1
|
Liu T, Yang YL, Zhou Y, Jiang YM. Noninvasive biomarkers for lupus nephritis. Lab Med 2024; 55:535-542. [PMID: 38493322 PMCID: PMC11371907 DOI: 10.1093/labmed/lmae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024] Open
Abstract
Lupus nephritis (LN) is one of the most severe clinical manifestations of systemic lupus erythematosus (SLE). Notably, the clinical manifestations of LN are not always consistent with the histopathological findings. Therefore, the diagnosis and activity monitoring of this disease are challenging and largely depend on invasive renal biopsy. Renal biopsy has side effects and is associated with the risk of bleeding and infection. There is a growing interest in the development of novel noninvasive biomarkers for LN. In this review, we summarize most of the LN biomarkers discovered so far by correlating current knowledge with future perspectives. These biomarkers fundamentally reflect the biological processes of kidney damage and repair during disease. Furthermore, this review highlights the role of urinary cell phenotype detection in the diagnosis, monitoring, and treatment of LN and summarizes the limitations and countermeasures of this test.
Collapse
Affiliation(s)
- Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yun-Long Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Zhou
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yong-Mei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Lv Y, Yang Z, Hai L, Chen X, Wang J, Hu S, Zhao Y, Yuan H, Hu Z, Cui D, Xie J. Differential alterations of CXCR3, CXCR5 and CX3CR1 in patients with immune thrombocytopenia. Cytokine 2024; 181:156684. [PMID: 38936205 DOI: 10.1016/j.cyto.2024.156684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
As a versatile element for maintaining homeostasis, the chemokine system has been reported to be implicated in the pathogenesis of immune thrombocytopenia (ITP). However, research pertaining to chemokine receptors and related ligands in adult ITP is still limited. The states of several typical chemokine receptors and cognate ligands in the circulation were comparatively assessed through various methodologies. Multiple variable analyses of correlation matrixes were conducted to characterize the correlation signatures of various chemokine receptors or candidate ligands with platelet counts. Our data illustrated a significant decrease in relative CXCR3 expression and elevated plasma levels of CXCL4, 9-11, 13, and CCL3 chemokines in ITP patients with varied platelet counts. Flow cytometry assays revealed eminently diminished CXCR3 levels on T and B lymphocytes and increased CXCR5 on cytotoxic T cell (Tc) subsets in ITP patients with certain platelet counts. Meanwhile, circulating CX3CR1 levels were markedly higher on T cells with a concomitant increase in plasma CX3CL1 level in ITP patients, highlighting the importance of aberrant alterations of the CX3CR1-CX3CL1 axis in ITP pathogenesis. Spearman's correlation analyses revealed a strong positive association of peripheral CXCL4 mRNA level, and negative correlations of plasma CXCL4 concentration and certain chemokine receptors with platelet counts, which might serve as a potential biomarker of platelet destruction in ITP development. Overall, these results indicate that the differential expression patterns and distinct activation states of peripheral chemokine network, and the subsequent expansion of circulating CXCR5+ Tc cells and CX3CR1+ T cells, may be a hallmark during ITP progression, which ultimately contributes to thrombocytopenia in ITP patients.
Collapse
Affiliation(s)
- Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ziyin Yang
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lei Hai
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoyu Chen
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiayuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shaohua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuhong Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Huiming Yuan
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhengjun Hu
- Department of Laboratory Medicine, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou 310060, China.
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
3
|
Guo Q, Qiao P, Wang J, Zhao L, Guo Z, Li X, Fan X, Yu C, Zhang L. Investigating the value of urinary biomarkers in relation to lupus nephritis histopathology: present insights and future prospects. Front Pharmacol 2024; 15:1421657. [PMID: 39104393 PMCID: PMC11298450 DOI: 10.3389/fphar.2024.1421657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Lupus nephritis (LN), a leading cause of death in Systemic Lupus Erythematosus (SLE) patients, presents significant diagnostic and prognostic challenges. Although renal pathology offers critical insights regarding the diagnosis, classification, and therapy for LN, its clinical utility is constrained by the invasive nature and limited reproducibility of renal biopsies. Moreover, the continuous monitoring of renal pathological changes through repeated biopsies is impractical. Consequently, there is a growing interest in exploring urine as a non-invasive, easily accessible, and dynamic "liquid biopsy" alternative to guide clinical management. This paper examines novel urinary biomarkers from a renal pathology perspective, encompassing cellular components, cytokines, adhesion molecules, auto-antibodies, soluble leukocyte markers, light chain fragments, proteins, small-molecule peptides, metabolomics, urinary exosomes, and ribonucleic acids. We also discuss the application of combined models comprising multiple biomarkers in assessing lupus activity. These innovative biomarkers and models offer insights into LN disease activity, acute and chronic renal indices, fibrosis, thrombotic microangiopathy, podocyte injury, and other pathological changes, potentially improving the diagnosis, management, and prognosis of LN. These urinary biomarkers or combined models may serve as viable alternatives to traditional renal pathology, potentially revolutionizing the method for future LN diagnosis and observation.
Collapse
Affiliation(s)
- Qianyu Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Pengyan Qiao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Juanjuan Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Stem Cell Translational Laboratory, Shanxi Bethune Hospital, Taiyuan, China
| | - Li Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Zhiying Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Xiaochen Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Xiuying Fan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Office of Drug Clinical Trial Institution, Taiyuan, China
| | - Chong Yu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, China
- Stem Cell Translational Laboratory, Shanxi Bethune Hospital, Taiyuan, China
- Office of Drug Clinical Trial Institution, Taiyuan, China
| |
Collapse
|
4
|
Liu Y, Zhang Y, Chang X, Liu X. MDIC3: Matrix decomposition to infer cell-cell communication. PATTERNS (NEW YORK, N.Y.) 2024; 5:100911. [PMID: 38370122 PMCID: PMC10873161 DOI: 10.1016/j.patter.2023.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/31/2023] [Accepted: 12/08/2023] [Indexed: 02/20/2024]
Abstract
Crosstalk among cells is vital for maintaining the biological function and intactness of systems. Most existing methods for investigating cell-cell communications are based on ligand-receptor (L-R) expression, and they focus on the study between two cells. Thus, the final communication inference results are particularly sensitive to the completeness and accuracy of the prior biological knowledge. Because existing L-R research focuses mainly on humans, most existing methods can only examine cell-cell communication for humans. As far as we know, there is currently no effective method to overcome this species limitation. Here, we propose MDIC3 (matrix decomposition to infer cell-cell communication), an unsupervised tool to investigate cell-cell communication in any species, and the results are not limited by specific L-R pairs or signaling pathways. By comparing it with existing methods for the inference of cell-cell communication, MDIC3 obtained better performance in both humans and mice.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Mathematics and Statistics, Shandong University, Weihai 364209, China
| | - Yuelei Zhang
- School of Mathematics and Statistics, Shandong University, Weihai 364209, China
| | - Xiao Chang
- Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu 233030, China
| | - Xiaoping Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Lindblom J, Beretta L, Borghi MO, Alarcón-Riquelme ME, Parodis I. Serum profiling identifies CCL8, CXCL13, and IL-1RA as markers of active disease in patients with systemic lupus erythematosus. Front Immunol 2023; 14:1257085. [PMID: 38098483 PMCID: PMC10720584 DOI: 10.3389/fimmu.2023.1257085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease that presents a challenge for clinicians. To identify potential biomarkers for diagnosis and disease activity in SLE, we investigated a selected yet broad panel of cytokines and autoantibodies in patients with SLE, healthy controls (HC), and patients with other autoimmune diseases (AIDs). Methods Serum samples from 422 SLE patients, 546 HC, and 1223 other AIDs were analysed within the frame of the European PRECISESADS project (NTC02890121). Cytokine levels were determined using Luminex panels, and autoantibodies using different immunoassays. Results Of the 83 cytokines analysed, 29 differed significantly between patients with SLE and HC. Specifically, CCL8, CXCL13, and IL-1RA levels were elevated in patients with active, but not inactive, SLE versus HC, as well as in patients with SLE versus other AIDs. The levels of these cytokines also correlated with SLE Disease Activity Index 2000 (SLEDAI-2K) scores, among five other cytokines. Overall, the occurrence of autoantibodies was similar across SLEDAI-2K organ domains, and the correlations between autoantibodies and activity in different organ domains were weak. Discussion Our findings suggest that, upon validation, CCL8, CXCL13, and IL-1RA could serve as promising serum biomarkers of activity in SLE.
Collapse
Affiliation(s)
- Julius Lindblom
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Maria Orietta Borghi
- IRCCS Istituto Auxologico Italiano, Immunorheumatology Research Laboratory, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marta E. Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada/Andalusian Regional Government, Medical Genomics, Granada, Spain
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
6
|
Cheng C, Zhu R, Liu M, Yang H, Guo F, Du Q, Wang X, Li M, Song G, Qin R, Liu S. Kunxian capsule alleviates renal damage by inhibiting the JAK1/STAT1 pathway in lupus nephritis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116349. [PMID: 36924861 DOI: 10.1016/j.jep.2023.116349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kunxian capsule (KXC) is a new traditional Chinese medicine drug included in "The key science and technology achievements" in the Ninth Five Year Plan of China. KXC has been clinically used for more than 10 years in the treatment of lupus nephritis (LN). However, the underlying role and molecular mechanism of KXC in LN remain unclear. AIM OF THE STUDY This study aimed to explore the efficacy and potential mechanisms of KXC through pharmacological network, in vitro and in vivo studies. MATERIALS AND METHODS Pharmacological network analysis of KXC treatment in LN was performed using data acquired from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP, https://old.tcmsp-e.com/tcmsp.php) and NCBI Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/database). HK-2 cells were chosen as an in vitro model of the tubular immune response by simulation with interferon γ (IFN-γ). MRL/lpr mice were used to explore the mechanism of KXC in vivo. Finally, the specific active molecules of KXC were further analyzed by molecular docking. RESULTS The pharmacological network analysis showed that STAT1 is a key factor in the effects of KXC. In vitro and in vivo experiments confirmed the therapeutic effect of KXC on LN renal function and tubular inflammation. The protective effect of KXC is mediated by STAT1 blockade, which further reduces T-cell infiltration and improves the renal microenvironment in LN. Two main components of KXC, Tripterygium hypoglaucum (H.Lév.) Hutch (Shanhaitang) and Epimedium brevicornu Maxim (Yinyanghuo) could block JAK1-STAT1 activation. Furthermore, we found 8 molecules that could bind to the ATP pocket of JAK1 with high affinities by performing docking analysis. CONCLUSIONS KXC inhibits renal damage and T-cell infiltration in LN by blocking the JAK1-STAT1 pathway.
Collapse
Affiliation(s)
- Chen Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rongrong Zhu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fangfang Guo
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qunqun Du
- Baiyunshan Chenliji Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Xiaolan Wang
- Baiyunshan Chenliji Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Minmin Li
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| | - Renan Qin
- Baiyunshan Chenliji Pharmaceutical Co., Ltd, Guangzhou, 510288, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Klocke J, Kim SJ, Skopnik CM, Hinze C, Boltengagen A, Metzke D, Grothgar E, Prskalo L, Wagner L, Freund P, Görlich N, Muench F, Schmidt-Ott KM, Mashreghi MF, Kocks C, Eckardt KU, Rajewsky N, Enghard P. Urinary single-cell sequencing captures kidney injury and repair processes in human acute kidney injury. Kidney Int 2022; 102:1359-1370. [PMID: 36049643 DOI: 10.1016/j.kint.2022.07.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 01/12/2023]
Abstract
Acute kidney injury (AKI) is a major health issue, the outcome of which depends primarily on damage and reparative processes of tubular epithelial cells. Mechanisms underlying AKI remain incompletely understood, specific therapies are lacking and monitoring the course of AKI in clinical routine is confined to measuring urine output and plasma levels of filtration markers. Here we demonstrate feasibility and potential of a novel approach to assess the cellular and molecular dynamics of AKI by establishing a robust urine-to-single cell RNA sequencing (scRNAseq) pipeline for excreted kidney cells via flow cytometry sorting. We analyzed 42,608 single cell transcriptomes of 40 urine samples from 32 patients with AKI and compared our data with reference material from human AKI post-mortem biopsies and published mouse data. We demonstrate that tubular epithelial cells transcriptomes mirror kidney pathology and reflect distinct injury and repair processes, including oxidative stress, inflammation, and tissue rearrangement. We also describe an AKI-specific abundant urinary excretion of adaptive progenitor-like cells. Thus, single cell transcriptomics of kidney cells excreted in urine provides noninvasive, unprecedented insight into cellular processes underlying AKI, thereby opening novel opportunities for target identification, AKI sub-categorization, and monitoring of natural disease course and interventions.
Collapse
Affiliation(s)
- Jan Klocke
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany.
| | - Seung Joon Kim
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christopher M Skopnik
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Christian Hinze
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Anastasiya Boltengagen
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Diana Metzke
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Emil Grothgar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Luka Prskalo
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Leonie Wagner
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Paul Freund
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Nina Görlich
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Frédéric Muench
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Christine Kocks
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| |
Collapse
|
8
|
Macrophages in Lupus Nephritis: Exploring a potential new therapeutic avenue. Clin Exp Rheumatol 2022; 21:103211. [PMID: 36252930 DOI: 10.1016/j.autrev.2022.103211] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE) that occurs in about half of patients. LN is characterized by glomerular deposition of immune complexes, leading to subendothelial, mesangial and subepithelial electron dense deposits, triggering immune cell infiltration and glomerular as well as tubulointerstitial injury. Monocytes and macrophages are abundantly present in inflammatory lesions, both in glomeruli and the tubulointerstitium. Here we discuss how monocytes and macrophages are involved in this process and how monocytes and macrophages may represent specific therapeutic targets to control LN.
Collapse
|
9
|
Qijiao W, Zhihan C, Makota P, Qing Y, Fei G, Zhihong W, He L. Glomerular Expression of S100A8 in Lupus Nephritis: An Integrated Bioinformatics Analysis. Front Immunol 2022; 13:843576. [PMID: 35572531 PMCID: PMC9092496 DOI: 10.3389/fimmu.2022.843576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/28/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Lupus nephritis (LN) is a major risk factor of morbidity and mortality. Glomerular injury is associated with different pathogeneses and clinical presentations in LN patients. However, the molecular mechanisms involved are not well understood. This study aimed to explore the molecular characteristics and mechanisms of this disease using bioinformatics analysis. Methods To characterize glomeruli in LN, microarray datasets GSE113342 and GSE32591 were downloaded from the Gene Expression Omnibus database and analyzed to determine the differentially expressed genes (DEGs) between LN glomeruli and normal glomeruli. Functional enrichment analyses and protein–protein interaction network analyses were then performed. Module analysis was performed using the Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape software. Immunofluorescence staining was performed to identify the glomerular expression of S100A8 in various International Society of Nephrology/Renal Pathology Society (ISN/RPS) class LN patients. The image of each glomerulus was acquired using a digital imaging system, and the green fluorescence intensity was quantified using Image-Pro Plus software. Results A total of 13 DEGs, consisting of 12 downregulated genes and one upregulated gene (S100A8), were identified in the microarray datasets. The functions and pathways associated with the DEGs mainly include inflammatory response, innate immune response, neutrophil chemotaxis, leukocyte migration, cell adhesion, cell–cell signaling, and infection. We also found that monocytes and activated natural killer cells were upregulated in both GSE113342 and GSE32591. Glomerular S100A8 staining was significantly enhanced compared to that in the controls, especially in class IV. Conclusions The DEGs identified in the present study help us understand the underlying molecular mechanisms of LN. Our results show that glomerular S100A8 expression varies in different pathological types; however, further research is required to confirm the role of S100A8 in LN.
Collapse
Affiliation(s)
- Wei Qijiao
- Fujian Provincial Hospital, Fuzhou, China.,Fujian Medical University Provincial Clinical Medical College, Fuzhou, China
| | - Chen Zhihan
- Fujian Provincial Hospital, Fuzhou, China.,Fujian Medical University Provincial Clinical Medical College, Fuzhou, China
| | - Panashe Makota
- Fujian Medical University Provincial Clinical Medical College, Fuzhou, China
| | - Yan Qing
- Fujian Provincial Hospital, Fuzhou, China.,Fujian Medical University Provincial Clinical Medical College, Fuzhou, China
| | - Gao Fei
- Fujian Provincial Hospital, Fuzhou, China.,Fujian Medical University Provincial Clinical Medical College, Fuzhou, China
| | - Wang Zhihong
- Fujian Provincial Hospital, Fuzhou, China.,Fujian Medical University Provincial Clinical Medical College, Fuzhou, China
| | - Lin He
- Fujian Provincial Hospital, Fuzhou, China.,Fujian Medical University Provincial Clinical Medical College, Fuzhou, China
| |
Collapse
|
10
|
Cassidy MF, Herbert ZT, Moulton VR. Splicing factor SRSF1 controls distinct molecular programs in regulatory and effector T cells implicated in systemic autoimmune disease. Mol Immunol 2022; 141:94-103. [PMID: 34839165 PMCID: PMC10797198 DOI: 10.1016/j.molimm.2021.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/15/2021] [Accepted: 11/07/2021] [Indexed: 12/30/2022]
Abstract
Systemic autoimmune diseases are characterized by hyperactive effector T cells (Teffs), aberrant cytokines and chemokines, and dysfunctional regulatory T cells (Tregs). We previously uncovered new roles for serine/arginine-rich splicing factor 1 (SRSF1) in the control of genes involved in T cell signaling and cytokine production in human T cells. SRSF1 levels are decreased in T cells from patients with systemic lupus erythematosus (SLE), and low levels correlate with severe disease. Moreover, T cell-conditional Srsf1-deficient mice recapitulate the autoimmune phenotype, exhibiting CD4 T cell hyperactivity, dysfunctional Tregs, systemic autoimmunity, and tissue inflammation. However, the role of SRSF1 in controlling molecular programs in Teffs and Tregs and how these pathways are implicated in autoimmunity is not known. Here, by comparative bioinformatics analysis, we demonstrate that SRSF1 controls largely distinct gene programs in Tregs and Teffs in vivo. SRSF1 regulates 189 differentially expressed genes (DEGs) unique to Tregs, 582 DEGs unique to Teffs, and 29 DEGs shared between both. Shared genes included IL-17A, IL-17F, CSF1, CXCL10, and CXCR4, and were highly enriched for inflammatory response and cytokine-cytokine receptor interaction pathways. SRSF1 controls distinct pathways in Tregs, which include chemokine signaling and immune cell differentiation, compared with pathways in Teffs, which include cytokine production, T cell homeostasis, and activation. We identified putative mRNA binding targets of SRSF1 which include CSF1, CXCL10, and IL-17F. Finally, comparisons with transcriptomics profiles from lupus-prone MRL/lpr mice reveal that SRSF1 controls genes and pathways implicated in autoimmune disease. The target genes of SRSF1 and putative binding targets we discovered, have known roles in systemic autoimmunity. Our findings suggest that SRSF1 controls distinct molecular pathways in Tregs and Teffs and aberrant SRSF1 levels may contribute to their dysfunction and immunopathogenesis of systemic autoimmune disease.
Collapse
Affiliation(s)
- Michael F Cassidy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Tufts University School of Medicine, Boston, MA, United States
| | - Zachary T Herbert
- Molecular Biology Core Facilities at Dana-Farber Cancer Institute, Boston, MA, United States
| | - Vaishali R Moulton
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
11
|
Abdelati AA, Eshak NY, Donia HM, El-Girby AH. Urinary Cellular Profile as a Biomarker for Lupus Nephritis. J Clin Rheumatol 2021; 27:e469-e476. [PMID: 32976199 DOI: 10.1097/rhu.0000000000001553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND/OBJECTIVE A search for the ideal biomarker for lupus nephritis (LN) is still underway, one that can be used for early detection and correlate with the class and activity of LN. Urine is normally devoid of leukocytes; however, it has been observed that macrophages and T lymphocytes are routinely present in the urine of LN patients and those with other proliferative renal diseases. This provides the idea for their potential use as biomarkers for proliferative LN. Here, we measured the urinary CD4+, CD8+ T lymphocytes, and CD14+ monocytes in patients with systemic lupus erythematosus (SLE) as potential biomarkers for LN. METHODS A longitudinal case-control study included 30 SLE patients with LN, 30 SLE patients without past or current LN, and 20 healthy subjects as a control group. The flow cytometric analysis was done using BD FACS Calibur multiparameter flow cytometer equipped with BD CellQuest Pro software for data analysis. RESULTS CD14+ cells were the most abundant cells in the urine of LN patients. The mean numbers of urinary CD8+, CD4+, and CD14+ cells/mL were significantly higher in patients with LN than in those without. The cell counts correlated significantly with proteinuria. Urinary CD14+ cells seem to occur in much higher counts in class IV than class III LN. CONCLUSIONS Urinary CD8+, CD4+, and CD14+ cells are highly sensitive and specific markers for detecting proliferative LN. A low CD4:CD8 ratio provides a further clue. Urinary CD14 cell counts may be a potential biomarker to differentiate between the different classes of proliferative LN.
Collapse
Affiliation(s)
- Abeer Ali Abdelati
- From the Department of Internal Medicine, Rheumatology and Clinical Immunology Unit
| | - Nouran Y Eshak
- From the Department of Internal Medicine, Rheumatology and Clinical Immunology Unit
| | - Hanaa M Donia
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amira H El-Girby
- From the Department of Internal Medicine, Rheumatology and Clinical Immunology Unit
| |
Collapse
|
12
|
Ghafouri-Fard S, Shahir M, Taheri M, Salimi A. A review on the role of chemokines in the pathogenesis of systemic lupus erythematosus. Cytokine 2021; 146:155640. [PMID: 34252872 DOI: 10.1016/j.cyto.2021.155640] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Chemokines are a group of cytokines with low molecular weight that principally direct chemotaxis of target cells. They have prominent roles in the pathogenesis systemic lupus erythematosus (SLE) and related complications particularly lupus nephritis. These molecules not only induce autoimmune responses in the organs of patients, but also can amplify the induced inflammatory responses. Although chemokine family has at least 46 identified members, the role of a number of these molecules have been more clarified in SLE patients or animal models of this disorder. In the current paper, we review the role of CCL2, CCL3, CCL4, CCL11, CCL20, CXCL1, CXCL2, CXCL8, CXCL10, CXCL12 and CXCL13 in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehri Shahir
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Salimi
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Wiechmann A, Wilde B, Tyczynski B, Amann K, Abdulahad WH, Kribben A, Lang KS, Witzke O, Dolff S. CD107a + (LAMP-1) Cytotoxic CD8 + T-Cells in Lupus Nephritis Patients. Front Med (Lausanne) 2021; 8:556776. [PMID: 33834029 PMCID: PMC8021690 DOI: 10.3389/fmed.2021.556776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 02/22/2021] [Indexed: 01/07/2023] Open
Abstract
Cytotoxic CD8+ T-cells play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). The aim of this study was to investigate the role of CD107a (LAMP-1) on cytotoxic CD8+ T-cells in SLE-patients in particular with lupus nephritis. Peripheral blood of SLE-patients (n = 31) and healthy controls (n = 21) was analyzed for the expression of CD314 and CD107a by flow cytometry. Kidney biopsies of lupus nephritis patients were investigated for the presence of CD8+ and C107a+ cells by immunohistochemistry and immunofluorescence staining. The percentages of CD107a+ on CD8+ T-cells were significantly decreased in SLE-patients as compared to healthy controls (40.2 ± 18.5% vs. 47.9 ± 15.0%, p = 0.02). This was even more significant in SLE-patients with inactive disease. There was a significant correlation between the percentages of CD107a+CD8+ T-cells and SLEDAI. The evaluation of lupus nephritis biopsies showed a significant number of CD107a+CD8+ T-cells mainly located in the peritubular infiltrates. The intrarenal expression of CD107a+ was significantly correlated with proteinuria. These results demonstrate that CD8+ T-cells of patients with systemic lupus erythematosus have an altered expression of CD107a which seems to be associated with disease activity. The proof of intrarenal CD107a+CD8+ suggests a role in the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Anika Wiechmann
- Department of Nephrology, University Duisburg-Essen, Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Duisburg-Essen, Essen, Germany
| | - Bartosz Tyczynski
- Department of Nephrology, University Duisburg-Essen, Essen, Germany
- Department of Medical Intensive Care I, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Wayel H. Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Andreas Kribben
- Department of Nephrology, University Duisburg-Essen, Essen, Germany
| | - Karl Sebastian Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Duisburg-Essen, Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
14
|
Capecchi R, Puxeddu I, Pratesi F, Migliorini P. New biomarkers in SLE: from bench to bedside. Rheumatology (Oxford) 2021; 59:v12-v18. [PMID: 32911542 PMCID: PMC7719038 DOI: 10.1093/rheumatology/keaa484] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Biomarkers may have a diagnostic or monitoring value, or may predict response to therapy or disease course. The aim of this review is to discuss new serum and urinary biomarkers recently proposed for the diagnosis and management of SLE patients. Novel sensitive and specific assays have been proposed to evaluate complement proteins, ‘old’ biomarkers that are still a cornerstone in the management of this disease. Chemokines and lectins have been evaluated as surrogate biomarkers of IFN signature. Other cytokines like the B cell activating factor (BAFF) family cytokines are directly related to perturbations of the B cell compartment as key pathogenetic mechanism of the disease. A large number of urine biomarkers have been proposed, either related to the migration and homing of leukocytes to the kidney or to the local regulation of inflammatory circuits and the survival of renal intrinsic cells. The combination of traditional disease-specific biomarkers and novel serum or urine biomarkers may represent the best choice to correctly classify, stage and treat patients with SLE.
Collapse
Affiliation(s)
- Riccardo Capecchi
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Puxeddu
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Kim J, Lee JS, Go H, Lim JS, Oh JS, Kim YG, Lee CK, Yoo B, Hong S. Clinical and histological significance of urinary CD11c + macrophages in lupus nephritis. Arthritis Res Ther 2020; 22:173. [PMID: 32680578 PMCID: PMC7368794 DOI: 10.1186/s13075-020-02265-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022] Open
Abstract
Background Infiltration of immune cells into the kidney is one of the key features of lupus nephritis (LN). The presence of immune cells in the urine may be used as a non-invasive biomarker of LN. Here, we aimed to analyze the clinicopathologic significance of urinary CD11c+ macrophages in patients with LN. Methods The numbers and proportions of CD11c+ macrophages in the urine samples of patients with LN at the time of kidney biopsy were examined using flow cytometry. We also examined the association between the levels of urinary CD11c+ macrophages and the clinical and pathologic features of patients with LN. Results Compared with patients without LN or those with non-proliferative LN, patients with proliferative LN had significantly higher numbers and proportions of urinary CD11c+ macrophages, which were strongly correlated with the serum anti-dsDNA antibody titer. The numbers and proportions of urinary CD11c+ macrophages were significantly associated with the values of chronicity indices such as tubular atrophy and interstitial fibrosis. No significant relationships were found between the levels of urinary CD11c+ macrophages and the activity scores, degree of proteinuria, or lupus disease activity. Urinary CD11c+ macrophages were more abundant in patients who did not achieve renal response to induction treatment with immunosuppressants than in those who achieved complete or partial response. The receiver operating characteristic (ROC) curve analysis showed that the number of urinary CD11c+ macrophages was the most powerful predictor of renal response at 6 months (ROC-AUC = 1.00, p = 0.0004). Conclusion The urinary levels of CD11c+ macrophages were closely associated with the chronic pathologic changes of LN and renal response and may thus be used as a novel biomarker in LN.
Collapse
Affiliation(s)
- Jihye Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung Sun Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul Veterans Hospital, Seoul, Republic of Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Seon Oh
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang-Keun Lee
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bin Yoo
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seokchan Hong
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Abdirama D, Tesch S, Grießbach AS, von Spee-Mayer C, Humrich JY, Stervbo U, Babel N, Meisel C, Alexander T, Biesen R, Bacher P, Scheffold A, Eckardt KU, Hiepe F, Radbruch A, Burmester GR, Riemekasten G, Enghard P. Nuclear antigen-reactive CD4 + T cells expand in active systemic lupus erythematosus, produce effector cytokines, and invade the kidneys. Kidney Int 2020; 99:238-246. [PMID: 32592813 DOI: 10.1016/j.kint.2020.05.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/01/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
Systemic lupus erythematosus is a systemic and chronic autoimmune disease characterized by loss of tolerance towards nuclear antigens with autoreactive CD4+ T cells implicated in disease pathogenesis. However, very little is known about their receptor specificity since the detection of human autoantigen specific CD4+ T cells has been extremely challenging. Here we present an analysis of CD4+ T cells reactive to nuclear antigens using two complementary methods: T cell libraries and antigen-reactive T cell enrichment. The frequencies of nuclear antigen specific CD4+ T cells correlated with disease severity. These autoreactive T cells produce effector cytokines such as interferon-γ, interleukin-17, and interleukin-10. Compared to blood, these cells were enriched in the urine of patients with active lupus nephritis, suggesting an infiltration of the inflamed kidneys. Thus, these previously unrecognized characteristics support a role for nuclear antigen-specific CD4+ T cells in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Dimas Abdirama
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Sebastian Tesch
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Anna-Sophie Grießbach
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Caroline von Spee-Mayer
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Ulrik Stervbo
- Berlin-Brandenburg Centrum für Regenerative Therapie, Berlin, Germany; Centre for Translational Medicine, Universitätsklinikum der Ruhr-Universität Bochum, Bochum, Germany
| | - Nina Babel
- Berlin-Brandenburg Centrum für Regenerative Therapie, Berlin, Germany; Centre for Translational Medicine, Universitätsklinikum der Ruhr-Universität Bochum, Bochum, Germany
| | - Christian Meisel
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Biesen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Petra Bacher
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Alexander Scheffold
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Falk Hiepe
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Gerd-Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany.
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
17
|
Fava A, Buyon J, Mohan C, Zhang T, Belmont HM, Izmirly P, Clancy R, Trujillo JM, Fine D, Zhang Y, Magder L, Rao DA, Arazi A, Berthier CC, Davidson A, Diamond B, Hacohen N, Wofsy D, Apruzzese W, Raychaudhuri S, Petri M. Integrated urine proteomics and renal single-cell genomics identify an IFN-γ response gradient in lupus nephritis. JCI Insight 2020; 5:138345. [PMID: 32396533 PMCID: PMC7406291 DOI: 10.1172/jci.insight.138345] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Lupus nephritis, one of the most serious manifestations of systemic lupus erythematosus (SLE), has a heterogeneous clinical and pathological presentation. For example, proliferative nephritis identifies a more aggressive disease class that requires immunosuppression. However, the current classification system relies on the static appearance of histopathological morphology, which does not capture differences in the inflammatory response. Therefore, a biomarker grounded in the disease biology is needed in order to understand the molecular heterogeneity of lupus nephritis and identify immunologic mechanism and pathways. Here, we analyzed the patterns of 1000 urine protein biomarkers in 30 patients with active lupus nephritis. We found that patients stratify over a chemokine gradient inducible by IFN-γ. Higher values identified patients with proliferative lupus nephritis. After integrating the urine proteomics with the single-cell transcriptomics of kidney biopsies, we observed that the urinary chemokines defining the gradient were predominantly produced by infiltrating CD8+ T cells, along with natural killer and myeloid cells. The urine chemokine gradient significantly correlated with the number of kidney-infiltrating CD8+ cells. These findings suggest that urine proteomics can capture the complex biology of the kidney in lupus nephritis. Patient-specific pathways could be noninvasively tracked in the urine in real time, enabling diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Andrea Fava
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jill Buyon
- New York University School of Medicine, New York, New York, USA
| | | | - Ting Zhang
- University of Houston, Houston, Texas, USA
| | | | - Peter Izmirly
- New York University School of Medicine, New York, New York, USA
| | - Robert Clancy
- New York University School of Medicine, New York, New York, USA
| | | | - Derek Fine
- Division of Nephrology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Laurence Magder
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arnon Arazi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Celine C. Berthier
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anne Davidson
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David Wofsy
- Division of Rheumatology, UCSF, San Francisco, California, USA
| | - William Apruzzese
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Soumya Raychaudhuri
- Center for Data Sciences and
- Division of Rheumatology and Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Kim J, Jeong JH, Jung J, Jeon H, Lee S, Lim JS, Go H, Oh JS, Kim YG, Lee CK, Yoo B, Hong S. Immunological characteristics and possible pathogenic role of urinary CD11c+ macrophages in lupus nephritis. Rheumatology (Oxford) 2020; 59:2135-2145. [DOI: 10.1093/rheumatology/keaa053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
Abstract
Objectives
Kidney-infiltrating immune cells can contribute to the pathogenesis of lupus nephritis (LN). We investigated the immunological characteristics of CD11c+ macrophages and their functions associated with the pathogenesis of LN.
Methods
CD11c+ macrophages were examined in the urine samples of patients with LN. Phenotypic markers and pro-inflammatory cytokine expression levels were analysed by flow cytometry. To determine the origin of urinary macrophages, peripheral monocytes were treated with sera from patients with systemic lupus erythematosus (SLE). The pathogenic role of CD11c+ macrophages in tubulointerstitial damage was investigated using SLE sera-treated monocytes and HK-2 cells.
Results
Urinary CD11c+ macrophages expressed pro-inflammatory cytokines, such as IL-6 and IL-1β, and resembled infiltrated monocytes rather than tissue-resident macrophages with respect to surface marker expression. CD11c+ macrophages had high expression levels of the chemokine receptor CXCR3, which were correlated with cognate chemokine IP-10 expression in urinary tubular epithelial cells. When treated with sera from SLE patients, peripheral monocytes acquired the morphological and functional characteristics of urinary CD11c+ macrophages, which was blocked by DNase treatment. Finally, SLE sera-treated monocytes induced fibronectin expression, apoptosis and cell detachment in HK-2 cells via production of IL-6.
Conclusion
CD11c+ macrophages may be involved in the pathogenesis of tubulointerstitial injury in LN.
Collapse
Affiliation(s)
- Jihye Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Hye Jeong
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaehyung Jung
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hanwool Jeon
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Seon Oh
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang-Keun Lee
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bin Yoo
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seokchan Hong
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Aringer M. Inflammatory markers in systemic lupus erythematosus. J Autoimmun 2019; 110:102374. [PMID: 31812331 DOI: 10.1016/j.jaut.2019.102374] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/04/2023]
Abstract
While systemic lupus erythematosus (SLE) is an autoantibody and immune complex disease by nature, most of its organ manifestations are in fact inflammatory. SLE activity scores thus heavily rely on assessing inflammation in the various organs. This focus on clinical items demonstrates that routine laboratory markers of inflammation are still limited in their impact. The erythrocyte sedimentation rate (ESR) is used, but represents a rather crude overall measure. Anemia and diminished serum albumin play a role in estimating inflammatory activity, but both are reflecting more than one mechanism, and the association with inflammation is complex. C-reactive protein (CRP) is a better marker for infections than for SLE activity, where there is only a limited association, and procalcitonin (PCT) is also mainly used for detecting severe bacterial infection. Of the cytokines directly induced by immune complexes, type I interferons, interleukin-18 (IL-18) and tumor necrosis factor (TNF) are correlated with inflammatory disease activity. Still, precise and timely measurement is an issue, which is why they are not currently used for routine purposes. While somewhat more robust in the assays, IL-18 binding protein (IL-18BP) and soluble TNF-receptor 2 (TNF-R2), which are related to the respective cytokines, have not yet made it into clinical routine. The same is true for several chemokines that are increased with activity and relatively easy to measure, but still experimental parameters. In the urine, proteinuria leads and is essential for assessing kidney involvement, but may also result from damage. Similar to the situation in serum and plasma, several cytokines and chemokines perform reasonably well in scientific studies, but are not routine parameters. Cellular elements in the urine are more difficult to assess in the routine laboratory, where sufficient routine is not always available. Therefore, the analysis of urinary T cells may have potential for better monitoring renal inflammation.
Collapse
Affiliation(s)
- Martin Aringer
- University Medical Center and Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
20
|
Wang H, Lu M, Zhai S, Wu K, Peng L, Yang J, Xia Y. ALW peptide ameliorates lupus nephritis in MRL/lpr mice. Arthritis Res Ther 2019; 21:261. [PMID: 31791413 PMCID: PMC6889545 DOI: 10.1186/s13075-019-2038-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
Background Lupus nephritis (LN) is a common and serious complication of systemic lupus erythematosus. Anti-double-stranded (ds) DNA immunoglobulin G (IgG) plays a pivotal role in the pathogenesis of LN. Currently, there are various therapies for patients with LN; however, most of them are associated with considerable side effects. We confirmed previously that ALW (ALWPPNLHAWVP), a 12-amino acid peptide, inhibited the binding of polyclonal anti-dsDNA antibodies to mesangial cells and isolated glomeruli in vitro. In this study, we further investigate whether the administration of ALW peptide decreases renal IgG deposition and relevant damage in MRL/lpr lupus-prone mice. Methods Forty female MRL/lpr mice were randomly divided into four groups. The mice were intravenously injected with D-form ALW peptide (ALW group), scrambled peptide (PLP group), and normal saline (NaCl group) or were not treated (blank group). The IgG deposition, the histopathologic changes, and the expressions of profibrotic factors were analyzed in the kidney of MRL/lpr mice. Results Compared with the other groups, glomerular deposition of IgG, IgG2a, IgG2b, and IgG3 was decreased in the ALW group. Moreover, ALW administration attenuated renal histopathologic changes in MRL/lpr mice, including mesangial proliferation and infiltration of inflammatory cells. Furthermore, the expressions of profibrotic cytokines, such as transforming growth factor-beta1 (TGF-β1) and platelet-derived growth factor B (PDGF-B), decreased in the serum and kidney tissue of ALW-treated mice. Conclusions Our study demonstrated that ALW peptide ameliorates the murine model of LN, possibly through inhibiting renal IgG deposition and relevant tissue inflammation and fibrosis.
Collapse
Affiliation(s)
- Huixia Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Mei Lu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Siyue Zhai
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Lingling Peng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jie Yang
- Department of Nephrology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
21
|
Gasparin AA, Pamplona Bueno de Andrade N, Hax V, Tres GL, Veronese FV, Monticielo OA. Urinary biomarkers for lupus nephritis: the role of the vascular cell adhesion molecule-1. Lupus 2019; 28:265-272. [PMID: 30712490 DOI: 10.1177/0961203319826695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Renal involvement is one of the main complications of systemic lupus erythematosus, causing a significant impact on patients' morbidity and mortality. Renal biopsy is still the gold standard of diagnosis, but it has many limitations. In this sense, several recent studies aim to identify biomarkers that not only predict disease activity and renal histology, but also lead to earlier treatment. In previous studies, the soluble vascular cell adhesion molecule-1 measured in urine showed a strong association with the presence of lupus nephritis, with clinical and histological activity indexes of the disease and with more severe renal lesions. This paper reviews the main urinary biomarkers of lupus nephritis that have been studied, with special emphasis on vascular cell adhesion molecule-1 results.
Collapse
Affiliation(s)
- A A Gasparin
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - V Hax
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - G Leví Tres
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - F V Veronese
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - O A Monticielo
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
22
|
Jakiela B, Kosałka J, Plutecka H, Bazan-Socha S, Sanak M, Musiał J. Facilitated expansion of Th17 cells in lupus nephritis patients. Clin Exp Immunol 2018; 194:283-294. [PMID: 30086206 DOI: 10.1111/cei.13196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to investigate the mechanisms of T helper type 17 (Th17) expansion in lupus nephritis (LN) patients, and to determine whether or not it is associated with impaired function of regulatory T cells (Treg ). Major effector subsets of peripheral blood CD4+ T cells were assessed by flow cytometry in 33 LN patients with different activity of the disease and 19 healthy controls. The percentage of circulating Th17 cells was increased in LN (median = 1·2% of CD4+ compared to 0·6% in the control group, P < 0·01), while Treg cells remained unchanged (12·3 versus 12·1% in controls), resulting in a significantly lower Treg /Th17 ratio. Th17 expansion in the patient group was not related to LN activity, renal histology or blood and urine inflammatory biomarkers, but has been associated with a higher cumulative dose of cyclophosphamide. Treg cells in LN displayed mainly effector memory phenotype and expressed higher levels of transforming growth factor (TGF)-β; however, their suppressant activity in lymphocyte proliferation assay was diminished compared to controls (~fourfold, P < 0·05). Co-culture of Treg and conventional CD4+ T cells resulted in marked suppression of the Th1 subset in both of the groups studied, but also in a potent expansion of Th17 cells, which in LN was twofold higher, as in controls (P < 0·05). In conclusion, our results demonstrate that Th17 expansion in LN is not increased during disease exacerbation, but is related to chronic immunosuppressive therapy. This immune signature is probably linked to the abnormal function of Treg cells, which were less suppressive in LN patients and even facilitated differentiation of Th17 cells.
Collapse
Affiliation(s)
- B Jakiela
- Department of Medicine, Jagiellonian University Medical College, ul. Skawinska, Krakow, Poland
| | - J Kosałka
- Department of Medicine, Jagiellonian University Medical College, ul. Skawinska, Krakow, Poland
| | - H Plutecka
- Department of Medicine, Jagiellonian University Medical College, ul. Skawinska, Krakow, Poland
| | - S Bazan-Socha
- Department of Medicine, Jagiellonian University Medical College, ul. Skawinska, Krakow, Poland
| | - M Sanak
- Department of Medicine, Jagiellonian University Medical College, ul. Skawinska, Krakow, Poland
| | - J Musiał
- Department of Medicine, Jagiellonian University Medical College, ul. Skawinska, Krakow, Poland
| |
Collapse
|
23
|
Jakiela B, Kosałka J, Plutecka H, Węgrzyn AS, Bazan-Socha S, Sanak M, Musiał J. Urinary cytokines and mRNA expression as biomarkers of disease activity in lupus nephritis. Lupus 2018; 27:1259-1270. [DOI: 10.1177/0961203318770006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction Renal involvement is one of the most serious manifestations of systemic lupus erythematosus, but non-invasive assessment of inflammatory response in kidneys is challenging. In this study we aimed to validate markers of active lupus nephritis (LN) using urine immune profiling. Methods Urine and serum cytokines (17-plex array) and urine mRNA expression (∼40 immune and glomerular injury genes) were measured in LN patients with active disease ( n = 17) during remission ( n = 16) and in healthy subjects ( n = 18). Results Urine and serum levels of CCL2, CCL5 and CXCL10 were elevated in active LN as compared with disease remission (best discrimination for urine CXCL10 and CCL2) and correlated with LN activity. In the active disease, urinary cell transcriptome showed marked upregulation of proinflammatory cytokines (e.g. TNF, CCL2, CCL5, CXCL10), and type-1 immunity-related genes (e.g. CD3G, CD4, TBX21, IFNG). An active pattern of gene expression was also observed in four patients in remission, who had moderately increased urinary leucocyte count. Two patients from this group developed renal exacerbation during the following 3 months. Markers of type-17 immune axis (e.g. IL-17A) were not significantly increased in active LN. Conclusions Active LN patients were characterized by marked increase of proinflammatory mediators in the urine. Urine cytokines (CCL2 and CXCL10) and type-1 T-cell-related gene markers in the urine sediment had similar diagnostic performance in detection of active LN.
Collapse
Affiliation(s)
- B Jakiela
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - J Kosałka
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - H Plutecka
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - A S Węgrzyn
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Wroclaw Research Centre IET+, Department of Nanobioengineering, Wroclaw, Poland
| | - S Bazan-Socha
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - M Sanak
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - J Musiał
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|