1
|
Saito S, Cao DY, Bernstein EA, Shibata T, Jones AE, Rios A, Hoshi AO, Stotland AB, Nishi EE, Van Eyk JE, Divakaruni A, Khan Z, Bernstein KE. Peroxisome proliferator-activated receptor alpha is an essential factor in enhanced macrophage immune function induced by angiotensin-converting enzyme. Cell Mol Immunol 2025; 22:243-259. [PMID: 39910334 PMCID: PMC11868401 DOI: 10.1038/s41423-025-01257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 01/12/2025] [Indexed: 02/07/2025] Open
Abstract
Increased expression of angiotensin-converting enzyme (ACE) by myeloid lineage cells strongly increases the immune activity of these cells, as observed in ACE10/10 mice, which exhibit a marked increase in antitumor and antibactericidal immunity. We report that peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor that regulates genes critical for lipid metabolism, is a key molecule in the enhanced macrophage function induced by ACE. Here, we used a Cre-LoxP approach with LysM-Cre to create a modified ACE10/10 mouse line in which macrophages continue to generate abundant ACE but in which monocyte and macrophage PPARα expression is selectively suppressed. These mice, termed A10-PPARα-Cre, have significantly increased growth of B16-F10 tumors compared with ACE10/10 mice with Cre expression. PPARα depletion impaired cytokine production and antigen-presenting activity in ACE-expressing macrophages, resulting in reduced tumor antigen-specific CD8+ T-cell generation. Additionally, the elevated bactericidal resistance typical of ACE10/10 mice was significantly reduced in A10-PPARα-Cre mice, such that these mice resembled WT mice in their resistance to methicillin-resistant Staphylococcus aureus (MRSA) infection. THP-1 cells expressing increased ACE (termed THP-1-ACE) constitute a human macrophage model with increased PPARα that shows enhanced cytotoxicity against tumor cells and better phagocytosis and killing of MRSA. RNA silencing of PPARα in THP-1-ACE cells reduced both tumor cell death and bacterial phagocytosis and clearance. In contrast, the in vivo administration of pemafibrate, a specific agonist of PPARα, to WT and A10-PPARα-Cre mice reduced B16-F10 tumor growth by 24.5% and 25.8%, respectively, but pemafibrate reduced tumors by 57.8% in ACE10/10 mice. With pemafibrate, the number of antitumor CD8+ T cells was significantly lower in A10-PPARα-Cre mice than in ACE10/10 mice. We conclude that PPARα is important in the immune system of myeloid cells, including wild-type cells, and that its increased expression by ACE-expressing macrophages in ACE10/10 mice is indispensable for ACE-dependent functional upregulation of macrophages in both mice and human cells.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tomohiro Shibata
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy Rios
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aoi O Hoshi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aleksandr B Stotland
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erika E Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Physiology, São Paulo School of Medicine, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Jennifer E Van Eyk
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ajit Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Yu K, Song X, Zhang J, Chen R, Liu G, Xu X, Lu X, Ning J, Liu B, Zhang X, Wang F, Wang Y, Wang C. Transcriptomic profiling of the thermal tolerance in two subspecies of the bay scallop Argopecten irradians. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101246. [PMID: 38781887 DOI: 10.1016/j.cbd.2024.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The bay scallop is a eurythermal species with high economic value and now represents the most cultured bivalve species in China. Two subspecies of the bay scallop, the northern subspecies Argopecten irradians irradians Korean population (KK) and the southern subspecies Argopecten irradians concentricus (MM), exhibited distinct adaptations to heat stress. However, the molecular mechanism of heat resistance of the two subspecies remains unclear. In this study, we compared the transcriptomic responses of the two subspecies to heat stress and identified the involved differentially expressed genes (DEGs) and pathways. More DEGs were found in the KK than in the MM when exposed to high temperatures, indicating elevated sensitivity to thermal stress in the KK. Enrichment analysis suggests that KK scallops may respond to heat stress more swiftly by regulating GTPase activity. Meanwhile, MM scallops exhibited higher resistance to heat stress mainly by effective activation of their antioxidant system. Chaperone proteins may play different roles in responses to heat stress in the two subspecies. In both subspecies, the expression levels of antioxidants such as GST were significantly increased; the glycolysis process regulated by PC and PCK1 was greatly intensified; and both apoptotic and anti-apoptotic systems were significantly activated. The pathways related to protein translation and hydrolysis, oxidoreductase activity, organic acid metabolism, and cell apoptosis may also play pivotal roles in the responses to heat stress. The results of this study may provide a theoretical basis for marker-assisted breeding of heat-resistant strains.
Collapse
Affiliation(s)
- Kai Yu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xinyu Song
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Jianbai Zhang
- Yantai Marine Economic Research Institute, Yantai 265503, China
| | - Rongjie Chen
- Laizhou Marine Development and Fishery Service Center, Laizhou, Shandong 261400, China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed Co., Ltd., Yantai, Shandong 265503, China
| | - Xin Xu
- Yantai Spring-Sea AquaSeed Co., Ltd., Yantai, Shandong 265503, China
| | - Xia Lu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Bo Liu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiaotong Zhang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Fukai Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yinchu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; National Basic Science Data Center, Beijing 100190, China.
| | - Chunde Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.
| |
Collapse
|
3
|
Olivier JF, Langlais D, Jeyakumar T, Polyak MJ, Galarneau L, Cayrol R, Jiang H, Molloy KR, Xu G, Suzuki H, LaCava J, Gros P, Fodil N. CCDC88B interacts with RASAL3 and ARHGEF2 and regulates dendritic cell function in neuroinflammation and colitis. Commun Biol 2024; 7:77. [PMID: 38200184 PMCID: PMC10781698 DOI: 10.1038/s42003-023-05751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
CCDC88B is a risk factor for several chronic inflammatory diseases in humans and its inactivation causes a migratory defect in DCs in mice. CCDC88B belongs to a family of cytoskeleton-associated scaffold proteins that feature protein:protein interaction domains. Here, we identified the Rho/Rac Guanine Nucleotide Exchange Factor 2 (ARHGEF2) and the RAS Protein Activator Like 3 (RASAL3) as CCDC88B physical and functional interactors. Mice defective in Arhgef2 or Rasal3 show dampened neuroinflammation, and display altered cellular response and susceptibility to colitis; ARHGEF2 maps to a human Chromosome 1 locus associated with susceptibility to IBD. Arhgef2 and Rasal3 mutant DCs show altered migration and motility in vitro, causing either reduced (Arhgef2) or enhanced (Rasal3) migratory properties. The CCDC88B/RASAL3/ARHGEF2 complex appears to regulate DCs migration by modulating activation of RHOA, with ARHGEF2 and RASAL3 acting in opposite regulatory fashions, providing a molecular mechanism for the involvement of these proteins in DCs immune functions.
Collapse
Affiliation(s)
- Jean-Frederic Olivier
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, Montreal, QC, Canada
| | - David Langlais
- McGill Research Center on Complex Traits, Montreal, QC, Canada
- Department of Human Genetics, Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
| | - Thiviya Jeyakumar
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, Montreal, QC, Canada
| | - Maria J Polyak
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, Montreal, QC, Canada
| | - Luc Galarneau
- Department of Medicine, Sherbrooke University, Sherbrooke, QC, Canada
| | - Romain Cayrol
- Department of Pathology, University of Montreal Hospital Center (CHUM), Montreal, QC, Canada
- University of Montreal Hospital Center Research Center (CR-CHUM), Montreal, QC, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Guoyue Xu
- Department of Human Genetics, Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
| | - Harumi Suzuki
- Department of Immunology and Pathology, National Center for Global Health and Medicine, Tokyo, Japan
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- McGill Research Center on Complex Traits, Montreal, QC, Canada.
| | - Nassima Fodil
- McGill Research Center on Complex Traits, Montreal, QC, Canada
- CERMO-FC, Pavillon des Sciences Biologiques, Montreal, QC, Canada
| |
Collapse
|
4
|
Yang X, Han L, Ye Q, Wang H, Zhang J, Wang W, Xiao H, Wang Y, Wang L, Ding J. MethylRAD Sequencing Technology Reveals DNA Methylation Characteristics of Apostichopus japonicus of Different Ages. Animals (Basel) 2023; 13:3530. [PMID: 38003147 PMCID: PMC10668780 DOI: 10.3390/ani13223530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The A. japonicus industry has expanded significantly, but no research has focused on determining the age of A. japonicus during farming. Correctly estimating the age of A. japonicus can provide a decision-making basis for the breeding process and data for the protection of A. japonicus aquatic germplasm resources. DNA methylation levels in the body wall of Apostichopus japonicus at 4 months, 1 year, 2 years, and 3 years old were determined using MethylRAD-Seq, and differentially methylated genes were screened. A total of 441 and 966 differentially methylated genes were detected at the CCGG and CCWGG sites, respectively. Aspartate aminotransferase, succinate semialdehyde dehydrogenase, isocitrate dehydrogenase, the histone H2AX, heat shock protein Hsp90, aminopeptidase N, cell division cycle CDC6, Ras GTPase activating protein (RasGAP), slit guidance ligand slit1, integrin-linked kinase ILK, mechanistic target of rapamycin kinase Mtor, protein kinase A Pka, and autophagy-related 3 atg3 genes may play key roles in the growth and aging process of A. japonicus. This study provides valuable information regarding age-related genes for future research, and these candidate genes can be used to create an "epigenetic clock".
Collapse
Affiliation(s)
- Xinyu Yang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Lingshu Han
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
- School of Marine Sciences, Ningbo University, Ningbo 315832, China
| | - Qi Ye
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Hao Wang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jinyuan Zhang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Wenpei Wang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Haoran Xiao
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Yongjie Wang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Luo Wang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jun Ding
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
5
|
Gao RF, Yang K, Qu YN, Wei X, Shi JR, Lv CY, Zhao YC, Sun XL, Xu YJ, Yang YQ. m 6A demethylase ALKBH5 attenuates doxorubicin-induced cardiotoxicity via posttranscriptional stabilization of Rasal3. iScience 2023; 26:106215. [PMID: 36876119 PMCID: PMC9982307 DOI: 10.1016/j.isci.2023.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The clinical application of anthracyclines such as doxorubicin (DOX) is limited due to their cardiotoxicity. N6-methyladenosine (m6A) plays an essential role in numerous biological processes. However, the roles of m6A and m6A demethylase ALKBH5 in DOX-induced cardiotoxicity (DIC) remain unclear. In this research, DIC models were constructed using Alkbh5-knockout (KO), Alkbh5-knockin (KI), and Alkbh5-myocardial-specific knockout (ALKBH5flox/flox, αMyHC-Cre) mice. Cardiac function and DOX-mediated signal transduction were investigated. As a result, both Alkbh5 whole-body KO and myocardial-specific KO mice had increased mortality, decreased cardiac function, and aggravated DIC injury with severe myocardial mitochondrial damage. Conversely, ALKBH5 overexpression alleviated DOX-mediated mitochondrial injury, increased survival, and improved myocardial function. Mechanistically, ALKBH5 regulated the expression of Rasal3 in an m6A-dependent manner through posttranscriptional mRNA regulation and reduced Rasal3 mRNA stability, thus activating RAS3, inhibiting apoptosis through the RAS/RAF/ERK signaling pathway, and alleviating DIC injury. These findings indicate the potential therapeutic effect of ALKBH5 on DIC.
Collapse
Affiliation(s)
- Ri-Feng Gao
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Kun Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Ya-Nan Qu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Jia-Ran Shi
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Chun-Yu Lv
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 200240, China
| | - Yong-Chao Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Xiao-Lei Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 518036, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Corresponding author
| |
Collapse
|
6
|
Liang M, Meng X, Zhou B, Gao Y. RASAL3 predicts overall survival and CD8+ T lymphocyte infiltration in lung adenocarcinoma. J Cell Mol Med 2022; 26:6056-6065. [PMID: 36420686 PMCID: PMC9753442 DOI: 10.1111/jcmm.17625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/22/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
RAS-activating protein-like 3 (RASAL3) is a synaptic Ras GTPase-activating protein (SynGAP) and a potential novel biomarker of CD8+ T cell infiltration in lung adenocarcinoma (LUAD). This study explored RASAL3 expression in LUAD, the prognostic impact of RASAL3 and the relationship with immune cell infiltration. RASAL3 expression in LUAD tissues was considerably low, with high RASAL3 expression associated with better overall survival, whereas the low expression was linked to advanced T, N, M classifications, TNM stage and lower grade. Furthermore, RASAL3 expression positively correlated with CD8+ T lymphocyte infiltration. In conclusion, RASAL3 expression is a potential prognostic and immunological biomarker of LUAD.
Collapse
Affiliation(s)
- Mei Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiangzhi Meng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Boxuan Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
7
|
Lin Z, Tang X, Cao Y, Yang L, Jiang M, Li X, Min J, Chen B, Yang Y, Gu C. CD229 interacts with RASAL3 to activate RAS/ERK pathway in multiple myeloma proliferation. Aging (Albany NY) 2022; 14:9264-9279. [PMID: 36445333 PMCID: PMC9740379 DOI: 10.18632/aging.204405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy, while CAR-T therapy offers a new direction for the treatment of MM. Recently, signaling lymphocytic activation molecule family 3 (CD229), a cell surface immune receptor belonging to the signaling lymphocyte activating molecule family (SLAMF), is emerging as a CAR-T therapeutic target in MM. However, a clear role of CD229 in MM remains elusive. In this study, MM patients with elevated CD229 expression achieved poor prognosis by analyzing MM clinical databases. In addition, CD229 promoted MM cell proliferation in vitro as well as in xenograft mouse model in vivo. Mechanism study revealed that CD229 promoted MM cell proliferation by regulating the RAS/ERK signaling pathway. Further exploration employed co-immunoprecipitation coupled with mass spectrometry to identify RASAL3 as an important downstream protein of CD229. Additionally, we developed a co-culture method combined with the immunofluorescence assay to confirm that intercellular tyrosine phosphorylation mediated self-activation of CD229 to activate RAS/ERK signaling pathway via interacting with RASAL3. Taken together, these findings not only demonstrate the oncogenic role of CD229 in MM cell proliferation, but also illustrate the potential of CD229 as a promising therapeutic target for MM treatment.
Collapse
Affiliation(s)
- Zigen Lin
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaozhu Tang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhao Cao
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijin Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingmei Jiang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinying Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Min
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Saito S, Okuno A, Maekawa T, Kobayashi R, Yamashita O, Tsujimura N, Inaba M, Kageyama Y, Tsuji NM. Lymphocyte antigen 6 complex locus G6D downregulation is a novel parameter for functional impairment of neutrophils in aged mice. Front Immunol 2022; 13:1001179. [PMID: 36389807 PMCID: PMC9647080 DOI: 10.3389/fimmu.2022.1001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
Immunological aging is a critical event that causes serious functional impairment in the innate immune system. However, the identification markers and parameters are still poorly understood in immunological aging of myeloid lineage cells. Here, we show that a downregulation of lymphocyte antigen 6 complex locus G6D (Ly-6G) observed in aged mouse neutrophils could serve as a novel marker for the prediction of age-associated functional impairment in the neutrophils. Ly-6G expression was significantly downregulated in the bone marrow (BM) neutrophils of aged mice compared to young mice confirmed by flow cytometry analysis. In vitro experiments using BM-isolated neutrophils showed significant downregulations in their activities, such as phagocytosis, reactive oxygen species (ROS) production, interleukin (IL)-1β production, neutrophil extracellular trap (NET) formation, and migration as well as bacterial clearance, in the aged mouse neutrophils compared to those of young mice counterparts. Interestingly, the magnitudes of functional parameters were strongly correlated with the Ly-6G expression in the neutrophils. Thus, our results suggest that downregulation of Ly-6G reflects the age-associated functional attenuation of the neutrophils.
Collapse
Affiliation(s)
- Suguru Saito
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Suguru Saito, ; ; Noriko M. Tsuji, ;
| | - Alato Okuno
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Health and Nutrition, Faculty of Human Design, Shibata Gakuen University, Aomori, Japan
| | - Toshio Maekawa
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- iFoodMed Inc., Tsuchiura, Japan
| | - Ryoki Kobayashi
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- iFoodMed Inc., Tsuchiura, Japan
- Division of Microbiology and Immunology, Department of Infection and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Osamu Yamashita
- Technical Service Department, CLEA Japan, Inc., Tokyo, Japan
| | | | - Morihiko Inaba
- Tokyo Animal and Diet Department, CLEA Japan, Inc., Tokyo, Japan
| | - Yasushi Kageyama
- Tokyo Animal and Diet Department, CLEA Japan, Inc., Tokyo, Japan
| | - Noriko M. Tsuji
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- iFoodMed Inc., Tsuchiura, Japan
- Department of Food Science, Jumonji University, Niiza, Japan
- *Correspondence: Suguru Saito, ; ; Noriko M. Tsuji, ;
| |
Collapse
|
9
|
Saito S, Tatsumoto N, Cao DY, Nosaka N, Nishi H, Leal DN, Bernstein E, Shimada K, Arditi M, Bernstein KE, Yamashita M. Overexpressed angiotensin-converting enzyme in neutrophils suppresses glomerular damage in crescentic glomerulonephritis. Am J Physiol Renal Physiol 2022; 323:F411-F424. [PMID: 35979968 PMCID: PMC9484997 DOI: 10.1152/ajprenal.00067.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/22/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022] Open
Abstract
While angiotensin-converting enzyme (ACE) regulates blood pressure by producing angiotensin II as part of the renin-angiotensin system, we recently reported that elevated ACE in neutrophils promotes an effective immune response and increases resistance to infection. Here, we investigate if such neutrophils protect against renal injury in immune complex (IC)-mediated crescentic glomerulonephritis (GN) through complement. Nephrotoxic serum nephritis (NTN) was induced in wild-type and NeuACE mice that overexpress ACE in neutrophils. Glomerular injury of NTN in NeuACE mice was attenuated with much less proteinuria, milder histological injury, and reduced IC deposits, but presented with more glomerular neutrophils in the early stage of the disease. There were no significant defects in T and B cell functions in NeuACE mice. NeuACE neutrophils exhibited enhanced IC uptake with elevated surface expression of FcγRII/III and complement receptor CR1/2. IC uptake in neutrophils was enhanced by NeuACE serum containing elevated complement C3b. Given no significant complement activation by ACE, this suggests that neutrophil ACE indirectly preactivates C3 and that the C3b-CR1/2 axis and elevated FcγRII/III play a central role in IC elimination by neutrophils, resulting in reduced glomerular injury. The present study identified a novel renoprotective role of ACE in glomerulonephritis; elevated neutrophilic ACE promotes elimination of locally formed ICs in glomeruli via C3b-CR1/2 and FcγRII/III, ameliorating glomerular injury.NEW & NOTEWORTHY We studied immune complex (IC)-mediated crescentic glomerulonephritis in NeuACE mice that overexpress ACE only in neutrophils. Such mice show no significant defects in humoral immunity but strongly resist nephrotoxic serum nephritis (less proteinuria, milder histological damage, reduced IC deposits, and more glomerular neutrophils). NeuACE neutrophils enhanced IC uptake via increased surface expression of CR1/2 and FcgRII/III, as well as elevated serum complement C3b. These results suggest neutrophil ACE as a novel approach to reducing glomerulonephritis.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Narihito Tatsumoto
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nobuyuki Nosaka
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Daniel N Leal
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ellen Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenichi Shimada
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
10
|
SAITO S, OKUNO A, KAKIZAKI N, MAEKAWA T, TSUJI NM. <i>Lactococcus lactis</i> subsp. <i>cremoris</i> C60 induces macrophages activation that enhances CD4+ T cell-based adaptive immunity. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:130-136. [PMID: 35854694 PMCID: PMC9246417 DOI: 10.12938/bmfh.2021-057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/08/2022] [Indexed: 12/17/2022]
Abstract
Lactococcus lactis subsp. cremoris C60 is a probiotic
strain that induces diverse functional modifications in immune cells. In this report, as a
novel effect of C60 on myeloid lineage cells, we show that C60 enhances the immunological
function of macrophages that consequently promotes CD4+ T cell activity in an
antigen-dependent manner. Heat-killed (HK) C60 induced the production of pro-inflammatory
cytokines in thioglycolate-elicited peritoneal macrophages (TPMs) much stronger than
Toll-like receptor (TLR) ligand stimulation. The HK-C60 treatment also augmented the
expression of antigen-presenting and co-stimulatory molecules, such as major
histocompatibility complex (MHC) class II, CD80, and CD86, as well as antigen uptake in
TPMs. These HK-C60-mediated functional upregulations in TPMs resulted in the promotion of
CD4+ T cell activation in an antigen-dependent manner. Interestingly, the TPMs that
originated from the mice fed the HK-C60 diet showed pre-activated characteristics, which
was confirmed by the upregulation of cytokine production and antigen presentation-related
molecule expression under lipopolysaccharide (LPS) stimulation. Furthermore, the
antigen-dependent CD4+ T cell activation was also enhanced by the TPMs. This implied that
antigen presentation activity was enhanced in the TPMs that originated from the HK-C60
diet mice. Thus, C60 effectively upregulates the immunological function of macrophages
that directly connects to CD4+ T cell-based adaptive immunity.
Collapse
Affiliation(s)
- Suguru SAITO
- Division of Virology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0431, Japan
| | - Alato OKUNO
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8560, Japan
| | - Nanae KAKIZAKI
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8560, Japan
| | - Toshio MAEKAWA
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8560, Japan
| | - Noriko M. TSUJI
- Department of Food Science, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan
| |
Collapse
|
11
|
Saito S, Cao DY, Victor AR, Peng Z, Wu HY, Okwan-Duodu D. RASAL3 Is a Putative RasGAP Modulating Inflammatory Response by Neutrophils. Front Immunol 2021; 12:744300. [PMID: 34777356 PMCID: PMC8579101 DOI: 10.3389/fimmu.2021.744300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
As first responder cells in host defense, neutrophils must be carefully regulated to prevent collateral tissue injury. However, the intracellular events that titrate the neutrophil’s response to inflammatory stimuli remain poorly understood. As a molecular switch, Ras activity is tightly regulated by Ras GTPase activating proteins (RasGAP) to maintain cellular active-inactive states. Here, we show that RASAL3, a RasGAP, is highly expressed in neutrophils and that its expression is upregulated by exogenous stimuli in neutrophils. RASAL3 deficiency triggers augmented neutrophil responses and enhanced immune activation in acute inflammatory conditions. Consequently, mice lacking RASAL3 (RASAL3-KO) demonstrate accelerated mortality in a septic shock model via induction of severe organ damage and hyperinflammatory response. The excessive neutrophilic hyperinflammation and increased mortality were recapitulated in a mouse model of sickle cell disease, which we found to have low neutrophil RASAL3 expression upon LPS activation. Thus, RASAL3 functions as a RasGAP that negatively regulates the cellular activity of neutrophils to modulate the inflammatory response. These results demonstrate that RASAL3 could serve as a therapeutic target to regulate excessive inflammation in sepsis and many inflammatory disease states.
Collapse
Affiliation(s)
- Suguru Saito
- Bio-fluid Biomarker Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Division of Virology, Department of Immunology and Infection, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Aaron R Victor
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Zhenzi Peng
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Hui-Ya Wu
- College of Health Science, Trans World University, Douliu, Taiwan
| | - Derick Okwan-Duodu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
12
|
Uemoto Y, Ichinoseki K, Matsumoto T, Oka N, Takamori H, Kadowaki H, Kojima-Shibata C, Suzuki E, Okamura T, Aso H, Kitazawa H, Satoh M, Uenishi H, Suzuki K. Genome-wide association studies for production, respiratory disease, and immune-related traits in Landrace pigs. Sci Rep 2021; 11:15823. [PMID: 34349215 PMCID: PMC8338966 DOI: 10.1038/s41598-021-95339-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Identification of a quantitative trait locus (QTL) related to a chronic respiratory disease such as Mycoplasmal pneumonia of swine (MPS) and immune-related traits is important for the genetic improvement of disease resistance in pigs. The objective of this study was to detect a novel QTL for a total of 22 production, respiratory disease, and immune-related traits in Landrace pigs. A total of 874 Landrace purebred pigs, which were selected based on MPS resistance, were genotyped using the Illumina PorcineSNP60 BeadChip. We performed single nucleotide polymorphism (SNP)-based and haplotype-based genome-wide association studies (GWAS) to detect a novel QTL and to evaluate the possibility of a pleiotropic QTL for these traits. SNP-based GWAS detected a total of six significant regions in backfat thickness, ratio of granular leucocytes to lymphatic cells, plasma concentration of cortisol at different ages, and complement alternative pathway activity in serum. The significant region detected by haplotype-based GWAS was overlapped across the region detected by SNP-based GWAS. Most of these detected QTL regions were novel regions with some candidate genes located in them. With regard to a pleiotropic QTL among traits, only three of these detected QTL regions overlapped among traits, and many detected regions independently affected the traits.
Collapse
Affiliation(s)
- Yoshinobu Uemoto
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan.
| | - Kasumi Ichinoseki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Toshimi Matsumoto
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan
| | - Nozomi Oka
- Miyagi Prefecture Animal Industry Experiment Station, Osaki, Miyagi, 989-6445, Japan
| | - Hironori Takamori
- Miyagi Prefecture Animal Industry Experiment Station, Osaki, Miyagi, 989-6445, Japan
| | - Hiroshi Kadowaki
- Miyagi Prefecture Animal Industry Experiment Station, Osaki, Miyagi, 989-6445, Japan
| | | | - Eisaku Suzuki
- Miyagi Prefecture Animal Industry Experiment Station, Osaki, Miyagi, 989-6445, Japan
| | - Toshihiro Okamura
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 305-0901, Japan
| | - Hisashi Aso
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Haruki Kitazawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Masahiro Satoh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Hirohide Uenishi
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan
| | - Keiichi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
13
|
Delaveris C, Wilk AJ, Riley NM, Stark JC, Yang SS, Rogers AJ, Ranganath T, Nadeau KC, Blish CA, Bertozzi CR. Synthetic Siglec-9 Agonists Inhibit Neutrophil Activation Associated with COVID-19. ACS CENTRAL SCIENCE 2021; 7:650-657. [PMID: 34056095 PMCID: PMC8009098 DOI: 10.1021/acscentsci.0c01669] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 05/02/2023]
Abstract
Severe cases of coronavirus disease 2019 (COVID-19), caused by infection with SARS-CoV-2, are characterized by a hyperinflammatory immune response that leads to numerous complications. Production of proinflammatory neutrophil extracellular traps (NETs) has been suggested to be a key factor in inducing a hyperinflammatory signaling cascade, allegedly causing both pulmonary tissue damage and peripheral inflammation. Accordingly, therapeutic blockage of neutrophil activation and NETosis, the cell death pathway accompanying NET formation, could limit respiratory damage and death from severe COVID-19. Here, we demonstrate that synthetic glycopolymers that activate signaling of the neutrophil checkpoint receptor Siglec-9 suppress NETosis induced by agonists of viral toll-like receptors (TLRs) and plasma from patients with severe COVID-19. Thus, Siglec-9 agonism is a promising therapeutic strategy to curb neutrophilic hyperinflammation in COVID-19.
Collapse
Affiliation(s)
- Corleone
S. Delaveris
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Aaron J. Wilk
- Stanford
Medical Scientist Training Program, Stanford
University, Stanford, California 94305, United States
- Stanford
Immunology Program, Stanford University, Stanford, California 94305, United States
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
| | - Nicholas M. Riley
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jessica C. Stark
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Samuel S. Yang
- Department
of Emergency Medicine, Stanford University, Stanford, California 94305, United States
| | - Angela J. Rogers
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
| | - Thanmayi Ranganath
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
| | - Kari C. Nadeau
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
- Sean
N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California 94305, United States
| | | | - Catherine A. Blish
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
- Chan
Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Carolyn R. Bertozzi
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- ChEM-H, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford, California 94305, United States
| |
Collapse
|
14
|
Delaveris CS, Wilk AJ, Riley NM, Stark JC, Yang SS, Rogers AJ, Ranganath T, Nadeau KC, Blish CA, Bertozzi CR. Synthetic Siglec-9 Agonists Inhibit Neutrophil Activation Associated with COVID-19. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:13378148. [PMID: 33469569 PMCID: PMC7814829 DOI: 10.26434/chemrxiv.13378148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 12/17/2020] [Indexed: 12/23/2022]
Abstract
Severe cases of coronavirus disease 2019 (COVID-19), caused by infection with SARS-Cov-2, are characterized by a hyperinflammatory immune response that leads to numerous complications. Production of proinflammatory neutrophil extracellular traps (NETs) has been suggested to be a key factor in inducing a hyperinflammatory signaling cascade, allegedly causing both pulmonary tissue damage and peripheral inflammation. Accordingly, therapeutic blockage of neutrophil activation and NETosis, the cell death pathway accompanying NET formation, could limit respiratory damage and death from severe COVID-19. Here, we demonstrate that synthetic glycopolymers that activate the neutrophil checkpoint receptor Siglec-9 suppress NETosis induced by agonists of viral toll-like receptors (TLRs) and plasma from patients with severe COVID-19. Thus, Siglec-9 agonism is a promising therapeutic strategy to curb neutrophilic hyperinflammation in COVID-19. .
Collapse
Affiliation(s)
- Corleone S Delaveris
- Department of Chemistry, Stanford University, Stanford CA, 94305
- ChEM-H, Stanford University, Stanford, CA 94305
| | - Aaron J Wilk
- Stanford Medical Scientist Training Program, Stanford, CA 94305
- Stanford Immunology Program, Stanford University, Stanford, CA 94305
- Department of Medicine, Stanford University, Stanford, CA 94305
| | - Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford CA, 94305
| | - Jessica C Stark
- Department of Chemistry, Stanford University, Stanford CA, 94305
| | - Samuel S Yang
- Department of Emergency Medicine, Stanford University, Stanford, CA 94305
| | - Angela J Rogers
- Department of Medicine, Stanford University, Stanford, CA 94305
| | | | - Kari C Nadeau
- Department of Medicine, Stanford University, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA, 94305
| | - Catherine A Blish
- Department of Medicine, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford CA, 94305
- ChEM-H, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford, CA 94305
| |
Collapse
|
15
|
Zhu N, Hou J. Assessing immune infiltration and the tumor microenvironment for the diagnosis and prognosis of sarcoma. Cancer Cell Int 2020; 20:577. [PMID: 33292275 PMCID: PMC7709254 DOI: 10.1186/s12935-020-01672-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sarcomas, cancers originating from mesenchymal cells, are comprehensive tumors with poor prognoses, yet their tumorigenic mechanisms are largely unknown. In this study, we characterize infiltrating immune cells and analyze immune scores to identify the molecular mechanism of immunologic response to sarcomas. METHOD The "CIBERSORT" algorithm was used to calculate the amount of L22 immune cell infiltration in sarcomas. Then, the "ESTIMATE" algorithm was used to assess the "Estimate," "Immune," and "Stromal" scores. Weighted gene co-expression network analysis (WGCNA) was utilized to identify the significant module related to the immune therapeutic target. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the "clusterProfiler" package in R for annotation and visualization. RESULTS Macrophages were the most common immune cells infiltrating sarcomas. The number of CD8 T cells was negatively associated with that of M0 and M2 macrophages, and positively associated with M macrophages in sarcomas samples. The clinical parameters (disease type, gender) significantly increased with higher Estimate, Immune, and Stromal scores, and with a better prognosis. The blue module was significantly associated with CD8 T cells. Functional enrichment analysis showed that the blue module was mainly involved in chemokine signaling and the PI3K-Akt signaling pathway. CD48, P2RY10 and RASAL3 were identified and validated at the protein level. CONCLUSION Based on the immune cell infiltration and immune microenvironment, three key genes were identified, thus presenting novel molecular mechanisms of sarcoma metastasis.
Collapse
Affiliation(s)
- Naiqiang Zhu
- Department of Minimally Invasive Spinal Surgery, Affiliated Hospital of Chengde Medical College, Chengde, 067000, China
| | - Jingyi Hou
- Department of Minimally Invasive Spinal Surgery, Affiliated Hospital of Chengde Medical College, Chengde, 067000, China.
| |
Collapse
|
16
|
Lactococcus lactis subsp. Cremoris C60 restores T Cell Population in Small Intestinal Lamina Propria in Aged Interleukin-18 Deficient Mice. Nutrients 2020; 12:nu12113287. [PMID: 33121026 PMCID: PMC7693701 DOI: 10.3390/nu12113287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Lactic acid bacteria (LAB), a major commensal bacterium in the small intestine, are well known beneficial bacteria which promote establishment of gut-centric immunity, such as anti-inflammation and anti-infection. In this report, we show that a LAB strain Lactococcus lactis subsp. Cremoris C60 possess an ability to activate antigen presenting cells, such as dendritic cells (DCs), and intestinal T cells which possibly support to maintain healthy intestinal immunological environment in aging process. We found that CD4+ T cells in the small intestine are dramatically decreased in aged Interleukin-18 knock out (IL-18KO) mice, associated with the impairment of IFN-γ production in the CD4+ T cells, especially in small intestinal lamina propria (LP). Surprisingly, heat killed-C60 (HK-C60) diet completely recovered the CD4+ T cells population and activity in SI-LP and over activated the population in Peyer's patches (PPs) of IL-18KO mice. The HK-C60 diet was effective approach not only to restore the number of cells, but also to recover IFN-γ production in the CD4+ T cell population in the small intestine of IL-18-deficient mice. As a possible cause in the age-associated impairment of CD4+ T cells activity in IL-18KO mice, we found that the immunological activity was downregulated in the IL-18-deficient DCs. The cytokines production and cellular activation markers expression were downregulated in the IL-18-deficient bone marrow derived dendritic cells (BMDCs) at the basal level, however, both activities were highly upregulated in HK-C60 stimulation as compared to those of WT cells. Antigen uptake was also attenuated in the IL-18-deficient BMDCs, and it was significantly enhanced in the cells as compared to WT cells in HK-60 stimulation. An in vitro antigen presentation assay showed that IFN-γ production in the CD4+ T cells was significantly enhanced in the culture of IL-18-deficient BMDCs compared with WT cells in the presence of HK-C60. Thus, we conclude that HK-C60 diet possesses an ability to restore T cells impairment in the small intestine of IL-18-deficient environment. In addition, the positive effect is based on the immunological modification of DCs function which directory influences into the promotion of effector CD4+ T cells generation in the small intestine.
Collapse
|
17
|
Bacterial Lipoteichoic Acid Attenuates Toll-Like Receptor Dependent Dendritic Cells Activation and Inflammatory Response. Pathogens 2020; 9:pathogens9100825. [PMID: 33050033 PMCID: PMC7600882 DOI: 10.3390/pathogens9100825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptor (TLR) signaling is an indispensable factor in immune cells activation. Many TLR ligands have been identified, and were characterized the immunological functions such as inflammatory cytokine production in immune cells. However, the anti-inflammatory response in TLR ligand-mediated manner is poorly understood. In this report, we show that bacterial lipoteichoic acid (LTA), which is a TLR2 ligand from gram-positive bacteria including Staphylococcus aureus (S. aureus), suppresses TLR-mediated inflammatory response in dendritic cells (DCs). The TLR ligand-induced Tumor Necrosis Factor-alpha (TNF-α) production was suppressed in the bone marrow derived dendritic cells (BMDCs) by co-treatment of LTA. The cellular activation, which was characterized as upregulations of CD80, CD86 and major histocompatibility complex II (MHC II) expression, was also suppressed in the TLR ligand stimulated BMDCs in the presence of LTA. While LTA itself didn’t induced both TNF-α production and upregulation of cell surface markers. The LTA mediated immunosuppressive function was abolished by TLR2 blocking in lipopolysaccharide (LPS)-stimulated BMDCs. Furthermore, LTA also showed the immunosuppressive function in the generation of IFN-γ+CD4+ T (Th1) cells by attenuation of antigen presenting activity in the BMDCs. In the imiquimod (IMQ)-induced acute skin inflammation, LTA suppressed the inflammation by downregulation of the activation in skin accumulated DCs. Thus, LTA is a TLR2 dependent immunological suppressor against inflammatory response induced by other TLR ligands in the DCs.
Collapse
|
18
|
Ferrari L, Mangano E, Bonati MT, Monterosso I, Capitanio D, Chiappori F, Brambilla I, Gelfi C, Battaglia C, Bordoni R, Riva P. Digenic inheritance of subclinical variants in Noonan Syndrome patients: an alternative pathogenic model? Eur J Hum Genet 2020; 28:1432-1445. [PMID: 32514133 PMCID: PMC7608271 DOI: 10.1038/s41431-020-0658-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 11/22/2022] Open
Abstract
Noonan syndrome (NS) is an autosomal-dominant disorder with variable expressivity and locus heterogeneity. Despite several RAS pathway genes were implicated in NS, 20–30% of patients remain without molecular diagnosis, suggesting the involvement of further genes or multiple mechanisms. Eight patients out of 60, negative for conventional NS mutation analysis, with heterogeneous NS phenotype were investigated by means of target resequencing of 26 RAS/MAPK pathway genes. A trio was further characterized by means of whole-exome sequencing. Protein modeling and in silico prediction of protein stability allowed to identify possible pathogenic RAS pathway variants in four NS patients. A new c.355T>C variant in LZTR1 was found in patient 43. Two patients co-inherited variants in LRP1 and LZTR1 (patient 53), or LRP1 and SOS1 genes (patient 67). The forth patient (56) carried a compound heterozygote of RASAL3 gene variants and also an A2ML1 variant. While these subclinical variants are singularly present in healthy parents, they co-segregate in patients, suggesting their addictive effect and supporting a digenic inheritance, as alternative model to a more common monogenic transmission. The ERK1/2 and SAPK/JNK activation state, assessed on immortalized lymphocytes from patients 53 and 67 showed highest phosphorylation levels compared to their asymptomatic parents. These findings together with the lack of their co-occurrence in the 1000Genomes database strengthen the hypothesis of digenic inheritance in a subset of NS patients. This study suggests caution in the exclusion of subclinical variants that might play a pathogenic role providing new insights for alternative hereditary mechanisms.
Collapse
Affiliation(s)
- Luca Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale (BIOMETRA), Università degli Studi di Milano, Segrate, Italy
| | - Eleonora Mangano
- Istituto di Tecnologie Biomediche (ITB) Centro Nazionale delle Ricerche (CNR), ITB-CNR, Segrate, Milano, Italy
| | - Maria Teresa Bonati
- Ambulatorio di Genetica Medica, IRCCS Istituto Auxologico Italiano, Milano, Italy.
| | - Ilaria Monterosso
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale (BIOMETRA), Università degli Studi di Milano, Segrate, Italy
| | - Daniele Capitanio
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Federica Chiappori
- Istituto di Tecnologie Biomediche (ITB) Centro Nazionale delle Ricerche (CNR), ITB-CNR, Segrate, Milano, Italy
| | | | - Cecilia Gelfi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Cristina Battaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale (BIOMETRA), Università degli Studi di Milano, Segrate, Italy.,Istituto di Tecnologie Biomediche (ITB) Centro Nazionale delle Ricerche (CNR), ITB-CNR, Segrate, Milano, Italy
| | - Roberta Bordoni
- Istituto di Tecnologie Biomediche (ITB) Centro Nazionale delle Ricerche (CNR), ITB-CNR, Segrate, Milano, Italy
| | - Paola Riva
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale (BIOMETRA), Università degli Studi di Milano, Segrate, Italy.
| |
Collapse
|
19
|
Mishra R, Haldar S, Suchanti S, Bhowmick NA. Epigenetic changes in fibroblasts drive cancer metabolism and differentiation. Endocr Relat Cancer 2019; 26:R673-R688. [PMID: 31627186 PMCID: PMC6859444 DOI: 10.1530/erc-19-0347] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
Abstract
Genomic changes that drive cancer initiation and progression contribute to the co-evolution of the adjacent stroma. The nature of the stromal reprogramming involves differential DNA methylation patterns and levels that change in response to the tumor and systemic therapeutic intervention. Epigenetic reprogramming in carcinoma-associated fibroblasts are robust biomarkers for cancer progression and have a transcriptional impact that support cancer epithelial progression in a paracrine manner. For prostate cancer, promoter hypermethylation and silencing of the RasGAP, RASAL3 that resulted in the activation of Ras signaling in carcinoma-associated fibroblasts. Stromal Ras activity initiated a process of macropinocytosis that provided prostate cancer epithelia with abundant glutamine for metabolic conversion to fuel its proliferation and a signal to transdifferentiate into a neuroendocrine phenotype. This epigenetic oncogenic metabolic/signaling axis seemed to be further potentiated by androgen receptor signaling antagonists and contributed to therapeutic resistance. Intervention of stromal signaling may complement conventional therapies targeting the cancer cell.
Collapse
Affiliation(s)
- Rajeev Mishra
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Subhash Haldar
- Department of Biotechnology, Brainware University, Kolkata, India
| | - Surabhi Suchanti
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Research, Greater Los Angeles Veterans Administration, Los Angeles, California, USA
- Correspondence should be addressed to N A Bhowmick:
| |
Collapse
|
20
|
The Unique Immunoregulatory Function of Staphylococcus Aureus Lipoteichoic Acid in Dendritic Cells. J 2019. [DOI: 10.3390/j2030022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background and objectives: Lipoteichoic acid (LTA) is a structural component of Staphylococcus aureus (S. aureus) that induces severe infection disease and skin inflammation such as atopic dermatitis (AD); the biological function of LTA is still unclear. Dendritic cells (DC) are important regulators in the immune system, and the cells ectopically recognize agents that have an influence on the host immune response. We aimed to reveal the DC-based immune response against LTA to understand the novel mechanism in S. aureus related acute skin inflammation. Materials and Methods: Different doses of LTA were applied on the epidermal barrier dysfunction mice in order to evaluate the epidermal thickness, DC activation, and subsequent immunological response such as effector T-cell (Teff) activation. In addition, bone marrow-derived dendritic cells (BMDCs) were also treated with LTA, and the immunoregulatory mechanism was investigated. Results: A low dose of LTA did not induce skin inflammation at all; however, a high dose of LTA induced severe skin inflammation on epidermalba rrier dysfunction mice. Those symptoms were correlated with the DC and Teff activation status. The low-dose treatment of LTA showed a suppressive effect in pro-inflammatory cytokine production via a Toll-like receptor 2 (TLR2)-dominant manner, and the effect was significant regarding the co-treatment with another stimulatory signal such as TLR4 by lipopolysaccharide (LPS). Meanwhile, a high-dose treatment of LTA completely abolished the suppressive effect of a low-dose treatment. This phenomenon was based on C-type lectin receptors (CLRs), because the high dose of LTA greatly enhanced the expression of CLRs in the activated DCs. Conclusions: DCs sensed the dose difference of LTA, and the mechanism contributed to regulating immune responses such as effector T-cell activation, which was directly correlated with inflammatory response. This finding might provide an understanding for the novel immunological effect of LTA and S. aureus pathogenesis under inflammation, as well as the mechanism of symbiosis.
Collapse
|
21
|
Bonham LW, Sirkis DW, Yokoyama JS. The Transcriptional Landscape of Microglial Genes in Aging and Neurodegenerative Disease. Front Immunol 2019; 10:1170. [PMID: 31214167 PMCID: PMC6557985 DOI: 10.3389/fimmu.2019.01170] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/08/2019] [Indexed: 12/21/2022] Open
Abstract
Microglia, the brain-resident myeloid cells, are strongly implicated in Alzheimer's disease (AD) pathogenesis by human genetics. However, the mechanisms by which microglial gene expression is regulated in a region-specific manner over the course of normal aging and in neurodegenerative disease are only beginning to be deciphered. Herein, we used a specific marker of microglia (TMEM119) and a cell-type expression profiling tool (CellMapper) to identify a human microglial gene expression module. Surprisingly, we found that microglial module genes are robustly expressed in several healthy human brain regions known to be vulnerable in AD, in addition to other regions affected only later in disease or spared in AD. Surveying the microglial gene set for differential expression over the lifespan in mouse models of AD and a related tauopathy revealed that the majority of microglial module genes were significantly upregulated in cortex and hippocampus as a function of age and transgene status. Extending these results, we also observed significant upregulation of microglial module genes in several AD-affected brain regions in addition to other regions using postmortem brain tissue from human AD samples. In pathologically confirmed AD cases, we found preliminary evidence that microglial genes may be dysregulated in a sex-specific manner. Finally, we identified specific and significant overlap between the described microglial gene set—identified by unbiased co-expression analysis—and genes known to impart risk for AD. Our findings suggest that microglial genes show enriched expression in AD-vulnerable brain regions, are upregulated during aging and neurodegeneration in mice, and are upregulated in pathologically affected brain regions in AD. Taken together, our data-driven findings from multiple publicly accessible datasets reemphasize the importance of microglial gene expression alterations in AD and, more importantly, suggest that regional and sex-specific variation in microglial gene expression may be implicated in risk for and progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Luke W Bonham
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel W Sirkis
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
22
|
TRAF3IP3 at the trans-Golgi network regulates NKT2 maturation via the MEK/ERK signaling pathway. Cell Mol Immunol 2019; 17:395-406. [PMID: 31076725 DOI: 10.1038/s41423-019-0234-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022] Open
Abstract
Thymic natural killer T (NKT)2 cells are a subset of invariant NKT cells with PLZFhiGATA3hiIL-4+. The differentiation of NKT2 cells is not fully understood. In the present study, we report an important role of TRAF3-interacting protein 3 (TRAF3IP3) in the functional maturation and expansion of committed NKT2s in thymic medulla. Mice with T-cell-specific deletion of TRAF3IP3 had decreased thymic NKT2 cells, decreased IL-4-producing peripheral iNKTs, and defects in response to α-galactosylceramide. Positive selection and high PLZF expression in CD24+CD44- and CCR7+CD44- immature iNKTs were not affected. Only CD44hiNK1.1- iNKTs in Traf3ip3-/- mice showed reduced expression of Egr2, PLZF, and IL-17RB, decreased proliferation, and reduced IL-4 production upon stimulation. This Egr2 and IL-4 expression was augmented by MEK1/ERK activation in iNKTs, and TRAF3IP3 at the trans-Golgi network recruited MEK1 and facilitated ERK phosphorylation and nuclear translocation. LTβR-regulated bone marrow-derived nonlymphoid cells in the medullary thymic microenvironment were required for MEK/ERK activation and NKT2 maturation. These data demonstrate an important functional maturation process in NKT2 differentiation that is regulated by MEK/ERK signaling at the trans-Golgi network.
Collapse
|
23
|
Post JB, Hami N, Mertens AEE, Elfrink S, Bos JL, Snippert HJG. CRISPR-induced RASGAP deficiencies in colorectal cancer organoids reveal that only loss of NF1 promotes resistance to EGFR inhibition. Oncotarget 2019; 10:1440-1457. [PMID: 30858928 PMCID: PMC6402720 DOI: 10.18632/oncotarget.26677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Anti-EGFR therapy is used to treat metastatic colorectal cancer (CRC) patients, for which initial response rates of 10-20% have been achieved. Although the presence of HER2 amplifications and oncogenic mutations in KRAS, NRAS, and BRAF are associated with EGFR-targeted therapy resistance, for a large population of CRC patients the underlying mechanism of RAS-MEK-ERK hyperactivation is not clear. Loss-of-function mutations in RASGAPs are often speculated in literature to promote CRC growth as being negative regulators of RAS, but direct experimental evidence is lacking. We generated a CRISPR-mediated knock out panel of all RASGAPs in patient-derived CRC organoids and found that only loss of NF1, but no other RASGAPs e.g. RASA1, results in enhanced RAS-ERK signal amplification and improved tolerance towards limited EGF stimulation. Our data suggests that NF1-deficient CRCs are likely not responsive to anti-EGFR monotherapy and can potentially function as a biomarker for CRC progression.
Collapse
Affiliation(s)
- Jasmin B Post
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Nizar Hami
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Alexander E E Mertens
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Suraya Elfrink
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Johannes L Bos
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Hugo J G Snippert
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| |
Collapse
|
24
|
Da Ros S, Aresu L, Ferraresso S, Zorzan E, Gaudio E, Bertoni F, Dacasto M, Giantin M. Validation of epigenetic mechanisms regulating gene expression in canine B-cell lymphoma: An in vitro and in vivo approach. PLoS One 2018; 13:e0208709. [PMID: 30533020 PMCID: PMC6289462 DOI: 10.1371/journal.pone.0208709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/21/2018] [Indexed: 01/26/2023] Open
MESH Headings
- Animals
- Cell Line, Tumor
- Dog Diseases/genetics
- Dog Diseases/metabolism
- Dogs
- Epigenesis, Genetic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Histone Deacetylase Inhibitors/pharmacology
- Lymph Nodes
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/veterinary
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Silvia Da Ros
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Eleonora Zorzan
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Eugenio Gaudio
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
25
|
Shissler SC, Webb TJ. The ins and outs of type I iNKT cell development. Mol Immunol 2018; 105:116-130. [PMID: 30502719 DOI: 10.1016/j.molimm.2018.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/14/2018] [Accepted: 09/29/2018] [Indexed: 01/07/2023]
Abstract
Natural killer T (NKT) cells are innate-like lymphocytes that bridge the gap between the innate and adaptive immune responses. Like innate immune cells, they have a mature, effector phenotype that allows them to rapidly respond to threats, compared to adaptive cells. NKT cells express T cell receptors (TCRs) like conventional T cells, but instead of responding to peptide antigen presented by MHC class I or II, NKT cell TCRs recognize glycolipid antigen in the context of CD1d. NKT cells are subdivided into classes based on their TCR and antigen reactivity. This review will focus on type I iNKT cells that express a semi invariant Vα14Jα18 TCR and respond to the canonical glycolipid antigen, α-galactosylceramide. The innate-like effector functions of these cells combined with their T cell identity make their developmental path quite unique. In addition to the extrinsic factors that affect iNKT cell development such as lipid:CD1d complexes, co-stimulation, and cytokines, this review will provide a comprehensive delineation of the cell intrinsic factors that impact iNKT cell development, differentiation, and effector functions - including TCR rearrangement, survival and metabolism signaling, transcription factor expression, and gene regulation.
Collapse
Affiliation(s)
- Susannah C Shissler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St. HSF-1 Room 380, Baltimore, MD 21201, USA.
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St. HSF-1 Room 380, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Shin Y, Kim YW, Kim H, Shin N, Kim TS, Kwon TK, Choi JH, Chang JS. RASAL3 preferentially stimulates GTP hydrolysis of the Rho family small GTPase Rac2. Biomed Rep 2018; 9:241-246. [PMID: 30271600 DOI: 10.3892/br.2018.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/28/2018] [Indexed: 11/05/2022] Open
Abstract
Members of the Ras superfamily of small G-proteins serve as molecular switches of intracellular signaling pathways. Rac2 is a Rho subfamily GTPase switch that is specifically expressed in hematopoietic cells and regulates AKT activation in cell signaling. Ras activating protein-like 3 (RASAL3) is the recently identified Ras GTPase activating protein (GAP) that is also specifically expressed in hematopoietic cells and stimulates p21ras GTPase activity. The restricted expression of both Rac2 and RASAL3 suggests that they may serve critical roles in hematopoietic cell signaling. Here in the present study demonstrates that the catalytic domain of RASAL3 may also be able to interact with Rac2 and stimulate its GTPase activity in vitro. By contrast, p50 rhoGAP molecules did not markedly affect Rac2 GTPase activity, but did accelerate the activity of other Rho GTPases, including Rac1, RhoA and Cdc42. Collectively, the present results indicate, seemingly for the first time, that GAP activity for Rac2 is regulated by the RasGAP family protein, RASAL3.
Collapse
Affiliation(s)
- Yoonjae Shin
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Yong Woo Kim
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Hyemin Kim
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Nakyoung Shin
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Tae Sung Kim
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology and Physiology, School of Medicine, Keimyung University, Daegu 42601, South Korea
| | - Jang Hyun Choi
- Department of Biological Sciences, Division of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jong-Soo Chang
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| |
Collapse
|
27
|
Saito S, Quadery AF. Staphylococcus aureus Lipoprotein Induces Skin Inflammation, Accompanied with IFN-γ-Producing T Cell Accumulation through Dermal Dendritic Cells. Pathogens 2018; 7:pathogens7030064. [PMID: 30060633 PMCID: PMC6161079 DOI: 10.3390/pathogens7030064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a commensal bacteria on the human skin, which causes serious skin inflammation. Several immune cells, especially effector T cells (Teff), have been identified as key players in S. aureus-derived skin inflammation. However, the bacterial component that induces dramatic host immune responses on the skin has not been well characterized. Here, we report that S. aureus lipoprotein (SA-LP) was recognized by the host immune system as a strong antigen, so this response induced severe skin inflammation. SA-LP activated dendritic cells (DCs), and this activation led to Teff accumulation on the inflamed skin in the murine intradermal (ID) injection model. The skin-accumulated Teff pool was established by IFN-ɤ-producing CD4+ and CD8+T (Th1 and Tc1). SA-LP activated dermal DC (DDC) in a dominant manner, so that these DCs were presumed to possess the strong responsibility of SA-LP-specific Teff generation in the skin-draining lymph nodes (dLN). SA-LP activated DC transfer into the mice ear, which showed similar inflammation, accompanied with Th1 and Tc1 accumulation on the skin. Thus, we revealed that SA-LP has a strong potential ability to establish skin inflammation through the DC-Teff axis. This finding provides novel insights not only for therapy, but also for the prevention of S. aureus-derived skin inflammation.
Collapse
Affiliation(s)
- Suguru Saito
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata 9518510, Japan.
- Institute of Bio Medical Science, Academia Sinica, Taipei 115, Taiwan.
| | - Ali F Quadery
- Biofluid Biomarker Center, Niigata University, Niigata 9502181, Japan.
| |
Collapse
|
28
|
Gao M, Wang K, Yang M, Meng F, Lu R, Zhuang H, Cheng G, Wang X. Transcriptome Analysis of Bronchoalveolar Lavage Fluid From Children With Mycoplasma pneumoniae Pneumonia Reveals Natural Killer and T Cell-Proliferation Responses. Front Immunol 2018; 9:1403. [PMID: 29967623 PMCID: PMC6015898 DOI: 10.3389/fimmu.2018.01403] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
Background Mycoplasma pneumoniae pneumonia (MPP) is one of the most common community-acquired pneumonia; this study is to explore the immune-pathogenesis of children MPP. Methods Next-generation transcriptome sequencing was performed on the bronchoalveolar lavage fluid cells from six children with MPP and three children with foreign body aspiration as control. Some of the results had been validated by quantitative real-time PCR in an expanded group of children. Results Results revealed 810 differentially expressed genes in MPP group comparing to control group, of which 412 genes including RLTPR, CARD11 and RASAL3 were upregulated. These upregulated genes were mainly enriched in mononuclear cell proliferation and signaling biological processes. Kyoto encyclopedia of genes and genomes pathway analysis revealed that hematopoietic cell linage pathway, natural killer cell-mediated cytotoxicity pathway, and T cell receptor signaling pathway were significantly upregulated in MPP children. In addition, significant alternative splicing events were found in GNLY and SLC11A1 genes, which may cause the differential expressions of these genes. Conclusion Our results suggest that NK and CD8+ T cells are over activated and proliferated in MPP children; the upregulated IFNγ, PRF1, GZMB, FASL, and GNLY may play important roles in the pathogenesis of children MPP.
Collapse
Affiliation(s)
- Man Gao
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Kuo Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fanzheng Meng
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Ruihua Lu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Huadong Zhuang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Genhong Cheng
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Microbiology Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Xiaosong Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Muro R, Nitta T, Kitajima M, Okada T, Suzuki H. Rasal3-mediated T cell survival is essential for inflammatory responses. Biochem Biophys Res Commun 2018; 496:25-30. [DOI: 10.1016/j.bbrc.2017.12.159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
|
30
|
Schieffer KM, Choi CS, Emrich S, Harris L, Deiling S, Karamchandani DM, Salzberg A, Kawasawa YI, Yochum GS, Koltun WA. RNA-seq implicates deregulation of the immune system in the pathogenesis of diverticulitis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G277-G284. [PMID: 28619727 PMCID: PMC6146301 DOI: 10.1152/ajpgi.00136.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 01/31/2023]
Abstract
Individuals with diverticula or outpouchings of the colonic mucosa and submucosa through the colonic wall have diverticulosis, which is usually asymptomatic. In 10-25% of individuals, the diverticula become inflamed, resulting in diverticulitis. Very little is known about the pathophysiology or gene regulatory pathways involved in the development of diverticulitis. To identify these pathways, we deep sequenced RNAs isolated from full-thickness sections of sigmoid colon from diverticulitis patients and control individuals. Specifically for diverticulitis cases, we analyzed tissue adjacent to areas affected by chronic disease. Since the tissue was collected during elective sigmoid resection, the disease was in a quiescent state. A comparison of differentially expressed genes found that gene ontology (GO) pathways associated with the immune response were upregulated in diverticulitis patients compared with nondiverticulosis controls. Next, weighted gene coexpression network analysis was performed to identify the interaction among coexpressed genes. This analysis revealed RASAL3, SASH3, PTPRC, and INPP5D as hub genes within the brown module eigengene, which highly correlated (r = 0.67, P = 0.0004) with diverticulitis. Additionally, we identified elevated expression of downstream interacting genes. In summary, transcripts associated with the immune response were upregulated in adjacent tissue from the sigmoid colons of chronic, recurrent diverticulitis patients. Further elucidating the genetic or epigenetic mechanisms associated with these alterations can help identify those at risk for chronic disease and may assist in clinical decision management.NEW & NOTEWORTHY By using an unbiased approach to analyze transcripts expressed in unaffected colonic tissues adjacent to those affected by chronic diverticulitis, our study implicates that a defect in the immune response may be involved in the development of the disease. This finding expands on the current data that suggest the pathophysiology of diverticulitis is mediated by dietary, age, and obesity-related factors. Further characterizing the immunologic differences in diverticulitis may better inform clinical decision-making.
Collapse
Affiliation(s)
- Kathleen M Schieffer
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Christine S Choi
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Scott Emrich
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Leonard Harris
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Sue Deiling
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Dipti M Karamchandani
- Division of Anatomic Pathology, Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Anna Salzberg
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Yuka I Kawasawa
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - Gregory S Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Walter A Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania;
| |
Collapse
|