1
|
Novograd J, Frishman WH. Teplizumab Therapy to Delay the Onset of Type 1 Diabetes. Cardiol Rev 2024; 32:572-576. [PMID: 37158990 DOI: 10.1097/crd.0000000000000563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results in the destruction of insulin-producing pancreatic beta cells. The incidence and prevalence of T1DM are increasing, making this one of the most common diseases of childhood. The disease is associated with significant morbidity and mortality with patients experiencing reduced quality of life and decreased life expectancy compared with the general population. Patients become dependent on exogenous insulin which has been the primary treatment since its first clinical use over 100 years ago. Although there have been advancements in glucose monitoring technology and insulin delivery devices, most patients fail to meet glycemic targets. Research has therefore focused on different treatment options to delay or prevent disease progression. Monoclonal antibodies have previously been utilized to suppress the immune response following an organ transplant and were subsequently studied for their ability to treat autoimmune diseases. Teplizumab, a monoclonal antibody (manufactured by Provention Bio and marketed as Tzield), was recently approved by the Food and Drug Administration as the first preventative treatment for T1DM. The approval came after a 3-decade history of research and development. This article provides an overview of the discovery and mechanism of action of teplizumab, as well as the clinical trials that led to its approval.
Collapse
Affiliation(s)
- Joel Novograd
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| | | |
Collapse
|
2
|
Kokori E, Olatunji G, Ogieuhi IJ, Aboje JE, Olatunji D, Aremu SA, Igwe SC, Moradeyo A, Ajayi YI, Aderinto N. Teplizumab's immunomodulatory effects on pancreatic β-cell function in type 1 diabetes mellitus. Clin Diabetes Endocrinol 2024; 10:23. [PMID: 39123252 PMCID: PMC11316332 DOI: 10.1186/s40842-024-00181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 08/12/2024] Open
Abstract
This review explores the immunomodulatory potential of Teplizumab and its impact on pancreatic β-cell function in T1D. Characterized by the autoimmune destruction of insulin-producing beta cells, T1D's management involves maintaining glycemic control through exogenous insulin. Teplizumab, a humanized monoclonal antibody targeting the CD3 antigen, has shown promise in delaying T1D onset and preserving residual β-cell function. The review employs a narrative approach, synthesizing evidence from diverse clinical trials and studies gathered through a meticulous literature search. It scrutinizes Teplizumab's mechanisms of action, including its influence on autoreactive CD8 + T cells and regulatory T cells, offering insights into its immunological pathways. The synthesis of findings from various trials demonstrates Teplizumab's efficacy in preserving C-peptide levels and reducing exogenous insulin requirements, particularly in recent-onset T1D. Considering Teplizumab's real-world implications, the paper addresses potential obstacles, including side effects, patient selection criteria, and logistical challenges. It also emphasizes exploring combination therapies and personalized treatment strategies to maximize Teplizumab's benefits. The review contributes a nuanced perspective on Teplizumab's clinical implications and future directions in T1D management, bridging theoretical understanding with practical considerations.
Collapse
Affiliation(s)
- Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | | | - John Ehi Aboje
- Department of Medicine, College of Health Sciences, Benue State University, Benue, Nigeria
| | - Doyin Olatunji
- Department of Health Sciences, Western Illinois University, Macomb, USA
| | | | | | - Abdulrahmon Moradeyo
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Yusuf Ismaila Ajayi
- Department of Medicine and Surgery, Obafemi Awolowo University, Ife, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| |
Collapse
|
3
|
Sebastiani G, Grieco GE, Bruttini M, Auddino S, Mori A, Toniolli M, Fignani D, Licata G, Aiello E, Nigi L, Formichi C, Fernandez-Tajes J, Pugliese A, Evans-Molina C, Overbergh L, Tree T, Peakman M, Mathieu C, Dotta F. A set of circulating microRNAs belonging to the 14q32 chromosome locus identifies two subgroups of individuals with recent-onset type 1 diabetes. Cell Rep Med 2024; 5:101591. [PMID: 38838677 PMCID: PMC11228666 DOI: 10.1016/j.xcrm.2024.101591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Circulating microRNAs (miRNAs) are linked to the onset and progression of type 1 diabetes mellitus (T1DM), thus representing potential disease biomarkers. In this study, we employed a multiplatform sequencing approach to analyze circulating miRNAs in an extended cohort of prospectively evaluated recent-onset T1DM individuals from the INNODIA consortium. Our findings reveal that a set of miRNAs located within T1DM susceptibility chromosomal locus 14q32 distinguishes two subgroups of individuals. To validate our results, we conducted additional analyses on a second cohort of T1DM individuals, confirming the identification of these subgroups, which we have named cluster A and cluster B. Remarkably, cluster B T1DM individuals, who exhibit increased expression of a set of 14q32 miRNAs, show better glycemic control and display a different blood immunomics profile. Our findings suggest that this set of circulating miRNAs can identify two different T1DM subgroups with distinct blood immunomics at baseline and clinical outcomes during follow-up.
Collapse
Affiliation(s)
- Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Marco Bruttini
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Stefano Auddino
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Alessia Mori
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Mattia Toniolli
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | | | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lut Overbergh
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Timothy Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Boston, MA, USA
| | - Chantal Mathieu
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy.
| |
Collapse
|
4
|
Zhao L, Hu H, Zhang L, Liu Z, Huang Y, Liu Q, Jin L, Zhu M, Zhang L. Inflammation in diabetes complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e516. [PMID: 38617433 PMCID: PMC11014467 DOI: 10.1002/mco2.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/16/2024] Open
Abstract
At present, diabetes mellitus (DM) has been one of the most endangering healthy diseases. Current therapies contain controlling high blood sugar, reducing risk factors like obesity, hypertension, and so on; however, DM patients inevitably and eventually progress into different types of diabetes complications, resulting in poor quality of life. Unfortunately, the clear etiology and pathogenesis of diabetes complications have not been elucidated owing to intricate whole-body systems. The immune system was responsible to regulate homeostasis by triggering or resolving inflammatory response, indicating it may be necessary to diabetes complications. In fact, previous studies have been shown inflammation plays multifunctional roles in the pathogenesis of diabetes complications and is attracting attention to be the meaningful therapeutic strategy. To this end, this review systematically concluded the current studies over the relationships of susceptible diabetes complications (e.g., diabetic cardiomyopathy, diabetic retinopathy, diabetic peripheral neuropathy, and diabetic nephropathy) and inflammation, ranging from immune cell response, cytokines interaction to pathomechanism of organ injury. Besides, we also summarized various therapeutic strategies to improve diabetes complications by target inflammation from special remedies to conventional lifestyle changes. This review will offer a panoramic insight into the mechanisms of diabetes complications from an inflammatory perspective and also discuss contemporary clinical interventions.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Haoran Hu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zheting Liu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yunchao Huang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qian Liu
- National Demonstration Center for Experimental Traditional Chinese Medicines Education (Zhejiang Chinese Medical University)College of Pharmaceutical Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Liang Jin
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Meifei Zhu
- Department of Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Ling Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
5
|
Bass LE, Bonami RH. Factors Governing B Cell Recognition of Autoantigen and Function in Type 1 Diabetes. Antibodies (Basel) 2024; 13:27. [PMID: 38651407 PMCID: PMC11036271 DOI: 10.3390/antib13020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Islet autoantibodies predict type 1 diabetes (T1D) but can be transient in murine and human T1D and are not thought to be directly pathogenic. Rather, these autoantibodies signal B cell activity as antigen-presenting cells (APCs) that present islet autoantigen to diabetogenic T cells to promote T1D pathogenesis. Disrupting B cell APC function prevents T1D in mouse models and has shown promise in clinical trials. Autoantigen-specific B cells thus hold potential as sophisticated T1D biomarkers and therapeutic targets. B cell receptor (BCR) somatic hypermutation is a mechanism by which B cells increase affinity for islet autoantigen. High-affinity B and T cell responses are selected in protective immune responses, but immune tolerance mechanisms are known to censor highly autoreactive clones in autoimmunity, including T1D. Thus, different selection rules often apply to autoimmune disease settings (as opposed to protective host immunity), where different autoantigen affinity ceilings are tolerated based on variations in host genetics and environment. This review will explore what is currently known regarding B cell signaling, selection, and interaction with T cells to promote T1D pathogenesis.
Collapse
Affiliation(s)
- Lindsay E. Bass
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Rachel H. Bonami
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Mathieu C, Wiedeman A, Cerosaletti K, Long SA, Serti E, Cooney L, Vermeiren J, Caluwaerts S, Van Huynegem K, Steidler L, Blomme S, Rottiers P, Nepom GT, Herold KC. A first-in-human, open-label Phase 1b and a randomised, double-blind Phase 2a clinical trial in recent-onset type 1 diabetes with AG019 as monotherapy and in combination with teplizumab. Diabetologia 2024; 67:27-41. [PMID: 37782353 PMCID: PMC10709251 DOI: 10.1007/s00125-023-06014-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2023]
Abstract
AIMS/HYPOTHESIS We hypothesised that islet beta cell antigen presentation in the gut along with a tolerising cytokine would lead to antigen-specific tolerance in type 1 diabetes. We evaluated this in a parallel open-label Phase 1b study using oral AG019, food-grade Lactococcus lactis bacteria genetically modified to express human proinsulin and human IL-10, as a monotherapy and in a parallel, randomised, double-blind Phase 2a study using AG019 in combination with teplizumab. METHODS Adults (18-42 years) and adolescents (12-17 years) with type 1 diabetes diagnosed within 150 days were enrolled, with documented evidence of at least one autoantibody and a stimulated peak C-peptide level >0.2 nmol/l. Participants were allocated to interventions using interactive response technology. We treated 42 people aged 12-42 years with recent-onset type 1 diabetes, 24 with Phase 1b monotherapy (open-label) and 18 with Phase 2a combination therapy. In the Phase 2a study, after treatment of the first two open-label participants, all people involved were blinded to group assignment, except for the Data Safety Monitoring Board members and the unblinded statistician. The primary endpoint was safety and tolerability based on the incidence of treatment-emergent adverse events, collected up to 6 months post treatment initiation. The secondary endpoints were pharmacokinetics, based on AG019 detection in blood and faeces, and pharmacodynamic activity. Metabolic and immune endpoints included stimulated C-peptide levels during a mixed meal tolerance test, HbA1c levels, insulin use, and antigen-specific CD4+ and CD8+ T cell responses using an activation-induced marker assay and pooled tetramers, respectively. RESULTS Data from 24 Phase 1b participants and 18 Phase 2a participants were analysed. No serious adverse events were reported and none of the participants discontinued AG019 due to treatment-emergent adverse events. No systemic exposure to AG019 bacteria, proinsulin or human IL-10 was demonstrated. In AG019 monotherapy-treated adults, metabolic variables were stabilised up to 6 months (C-peptide, insulin use) or 12 months (HbA1c) post treatment initiation. In participants treated with AG019/teplizumab combination therapy, all measured metabolic variables stabilised or improved up to 12 months and CD8+ T cells with a partially exhausted phenotype were significantly increased at 6 months. Circulating preproinsulin-specific CD4+ and CD8+ T cells were detected before and after treatment, with a reduction in the frequency of preproinsulin-specific CD8+ T cells after treatment with monotherapy or combination therapy. CONCLUSIONS/INTERPRETATION Oral delivery of AG019 was well tolerated and safe as monotherapy and in combination with teplizumab. AG019 was not shown to interfere with the safety profile of teplizumab and may have additional biological effects, including changes in preproinsulin-specific T cells. These preliminary data support continuing studies with this agent alone and in combination with teplizumab or other systemic immunotherapies in type 1 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT03751007, EudraCT 2017-002871-24 FUNDING: This study was funded by Precigen ActoBio.
Collapse
Affiliation(s)
- Chantal Mathieu
- Clinical and Experimental Endocrinology, University Hospital of Leuven, Leuven, Belgium
| | - Alice Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | - Kevan C Herold
- Department of Immunology and Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Christen U, Pouzol L, Tunis M, Sassi A, Tondello C, Bayer M, Hintermann E, Strasser DS, Schuldes S, Mentzel U, Martinic MM. Combination treatment of a novel CXCR3 antagonist ACT-777991 with an anti-CD3 antibody synergistically increases persistent remission in experimental models of type 1 diabetes. Clin Exp Immunol 2023; 214:131-143. [PMID: 37458220 PMCID: PMC10714188 DOI: 10.1093/cei/uxad083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 12/18/2023] Open
Abstract
Treatment of patients with recent-onset type 1 diabetes with an anti-CD3 antibody leads to the transient stabilization of C-peptide levels in responder patients. Partial efficacy may be explained by the entry of islet-reactive T-cells spared by and/or regenerated after the anti-CD3 therapy. The CXCR3/CXCL10 axis has been proposed as a key player in the infiltration of autoreactive T cells into the pancreatic islets followed by the destruction of β cells. Combining the blockade of this axis using ACT-777991, a novel small-molecule CXCR3 antagonist, with anti-CD3 treatment may prevent further infiltration and β-cell damage and thus, preserve insulin production. The effect of anti-CD3 treatment on circulating T-cell subsets, including CXCR3 expression, in mice was evaluated by flow cytometry. Anti-CD3/ACT-777991 combination treatment was assessed in the virally induced RIP-LCMV-GP and NOD diabetes mouse models. Treatments started at disease onset. The effects on remission rate, blood glucose concentrations, insulitis, and plasma C-peptide were evaluated for the combination treatment and the respective monotherapies. Anti-CD3 treatment induced transient lymphopenia but spared circulating CXCR3+ T cells. Combination therapy in both mouse models synergistically and persistently reduced blood glucose concentrations, resulting in increased disease remission rates compared to each monotherapy. At the study end, mice in disease remission demonstrated reduced insulitis and detectable plasma C-peptide levels. When treatments were initiated in non-severely hyperglycemic NOD mice at diabetes onset, the combination treatment led to persistent disease remission in all mice. These results provide preclinical validation and rationale to investigate the combination of ACT-777991 with anti-CD3 for the treatment of patients with recent-onset diabetes.
Collapse
Affiliation(s)
- Urs Christen
- Pharmazentrum Frankfurt, Goethe University Frankfurt, Germany
| | - Laetitia Pouzol
- Immunology and Pharmacology Department, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil, Switzerland
| | - Mélanie Tunis
- Immunology and Pharmacology Department, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil, Switzerland
| | - Anna Sassi
- Immunology and Pharmacology Department, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil, Switzerland
| | | | - Monika Bayer
- Pharmazentrum Frankfurt, Goethe University Frankfurt, Germany
| | | | - Daniel S Strasser
- Translational Biomarkers Department, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil, Switzerland
| | - Sabrina Schuldes
- Project Management Department, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil, Switzerland
| | - Ulrich Mentzel
- Pharmacology and Preclinical Development Department, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil, Switzerland
| | - Marianne M Martinic
- Immunology and Pharmacology Department, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil, Switzerland
| |
Collapse
|
8
|
Baker DE. Teplizumab. Hosp Pharm 2023; 58:549-556. [PMID: 38560539 PMCID: PMC10977057 DOI: 10.1177/00185787231160431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy & Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are available online to subscribers. Monographs can be customized to meet the needs of a facility. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service, contact Wolters Kluwer customer service at 866-397-3433.
Collapse
|
9
|
Xie QY, Oh S, Wong A, Yau C, Herold KC, Danska JS. Immune responses to gut bacteria associated with time to diagnosis and clinical response to T cell-directed therapy for type 1 diabetes prevention. Sci Transl Med 2023; 15:eadh0353. [PMID: 37878676 DOI: 10.1126/scitranslmed.adh0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Immune-targeted therapies have efficacy for treatment of autoinflammatory diseases. For example, treatment with the T cell-specific anti-CD3 antibody teplizumab delayed disease onset in participants at high risk for type 1 diabetes (T1D) in the TrialNet 10 (TN-10) trial. However, heterogeneity in therapeutic responses in TN-10 and other immunotherapy trials identifies gaps in understanding disease progression and treatment responses. The intestinal microbiome is a potential source of biomarkers associated with future T1D diagnosis and responses to immunotherapy. We previously reported that antibody responses to gut commensal bacteria were associated with T1D diagnosis, suggesting that certain antimicrobial immune responses may help predict disease onset. Here, we investigated anticommensal antibody (ACAb) responses against a panel of taxonomically diverse intestinal bacteria species in sera from TN-10 participants before and after teplizumab or placebo treatment. We identified IgG2 responses to three species that were associated with time to T1D diagnosis and with teplizumab treatment responses that delayed disease onset. These antibody responses link human intestinal bacteria with T1D progression, adding predictive value to known T1D risk factors. ACAb analysis provides a new approach to elucidate heterogeneity in responses to immunotherapy and identify individuals who may benefit from teplizumab, recently approved by the U.S. Food and Drug Administration for delaying T1D onset.
Collapse
Affiliation(s)
- Quin Yuhui Xie
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T2S8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
| | - Sean Oh
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
| | - Anthony Wong
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
| | - Christopher Yau
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5T2S8, Canada
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Jayne S Danska
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T2S8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5T2S8, Canada
| |
Collapse
|
10
|
Sharma P, Joshi RV, Pritchard R, Xu K, Eicher MA. Therapeutic Antibodies in Medicine. Molecules 2023; 28:6438. [PMID: 37764213 PMCID: PMC10535987 DOI: 10.3390/molecules28186438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Antibody engineering has developed into a wide-reaching field, impacting a multitude of industries, most notably healthcare and diagnostics. The seminal work on developing the first monoclonal antibody four decades ago has witnessed exponential growth in the last 10-15 years, where regulators have approved monoclonal antibodies as therapeutics and for several diagnostic applications, including the remarkable attention it garnered during the pandemic. In recent years, antibodies have become the fastest-growing class of biological drugs approved for the treatment of a wide range of diseases, from cancer to autoimmune conditions. This review discusses the field of therapeutic antibodies as it stands today. It summarizes and outlines the clinical relevance and application of therapeutic antibodies in treating a landscape of diseases in different disciplines of medicine. It discusses the nomenclature, various approaches to antibody therapies, and the evolution of antibody therapeutics. It also discusses the risk profile and adverse immune reactions associated with the antibodies and sheds light on future applications and perspectives in antibody drug discovery.
Collapse
Affiliation(s)
- Prerna Sharma
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA
| | | | | | | | | |
Collapse
|
11
|
Jacobsen LM, Diggins K, Blanchfield L, McNichols J, Perry DJ, Brant J, Dong X, Bacher R, Gersuk VH, Schatz DA, Atkinson MA, Mathews CE, Haller MJ, Long SA, Linsley PS, Brusko TM. Responders to low-dose ATG induce CD4+ T cell exhaustion in type 1 diabetes. JCI Insight 2023; 8:e161812. [PMID: 37432736 PMCID: PMC10543726 DOI: 10.1172/jci.insight.161812] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUNDLow-dose anti-thymocyte globulin (ATG) transiently preserves C-peptide and lowers HbA1c in individuals with recent-onset type 1 diabetes (T1D); however, the mechanisms of action and features of the response remain unclear. Here, we characterized the post hoc immunological outcomes of ATG administration and their potential use as biomarkers of metabolic response to therapy (i.e., improved preservation of endogenous insulin production).METHODSWe assessed gene and protein expression, targeted gene methylation, and cytokine concentrations in peripheral blood following treatment with ATG (n = 29), ATG plus granulocyte colony-stimulating factor (ATG/G-CSF, n = 28), or placebo (n = 31).RESULTSTreatment with low-dose ATG preserved regulatory T cells (Tregs), as measured by stable methylation of FOXP3 Treg-specific demethylation region (TSDR) and increased proportions of CD4+FOXP3+ Tregs (P < 0.001) identified by flow cytometry. While treatment effects were consistent across participants, not all maintained C-peptide. Responders exhibited a transient rise in IL-6, IP-10, and TNF-α (P < 0.05 for all) 2 weeks after treatment and a durable CD4+ exhaustion phenotype (increased PD-1+KLRG1+CD57- on CD4+ T cells [P = 0.011] and PD1+CD4+ Temra MFI [P < 0.001] at 12 weeks, following ATG and ATG/G-CSF, respectively). ATG nonresponders displayed higher proportions of senescent T cells (at baseline and after treatment) and increased methylation of EOMES (i.e., less expression of this exhaustion marker).CONCLUSIONAltogether in these exploratory analyses, Th1 inflammation-associated serum and CD4+ exhaustion transcript and cellular phenotyping profiles may be useful for identifying signatures of clinical response to ATG in T1D.TRIAL REGISTRATIONClinicalTrials.gov NCT02215200.FUNDINGThe Leona M. and Harry B. Helmsley Charitable Trust (2019PG-T1D011), the NIH (R01 DK106191 Supplement, K08 DK128628), NIH TrialNet (U01 DK085461), and the NIH NIAID (P01 AI042288).
Collapse
Affiliation(s)
- Laura M. Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Kirsten Diggins
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Lori Blanchfield
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - James McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Jason Brant
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Xiaoru Dong
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Vivian H. Gersuk
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Desmond A. Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mark A. Atkinson
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Clayton E. Mathews
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Michael J. Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - S. Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Peter S. Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Todd M. Brusko
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
12
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Misra S, Shukla AK. Teplizumab: type 1 diabetes mellitus preventable? Eur J Clin Pharmacol 2023; 79:609-616. [PMID: 37004543 DOI: 10.1007/s00228-023-03474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/08/2023] [Indexed: 04/04/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune condition driven by T lymphocytes that specifically declines the function of beta cells of pancreas. Immunological treatments aim to stop this decline in β-cell function thus preventing TIDM. Although TIDM occur at any age, it is one of the most common chronic disorders in children. T1DM accounts for 5 to 10% of all cases of diabetes amounting 21-42 million affected persons. Teplizumab is a novel drug recently approved by the US FDA for the treatment of T1DM. This drug reduces abnormal glucose tolerance who are at high risk for developing T1DM and have antibodies suggesting an immunological attack on their pancreas. A 14-day infusion of the drug prevents T cells' attack of the insulin-producing cells of the pancreas. Adverse events due to teplizumab reported so far mild and of limited duration. This review gives an overview of the preclinical and clinical research on teplizumab for their role in new-onset T1DM.
Collapse
Affiliation(s)
- Saurav Misra
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, Haryana, India.
| | - Ajay Kumar Shukla
- Department of Pharmacology, AIIMS Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
14
|
Nagy G, Szekely TE, Somogyi A, Herold M, Herold Z. New therapeutic approaches for type 1 diabetes: Disease-modifying therapies. World J Diabetes 2022; 13:835-850. [PMID: 36312000 PMCID: PMC9606789 DOI: 10.4239/wjd.v13.i10.835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
It has been 100 years since the first successful clinical use of insulin, yet it remains the only treatment option for type 1 diabetes mellitus (T1DM) patients. Advances in diabetes care, such as insulin analogue therapies and new devices, including continuous glucose monitoring with continuous subcutaneous insulin infusion have improved the quality of life of patients but have no impact on the pathogenesis of the disease. They do not eliminate long-term complications and require several lifestyle sacrifices. A more ideal future therapy for T1DM, instead of supplementing the insufficient hormone production (a consequence of β-cell destruction), would also aim to stop or slow down the destructive autoimmune process. The discovery of the autoimmune nature of type 1 diabetes mellitus has presented several targets by which disease progression may be altered. The goal of disease-modifying therapies is to target autoimmune mechanisms and prevent β-cell destruction. T1DM patients with better β-cell function have better glycemic control, reduced incidence of long-term complications and hypoglycemic episodes. Unfortunately, at the time symptomatic T1DM is diagnosed, most of the insulin secreting β cells are usually lost. Therefore, to maximize the salvageable β-cell mass by disease-modifying therapies, detecting autoimmune markers in an early, optimally presymptomatic phase of T1DM is of great importance. Disease-modifying therapies, such as immuno- and regenerative therapies are expected to take a relevant place in diabetology. The aim of this article was to provide a brief insight into the pathogenesis and course of T1DM and present the current state of disease-modifying therapeutic interventions that may impact future diabetes treatment.
Collapse
Affiliation(s)
- Geza Nagy
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Tekla Evelin Szekely
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Magdolna Herold
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest H-1083, Hungary
| |
Collapse
|
15
|
Vallianou NG, Stratigou T, Geladari E, Tessier CM, Mantzoros CS, Dalamaga M. Diabetes type 1: Can it be treated as an autoimmune disorder? Rev Endocr Metab Disord 2021; 22:859-876. [PMID: 33730229 DOI: 10.1007/s11154-021-09642-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Type 1 Diabetes Mellitus (T1DM) is characterized by progressive autoimmune-mediated destruction of the pancreatic beta-cells leading to insulin deficiency and hyperglycemia. It is associated with significant treatment burden and necessitates life-long insulin therapy. The role of immunotherapy in the prevention and management of T1DM is an evolving area of interest which has the potential to alter the natural history of this disease.In this review, we give insight into recent clinical trials related to the use of immunotherapeutic approaches for T1DM, such as proinflammatory cytokine inhibition, cell-depletion and cell-therapy approaches, autoantigen-specific treatments and stem cell therapies. We highlight the timing of intervention, aspects of therapy including adverse effects and the emergence of a novel lymphocyte crucial in T1DM autoimmunity. We also discuss the role of cardiac autoimmunity and its link to excess CVD risk in T1DM.We conclude that significant advances have been made in development of immunotherapeutic targets and agents for the treatment and prevention of T1DM. These immune-based therapies promise preservation of beta-cells and decreasing insulin dependency. In their current state, immunotherapeutic approaches cannot yet halt the progression from a preclinical state to overt T1DM nor can they replace standard insulin therapy in existing T1DM. It remains to be seen whether immunotherapy will ultimately play a key role in the prevention of progression to overt T1DM and whether it may find a place in our therapeutic armamentarium to improve clinical outcomes and quality of life in established T1DM.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology, Diabetes and Metabolic Diseases, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527, Athens, Goudi, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Christopher M Tessier
- Endocrinology Section, VA Boston Healthcare System, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA.
| | - Christos S Mantzoros
- Endocrinology Section, VA Boston Healthcare System, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527, Athens, Goudi, Greece
| |
Collapse
|
16
|
Samojlik MM, Stabler CL. Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes. Acta Biomater 2021; 133:87-101. [PMID: 34102338 PMCID: PMC9148663 DOI: 10.1016/j.actbio.2021.05.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
The effective suppression of adaptive immune responses is essential for the success of allogeneic cell therapies. In islet transplantation for Type 1 Diabetes, pre-existing autoimmunity provides an additional hurdle, as memory autoimmune T cells mediate both an autoantigen-specific attack on the donor beta cells and an alloantigen-specific attack on the donor graft cells. Immunosuppressive agents used for islet transplantation are generally successful in suppressing alloimmune responses, but dramatically hinder the widespread adoption of this therapeutic approach and fail to control memory T cell populations, which leaves the graft vulnerable to destruction. In this review, we highlight the capacity of biomaterials to provide local and nuanced instruction to suppress or alter immune pathways activated in response to an allogeneic islet transplant. Biomaterial immunoisolation is a common approach employed to block direct antigen recognition and downstream cell-mediated graft destruction; however, immunoisolation alone still permits shed donor antigens to escape into the host environment, resulting in indirect antigen recognition, immune cell activation, and the creation of a toxic graft site. Designing materials to decrease antigen escape, improve cell viability, and increase material compatibility are all approaches that can decrease the local release of antigen and danger signals into the implant microenvironment. Implant materials can be further enhanced through the local delivery of anti-inflammatory, suppressive, chemotactic, and/or tolerogenic agents, which serve to control both the innate and adaptive immune responses to the implant with a benefit of reduced systemic effects. Lessons learned from understanding how to manipulate allogeneic and autogenic immune responses to pancreatic islets can also be applied to other cell therapies to improve their efficacy and duration. STATEMENT OF SIGNIFICANCE: This review explores key immunologic concepts and critical pathways mediating graft rejection in Type 1 Diabetes, which can instruct the future purposeful design of immunomodulatory biomaterials for cell therapy. A summary of immunological pathways initiated following cellular implantation, as well as current systemic immunomodulatory agents used, is provided. We then outline the potential of biomaterials to modulate these responses. The capacity of polymeric encapsulation to block some powerful rejection pathways is covered. We also highlight the role of cellular health and biocompatibility in mitigating immune responses. Finally, we review the use of bioactive materials to proactively modulate local immune responses, focusing on key concepts of anti-inflammatory, suppressive, and tolerogenic agents.
Collapse
Affiliation(s)
- Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Watts D, Janßen M, Jaykar M, Palmucci F, Weigelt M, Petzold C, Hommel A, Sparwasser T, Bonifacio E, Kretschmer K. Transient Depletion of Foxp3 + Regulatory T Cells Selectively Promotes Aggressive β Cell Autoimmunity in Genetically Susceptible DEREG Mice. Front Immunol 2021; 12:720133. [PMID: 34447385 PMCID: PMC8382961 DOI: 10.3389/fimmu.2021.720133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023] Open
Abstract
Type 1 diabetes (T1D) represents a hallmark of the fatal multiorgan autoimmune syndrome affecting humans with abrogated Foxp3+ regulatory T (Treg) cell function due to Foxp3 gene mutations, but whether the loss of Foxp3+ Treg cell activity is indeed sufficient to promote β cell autoimmunity requires further scrutiny. As opposed to human Treg cell deficiency, β cell autoimmunity has not been observed in non-autoimmune-prone mice with constitutive Foxp3 deficiency or after diphtheria toxin receptor (DTR)-mediated ablation of Foxp3+ Treg cells. In the spontaneous nonobese diabetic (NOD) mouse model of T1D, constitutive Foxp3 deficiency did not result in invasive insulitis and hyperglycemia, and previous studies on Foxp3+ Treg cell ablation focused on Foxp3DTR NOD mice, in which expression of a transgenic BDC2.5 T cell receptor (TCR) restricted the CD4+ TCR repertoire to a single diabetogenic specificity. Here we revisited the effect of acute Foxp3+ Treg cell ablation on β cell autoimmunity in NOD mice in the context of a polyclonal TCR repertoire. For this, we took advantage of the well-established DTR/GFP transgene of DEREG mice, which allows for specific ablation of Foxp3+ Treg cells without promoting catastrophic autoimmune diseases. We show that the transient loss of Foxp3+ Treg cells in prediabetic NOD.DEREG mice is sufficient to precipitate severe insulitis and persistent hyperglycemia within 5 days after DT administration. Importantly, DT-treated NOD.DEREG mice preserved many clinical features of spontaneous diabetes progression in the NOD model, including a prominent role of diabetogenic CD8+ T cells in terminal β cell destruction. Despite the severity of destructive β cell autoimmunity, anti-CD3 mAb therapy of DT-treated mice interfered with the progression to overt diabetes, indicating that the novel NOD.DEREG model can be exploited for preclinical studies on T1D under experimental conditions of synchronized, advanced β cell autoimmunity. Overall, our studies highlight the continuous requirement of Foxp3+ Treg cell activity for the control of genetically pre-installed autoimmune diabetes.
Collapse
Affiliation(s)
- Deepika Watts
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Hospital and Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Marthe Janßen
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Hospital and Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Mangesh Jaykar
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Francesco Palmucci
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Hospital and Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Marc Weigelt
- Regenerative Therapies for Diabetes, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Cathleen Petzold
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Angela Hommel
- Regenerative Therapies for Diabetes, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE/Centre for Experimental and Clinical Infection Research, Hanover, Germany
| | - Ezio Bonifacio
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Hospital and Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Regenerative Therapies for Diabetes, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Hospital and Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
18
|
Sims EK, Bundy BN, Stier K, Serti E, Lim N, Long SA, Geyer SM, Moran A, Greenbaum CJ, Evans-Molina C, Herold KC. Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci Transl Med 2021; 13:eabc8980. [PMID: 33658358 PMCID: PMC8610022 DOI: 10.1126/scitranslmed.abc8980] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/05/2021] [Indexed: 12/30/2022]
Abstract
We analyzed the effects of a single 14-day course of teplizumab treatment on metabolic function and immune cells among participants in a previously reported randomized controlled trial of nondiabetic relatives at high risk for type 1 diabetes (T1D). In an extended follow-up (923-day median) of a previous report of teplizumab treatment, we found that the median times to diagnosis were 59.6 and 27.1 months for teplizumab- and placebo-treated participants, respectively (HR = 0.457, P = 0.01). Fifty percent of teplizumab-treated but only 22% of the placebo-treated remained diabetes-free. Glucose tolerance, C-peptide area under the curve (AUC), and insulin secretory rates were calculated, and relationships to T cell subsets and function were analyzed. Teplizumab treatment improved beta cell function, reflected by average on-study C-peptide AUC (1.94 versus 1.72 pmol/ml; P = 0.006). Drug treatment reversed a decline in insulin secretion before enrollment, followed by stabilization of the declining C-peptide AUC seen with placebo treatment. Proinsulin:C-peptide ratios after drug treatment were similar between the treatment groups. The changes in C-peptide with teplizumab treatment were associated with increases in partially exhausted memory KLRG1+TIGIT+CD8+ T cells (r = 0.44, P = 0.014) that showed reduced secretion of IFNγ and TNFα. A single course of teplizumab had lasting effects on delay of T1D diagnosis and improved beta cell function in high-risk individuals. Changes in CD8+ T cell subsets indicated that partially exhausted effector cells were associated with clinical response. Thus, this trial showed improvement in metabolic responses and delay of diabetes with immune therapy.
Collapse
Affiliation(s)
- Emily K Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brian N Bundy
- Department of Epidemiology, and Pediatrics University of South Florida, Tampa, FL 33612, USA
| | - Kenneth Stier
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT 06520, USA
| | | | - Noha Lim
- Immune Tolerance Network, Bethesda, MD 20814, USA
| | - S Alice Long
- Benaroya Research Institute, Seattle WA 98101, USA
| | | | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Diggins KE, Serti E, Muir V, Rosasco M, Lu T, Balmas E, Nepom G, Long SA, Linsley PS. Exhausted-like CD8+ T cell phenotypes linked to C-peptide preservation in alefacept-treated T1D subjects. JCI Insight 2021; 6:142680. [PMID: 33351781 PMCID: PMC7934874 DOI: 10.1172/jci.insight.142680] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Clinical trials of biologic therapies in type 1 diabetes (T1D) aim to mitigate autoimmune destruction of pancreatic β cells through immune perturbation and serve as resources to elucidate immunological mechanisms in health and disease. In the T1DAL trial of alefacept (LFA3-Ig) in recent-onset T1D, endogenous insulin production was preserved in 30% of subjects for 2 years after therapy. Given our previous findings linking exhausted-like CD8+ T cells to beneficial response in T1D trials, we applied unbiased analyses to sorted CD8+ T cells to evaluate their potential role in T1DAL. Using RNA sequencing, we found that greater insulin C-peptide preservation was associated with a module of activation- and exhaustion-associated genes. This signature was dissected into 2 CD8 memory phenotypes through correlation with cytometry data. These cells were hypoproliferative, shared expanded rearranged TCR junctions, and expressed exhaustion-associated markers including TIGIT and KLRG1. The 2 phenotypes could be distinguished by reciprocal expression of CD8+ T and NK cell markers (GZMB, CD57, and inhibitory killer cell immunoglobulin-like receptor [iKIR] genes), versus T cell activation and differentiation markers (PD-1 and CD28). These findings support previous evidence linking exhausted-like CD8+ T cells to successful immune interventions for T1D, while suggesting that multiple inhibitory mechanisms can promote this beneficial cell state.
Collapse
Affiliation(s)
- Kirsten E. Diggins
- Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | - Virginia Muir
- Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Mario Rosasco
- Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - TingTing Lu
- Immune Tolerance Network (ITN), Bethesda, Maryland, USA
| | - Elisa Balmas
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Gerald Nepom
- Immune Tolerance Network (ITN), Bethesda, Maryland, USA
| | - S. Alice Long
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Peter S. Linsley
- Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| |
Collapse
|
20
|
Oftedal BE, Wolff ASB. New era of therapy for endocrine autoimmune disorders. Scand J Immunol 2020; 92:e12961. [PMID: 32853446 DOI: 10.1111/sji.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
The new era of immune and reconstitution therapy of autoimmune disorders is ongoing. However, endocrine autoimmune diseases comprise a group of elaborating pathologies where the development of new treatment strategies remains slow. Substitution of the missing hormones is still standard practice, taking care of the devastating symptoms but not the cause of disease. As our knowledge of the genetic contribution to the aetiology of endocrine disorders increases and early diagnostic tools are available, it is now possible to identify persons at risk before they acquire full-blown disease. This review summarizes current knowledge and treatment of endocrine autoimmune disorders, focusing on type 1 diabetes, Addison's disease, autoimmune thyroid diseases and primary ovarian insufficiency. We explore which new therapies might be used in the different stages of the disease, focus on legalized therapy and elaborate on the ongoing clinical studies for these diseases and the research front, before hypothesizing on the way ahead.
Collapse
Affiliation(s)
- Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway.,KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway.,KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The role of T cells specific for islet autoantigens is proven in pathogenesis of type 1 diabetes. Recently, there has been rapid expansion in the number of T-cell subsets identified, this has coincided with an increase in the repertoire of reported islet antigens mainly through the discovery of novel epitopes. A discussion of how these marry together is now warranted and timely. RECENT FINDINGS In this review, we will discuss the autoreactivity against neo-epitopes. We then explore the growing array of T-cell subsets for both CD4 T cells, including follicular and peripheral T helper cells, and CD8 T cells, discussing evolution from naïve to exhausted phenotypes. Finally, we detail how subsets correlate with disease stage and loss of β-cell function and are impacted by immunotherapy. SUMMARY The expanding list of T-cell subsets may be potentially encouraging in terms of elucidating disease mechanisms and have a role as biomarkers for disease progression. Furthermore, T-cell subsets can be used in stratifying patients for clinical trials and for monitoring immunotherapy outcomes. However, the definition of subsets needs to be refined in order to ensure that there is a uniform approach in designating T-cell subset attributes that is globally applied.
Collapse
Affiliation(s)
- Sefina Arif
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London
| | - Irma Pujol-Autonell
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London
- Biomedical Research Centre at Guy's and St Thomas' Hospitals and King's College London, London, UK
| | - Martin Eichmann
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London
- Current address: Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
22
|
Wiedeman AE, Muir VS, Rosasco MG, DeBerg HA, Presnell S, Haas B, Dufort MJ, Speake C, Greenbaum CJ, Serti E, Nepom GT, Blahnik G, Kus AM, James EA, Linsley PS, Long SA. Autoreactive CD8+ T cell exhaustion distinguishes subjects with slow type 1 diabetes progression. J Clin Invest 2020; 130:480-490. [PMID: 31815738 PMCID: PMC6934185 DOI: 10.1172/jci126595] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Although most patients with type 1 diabetes (T1D) retain some functional insulin-producing islet β cells at the time of diagnosis, the rate of further β cell loss varies across individuals. It is not clear what drives this differential progression rate. CD8+ T cells have been implicated in the autoimmune destruction of β cells. Here, we addressed whether the phenotype and function of autoreactive CD8+ T cells influence disease progression. We identified islet-specific CD8+ T cells using high-content, single-cell mass cytometry in combination with peptide-loaded MHC tetramer staining. We applied a new analytical method, DISCOV-R, to characterize these rare subsets. Autoreactive T cells were phenotypically heterogeneous, and their phenotype differed by rate of disease progression. Activated islet-specific CD8+ memory T cells were prevalent in subjects with T1D who experienced rapid loss of C-peptide; in contrast, slow disease progression was associated with an exhaustion-like profile, with expression of multiple inhibitory receptors, limited cytokine production, and reduced proliferative capacity. This relationship between properties of autoreactive CD8+ T cells and the rate of T1D disease progression after onset make these phenotypes attractive putative biomarkers of disease trajectory and treatment response and reveal potential targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cate Speake
- Diabetes Program, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, Washington, USA
| | - Carla J. Greenbaum
- Diabetes Program, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, Washington, USA
| | | | - Gerald T. Nepom
- Translational Research Program
- Immune Tolerance Network (ITN), Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
23
|
Herold KC, Bucktrout SL, Wang X, Bode BW, Gitelman SE, Gottlieb PA, Hughes J, Joh T, McGill JB, Pettus JH, Potluri S, Schatz D, Shannon M, Udata C, Wong G, Levisetti M, Ganguly BJ, Garzone PD. Immunomodulatory activity of humanized anti-IL-7R monoclonal antibody RN168 in subjects with type 1 diabetes. JCI Insight 2019; 4:126054. [PMID: 31852846 DOI: 10.1172/jci.insight.126054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The cytokine IL-7 is critical for T cell development and function. We performed a Phase Ib study in patients with type 1 diabetes (T1D) to evaluate how blockade of IL-7 would affect immune cells and relevant clinical responses. METHODS Thirty-seven subjects with T1D received s.c. RN168, a monoclonal antibody that blocks the IL -7 receptor α (IL7Rα) in a dose-escalating study. RESULTS Between 90% and 100% IL-7R occupancy and near-complete inhibition of pSTAT5 was observed at doses of RN168 1 mg/kg every other week (Q2wk) and greater. There was a significant decline in CD4+ and CD8+ effector and central memory T cells and CD4+ naive cells, but there were fewer effects on CD8+ naive T cells. The ratios of Tregs to CD4+ or CD8+ effector and central memory T cells versus baseline were increased. RNA sequencing analysis showed downmodulation of genes associated with activation, survival, and differentiation of T cells. Expression of the antiapoptotic protein Bcl-2 was reduced. The majority of treatment-emergent adverse events (TEAEs) were mild and not treatment related. Four subjects became anti-EBV IgG+ after RN168, and 2 had symptoms of active infection. The immunologic response to tetanus toxoid was preserved at doses of 1 and 3 mg/kg Q2wk but reduced at higher doses. CONCLUSIONS This trial shows that, at dosages of 1-3 mg/kg, RN168 selectively inhibits the survival and activity of memory T cells while preserving naive T cells and Tregs. These immunologic effects may serve to eliminate pathologic T cells in autoimmune diseases. TRIAL REGISTRATION NCT02038764. FUNDING Pfizer Inc.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology and.,Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Xiao Wang
- Rinat, Pfizer Inc., South San Francisco, California, USA
| | - Bruce W Bode
- Atlanta Diabetes Associates Research, Atlanta, Georgia, USA
| | - Stephen E Gitelman
- Department of Pediatrics and.,Diabetes Center, UCSF, San Francisco, California, USA
| | - Peter A Gottlieb
- Department of Pediatrics.,Department of Medicine, and.,Barbara Davis Diabetes Center, University of Colorado School of Medicine Anschutz Medical Campus, Anschutz, Colorado, USA
| | - Jing Hughes
- Division of Endocrinology, Metabolism and Lipid Research, John T. Milliken Department of Internal Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, Missouri, USA
| | - Tenshang Joh
- Worldwide R&D, Pfizer Inc., San Diego, California, USA
| | - Janet B McGill
- Division of Endocrinology, Metabolism and Lipid Research, John T. Milliken Department of Internal Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, Missouri, USA
| | - Jeremy H Pettus
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Shobha Potluri
- Rinat, Pfizer Inc., South San Francisco, California, USA
| | - Desmond Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Megan Shannon
- Worldwide R&D, Pfizer Inc., San Diego, California, USA
| | | | - Gilbert Wong
- Rinat, Pfizer Inc., South San Francisco, California, USA
| | | | | | | | | |
Collapse
|
24
|
Dayan CM, Korah M, Tatovic D, Bundy BN, Herold KC. Changing the landscape for type 1 diabetes: the first step to prevention. Lancet 2019; 394:1286-1296. [PMID: 31533907 DOI: 10.1016/s0140-6736(19)32127-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/25/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
Abstract
Over several decades, studies have described the progression of autoimmune diabetes, from the first appearance of autoantibodies until, and after, the diagnosis of clinical disease with hyperglycaemia and insulin dependence. Despite the improved management of type 1 diabetes with exogenous insulin, most patients do not meet clinical glycaemic goals, and diabetes remains an important medical problem that affects children and adults. Clinical and preclinical studies have suggested strategies to prevent the diagnosis of type 1 diabetes in people at risk, but the outcomes of previous clinical trials have not met their primary endpoints of disease prevention or delay. The results from the TN-10 teplizumab prevention trial show that the diagnosis of type 1 diabetes can be delayed by treatment with a FcR non-binding monoclonal antibody to CD3 in people at high risk for disease. This Series paper discusses how this clinical achievement raises new questions about for whom, and when, immunological strategies might be developed to prevent type 1 diabetes, and how to achieve this goal.
Collapse
Affiliation(s)
- Colin M Dayan
- Diabetes Research Group, Cardiff University School of Medicine, Cardiff, UK
| | - Maria Korah
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA
| | - Danijela Tatovic
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA
| | - Brian N Bundy
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
25
|
Herold KC, Bundy BN, Long SA, Bluestone JA, DiMeglio LA, Dufort MJ, Gitelman SE, Gottlieb PA, Krischer JP, Linsley PS, Marks JB, Moore W, Moran A, Rodriguez H, Russell WE, Schatz D, Skyler JS, Tsalikian E, Wherrett DK, Ziegler AG, Greenbaum CJ. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. N Engl J Med 2019; 381:603-613. [PMID: 31180194 PMCID: PMC6776880 DOI: 10.1056/nejmoa1902226] [Citation(s) in RCA: 586] [Impact Index Per Article: 117.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Type 1 diabetes is a chronic autoimmune disease that leads to destruction of insulin-producing beta cells and dependence on exogenous insulin for survival. Some interventions have delayed the loss of insulin production in patients with type 1 diabetes, but interventions that might affect clinical progression before diagnosis are needed. METHODS We conducted a phase 2, randomized, placebo-controlled, double-blind trial of teplizumab (an Fc receptor-nonbinding anti-CD3 monoclonal antibody) involving relatives of patients with type 1 diabetes who did not have diabetes but were at high risk for development of clinical disease. Patients were randomly assigned to a single 14-day course of teplizumab or placebo, and follow-up for progression to clinical type 1 diabetes was performed with the use of oral glucose-tolerance tests at 6-month intervals. RESULTS A total of 76 participants (55 [72%] of whom were ≤18 years of age) underwent randomization - 44 to the teplizumab group and 32 to the placebo group. The median time to the diagnosis of type 1 diabetes was 48.4 months in the teplizumab group and 24.4 months in the placebo group; the disease was diagnosed in 19 (43%) of the participants who received teplizumab and in 23 (72%) of those who received placebo. The hazard ratio for the diagnosis of type 1 diabetes (teplizumab vs. placebo) was 0.41 (95% confidence interval, 0.22 to 0.78; P = 0.006 by adjusted Cox proportional-hazards model). The annualized rates of diagnosis of diabetes were 14.9% per year in the teplizumab group and 35.9% per year in the placebo group. There were expected adverse events of rash and transient lymphopenia. KLRG1+TIGIT+CD8+ T cells were more common in the teplizumab group than in the placebo group. Among the participants who were HLA-DR3-negative, HLA-DR4-positive, or anti-zinc transporter 8 antibody-negative, fewer participants in the teplizumab group than in the placebo group had diabetes diagnosed. CONCLUSIONS Teplizumab delayed progression to clinical type 1 diabetes in high-risk participants. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT01030861.).
Collapse
Affiliation(s)
- Kevan C Herold
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Brian N Bundy
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - S Alice Long
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Jeffrey A Bluestone
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Linda A DiMeglio
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Matthew J Dufort
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Stephen E Gitelman
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Peter A Gottlieb
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Jeffrey P Krischer
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Peter S Linsley
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Jennifer B Marks
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Wayne Moore
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Antoinette Moran
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Henry Rodriguez
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - William E Russell
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Desmond Schatz
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Jay S Skyler
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Eva Tsalikian
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Diane K Wherrett
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Anette-Gabriele Ziegler
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Carla J Greenbaum
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| |
Collapse
|
26
|
Ahmed S, Cerosaletti K, James E, Long SA, Mannering S, Speake C, Nakayama M, Tree T, Roep BO, Herold KC, Brusko TM. Standardizing T-Cell Biomarkers in Type 1 Diabetes: Challenges and Recent Advances. Diabetes 2019; 68:1366-1379. [PMID: 31221801 PMCID: PMC6609980 DOI: 10.2337/db19-0119] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/20/2019] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes (T1D) results from the progressive destruction of pancreatic β-cells in a process mediated primarily by T lymphocytes. The T1D research community has made dramatic progress in understanding the genetic basis of the disease as well as in the development of standardized autoantibody assays that inform both disease risk and progression. Despite these advances, there remains a paucity of robust and accepted biomarkers that can effectively inform on the activity of T cells during the natural history of the disease or in response to treatment. In this article, we discuss biomarker development and validation efforts for evaluation of T-cell responses in patients with and at risk for T1D as well as emerging technologies. It is expected that with systematic planning and execution of a well-conceived biomarker development pipeline, T-cell-related biomarkers would rapidly accelerate disease progression monitoring efforts and the evaluation of intervention therapies in T1D.
Collapse
Affiliation(s)
- Simi Ahmed
- Immunotherapies Program, Research, JDRF, New York, NY
| | | | - Eddie James
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - S Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | | | - Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Maki Nakayama
- Departments of Pediatrics and Integrated Immunology, Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Timothy Tree
- Department of Immunobiology, King's College London, London, U.K
| | - Bart O Roep
- Department of Diabetes Immunobiology, City of Hope Diabetes & Metabolism Research Institute, Duarte, CA
| | - Kevan C Herold
- Departments of Immunobiology and Medicine, Yale School of Medicine, New Haven, CT
| | - Todd M Brusko
- Department of Pathology, University of Florida Diabetes Institute, Gainesville, FL
| |
Collapse
|
27
|
Ilan Y, Shailubhai K, Sanyal A. Immunotherapy with oral administration of humanized anti-CD3 monoclonal antibody: a novel gut-immune system-based therapy for metaflammation and NASH. Clin Exp Immunol 2019; 193:275-283. [PMID: 29920654 DOI: 10.1111/cei.13159] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a role in the pathogenesis of non-alcoholic steatohepatitis (NASH) underlying hepatocyte injury and fibrosis progression at all disease stages. Oral administration of anti-CD3 monoclonal antibody (mAb) has been shown in preclinical studies to be an effective method for systemic immune modulation and alleviates immune-mediated disorders without T cell depletion. In the present review, we summarize the concept of the oral administration of humanized anti-CD3 mAb in patients with NASH and discuss the potential of this treatment to address the current requirements of treatments for NASH. Recently published preclinical and clinical data on oral administration of anti CD3 are discussed. Human trials have shown that the oral administration of anti-CD3 in healthy volunteers, patients with chronic hepatitis C virus (HCV) infection and patients with NASH and type 2 diabetes is safe and well tolerated, as well as biologically active. Oral anti-CD3 induces regulatory T cells, suppresses the chronic inflammatory state associated with NASH and exerts a beneficial effect on clinically relevant parameters. Foralumab is a fully human anti-CD3 mAb that has recently been shown to exert a potent anti-inflammatory effect in humanized mice. It is being developed for treatment of NASH and primary biliary cholangitis (PBC). Oral administration of anti CD3 may provide an effective therapy for patients with NASH.
Collapse
Affiliation(s)
- Y Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - K Shailubhai
- Tiziana Life Sciences, R&, D Center, Doylestown, PA, USA
| | - A Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, USA
| |
Collapse
|
28
|
Perdigoto AL, Preston-Hurlburt P, Clark P, Long SA, Linsley PS, Harris KM, Gitelman SE, Greenbaum CJ, Gottlieb PA, Hagopian W, Woodwyk A, Dziura J, Herold KC. Treatment of type 1 diabetes with teplizumab: clinical and immunological follow-up after 7 years from diagnosis. Diabetologia 2019; 62:655-664. [PMID: 30569273 PMCID: PMC6402971 DOI: 10.1007/s00125-018-4786-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS The long-term effects of successful immune therapies for treatment of type 1 diabetes have not been well studied. The Autoimmunity-Blocking Antibody for Tolerance (AbATE) trial evaluated teplizumab, an Fc receptor non-binding humanised anti-CD3 monoclonal antibody in individuals with new-onset type 1 diabetes, and ended in 2011. Clinical drug-treated responders showed an increased frequency of 'partially exhausted' CD8+ T cells. We studied the clinical, immunological and metabolic status of participants after an average follow-up of 7 years. METHODS Participants with detectable C-peptide at year 2 of AbATE returned for follow-up. C-peptide responses were assessed by 4 h mixed-meal tolerance test. Autoantibodies and HbA1c levels were measured and average daily insulin use was obtained from patient logs. Peripheral blood mononuclear cells were analysed by flow cytometry and cytokine release. RESULTS Fifty-six per cent of the original participants returned. Three of the original control group who did not return had lost all detectable C-peptide by the end of the 2 year trial. The C-peptide responses to a mixed-meal tolerance test were similar overall in the drug vs control group of participants but were significantly improved, with less loss of C-peptide, in drug-treated responders identified at 1 year. However, the improvements in C-peptide response were not associated with lower HbA1c levels or insulin use. Drug-treated responders showed a significantly increased frequency of programmed cell death protein 1-positive central memory and anergic CD8+ T cells at follow-up. CONCLUSIONS/INTERPRETATION These findings suggest there is reduced decline in C-peptide and persistent immunological responses up to 7 years after diagnosis of diabetes in individuals who respond to teplizumab. TRIAL REGISTRATION ClinicalTrials.gov NCT02067923; the protocol is available at www.immunetolerance.org (ITN027AI).
Collapse
Affiliation(s)
- Ana Luisa Perdigoto
- Division of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Paula Preston-Hurlburt
- Department of Immunobiology, Yale University, 300 George St, 353E, New Haven, CT, 06520, USA
| | - Pamela Clark
- Department of Immunobiology, Yale University, 300 George St, 353E, New Haven, CT, 06520, USA
| | - S Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Peter S Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Kristina M Harris
- Immune Tolerance Network, Biomarker & Discovery Research, Bethesda, MD, USA
| | - Steven E Gitelman
- Division of Pediatric Endocrinology and Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | | | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Alyssa Woodwyk
- Division of Epidemiology or Biostatistics, Western Michigan University, Kalamazoo, MI, USA
| | - James Dziura
- Department of Emergency Medicine, Yale University, New Haven, CT, USA
| | - Kevan C Herold
- Department of Immunobiology, Yale University, 300 George St, 353E, New Haven, CT, 06520, USA.
| | | |
Collapse
|
29
|
Chatenoud L. A future for CD3 antibodies in immunotherapy of type 1 diabetes. Diabetologia 2019; 62:578-581. [PMID: 30612137 DOI: 10.1007/s00125-018-4808-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Lucienne Chatenoud
- Université Paris Descartes, Sorbonne Paris Cité, F-75475, Paris, France.
- INSERM U1151, INEM, Hôpital Necker-Enfants Malades, 149 Rue de Sèvres, 75015, Paris, France.
- CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France.
| |
Collapse
|
30
|
Peng Y, Wen D, Lin F, Mahato RI. Co-delivery of siAlox15 and sunitinib for reversing the new-onset of type 1 diabetes in non-obese diabetic mice. J Control Release 2018; 292:1-12. [DOI: 10.1016/j.jconrel.2018.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 01/12/2023]
|
31
|
Ilan Y. Immune rebalancing by oral immunotherapy: A novel method for getting the immune system back on track. J Leukoc Biol 2018; 105:463-472. [PMID: 30476347 DOI: 10.1002/jlb.5ru0718-276rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Immune modulating treatments are often associated with immune suppression or an opposing anti-inflammatory paradigm. As such, there is a risk of exposing patients to infections and malignancies. Contrarily, eliciting only mild immune modulation can be insufficient for alleviating immune-mediated damage. Oral immunotherapy is a novel approach that uses the inherent ability of the gut immune system to generate signals that specifically suppress inflammation at affected sites, without inducing generalized immune suppression. Oral immunotherapy is being developed as a method to rebalance systemic immunity and restore balance, getting it back on track, rather than pushing the immune response too much or too little in opposing directions. Here, I review recent preclinical and clinical data examining the technique and describe its primary advantages.
Collapse
Affiliation(s)
- Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
32
|
Haller MJ, Schatz DA, Skyler JS, Krischer JP, Bundy BN, Miller JL, Atkinson MA, Becker DJ, Baidal D, DiMeglio LA, Gitelman SE, Goland R, Gottlieb PA, Herold KC, Marks JB, Moran A, Rodriguez H, Russell W, Wilson DM, Greenbaum CJ. Low-Dose Anti-Thymocyte Globulin (ATG) Preserves β-Cell Function and Improves HbA 1c in New-Onset Type 1 Diabetes. Diabetes Care 2018; 41:1917-1925. [PMID: 30012675 PMCID: PMC6105329 DOI: 10.2337/dc18-0494] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/12/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE A pilot study suggested that combination therapy with low-dose anti-thymocyte globulin (ATG) and pegylated granulocyte colony-stimulating factor (GCSF) preserves C-peptide in established type 1 diabetes (T1D) (duration 4 months to 2 years). We hypothesized that 1) low-dose ATG/GCSF or 2) low-dose ATG alone would slow the decline of β-cell function in patients with new-onset T1D (duration <100 days). RESEARCH DESIGN AND METHODS A three-arm, randomized, double-masked, placebo-controlled trial was performed by the Type 1 Diabetes TrialNet Study Group in 89 subjects: 29 subjects randomized to ATG (2.5 mg/kg intravenously) followed by pegylated GCSF (6 mg subcutaneously every 2 weeks for 6 doses), 29 to ATG alone (2.5 mg/kg), and 31 to placebo. The primary end point was mean area under the curve (AUC) C-peptide during a 2-h mixed-meal tolerance test 1 year after initiation of therapy. Significance was defined as one-sided P value < 0.025. RESULTS The 1-year mean AUC C-peptide was significantly higher in subjects treated with ATG (0.646 nmol/L) versus placebo (0.406 nmol/L) (P = 0.0003) but not in those treated with ATG/GCSF (0.528 nmol/L) versus placebo (P = 0.031). HbA1c was significantly reduced at 1 year in subjects treated with ATG and ATG/GCSF, P = 0.002 and 0.011, respectively. CONCLUSIONS Low-dose ATG slowed decline of C-peptide and reduced HbA1c in new-onset T1D. Addition of GCSF did not enhance C-peptide preservation afforded by low-dose ATG. Future studies should be considered to determine whether low-dose ATG alone or in combination with other agents may prevent or delay the onset of the disease.
Collapse
|
33
|
Kroger CJ, Clark M, Ke Q, Tisch RM. Therapies to Suppress β Cell Autoimmunity in Type 1 Diabetes. Front Immunol 2018; 9:1891. [PMID: 30166987 PMCID: PMC6105696 DOI: 10.3389/fimmu.2018.01891] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is generally considered to be T cell-driven. Accordingly, most strategies of immunotherapy for T1D prevention and treatment in the clinic have targeted the T cell compartment. To date, however, immunotherapy has had only limited clinical success. Although certain immunotherapies have promoted a protective effect, efficacy is often short-term and acquired immunity may be impacted. This has led to the consideration of combining different approaches with the goal of achieving a synergistic therapeutic response. In this review, we will discuss the status of various T1D therapeutic strategies tested in the clinic, as well as possible combinatorial approaches to restore β cell tolerance.
Collapse
Affiliation(s)
- Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
34
|
Finetti F, Baldari CT. The immunological synapse as a pharmacological target. Pharmacol Res 2018; 134:118-133. [PMID: 29898412 DOI: 10.1016/j.phrs.2018.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
The development of T cell mediated immunity relies on the assembly of a highly specialized interface between T cell and antigen presenting cell (APC), known as the immunological synapse (IS). IS assembly is triggered when the T cell receptor (TCR) binds to specific peptide antigen presented in association to the major histocompatibility complex (MHC) by the APC, and is followed by the spatiotemporal dynamic redistribution of TCR, integrins, co-stimulatory receptors and signaling molecules, allowing for the fine-tuning and integration of the signals that lead to T cell activation. The knowledge acquired to date about the mechanisms of IS assembly underscores this structure as a robust pharmacological target. The activity of molecules involved in IS assembly and function can be targeted by specific compounds to modulate the immune response in a number of disorders, including cancers and autoimmune diseases, or in transplanted patients. Here, we will review the state-of-the art of the current therapies which exploit the IS to modulate the immune response.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
35
|
Naushad N, Perdigoto AL, Rui J, Herold KC. Have we pushed the needle for treatment of Type 1 diabetes? Curr Opin Immunol 2017; 49:44-50. [PMID: 28992525 PMCID: PMC5937133 DOI: 10.1016/j.coi.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/16/2017] [Indexed: 02/07/2023]
Abstract
Studies with immunologics have shown that the natural history of Type 1 diabetes can be modified. These studies have targeted key mediators of the disease and recent analyses, together with studies in preclinical models have identified mechanisms that may be involved in the clinical effects. Several issues remain including specificity of the interventions, adverse effects of the treatments, and duration of their effects. Future studies are likely to include more specific approaches with agents such as cell therapies with selected immune regulatory subsets, antigen specific therapies, and combinations of agents with complementary mechanisms of activity.
Collapse
Affiliation(s)
- Nida Naushad
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, United States
| | - Ana Luisa Perdigoto
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, United States
| | - Jinxiu Rui
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, United States
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
36
|
Gülden E, Vudattu NK, Deng S, Preston-Hurlburt P, Mamula M, Reed JC, Mohandas S, Herold BC, Torres R, Vieira SM, Lim B, Herazo-Maya JD, Kriegel M, Goodman AL, Cotsapas C, Herold KC. Microbiota control immune regulation in humanized mice. JCI Insight 2017; 2:91709. [PMID: 29093268 DOI: 10.1172/jci.insight.91709] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
The microbiome affects development and activity of the immune system, and may modulate immune therapies, but there is little direct information about this control in vivo. We studied how the microbiome affects regulation of human immune cells in humanized mice. When humanized mice were treated with a cocktail of 4 antibiotics, there was an increase in the frequency of effector T cells in the gut wall, circulating levels of IFN-γ, and appearance of anti-nuclear antibodies. Teplizumab, a non-FcR-binding anti-CD3ε antibody, no longer delayed xenograft rejection. An increase in CD8+ central memory cells and IL-10, markers of efficacy of teplizumab, were not induced. IL-10 levels were only decreased when the mice were treated with all 4 but not individual antibiotics. Antibiotic treatment affected CD11b+CD11c+ cells, which produced less IL-10 and IL-27, and showed increased expression of CD86 and activation of T cells when cocultured with T cells and teplizumab. Soluble products in the pellets appeared to be responsible for the reduced IL-27 expression in DCs. Similar changes in IL-10 induction were seen when human peripheral blood mononuclear cells were cultured with human stool samples. We conclude that changes in the microbiome may impact the efficacy of immunosuppressive medications by altering immune regulatory pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sindhu Mohandas
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York, USA
| | - Betsy C Herold
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York, USA
| | - Richard Torres
- Department of Laboratory Medicine, Molecular Biophysics and Biochemistry
| | | | - Bentley Lim
- Department of Microbial Pathogenesis and Microbial Sciences Institute, and
| | | | - Martin Kriegel
- Department of Immunobiology.,Department of Internal Medicine
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, and
| | - Chris Cotsapas
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kevan C Herold
- Department of Immunobiology.,Department of Internal Medicine
| |
Collapse
|
37
|
Long SA, Thorpe J, Herold KC, Ehlers M, Sanda S, Lim N, Linsley PS, Nepom GT, Harris KM. Remodeling T cell compartments during anti-CD3 immunotherapy of type 1 diabetes. Cell Immunol 2017; 319:3-9. [PMID: 28844471 DOI: 10.1016/j.cellimm.2017.07.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/11/2023]
Abstract
The immunological mechanism(s) of action whereby teplizumab preserves C-peptide levels in the progression of patients with recent onset type 1 diabetes (T1D) is still not well understood. In the present study, we evaluated the kinetics of T cell modulation in peripheral blood following two 14-day courses of teplizumab therapy one year apart in recent onset T1D participants in the AbATE clinical trial. Transient rises in PD-1+Foxp3+ Treg and potentially anergic (CD57-KLRG1-PD-1+) cells in the circulating CD4 T cell compartment were paralleled by more profound increases in circulating CD8 T cells with traits of exhaustion (CD57-KLRG1+PD-1+, TIGIT+KLRG1+, and persistent down-modulation of CD127). The observed phenotypic changes across cell types were associated with favorable response to treatment in the subgroup of study participants that did not develop anti-drug antibodies after the first course of therapy. These findings provide new insights on the duration and complexity of T cell modulation with teplizumab therapy in recent onset T1D, and in addition, suggest that coordinated immune mechanisms of tolerance that favor CD4 Treg function and restrain CD4 non-Treg and CD8 T cell activation may contribute to treatment success.
Collapse
Affiliation(s)
- S Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jerill Thorpe
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA
| | - Mario Ehlers
- Immune Tolerance Network, San Francisco, CA, USA
| | | | - Noha Lim
- Immune Tolerance Network, Bethesda, MD, USA
| | - Peter S Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA; Immune Tolerance Network, Bethesda, MD, USA
| | | |
Collapse
|
38
|
Nepom GT, Scott D. Looking behind the data curtain. Cell Immunol 2017; 319:1-2. [PMID: 28754194 DOI: 10.1016/j.cellimm.2017.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
|
39
|
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) is an autoimmune disease marked by β-cell destruction. Immunotherapies for T1D have been investigated since the 1980s and have focused on restoration of tolerance, T cell or B cell inhibition, regulatory T cell (Treg) induction, suppression of innate immunity and inflammation, immune system reset, and islet transplantation. The purpose of this review is to provide an overview and lessons learned from single immunotherapy trials, describe recent and ongoing combination immunotherapy trials, and provide perspectives on strategies for future combination clinical interventions aimed at preserving insulin secretion in T1D. RECENT FINDINGS Combination immunotherapies have had mixed results in improving short-term glycemic control and insulin secretion in recent-onset T1D. A handful of studies have successfully reached their primary end-point of improved insulin secretion in recent-onset T1D. However, long-term improvements glycemic control and the restoration of insulin independence remain elusive. Future interventions should focus on strategies that combine immunomodulation with efforts to alleviate β-cell stress and address the formation of antigens that activate autoimmunity.
Collapse
Affiliation(s)
- Robert N Bone
- Department of Medicine, Indiana School of Medicine, 635 Barnhill Dr, MS 2031A, Indianapolis, IN, 46202, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana School of Medicine, 635 Barnhill Dr, MS 2031A, Indianapolis, IN, 46202, USA.
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
40
|
Wallberg M, Recino A, Phillips J, Howie D, Vienne M, Paluch C, Azuma M, Wong FS, Waldmann H, Cooke A. Anti-CD3 treatment up-regulates programmed cell death protein-1 expression on activated effector T cells and severely impairs their inflammatory capacity. Immunology 2017; 151:248-260. [PMID: 28211040 PMCID: PMC5418468 DOI: 10.1111/imm.12729] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 01/07/2023] Open
Abstract
T cells play a key role in the pathogenesis of type 1 diabetes, and targeting the CD3 component of the T‐cell receptor complex provides one therapeutic approach. Anti‐CD3 treatment can reverse overt disease in spontaneously diabetic non‐obese diabetic mice, an effect proposed to, at least in part, be caused by a selective depletion of pathogenic cells. We have used a transfer model to further investigate the effects of anti‐CD3 treatment on green fluorescent protein (GFP)+ islet‐specific effector T cells in vivo. The GFP expression allowed us to isolate the known effectors at different time‐points during treatment to assess cell presence in various organs as well as gene expression and cytokine production. We find, in this model, that anti‐CD3 treatment does not preferentially deplete the transferred effector cells, but instead inhibits their metabolic function and their production of interferon‐γ. Programmed cell death protein 1 (PD‐1) expression was up‐regulated on the effector cells from anti‐CD3‐treated mice, and diabetes induced through anti‐PD‐L1 antibody could only be reversed with anti‐CD3 antibody if the anti‐CD3 treatment lasted beyond the point when the anti‐PD‐L1 antibody was washed out of the system. This suggests that PD‐1/PD‐L1 interaction plays an important role in the anti‐CD3 antibody mediated protection. Our data demonstrate an additional mechanism by which anti‐CD3 therapy can reverse diabetogenesis.
Collapse
Affiliation(s)
- Maja Wallberg
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Asha Recino
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Jenny Phillips
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Duncan Howie
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Margaux Vienne
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Miyuki Azuma
- Department of Molecular Immunology Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - F Susan Wong
- Diabetes Research Group, Institute of Molecular and Experimental Medicine, Cardiff School of Medicine, Cardiff University, Cardiff, UK
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
41
|
Mesquita PMM, Preston-Hurlburt P, Keller MJ, Vudattu N, Espinoza L, Altrich M, Anastos K, Herold KC, Herold BC. Role of Interleukin 32 in Human Immunodeficiency Virus Reactivation and Its Link to Human Immunodeficiency Virus-Herpes Simplex Virus Coinfection. J Infect Dis 2017; 215:614-622. [PMID: 28007920 PMCID: PMC5388286 DOI: 10.1093/infdis/jiw612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/08/2016] [Indexed: 01/12/2023] Open
Abstract
Background Herpes simplex virus type 2 (HSV-2; herpes) exacerbates human immunodeficiency virus type 1 (HIV) by unclear mechanisms. These studies tested the impact of HSV-2 on systemic T-cells and HIV reservoirs. Methods Peripheral blood mononuclear cells from HIV-infected women on antiretroviral therapy who were HSV-2 seropositive or seronegative and HIV-uninfected controls were analyzed by flow cytometry. Cell-associated HIV DNA and RNA were quantified in the absence or presence of activating stimuli, recombinant interleukin 32γ (IL-32γ), and a RUNX1 inhibitor. RNA was assessed by nanostring. Results CD4, but not CD8, T-cell phenotypes differed in HIV+/HSV-2+ versus HIV+/HSV-2- (overall P = .002) with increased frequency of CCR5+, CXCR4+, PD-1+, and CD69+ and decreased frequency of CCR10+ and CCR6+ T-cells. The changes were associated with higher HIV DNA. Paradoxically, IL-32, a proinflammatory cytokine, was lower in subpopulations of CD4+ T-cells in HSV-2+ versus HSV-2- women. Recombinant IL-32γ blocked HIV reactivation in CD4+ T-cells and was associated with an increase in RUNX1 expression; the blockade was overcome by a RUNX1 inhibitor. Conclusions Herpes is associated with phenotypic changes in CD4+ T-cells, including a decrease in IL-32, which may contribute to increased HIV reservoirs. Blocking IL-32 may facilitate HIV reactivation to improve shock and kill strategies.
Collapse
Affiliation(s)
- Pedro M M Mesquita
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Marla J Keller
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nalini Vudattu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lilia Espinoza
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kevan C Herold
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Betsy C Herold
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
42
|
Wallet MA, Santostefano KE, Terada N, Brusko TM. Isogenic Cellular Systems Model the Impact of Genetic Risk Variants in the Pathogenesis of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:276. [PMID: 29093700 PMCID: PMC5651267 DOI: 10.3389/fendo.2017.00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
At least 57 independent loci within the human genome confer varying degrees of risk for the development of type 1 diabetes (T1D). The majority of these variants are thought to contribute to overall genetic risk by modulating host innate and adaptive immune responses, ultimately resulting in a loss of immunological tolerance to β cell antigens. Early efforts to link specific risk variants with functional alterations in host immune responses have employed animal models or genotype-selected individuals from clinical bioresource banks. While some notable genotype:phenotype associations have been described, there remains an urgent need to accelerate the discovery of causal variants and elucidate the molecular mechanisms by which susceptible alleles alter immune functions. One significant limitation has been the inability to study human T1D risk loci on an isogenic background. The advent of induced pluripotent stem cells (iPSCs) and genome-editing technologies have made it possible to address a number of these outstanding questions. Specifically, the ability to drive multiple cell fates from iPSC under isogenic conditions now facilitates the analysis of causal variants in multiple cellular lineages. Bioinformatic analyses have revealed that T1D risk genes cluster within a limited number of immune signaling pathways, yet the relevant immune cell subsets and cellular activation states in which candidate risk genes impact cellular activities remain largely unknown. In this review, we summarize the functional impact of several candidate risk variants on host immunity in T1D and present an isogenic disease-in-a-dish model system for interrogating risk variants, with the goal of expediting precision therapeutics in T1D.
Collapse
Affiliation(s)
- Mark A. Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
| | - Katherine E. Santostefano
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
| | - Naohiro Terada
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
- *Correspondence: Todd M. Brusko,
| |
Collapse
|
43
|
Long SA, Thorpe J, DeBerg HA, Gersuk V, Eddy J, Harris KM, Ehlers M, Herold KC, Nepom GT, Linsley PS. Partial exhaustion of CD8 T cells and clinical response to teplizumab in new-onset type 1 diabetes. Sci Immunol 2016; 1:eaai7793. [PMID: 28664195 PMCID: PMC5486405 DOI: 10.1126/sciimmunol.aai7793] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biologic treatment of T1D typically results in transient stabilization of C-peptide levels (a surrogate for endogenous insulin secretion) in some patients, followed by progression at the same rate as in untreated control groups. Here, we used integrated systems biology and flow cytometry approaches with clinical trial blood samples to elucidate pathways associated with C-peptide stabilization in T1D subjects treated with the anti-CD3 monoclonal antibody teplizumab. We identified a population of CD8 T cells that accumulated in subjects with the best response to treatment (responders) and showed that these cells phenotypically resembled exhausted T cells by expressing high levels of the transcription factor EOMES, effector molecules, and multiple inhibitory receptors (IRs), including TIGIT and KLRG1. These cells expanded after treatment, with levels peaking after 3-6 months. To functionally characterize these exhausted-like T cells, we isolated memory CD8 TIGIT+KLRG1+ T cells from responders and showed that they exhibited expanded TCR clonotypes, indicative of prior in vivo expansion; recognized a broad-based spectrum expressed of environmental and auto-antigens; and were hypo-proliferative during polyclonal stimulation, increasing expression of IR genes and decreasing cell cycle genes. Triggering these cells with a recombinant ligand for TIGIT during polyclonal stimulation further downregulated their activation, demonstrating their exhausted phenotype was not terminal. These findings identify and functionally characterize a partially exhausted cell type associated with response to teplizumab therapy and suggest that pathways regulating T cell exhaustion may play a role in successful immune interventions for T1D.
Collapse
Affiliation(s)
- S. Alice Long
- Translational Research Program, Benaroya Research Institute, Seattle, WA
| | - Jerill Thorpe
- Translational Research Program, Benaroya Research Institute, Seattle, WA
| | | | - Vivian Gersuk
- Systems Immunology, Benaroya Research Institute, Seattle, WA
| | - James Eddy
- Systems Immunology, Benaroya Research Institute, Seattle, WA
| | | | | | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| | | | | |
Collapse
|
44
|
Nambam B, Haller MJ. Updates on Immune Therapies in Type 1 Diabetes. EUROPEAN ENDOCRINOLOGY 2016; 12:89-95. [PMID: 29632594 PMCID: PMC5813448 DOI: 10.17925/ee.2016.12.02.89] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/28/2016] [Indexed: 12/19/2022]
Abstract
Multiple clinical trials investigating the efficacy and safety of immunotherapeutic interventions in new onset type 1 diabetes (T1D) have failed to yield long term clinical benefit. Lack of efficacy has frequently been attributed to an incomplete understanding of the pathways involved in T1D and the use of single immunotherapeutic agents. Recent mechanistic studies have improved our knowledge of the complex etiopathogenesis of T1D. This in turn has provided the framework for new and ongoing clinical trials in new onset T1D patients and at-risk subjects. Focus has also shifted towards the potential benefits of synergistic combinatorial approaches, both in terms of efficacy and the potential for reduced side effects. These efforts seek to develop intervention strategies that will preserve β-cell function, and ultimately prevent and reverse clinical disease.
Collapse
Affiliation(s)
- Bimota Nambam
- Division of Endocrinology, Louisiana State University, Shreveport, US
| | - Michael J Haller
- Division of Endocrinology, University of Florida, Gainesville, US
| |
Collapse
|
45
|
Gitelman SE, Bluestone JA. Regulatory T cell therapy for type 1 diabetes: May the force be with you. J Autoimmun 2016; 71:78-87. [DOI: 10.1016/j.jaut.2016.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/14/2022]
|
46
|
Mauvais FX, Diana J, van Endert P. Beta cell antigens in type 1 diabetes: triggers in pathogenesis and therapeutic targets. F1000Res 2016; 5. [PMID: 27158463 PMCID: PMC4847563 DOI: 10.12688/f1000research.7411.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 01/12/2023] Open
Abstract
Research focusing on type 1 diabetes (T1D) autoantigens aims to explore our understanding of these beta cell proteins in order to design assays for monitoring the pathogenic autoimmune response, as well as safe and efficient therapies preventing or stopping it. In this review, we will discuss progress made in the last 5 years with respect to mechanistic understanding, diagnostic monitoring, and therapeutic modulation of the autoantigen-specific cellular immune response in T1D. Some technical progress in monitoring tools has been made; however, the potential of recent technologies for highly multiplexed exploration of human cellular immune responses remains to be exploited in T1D research, as it may be the key to the identification of surrogate markers of disease progression that are still wanting. Detailed analysis of autoantigen recognition by T cells suggests an important role of non-conventional antigen presentation and processing in beta cell-directed autoimmunity, but the impact of this in human T1D has been little explored. Finally, therapeutic administration of autoantigens to T1D patients has produced disappointing results. The application of novel modes of autoantigen administration, careful translation of mechanistic understanding obtained in preclinical studies and
in vitro with human cells, and combination therapies including CD3 antibodies may help to make autoantigen-based immunotherapy for T1D a success story in the future.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| | - Julien Diana
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| |
Collapse
|
47
|
Abstract
During the past one to two decades, substantial progress has been made in our understanding of the immunopathology of type 1 diabetes (T1D) and the potential for immune interventions that can alter the natural history of the disease. This progress has resulted from the use of standardized study designs, endpoints, and, to a certain extent, mechanistic analyses in intervention trials in the setting of new-onset T1D. To date, most of these trials have involved single-agent interventions but, increasingly, future trials will test therapeutic combinations that are based on a compelling scientific rationale and testable mechanistic hypotheses. These increasingly complex trials will benefit from novel trial designs (such as factorial or adaptive designs), enhanced clinical endpoints that more directly assess islet pathology (such as β-cell death assays and islet or pancreatic imaging), improved responder analyses, and sophisticated mechanistic assays that provide deep phenotyping of lymphocyte subsets, gene expression profiling, in vitro T cell functional assessments, and antigen-specific responses. With this developing armamentarium of enhanced trial designs, endpoints, and clinical and mechanistic response analyses, we can expect substantial progress in better understanding the breakdown in immunologic tolerance in T1D and how to restore it to achieve significant and long-lasting preservation of islet function.
Collapse
|
48
|
Life and death of β cells in Type 1 diabetes: A comprehensive review. J Autoimmun 2016; 71:51-8. [PMID: 27017348 DOI: 10.1016/j.jaut.2016.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 01/03/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing pancreatic β cells. Immune modulators have achieved some success in modifying the course of disease progression in T1D. However, there are parallel declines in C-peptide levels in treated and control groups after initial responses. In this review, we discuss mechanisms of β cell death in T1D that involve necrosis and apoptosis. New technologies are being developed to enable visualization of insulitis and β cell mass involving positron emission transmission that identifies β cell ligands and magnetic resonance imaging that can identify vascular leakage. Molecular signatures that identify β cell derived insulin DNA that is released from dying cells have been described and applied to clinical settings. We also consider changes in β cells that occur during disease progression including the induction of DNA methyltransferases that may affect the function and differentiation of β cells. Our findings from newer data suggest that the model of chronic long standing β cell killing should be reconsidered. These studies indicate that the pathophysiology is accelerated in the peridiagnosis period and manifest by increased rates of β cell killing and insulin secretory impairments over a shorter period than previously thought. Finally, we consider cellular explanations to account for the ongoing loss of insulin production despite continued immune therapy that may identify potential targets for treatment. The progressive decline in β cell function raises the question as to whether β cell failure that is independent of immune attack may be involved.
Collapse
|
49
|
Buckner JH, Nepom GT. Obstacles and opportunities for targeting the effector T cell response in type 1 diabetes. J Autoimmun 2016; 71:44-50. [PMID: 26948997 DOI: 10.1016/j.jaut.2016.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/06/2023]
Abstract
Autoreactive lymphocytes display a programmed set of characteristic effector functions and phenotypic markers that, in combination with antigen-specific profiling, provide a detailed picture of the adaptive immune response in Type 1 diabetes (T1D). The CD4+ T cell effector compartment (referred to as "Teff" in this article) has been extensively analyzed, particularly because the HLA genes most strongly associated with T1D are MHC class II alleles that form restriction elements for CD4+ T cell recognition. This "guilt by association" can now be revisited in terms of specific immune mechanisms and specific forms of T cell recognition that are displayed by Teff found in subjects with T1D. In this review, we describe properties of Teff that correlate with T1D, and discuss several characteristics that advance our understanding of disease persistence and progression. Focusing on functional disease-associated immunological pathways within these Teff suggests a rationale for next-generation clinical trials with targeted interventions. Indeed, immune modulation therapies in T1D that do not address these properties of Teff are unlikely to achieve durable clinical response.
Collapse
Affiliation(s)
- Jane H Buckner
- Benaroya Research Institute at Virginia Mason, The University of Washington School of Medicine, Seattle, WA, USA.
| | - Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, The University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
50
|
Perdigoto AL, Chatenoud L, Bluestone JA, Herold KC. Inducing and Administering Tregs to Treat Human Disease. Front Immunol 2016; 6:654. [PMID: 26834735 PMCID: PMC4722090 DOI: 10.3389/fimmu.2015.00654] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022] Open
Abstract
Regulatory T cells (Tregs) control unwanted immune responses, including those that mediate tolerance to self as well as to foreign antigens. Their mechanisms of action include direct and indirect effects on effector T cells and important functions in tissue repair and homeostasis. Tregs express a number of cell surface markers and transcriptional factors that have been instrumental in defining their origins and potentially their function. A number of immune therapies, such as rapamycin, IL-2, and anti-T cell antibodies, are able to induce Tregs and are being tested for their efficacy in diverse clinical settings with exciting preliminary results. However, a balance exists with the use of some, such as IL-2, that may have effects on unwanted populations as well as promoting expansion and survival of Tregs requiring careful selection of dose for clinical use. The use of cell surface markers has enabled investigators to isolate and expand ex vivo Tregs more than 500-fold routinely. Clinical trials have begun, administering these expanded Tregs to patients as a means of suppressing autoimmune and alloimmune responses and potentially inducing immune tolerance. Studies in the future are likely to build on these initial technical achievements and use combinations of agents to improve the survival and functional capacity of Tregs.
Collapse
Affiliation(s)
- Ana Luisa Perdigoto
- Department of Immunobiology, Yale University, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Lucienne Chatenoud
- Université Paris Descartes, Sorbonne Paris Cité, F-75475, Paris, France; INSERM U1151, CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - Jeffrey A Bluestone
- Diabetes Center, University of California San Francisco , San Francisco, CA , USA
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|