulted in ongoing anti-tumor efficacy while promoting allograft tolerance. Strong granzyme B+, interferon (IFN)-γ+ CD8+ cytotoxic T cell and circulating regulatory T (Treg) cell responses were noted during allograft rejection, along with significant eosinophilia and elevated serum IL-5 and eotaxin levels. Co-treatment with sirolimus abated cytotoxic T cell numbers and eosinophilia, while elevated Treg cell numbers in the peripheral blood were maintained. Interestingly, numbers of IFN-γ+ CD4+ T cells and serum IFN-γ levels increased with the addition of sirolimus treatment likely promoting ongoing anti-PD-1 efficacy. Thus, our results indicate that sirolimus has the potential to uncouple anti-PD-1 therapy toxicity and efficacy. The use of immune checkpoint inhibitors (ICI) in cancer patients with solid organ allografts is hampered due to potential organ rejection. Here, the authors present a case report of a patient with kidney allograft and show that treatment with the mTOR inhibitor sirolimus preserves peripheral tolerance and anti-tumour efficacy of ICI therapy.
Collapse
|
25
|
Li S, Wu B, Fu W, Reddivari L. The Anti-inflammatory Effects of Dietary Anthocyanins against Ulcerative Colitis. Int J Mol Sci 2019; 20:E2588. [PMID: 31137777 PMCID: PMC6567294 DOI: 10.3390/ijms20102588] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
Ulcerative colitis (UC), which is a major form of inflammatory bowel disease (IBD), is a chronic relapsing disorder of the gastrointestinal tract affecting millions of people worldwide. Alternative natural therapies, including dietary changes, are being investigated to manage or treat UC since current treatment options have serious negative side effects. There is growing evidence from animal studies and human clinical trials that diets rich in anthocyanins, which are pigments in fruits and vegetables, protect against inflammation and increased gut permeability as well as improve colon health through their ability to alter bacterial metabolism and the microbial milieu within the intestines. In this review, the structure and bioactivity of anthocyanins, the role of inflammation and gut bacterial dysbiosis in UC pathogenesis, and their regulation by the dietary anthocyanins are discussed, which suggests the feasibility of dietary strategies for UC mitigation.
Collapse
Affiliation(s)
- Shiyu Li
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Binning Wu
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
- Department of Plant Science, Penn State University, University Park, PA 16802, USA.
| | - Wenyi Fu
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
26
|
Giuffrida P, Caprioli F, Facciotti F, Di Sabatino A. The role of interleukin-13 in chronic inflammatory intestinal disorders. Autoimmun Rev 2019; 18:549-555. [DOI: 10.1016/j.autrev.2019.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
|
27
|
Zhu L, Gu P, Shen H. Protective effects of berberine hydrochloride on DSS-induced ulcerative colitis in rats. Int Immunopharmacol 2019; 68:242-251. [PMID: 30743078 DOI: 10.1016/j.intimp.2018.12.036] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Berberine hydrochloride is one the effective compound among Rhizoma Coptidis, Cortex Phellodendri, and other plants. There are several clinical functions of berberine hydrochloride including anti-inflammation, antitumor and immunoregulatory. However, the anti-inflammatory of berberine hydrochloride in ulcerative colitis is barely understood. In this study, we aimed to explore the effects of berberine hydrochloride on dextran sulfate sodium (DSS)-induced rats model of ulcerative colitis. METHODS The severity of colitis were measured by body weight, survial rate, colon length and disease activity index (DAI) score. The cytokines expression include IL-1, IL-1β, IL-4, IL-6, IL-10, IL-12, TNF-α, TGF-β and IFN-γ were performed by RT-PCR and ELISA. Signaling pathway proteins such as p-STAT3, STAT3, p-NF-κB p65 and NF-κB p65 were analyzed by western blot and immunofluorescence. The proteins expression of tight junction were explored using western blotting and immunohistochemistry. RESULT Rats were administered berberine hydrochloride showed less weight loss and longer colon length than the DSS-induced group. The expression of IL-1, IL-1β, IL-6, IL-12, TNF-α, TGF-β and IFN-γ were suppressed, yet the expression of IL-4 and IL-10 were up-regulated by berberine hydrochloride and sulphasalazine treatment compared to the model group. Meanwhile, treatment with berberine hydrochloride effectively increased the expression of SIgA and decreased the expression of iNOS, MPO, MDA. In terms of the biochemical analyses, the results showed that the expression of p-STAT3 was signifcantly increased, while the expression of p-NF-κB (p65) was suppressed compared to the model group via western blot and immunofluorescence analysis. CONCLUSIONS Berberine hydrochloride has beneficial effects in UC. The possible mechanism of anti-inflammatory response by berberine hydrochloride may involve in the blocking of the IL-6/STAT3/NF-κB signaling pathway. Collectively, these fndings provide evidence that berberine hydrochloride might be a useful herb medicine and serve as a promising novel therapy in the treatment of UC in humans.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiang Su Province Hospital of TCM), Nan Jing, 210029, Jiang Su Province, China
| | - PeiQing Gu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiang Su Province Hospital of TCM), Nan Jing, 210029, Jiang Su Province, China
| | - Hong Shen
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiang Su Province Hospital of TCM), Nan Jing, 210029, Jiang Su Province, China.
| |
Collapse
|
28
|
Kanvinde S, Chhonker YS, Ahmad R, Yu F, Sleightholm R, Tang W, Jaramillo L, Chen Y, Sheinin Y, Li J, Murry DJ, Singh AB, Oupický D. Pharmacokinetics and efficacy of orally administered polymeric chloroquine as macromolecular drug in the treatment of inflammatory bowel disease. Acta Biomater 2018; 82:158-170. [PMID: 30342282 DOI: 10.1016/j.actbio.2018.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022]
Abstract
Inflammatory bowel disease is a chronic inflammation of the gastrointestinal tract with poor understanding of its pathogenesis and no effective cure. The goal of this study was to evaluate the feasibility of orally administered non-degradable polymeric chloroquine (pCQ) to locally reduce colon inflammation. The pCQ was synthesized by radical copolymerization of N-(2-hydroxypropyl)methacrylamide with methacryloylated hydroxychloroquine (HCQ). The anti-inflammatory activity of orally administered pCQ versus HCQ was tested in a mouse model of colitis induced by Citrobacter rodentium (C. rodentium). Single-dose pharmacokinetic and biodistribution studies performed in the colitis model indicated negligible systemic absorption (p ≤ 0.001) and localization of pCQ in the gastrointestinal tract. A multi-dose therapeutic study demonstrated that the localized pCQ treatment resulted in significant reduction in the colon inflammation (p ≤ 0.05). Enhanced suppression of pro-inflammatory cytokines IL-6 (p ≤ 0.01) and IL1-β and opposing upregulation of IL-2 (p ≤ 0.05) recently reported to be involved in downstream anti-inflammatory events suggested that the anti-inflammatory effects of the pCQ are mediated by altering mucosal immune homeostasis. Overall, the reported findings demonstrate a potential of pCQ as a novel polymer therapeutic option in inflammatory bowel disease with the potential of local effects and minimized systemic toxicity.
Collapse
Affiliation(s)
- Shrey Kanvinde
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | | | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Richard Sleightholm
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Lee Jaramillo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Yi Chen
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Yuri Sheinin
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Daryl J Murry
- Department of Pharmacy Practice, University of Nebraska Medical Center, United States
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
29
|
Association of IL-6 -174G>C (rs1800795) polymorphism with cervical cancer susceptibility. Biosci Rep 2018; 38:BSR20181071. [PMID: 30135142 PMCID: PMC6137247 DOI: 10.1042/bsr20181071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine that has been implicated in the etiology of cancer. Several case–control studies have been conducted to assess the association of IL-6 -174G>C (rs1800795) polymorphism with the risk of cervical cancer, yet with conflicting conclusions. To derive a more precise estimation of the relationship, we performed this meta-analysis updated to June 2018. A total of seven original publications were identified covering IL-6 -174G>C (rs1800795) polymorphism. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the relationship strengths. Statistically significant relationship was observed between IL-6 -174G>C polymorphism and cervical cancer risk (OR = 0.61, 95% CI: 0.40–0.94 for GG vs. CC, and OR = 0.77, 95% CI: 0.64–0.93 for G vs. C). Moreover, the significant association was found among Asians (OR = 0.46, 95% CI: 0.29–0.75 for GG vs. CC, and OR = 0.70, 95% CI: 0.57–0.89 for G vs. C); hospital-based subgroup (OR = 0.53, 95% CI: 0.38–0.72 for GG vs. CC, and OR = 0.73, 95% CI: 0.61–0.87 for G vs. C); and Hardy–Weinberg equilibrium ≤0.05 (OR = 0.56, 95% CI: 0.37–0.86 for GG vs. GC, and OR = 0.66, 95% CI: 0.47–0.93 for G vs. C). This meta-analysis showed the evidence that the IL-6 -174G>C polymorphism was a low-penetrance susceptibility variant for cervical cancer. Further large-scale case–control studies are needed to confirm these results.
Collapse
|
30
|
Abstract
Inflammatory bowel disease (IBD) mainly comprises of two separate inflammatory conditions: Crohn's disease (CD) and ulcerative colitis (UC). The aetiology of these conditions is still being explored with current evidence pointing towards a combination of environmental and genetic components. However, the pathophysiology is understood as a cytokine driven inflammatory response. There is significant association between IBD and dental conditions such as dental caries, other infections and periodontitis. Anti-inflammatory medications such as 5 aminosalicylic acid (5ASA), steroids and biological therapies are the treatment of choice for these chronic conditions, dependent on aetiology. Therefore, this article aims to educate dentists regarding possible implications IBD and its treatment can have for clinical practice and future research.
Collapse
|
31
|
Wang X, Li D, Zhang Y, Wu S, Tang F. Costus root granules improve ulcerative colitis through regulation of TGF-β mediation of the PI3K/AKT signaling pathway. Exp Ther Med 2018; 15:4477-4484. [PMID: 29731832 DOI: 10.3892/etm.2018.5946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/20/2017] [Indexed: 12/27/2022] Open
Abstract
Ulcerative colitis is a chronic nonspecific inflammatory disease that occurs in the colon and rectum. Costus root is a type of traditional Chinese medicine that exhibits antibacterial properties and serves an inhibitory role in the regeneration of gut bacteria. However, the molecular mechanisms underlying Costus root-mediated improvements in ulcerative colitis remain unclear. A complex formula of Costus root granules was created and investigated in the present study for its therapeutic effects in a rat model of ulcerative colitis. Ingredient dissolution into a traditional water decoction was used as a control. The potential mechanism mediated by Costus root granules was also analyzed in colonic epithelial cells isolated from the experimental rats. The results of the present study demonstrated that Costus root granule treatment inhibited inflammation in colonic tissue. Costus root granule treatment also suppressed the apoptosis of colonic epithelial cells isolated from the rat model of ulcerative colitis. Analyses of the underlying mechanisms of these effects indicated that the administration of Costus root granules increased transforming growth factor β expression, which activated the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase signaling pathway in colonic epithelial cells. Notably, the administration of Costus root granules improved stomachache, diarrhea and hematochezia in and increased the body weight of, the ulcerative colitis rats. In conclusion, these results indicate that Costus root granules markedly ameliorate inflammation of the colonic epithelium, decrease the apoptosis of colonic epithelial cells and improve colonic function, which suggests that Costus root granules are an efficient agent for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Dan Li
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yong Zhang
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuang Wu
- Tianjin Red Sun Kang Rentang Pharmaceutical Sales Co., Ltd., Tianjin 360045, P.R. China
| | - Fang Tang
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
32
|
Bernardo D, Chaparro M, Gisbert JP. Human Intestinal Dendritic Cells in Inflammatory Bowel Diseases. Mol Nutr Food Res 2018; 62:e1700931. [PMID: 29336524 DOI: 10.1002/mnfr.201700931] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/03/2018] [Indexed: 12/21/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a serious, costly, and persistent health problem with an estimated prevalence in Western countries around 0.5% of the general population; its socioeconomic impact is comparable with that for chronic diseases such as diabetes. Conventional treatment involves escalating drug regimens with concomitant side effects followed, in some cases, by surgical interventions, which are often multiple, mainly in Crohn's disease. The goal of finding a targeted gut-specific immunotherapy for IBD patients is therefore an important unmet need. However, to achieve this goal we first must understand how dendritic cells (DC), the most potent antigen present cells of the immune system, control the immune tolerance in the gastrointestinal tract and how their properties are altered in those patients suffering from IBD. In this review, we summarize the current available information regarding human intestinal DC subsets composition, phenotype, and function in the human gastrointestinal tract describing how, in the IBD mucosa, DC display pro-inflammatory properties, which drive disease progression. A better understanding of the mechanisms inducing DC abnormal profile in IBD may provide us with novel tools to perform tissue specific immunomodulation.
Collapse
Affiliation(s)
- David Bernardo
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| |
Collapse
|
33
|
Lim D, Kim W, Lee C, Bae H, Kim J. Macrophage Depletion Protects against Cigarette Smoke-Induced Inflammatory Response in the Mouse Colon and Lung. Front Physiol 2018; 9:47. [PMID: 29483875 PMCID: PMC5816061 DOI: 10.3389/fphys.2018.00047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Cigarette smoke (CS) is considered as a major risk factor for pulmonary and intestinal inflammation. CS leads to macrophage infiltration in the mucosae of the lung and colon, inducing the uncontrolled secretion of inflammatory mediators, and thus promoting inflammatory response. In this study, we investigated whether macrophage depletion modulates cigarette smoke (CS)-induced inflammatory response in both the lung and colon. The mice were exposed to CS for 30 min, after which they were rested in a fresh air environment for 30 min. The total duration of exposure to CS was 2 h per day for 4 weeks. Macrophage depletion state was made with the injection of clodronate containing liposome. Individual body weights were measured twice a week, and the mice were sacrificed on day 28. Hematoxylin and eosin (H&E) staining was performed in the lung and colon tissue to determine histological changes. Inflammatory mediators' synthesis was analyzed using ELISA and western blotting. Clodronate liposome treatment ameliorated pathological changes associated with the infiltration of immune cells in the lung and colon. Also, clodronate liposome injected mice showed significantly lower level of inflammatory mediators, including cytokines and chemokine and proteases. Our results indicated that macrophage depletion by clodronate liposome treatment attenuates CS-induced inflammatory response in both the lung and colon.
Collapse
Affiliation(s)
- Dahae Lim
- Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Woogyeong Kim
- Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Chanju Lee
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyunsu Bae
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jinju Kim
- Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
34
|
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a chronic intestinal inflammatory disorder characterized by diffuse accumulation of lymphocytes in the gut mucosa as a consequence of over-expression of endothelial adhesion molecules. The infiltrating lymphocytes have been identified as subsets of T cells, including T helper (Th)1 cells, Th17 cells, and regulatory T cells. The function of these lymphocyte subpopulations in the development of IBD is well-known, since they produce a number of pro-inflammatory cytokines, such as interferon-γ and interleukin-17A, which in turn activate mucosal proteases, thus leading to the development of intestinal lesions, i.e., ulcers, fistulas, abscesses, and strictures. However, the immune mechanisms underlying IBD are not yet fully understood, and knowledge about the function of newly discovered lymphocytes, including Th9 cells, innate lymphoid cells, mucosal-associated invariant T cells, and natural killer T cells, might add new pieces to the complex puzzle of IBD pathogenesis. This review summarizes the recent advances in the understanding of the role of mucosal lymphocytes in chronic intestinal inflammation and deals with the therapeutic potential of lymphocyte-targeting drugs in IBD patients.
Collapse
|
35
|
Evaluation of interleukin-6 and its soluble receptor components sIL-6R and sgp130 as markers of inflammation in inflammatory bowel diseases. Int J Colorectal Dis 2018; 33:927-936. [PMID: 29748708 PMCID: PMC6002455 DOI: 10.1007/s00384-018-3069-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Interleukin-6 (IL-6) production and signalling are increased in the inflamed mucosa in inflammatory bowel diseases (IBD). As published serum levels of IL-6 and its soluble receptors sIL-6R and sgp130 in IBD are from small cohorts and partly contradictory, we systematically evaluated IL-6, sIL-6R and sgp130 levels as markers of disease activity in Crohn's disease (CD) and ulcerative colitis (UC). METHODS Consecutive adult outpatients with confirmed CD or UC were included, and their disease activity and medication were monitored. Serum from 212 CD patients (815 measurements) and 166 UC patients (514 measurements) was analysed, and 100 age-matched healthy blood donors were used as controls. RESULTS IL-6 serum levels were significantly elevated in active versus inactive CD and UC, also compared with healthy controls. However, only a fraction of IBD patients showed increased serum IL-6. IL-6 levels ranged up to 32.7 ng/mL in active CD (> 5000-fold higher than in controls), but also up to 6.9 ng/mL in inactive CD. Increases in active UC (up to 195 pg/mL) and inactive UC (up to 27 pg/mL) were less pronounced. Associations between IL-6 serum levels and C-reactive protein concentrations as well as leukocyte and thrombocyte counts were observed. Median sIL-6R and sgp130 levels were only increased by up to 15%, which was considered of no diagnostic significance. CONCLUSIONS Only a minority of IBD patients shows elevated IL-6 serum levels. However, in these patients, IL-6 is strongly associated with disease activity. Its soluble receptors sIL-6R and sgp130 do not appear useful as biomarkers in IBD.
Collapse
|
36
|
Bibi S, Kang Y, Du M, Zhu MJ. Dietary red raspberries attenuate dextran sulfate sodium-induced acute colitis. J Nutr Biochem 2017; 51:40-46. [PMID: 29091813 DOI: 10.1016/j.jnutbio.2017.08.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 08/11/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
Persistent intestinal inflammation severely impairs intestinal integrity resulting in inflammatory bowel disease. Red raspberries (RB) are a rich source of bioactive compounds; their beneficial effect on the colitis protection was evaluated in the current study using a dextran sulfate sodium (DSS)-induced acute colitis mouse model. Six-week-old mice were fed a standard rodent research diet supplemented with RB (0 or 5% w/w, n=20 each group) for 6 weeks. At the 4th week of dietary treatment, approximately half of mice in each dietary group (n=12 each group) were subjected to 2.5% DSS induction for 6 days, followed by 6 days of recovery, to induce colitis. RB supplementation decreased body weight loss (P≤.01), disease activity index (P≤.01), and colon shortening (P≤.05) in DSS-treated mice. In addition, RB supplementation protected the colonic structure (P≤.01), associated with suppressed NF-κB signaling and reduced expression of inflammatory interleukin (IL)-1β, IL-6, IL-17, cyclooxegenase-2, and tumor necrosis factor-α in DSS-treated mice. RB supplementation reduced neutrophil infiltration, monocyte chemoattractant protein-1 mRNA expression, and xanthine oxidase content, but enhanced catalase content in DSS-treated mice. Consistently, RB supplementation reduced pore forming tight junction protein claudin-2, increased barrier strengthening claudin-3, zonula occluden-1 protein content and mucin (MUC)-2 mRNA level, and activated AMP-activated protein kinase (AMPK) in DSS-treated mice. In conclusion, dietary RB protected against inflammation and colitis symptoms induced by DSS, providing a promising dietary approach for the management of colitis.
Collapse
Affiliation(s)
- Shima Bibi
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Yifei Kang
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
37
|
Wunschel EJ, Schirmer B, Seifert R, Neumann D. Lack of Histamine H 4-Receptor Expression Aggravates TNBS-Induced Acute Colitis Symptoms in Mice. Front Pharmacol 2017; 8:642. [PMID: 28955241 PMCID: PMC5601386 DOI: 10.3389/fphar.2017.00642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/30/2017] [Indexed: 12/22/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are a growing health problem worldwide, severely affecting patients’ life qualities and life expectancies. Therapeutic options, which are rare and focus on symptoms associated with the disease, suffer from increasing numbers of patients refractory to the established strategies. Thus, in order to generate new therapeutic regimens, the detailed understanding of the pathogenic mechanisms causing IBD is necessary. Histamine is an inflammatory mediator associated with IBD. Four histamine receptors are currently known of which the histamine H4-receptor (H4R) has been shown to possess a pro-inflammatory function in several experimental models of inflammatory diseases, including dextran sodium sulfate (DSS)-induced colitis in mice. No single model reflects the complexity of human IBD, but each model provides valuable information on specific aspects of IBD pathogenesis. While DSS-induced colitis mostly relies on innate immune mechanisms, trinitrobenzene sulfonic acid (TNBS)-induced colitis rather reflects T-cell mechanisms. Consequently, an observation made in a single model has to be verified in at least one other model. Therefore, in the present study we investigated the effect of genetic blockade of H4R-signaling in mice subjected to the model of TNBS-induced acute colitis. We analyzed severity and progression of clinical signs of colitis, as well as histopathologic alterations in the colon and local cytokine production. Genetic ablation of H4R expression worsened clinical signs of acute colitis and histological appearance of colon inflammation after TNBS application. Moreover, TNBS instillation enhanced local synthesis of inflammatory mediators associated with a neutrophilic response, i.e., CXCL1, CXCL2, and interleukin-6. Lastly, also myeloperoxidase concentration, indicative for the presence of neutrophils, was elevated in cola of TNBS-treated mice due to the absence of H4R expression. Our results indicate an anti-inflammatory role of histamine via H4R in TNBS-induced acute neutrophilic colitis in mice, thus questioning the strategy of pharmacological H4R blocked as new therapeutic option for patients suffering from IBD.
Collapse
Affiliation(s)
- Eva J Wunschel
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| |
Collapse
|
38
|
Bjoern J, Iversen TZ, Nitschke NJ, Andersen MH, Svane IM. Safety, immune and clinical responses in metastatic melanoma patients vaccinated with a long peptide derived from indoleamine 2,3-dioxygenase in combination with ipilimumab. Cytotherapy 2017; 18:1043-1055. [PMID: 27378345 DOI: 10.1016/j.jcyt.2016.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AIM Indoleamine 2,3-dioxygenase (IDO) is an emerging new target in cancer therapy that can be targeted with active immunotherapy (e.g. through peptide vaccination). Furthermore, IDO has been identified as a key mechanism underlying resistance to treatment with the checkpoint blocking antibody ipilimumab (ipi). METHODS Ten patients with metastatic melanoma participated in a phase I first-in-human clinical study assessing safety of combining ipi with a 21-mer synthetic peptide vaccine from IDO denoted IDOlong. Secondary and tertiary end points included vaccine and clinical response. RESULTS Treatment was generally safe and well tolerated. Vaccine related adverse reactions included grade I and II erythema, oedema and pruritus at the vaccination site, which were manageable with mild topical corticosteroids. One patient developed presumed ipi-induced colitis. It initially responded to high-dose parenteral corticosteroids but later relapsed while the patient was admitted to a local hospital, where he died after receiving suboptimal therapy. Vaccine-specific T-cell responses were detectable ex vivo in three patients. At first evaluation, five of the 10 treated patients were in stable disease, one of whom had an unconfirmed partial response. CONCLUSIONS Treatment with IDOlong synthetic peptide vaccine in combination with ipi was generally safe and without augmented toxicity. The vaccine induced readily detectable T-cell responses in a subset of patients. Treatment showed signs of clinical activity, although not exceeding efficacy of ipi alone. Results should be confirmed in a larger study.
Collapse
Affiliation(s)
- Jon Bjoern
- Center for Cancer Immune Therapy, Herlev Hospital, University of Copenhagen, Herlev, Denmark; Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | | | - Nikolaj Juul Nitschke
- Center for Cancer Immune Therapy, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Herlev Hospital, University of Copenhagen, Herlev, Denmark; Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark.
| |
Collapse
|
39
|
Jeffery V, Goldson AJ, Dainty JR, Chieppa M, Sobolewski A. IL-6 Signaling Regulates Small Intestinal Crypt Homeostasis. THE JOURNAL OF IMMUNOLOGY 2017; 199:304-311. [PMID: 28550196 DOI: 10.4049/jimmunol.1600960] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 05/01/2017] [Indexed: 12/24/2022]
Abstract
Gut homeostasis is a tightly regulated process requiring finely tuned complex interactions between different cell types, growth factors, or cytokines and their receptors. Previous work has implicated a role for IL-6 and mucosal immune cells in intestinal regeneration following injury and in promoting inflammation and cancer. We hypothesized that IL-6 signaling could also modulate crypt homeostasis. Using mouse in vitro crypt organoid and in vivo models, this study first demonstrated that exogenous IL-6 promoted crypt organoid proliferation and increased stem cell numbers through pSTAT3 activation in Paneth cells. Immunolabeling studies showed that the IL-6 receptor was restricted to the basal membrane of Paneth cells both in vitro and in vivo and that the crypt epithelium also expressed IL-6. Either a blocking Ab to the IL-6 receptor or a neutralizing Ab to IL-6 significantly reduced in vitro basal crypt organoid proliferation and budding, and in vivo significantly reduced the number of nuclei and the number of Lgr5EGFP-positive stem cells per crypt compared with IgG-treated mice, with the number of Paneth cells per crypt also significantly reduced. Functional studies demonstrated that IL-6-induced in vitro crypt organoid proliferation and crypt budding was abrogated by the Wnt inhibitor IWP2. This work demonstrates that autocrine IL-6 signaling in the gut epithelium regulates crypt homeostasis through the Paneth cells and the Wnt signaling pathway.
Collapse
Affiliation(s)
- Victoria Jeffery
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom.,School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Andrew J Goldson
- Gut Health and Food Safety Institute Strategic Program, Quadram Institute Bioscience, Norwich NR4 7UA, United Kingdom
| | - Jack R Dainty
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, United Kingdom; and
| | - Marcello Chieppa
- National Institute of Gastroenterology "Saverio de Bellis," Institute of Research, Castellana Grotte 70013, Italy
| | - Anastasia Sobolewski
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom; .,School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom.,Gut Health and Food Safety Institute Strategic Program, Quadram Institute Bioscience, Norwich NR4 7UA, United Kingdom
| |
Collapse
|
40
|
Islam J, Sato S, Watanabe K, Watanabe T, Ardiansyah, Hirahara K, Aoyama Y, Tomita S, Aso H, Komai M, Shirakawa H. Dietary tryptophan alleviates dextran sodium sulfate-induced colitis through aryl hydrocarbon receptor in mice. J Nutr Biochem 2017; 42:43-50. [PMID: 28113104 DOI: 10.1016/j.jnutbio.2016.12.019] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 12/15/2022]
Abstract
Ulcerative colitis is the typical progression of chronic inflammatory bowel disease. Amino acids, particularly tryptophan, have been reported to exert a protective effect against colitis induced by dextran sodium sulfate (DSS), but the precise underlying mechanisms remain incompletely clarified. Tryptophan metabolites are recognized to function as endogenous ligands for aryl hydrocarbon receptor (Ahr), which is a critical regulator of inflammation and immunity. Thus, we conducted this study to investigate whether dietary tryptophan supplementation protects against DSS-induced colitis by acting through Ahr. Female wild-type (WT) and Ahr-deficient (knockout; KO) mice (10-12 weeks old) were divided into four groups and fed either a control or 0.5% tryptophan diet. The tryptophan diet ameliorated DSS-induced colitis symptoms and severity in WT mice but not in KO mice, and the diet reduced the mRNA expression of Il-6, Tnfα, Il-1β and the chemokines Ccl2, Cxcl1 and Cxcl2 in the WT groups. Furthermore, Il-22 and Stat3 mRNA expression in the colon was elevated in WT mice fed with the tryptophan diet, which mainly protected epithelial layer integrity, and Ahr also modulated immune homeostasis by regulating Foxp3 and Il-17 mRNA expression. These data suggest that tryptophan-containing diet might ameliorate DSS-induced acute colitis and regulate epithelial homeostasis through Ahr. Thus, tryptophan could serve as a promising preventive agent in the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Jahidul Islam
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shoko Sato
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Kouichi Watanabe
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takaya Watanabe
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ardiansyah
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; Department of Food Science and Technology, Universitas Bakrie, Jakarta, Indonesia
| | - Keisuke Hirahara
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yukihide Aoyama
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shuhei Tomita
- Department of Pharmacology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hisashi Aso
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
41
|
Vasovic M, Gajovic N, Brajkovic D, Jovanovic M, Zdravkovaic N, Kanjevac T. The relationship between the immune system and oral manifestations of inflammatory bowel disease: a review. Cent Eur J Immunol 2016; 41:302-310. [PMID: 27833449 PMCID: PMC5099388 DOI: 10.5114/ceji.2016.63131] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/28/2015] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic, relapsing inflammatory diseases characterized by exacerbations and remissions of the gastrointestinal tract, clinically manifested as Crohn's disease and ulcerative colitis. The etiology of IBDs is considered to be multi factorial, comprising environmental, immune, microbial and genetic factors. Clinical signs may include abdominal pain, frequent bloody diarrheas, mucorrhea, vomiting, fever, fatigue or weight loss. Changes in the oral cavity often precede intestinal symptoms. Inflammatory bowel disease leads to a significant deterioration of oral health, which indicates that cooperation between the dentist and the gastroenterologist is necessary when considering patients' welfare. Patients with IBD have an altered immune response, but microorganisms of the oral cavity may also be responsible for its modification. This review paper discusses the correlation between the immune system and inflammatory bowel disease manifestations in the oral cavity.
Collapse
Affiliation(s)
- Miroslav Vasovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cells Research, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Denis Brajkovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Natasa Zdravkovaic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Serbia
| |
Collapse
|
42
|
Cazarin CBB, Rodriguez-Nogales A, Algieri F, Utrilla MP, Rodríguez-Cabezas ME, Garrido-Mesa J, Guerra-Hernández E, Braga PADC, Reyes FGR, Maróstica MR, Gálvez J. Intestinal anti-inflammatory effects of Passiflora edulis peel in the dextran sodium sulphate model of mouse colitis. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
43
|
Stio M, Retico L, Annese V, Bonanomi AG. Vitamin D regulates the tight-junction protein expression in active ulcerative colitis. Scand J Gastroenterol 2016; 51:1193-9. [PMID: 27207502 DOI: 10.1080/00365521.2016.1185463] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Epithelial barrier function is primarily regulated by the tight-junction proteins. Ulcerative colitis (UC) is characterized by Th2 immune response with inflammation and epithelial barrier dysfunction, including an elevation of claudin-2 protein function. Recent studies support an important role of vitamin D in the pathogenesis as well as potential therapy of IBD. Vitamin D deficiency is in fact common in patients with IBD. The aim of the study was to determine whether vitamin D could affect IL-13 and IL-6 levels, and regulate the activity of tight-junction proteins. Claudin-1, -2, -4, and -7 in the inflamed and non-inflamed colonic mucosa of UC patients. MATERIAL AND METHODS Biopsies from inflamed and non-inflamed tract of colon and rectum from the same active UC patients were cultured with1,25(OH)2D3. IL-13, IL-6 and the tight-junction proteins level were determined. RESULTS Claudin-1 and claudin-2 proteins were up-regulated in active UC. The treatment with 1,25(OH)2D3 decreases the claudin-1 and claudin-2 protein levels in both inflamed and non-inflamed tract. Claudin-4 and claudin-7 proteins were down-regulated and their levels increase after incubation with the 1,25(OH)2D3. When the biopsies were incubated with 1,25(OH)2D3, a decrease in IL-13 and IL-6 levels was registered. CONCLUSIONS Our results, indicating the inhibition of cytokine levels and the regulation of claudin-2, claudin-4, and claudin-7 by 1,25(OH)2D3, suggest that vitamin D may represent a potential therapeutic agent for the treatment of active UC.
Collapse
Affiliation(s)
- Maria Stio
- a Department of Biomedical, Experimental and Clinical Sciences , "Mario Serio" University of Florence , Florence , Italy
| | - Luigina Retico
- b Gastroenterology Unit , Azienda Ospedaliero-Universitaria Careggi , Florence , Italy
| | - Vito Annese
- b Gastroenterology Unit , Azienda Ospedaliero-Universitaria Careggi , Florence , Italy
| | | |
Collapse
|
44
|
Park JH, Jeong DY, Peyrin-Biroulet L, Eisenhut M, Shin JI. Insight into the role of TSLP in inflammatory bowel diseases. Autoimmun Rev 2016; 16:55-63. [PMID: 27697608 DOI: 10.1016/j.autrev.2016.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Proinflammatory cytokines are thought to modulate pathogeneses of various inflammatory bowel diseases (IBDs). Thymic stromal lymphopoietin (TSLP), which has been studied in various allergic diseases such as asthma, atopic dermatitis (AD) and eosinophilic esophagitis (EoE), has been less considered to be involved in IBDs. However, mucosal dendritic cells (DCs) induced by various cytokines including TSLP were reported to cause polarization of T cell toward Th2 response, the differentiation of regulatory T-cell (Treg), and secretion of IgA by B cells. In this review, we discuss the concept that decreased TSLP has the potential to accelerate the development of Th1 response dominant diseases such as the Crohn's disease (CD) while increased TSLP has the potential to lead to a development of Th2 cell dominant diseases such the ulcerative colitis (UC). To examine TSLP's role as a potential determining factor for differentiating UC and CD, we analyzed the effects of other genes regulated by TSLP in regards to the UC and CD pathogeneses using data from online open access resources such as NetPath, GeneMania, and the String database. Our findings indicate that TSLP is a key mediator in the pathogenesis of IBDs and that further studies are needed to evaluate its role.
Collapse
Affiliation(s)
| | | | - Laurent Peyrin-Biroulet
- Inserm U954 and Department of Gastroenterology, Nancy University Hospital, Université de Lorraine, France
| | - Michael Eisenhut
- Luton & Dunstable University Hospital NHS Foundation Trust, Luton, United Kingdom
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
45
|
Tian Z, Liu J, Liao M, Li W, Zou J, Han X, Kuang M, Shen W, Li H. Beneficial Effects of Fecal Microbiota Transplantation on Ulcerative Colitis in Mice. Dig Dis Sci 2016; 61:2262-2271. [PMID: 26846120 DOI: 10.1007/s10620-016-4060-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 01/26/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic condition and the most common form of inflammatory bowel disease. The goal of standard treatment is mainly to induce and maintain remission with anti-inflammatory, immunosuppressive agents, and/or colectomy. Fecal microbiota transplantation (FMT) has been used successfully to treat relapsing or refractory Clostridium difficile infection. The alteration of microbiota in mouse models of UC as well as in patients suggested the possibility of treating UC with FMT. AIMS To study the effects of FMT on dextran sodium sulfate (DSS)-induced UC model in mice. METHODS Littermates of BALB/c and C57BL/6J were randomized into four groups: normal control , treatment with DSS for 7 days (DSS - FMT), treatment with DSS followed by FMT for another 8 days (DSS + FMT), and treatment with DSS and FMT followed by another 5 days for recovery (remission). Body weight, survival rate, and DAI scores of mice in each group were recorded. Changes in distal colon were studied by histopathology. Alterations of spleen and lamina propria regulatory lymphocytes, major bacterial species in feces and inflammatory cytokines in colon were also studied. RESULTS C57BL/6J mice experienced more significant weight loss than BALB/c mice after DSS treatment, regardless of whether the two strains of mice were co-housed or not. FMT caused reversal of DAI scores in BALB/c but not in C57BL/6J mice. In BALB/c mice, FMT also reduced colon inflammation that was paralleled by decreased inflammatory cytokine levels, altered bacterial microbiota, and regulatory lymphocyte proportions. CONCLUSIONS FMT is effective in a mouse model of UC through its modulation on gut microbiota and the host immune system.
Collapse
Affiliation(s)
- Zhihui Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mengyu Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wenjuan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jiaqi Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xinxin Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mingjie Kuang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wanqiu Shen
- Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Haidong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
46
|
O'Shea CJ, O'Doherty JV, Callanan JJ, Doyle D, Thornton K, Sweeney T. The effect of algal polysaccharides laminarin and fucoidan on colonic pathology, cytokine gene expression and Enterobacteriaceae in a dextran sodium sulfate-challenged porcine model. J Nutr Sci 2016; 5:e15. [PMID: 27110358 PMCID: PMC4831127 DOI: 10.1017/jns.2016.4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 12/14/2015] [Accepted: 01/11/2016] [Indexed: 01/02/2023] Open
Abstract
The algal polysaccharides laminarin (LAM) and fucoidan (FUC) have potent anti-inflammatory activities in the gastrointestinal tract. Our objective was to examine the impact of prior consumption of LAM and/or FUC on pathology and inflammation following a dextran sodium sulfate (DSS) challenge in pigs. Pigs (n 7/group) were assigned to one of five experimental groups for 56 d. From 49-55 d, distilled water or DSS was administered intragastrically. The experimental groups were: (1) basal diet + distilled water (control); (2) basal diet + DSS (DSS); (3) basal diet + FUC + DSS (FUC + DSS); (4) basal diet + LAM + DSS (LAM + DSS); and (5) basal diet + LAM + FUC + DSS (LAMFUC + DSS). The DSS group had decreased body-weight gain (P < 0·05) and serum xylose (P < 0·05), and increased proximal colon pathology score (P < 0·05), diarrhoeal score (P < 0·001) and colonic Enterobacteriaceae (P < 0·05) relative to the control group. The FUC + DSS (P < 0·01), LAM + DSS (P < 0·05) and LAMFUC + DSS (P < 0·05) groups had improved diarrhoeal score, and the LAMFUC + DSS (P < 0·05) group had improved body weight relative to the DSS group. The FUC + DSS group (P < 0·001), LAM + DSS group (P < 0·05) and LAMFUC + DSS group (P < 0·001) had lower IL-6 mRNA abundance relative to the DSS group. The LAM + DSS group had reduced Enterobacteriaceae in proximal colon digesta relative to the DSS group (P < 0·05). In conclusion, FUC or a combination of FUC and LAM improved body-weight loss, diarrhoeal scores and clinical variables associated with a DSS challenge in pigs, in tandem with a reduction in colonic IL-6 mRNA abundance.
Collapse
Affiliation(s)
- C. J. O'Shea
- School of Agriculture and Food Science, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - J. V. O'Doherty
- School of Agriculture and Food Science, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - J. J. Callanan
- School of Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - D. Doyle
- School of Agriculture and Food Science, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - K. Thornton
- School of Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - T. Sweeney
- School of Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
47
|
Abstract
BACKGROUND Dendritic, antigen-presenting cells (DCs) determine not only whether lymphocytes produce different types of immune response but also tissue-homing profiles of lymphocytes they stimulate. For example, in health, mucosal DC stimulate T cells focused to home to the mucosa; DC/T-cell circuitry thus targets immune responses to specific tissue locations. Therapies being introduced for inflammatory bowel disease (IBD) include antibodies to gut-homing molecules such as α4β7 (Vedolizumab) used ostensibly to block gut-homing lymphocytes. However, such lymphocytes are dependent on the tissue specificity of DC that stimulated them. KEY MESSAGES In health, blood DCs have the potential to home to multiple tissues including gut (α4β7+) and skin (CLA+). DCs have become gut-specific within the intestinal microenvironment stimulated partially by local retinoid to express α4β7 (mucosal homing marker) and/or CCR9 (ileal homing marker) in the absence of skin-specific indicators. They spread veiled extensions, sample their environment, acquire/process antigens, produce cytokines and initiate innate immunity. Myeloid DC also traffic to draining lymph nodes where compartmentalization of adaptive immune responses is determined by DCs from the site of antigen exposure which dictate the homing profiles of lymphocytes they stimulate. In IBD, site and activity of disease are reflected in changes in homing/activation of gut DCs and T-cells they stimulate and also, in greater gut specificity and activation of blood DC. Homing potential of DC can be modulated toward mucosa or skin by vitamins A and D, respectively. Infliximab or interleukin-6 can divert homing profiles toward skin, perhaps predisposing to skin involvement in IBD. Probiotic bacteria or their products can also change homing profiles of gut DC toward skin homing and away from gut. CONCLUSIONS In conclusion, development of gut focused inflammation and its treatment relies on changes in DC tissue specificity; therefore, removal or diversion of gut-homing DC as well as T-cells is likely to be critical in prevention of gut-focused inflammation in IBD.
Collapse
Affiliation(s)
- Stella C. Knight
- Imperial College London, Antigen Presentation Research Group, London, UK
| |
Collapse
|
48
|
Comino I, Bernardo D, Bancel E, de Lourdes Moreno M, Sánchez B, Barro F, Šuligoj T, Ciclitira PJ, Cebolla Á, Knight SC, Branlard G, Sousa C. Identification and molecular characterization of oat peptides implicated on coeliac immune response. Food Nutr Res 2016; 60:30324. [PMID: 26853779 PMCID: PMC4744869 DOI: 10.3402/fnr.v60.30324] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/06/2015] [Accepted: 12/07/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Oats provide important nutritional and pharmacological properties, although their safety in coeliac patients remains controversial. Previous studies have confirmed that the reactivity of the anti-33-mer monoclonal antibody with different oat varieties is proportional to the immune responses in terms of T-cell proliferation. Although the impact of these varieties on the adaptive response has been studied, the role of the dendritic cells (DC) is still poorly understood. The aim of this study is to characterize different oat fractions and to study their effect on DC from coeliac patients. METHODS AND RESULTS Protein fractions were isolated from oat grains and analyzed by SDS-PAGE. Several proteins were characterized in the prolamin fraction using immunological and proteomic tools, and by Nano-LC-MS/MS. These proteins, analogous to α- and γ-gliadin-like, showed reactive sequences to anti-33-mer antibody suggesting their immunogenic potential. That was further confirmed as some of the newly identified oat peptides had a differential stimulatory capacity on circulating DC from coeliac patients compared with healthy controls. CONCLUSIONS This is the first time, to our knowledge, where newly identified oat peptides have been shown to elicit a differential stimulatory capacity on circulating DC obtained from coeliac patients, potentially identifying immunogenic properties of these oat peptides.
Collapse
Affiliation(s)
- Isabel Comino
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - David Bernardo
- Gastroenterology Unit, Antigen Presentation Research Group, Imperial College London & St Mark's Hospital, Harrow, United Kingdom.,Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | | | - María de Lourdes Moreno
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Borja Sánchez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo-Ourense Campus, Ourense, Spain
| | | | - Tanja Šuligoj
- Division of Diabetes and Nutritional Sciences, King's College London, Gastroenterology, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Paul J Ciclitira
- Division of Diabetes and Nutritional Sciences, King's College London, Gastroenterology, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | | | - Stella C Knight
- Gastroenterology Unit, Antigen Presentation Research Group, Imperial College London & St Mark's Hospital, Harrow, United Kingdom
| | | | - Carolina Sousa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain;
| |
Collapse
|
49
|
Smith SEP, Maus RLG, Davis TR, Sundberg JP, Gil D, Schrum AG. Maternal IL-6 can cause T-cell-mediated juvenile alopecia by non-scarring follicular dystrophy in mice. Exp Dermatol 2015; 25:223-8. [PMID: 26660334 DOI: 10.1111/exd.12914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 12/16/2022]
Abstract
Aiming to decipher immunological mechanisms of the autoimmune disorder alopecia areata (AA), we hypothesized that interleukin-6 (IL-6) might be associated with juvenile-onset AA, for which there is currently no experimental model. Upon intramuscular transgenesis to overexpress IL-6 in pregnant female C57BL/6 (B6) mice, we found that the offspring displayed an initial normal and complete juvenile hair growth cycle, but developed alopecia around postnatal day 18. This alopecia was patchy and reversible (non-scarring) and was associated with upregulation of Ulbp1 expression, the only mouse homolog of the human AA-associated ULBP3 gene. Alopecia was also associated with inflammatory infiltration of hair follicles by lymphocytes, including alpha-beta T cells, which contributed to surface hair loss. Despite these apparently shared traits with AA, lesions were dominated by follicular dystrophy that was atypical of human AA disease, sharing some traits consistent with B6 alopecia and dermatitis. Additionally, juvenile-onset alopecia was followed by complete, spontaneous recovery of surface hair, without recurrence of hair loss. Prolonging exposure to IL-6 prolonged the time to recovery, but once recovered, repeating high-dose IL-6 exposure de novo did not re-induce alopecia. These data suggest that although substantial molecular and cellular pathways may be shared, functionally similar alopecia disorders can occur via distinct pathological mechanisms.
Collapse
Affiliation(s)
- Stephen E P Smith
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Rachel L G Maus
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tessa R Davis
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Diana Gil
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Adam G Schrum
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
50
|
New insights into immune mechanisms underlying autoimmune diseases of the gastrointestinal tract. Autoimmun Rev 2015; 14:1161-9. [PMID: 26275585 DOI: 10.1016/j.autrev.2015.08.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/05/2015] [Indexed: 02/07/2023]
|