1
|
Ma W, Huang G, Wang Z, Wang L, Gao Q. IRF7: role and regulation in immunity and autoimmunity. Front Immunol 2023; 14:1236923. [PMID: 37638030 PMCID: PMC10449649 DOI: 10.3389/fimmu.2023.1236923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Interferon regulatory factor (IRF) 7 was originally identified as master transcriptional factor that produced IFN-I and regulated innate immune response, subsequent studies have revealed that IRF7 performs a multifaceted and versatile functions in multiple biological processes. In this review, we provide a comprehensive overview on the current knowledge of the role of IRF7 in immunity and autoimmunity. We focus on the latest regulatory mechanisms of IRF7 in IFN-I, including signaling pathways, transcription, translation, and post-translational levels, the dimerization and nuclear translocation, and the role of IRF7 in IFN-III and COVID-19. In addition to antiviral immunity, we also discuss the role and mechanism of IRF7 in autoimmunity, and the further research will expand our understanding of IRF7.
Collapse
Affiliation(s)
- Wei Ma
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Wu CY, Fan WL, Yang HY, Chu PS, Liao PC, Chen LC, Yao TC, Yeh KW, Ou LS, Lin SJ, Lee WI, Huang JL. Contribution of genetic variants associated with primary immunodeficiencies to childhood-onset systemic lupus erythematous. J Allergy Clin Immunol 2022; 151:1123-1131. [PMID: 36586539 DOI: 10.1016/j.jaci.2022.12.807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND A dysregulated immune response is a hallmark of autoimmune disorders. Evidence suggests that systemic autoimmune diseases and primary immunodeficiency disorders (PIDs) may be similar diseases with different clinical phenotypes. OBJECTIVE This study aimed to investigate the burden of PID-associated genetic variants in patients with childhood-onset systemic lupus erythematosus (cSLE). METHODS We enrolled 118 cSLE patients regularly followed at Chang Gung Memorial Hospital. Targeted next-generation sequencing identified PID genetic variants in patients versus 1475 unrelated healthy individuals, which were further filtered by allelic frequency and various functional scores. Customized immune assays tested the functions of the identified variants. RESULTS On filtration, 36 patients (30.5%) harbored rare variants in PID-associated genes predicted to be damaging. One homozygous TREX1 (c.294dupA) mutation and 4 heterozygous variants with possible dominant PID traits, including BCL11B (c.G1040T), NFKB1 (c.T695G), and NFKB2 (c.G1210A, c.G1651A), were discovered. With recessive traits, variants were found across all PID types; one fifth involved phagocyte number or function defects. Predicted pathogenic PID variants were more predominant in those with a family history of lupus, regardless of infection susceptibility. Moreover, mutation loads were greater among cSLE patients than controls despite sex or age at disease onset. While greater mutation loads were observed among cSLE patients with peripubertal disease onset, no significant differences in sex or phenotype were noted among cSLE patients. CONCLUSION cSLE is mostly not monogenic. Gene-specific analysis and mutation load investigations suggested that rare and predicted damaging variants in PID-related genes can potentially contribute to cSLE susceptibility.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Lang Fan
- Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pi-Shuang Chu
- Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Chun Liao
- Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Li-Chen Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Tsung-Chieh Yao
- Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Wei Yeh
- Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Liang-Shiou Ou
- Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Syh-Jae Lin
- Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-I Lee
- Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Jing-Long Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan.
| |
Collapse
|
3
|
Yan ZY, Hu WQ, Zong QQ, Yu GH, Zhai CX, Wang LL, Wang YH, Zhang TY, Li Z, Teng Y, Cai J, Chen YF, Li M, Xu ZZ, Pan FM, Pan HF, Su H, Zou YF. Associations of RPEL1 and miR-1307 gene polymorphisms with disease susceptibility, glucocorticoid efficacy, anxiety, depression, and health-related quality of life in Chinese systemic lupus erythematosus patients. Lupus 2022; 31:1735-1743. [PMID: 36194484 DOI: 10.1177/09612033221131182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our present study intended to examine the associations of RPEL1 and miR-1307 gene polymorphisms (rs4917385 and rs7911488) with susceptibility, glucocorticoids (GCs) efficacy, anxiety, depression, and health-related quality of life (HRQoL) in Chinese systemic lupus erythematosus (SLE) patients. METHODS Initially, 1000 participants (500 SLE cases and 500 controls) were recruited for the case-control study. Then, 429 cases who received GCs were followed through 12 weeks to explore GCs efficacy, depression, anxiety, and HRQoL. We selected the iMLDR technique for genotyping: RPEL1: rs4917385 (G/T) and miR-1307: rs7911488 (A/G). RESULTS The minor G allele of rs7911488 reduced the risk of SLE (p = .024). Four haplotypes consisting of rs4917385 and rs7911488 were associated with SLE susceptibility (p < .025). Both rs4917385 and rs7911488 were associated with anxiety symptoms and physical function (PF) in SLE patients (p < .025). The rs4917385 was associated with depression and its improvement. No statistical significance was found between RPEL1 and miR-1307 gene polymorphisms with GCs efficacy. Meanwhile, additive interaction analysis showed a significant association between RPEL1 and miR-1307 gene polymorphisms with tea consumption in anxiety. CONCLUSION RPEL1 and miR-1307 gene polymorphisms (rs4917385 and rs7911488) might be related to SLE susceptibility in Chinese population. Additionally, the two polymorphisms were possibly associated with depression, anxiety, and HRQoL in Chinese SLE population.
Collapse
Affiliation(s)
- Zi-Ye Yan
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Wan-Qin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Qi-Qun Zong
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Guang-Hui Yu
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Chun-Xia Zhai
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Lin-Lin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Yu-Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Ting-Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Zhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Ying Teng
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Jing Cai
- Department of Rheumatology and Immunology, 36639The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang-Fan Chen
- Department of Rheumatology and Immunology, 36639The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mu Li
- Department of Rheumatology and Immunology, 36639The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhou-Zhou Xu
- Department of Rheumatology and Immunology, 533251The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fa-Ming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Yan-Feng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China.,Key Laboratory of Dermatology, (Anhui Medical University), Ministry of Education, Hefei, China
| |
Collapse
|
4
|
Yang R, Avery DT, Jackson KJL, Ogishi M, Benhsaien I, Du L, Ye X, Han J, Rosain J, Peel JN, Alyanakian MA, Neven B, Winter S, Puel A, Boisson B, Payne KJ, Wong M, Russell AJ, Mizoguchi Y, Okada S, Uzel G, Goodnow CC, Latour S, Bakkouri JE, Bousfiha A, Preece K, Gray PE, Keller B, Warnatz K, Boisson-Dupuis S, Abel L, Pan-Hammarström Q, Bustamante J, Ma CS, Casanova JL, Tangye SG. Human T-bet governs the generation of a distinct subset of CD11c highCD21 low B cells. Sci Immunol 2022; 7:eabq3277. [PMID: 35867801 PMCID: PMC9413977 DOI: 10.1126/sciimmunol.abq3277] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High-level expression of the transcription factor T-bet characterizes a phenotypically distinct murine B cell population known as "age-associated B cells" (ABCs). T-bet-deficient mice have reduced ABCs and impaired humoral immunity. We describe a patient with inherited T-bet deficiency and largely normal humoral immunity including intact somatic hypermutation, affinity maturation and memory B cell formation in vivo, and B cell differentiation into Ig-producing plasmablasts in vitro. Nevertheless, the patient exhibited skewed class switching to IgG1, IgG4, and IgE, along with reduced IgG2, both in vivo and in vitro. Moreover, T-bet was required for the in vivo and in vitro development of a distinct subset of human B cells characterized by reduced expression of CD21 and the concomitantly high expression of CD19, CD20, CD11c, FCRL5, and T-bet, a phenotype that shares many features with murine ABCs. Mechanistically, human T-bet governed CD21loCD11chi B cell differentiation by controlling the chromatin accessibility of lineage-defining genes in these cells: FAS, IL21R, SEC61B, DUSP4, DAPP1, SOX5, CD79B, and CXCR4. Thus, human T-bet is largely redundant for long-lived protective humoral immunity but is essential for the development of a distinct subset of human CD11chiCD21lo B cells.
Collapse
Affiliation(s)
- Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA,Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10065, USA,Corresponding authors: Rui Yang (); Jean-Laurent Casanova (); Stuart Tangye ()
| | - Danielle T. Avery
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW Australia
| | | | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Ibtihal Benhsaien
- Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Stockholm, Sweden, EU
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Stockholm, Sweden, EU
| | - Jing Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France,Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Jessica N. Peel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Marie-Alexandra Alyanakian
- Immunology Laboratory, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France, EU
| | - Bénédicte Neven
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Sarah Winter
- Paris Cité University, Imagine Institute, 75015 Paris, France,Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France,Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France,Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Kathryn J. Payne
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW Australia
| | - Melanie Wong
- Children’s Hospital at Westmead, NSW, Australia,Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Amanda J. Russell
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW Australia
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW Australia,St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, Australia
| | - Sylvain Latour
- Paris Cité University, Imagine Institute, 75015 Paris, France,Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, 75015 Paris, France
| | - Jalila El Bakkouri
- Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Kahn Preece
- John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| | - Paul E. Gray
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France,Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France,Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Stockholm, Sweden, EU
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France,Paris Cité University, Imagine Institute, 75015 Paris, France,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW Australia,St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, Australia
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France,Paris Cité University, Imagine Institute, 75015 Paris, France,Howard Hughes Medical Institute, New York, NY, USA,Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France,Corresponding authors: Rui Yang (); Jean-Laurent Casanova (); Stuart Tangye ()
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW Australia,St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, Australia,Corresponding authors: Rui Yang (); Jean-Laurent Casanova (); Stuart Tangye ()
| |
Collapse
|
5
|
Fraszczak J, Arman KM, Lacroix M, Vadnais C, Gaboury L, Möröy T. Severe Inflammatory Reactions in Mice Expressing a GFI1 P2A Mutant Defective in Binding to the Histone Demethylase KDM1A (LSD1). THE JOURNAL OF IMMUNOLOGY 2021; 207:1599-1615. [PMID: 34408010 DOI: 10.4049/jimmunol.2001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
GFI1 is a DNA-binding transcription factor that regulates hematopoiesis by repressing target genes through its association with complexes containing histone demethylases such as KDM1A (LSD1) and histone deacetylases (HDACs). To study the consequences of the disruption of the complex between GFI1 and histone-modifying enzymes, we have used knock-in mice harboring a P2A mutation in GFI1 coding region that renders it unable to bind LSD1 and associated histone-modifying enzymes such as HDACs. GFI1P2A mice die prematurely and show increased numbers of memory effector and regulatory T cells in the spleen accompanied by a severe systemic inflammation with high serum levels of IL-6, TNF-α, and IL-1β and overexpression of the gene encoding the cytokine oncostatin M (OSM). We identified lung alveolar macrophages, CD8 T cell from the spleen and thymic eosinophils, and monocytes as the sources of these cytokines in GFI1P2A mice. Chromatin immunoprecipitation showed that GFI1/LSD1 complexes occupy sites at the Osm promoter and an intragenic region of the Tnfα gene and that a GFI1P2A mutant still remains bound at these sites even without LSD1. Methylation and acetylation of histone H3 at these sites were enriched in cells from GFI1P2A mice, the H3K27 acetylation being the most significant. These data suggest that the histone modification facilitated by GFI1 is critical to control inflammatory pathways in different cell types, including monocytes and eosinophils, and that a disruption of GFI1-associated complexes can lead to systemic inflammation with fatal consequences.
Collapse
Affiliation(s)
| | - Kaifee Mohammad Arman
- Institut de Recherches Cliniques de Montréal, Montreal, Canada.,Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Marion Lacroix
- Institut de Recherches Cliniques de Montréal, Montreal, Canada.,Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Charles Vadnais
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
| | - Louis Gaboury
- Unité de Recherche en Histologie et Pathologie Moléculaire, Institut de Recherche en Immunologie et en Cancérologie, Montreal, Canada.,Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montreal, Canada; and
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, Montreal, Canada; .,Division of Experimental Medicine, McGill University, Montreal, Canada.,Département de Microbiologie Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Canada
| |
Collapse
|
6
|
Wang Y, Roussel-Queval A, Chasson L, Hanna Kazazian N, Marcadet L, Nezos A, Sieweke MH, Mavragani C, Alexopoulou L. TLR7 Signaling Drives the Development of Sjögren's Syndrome. Front Immunol 2021; 12:676010. [PMID: 34108972 PMCID: PMC8183380 DOI: 10.3389/fimmu.2021.676010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that affects predominately salivary and lacrimal glands. SS can occur alone or in combination with another autoimmune disease like systemic lupus erythematosus (SLE). Here we report that TLR7 signaling drives the development of SS since TLR8-deficient (TLR8ko) mice that develop lupus due to increased TLR7 signaling by dendritic cells, also develop an age-dependent secondary pathology similar to associated SS. The SS phenotype in TLR8ko mice is manifested by sialadenitis, increased anti-SSA and anti-SSB autoantibody production, immune complex deposition and increased cytokine production in salivary glands, as well as lung inflammation. Moreover, ectopic lymphoid structures characterized by B/T aggregates, formation of high endothelial venules and the presence of dendritic cells are formed in the salivary glands of TLR8ko mice. Interestingly, all these phenotypes are abrogated in double TLR7/8-deficient mice, suggesting that the SS phenotype in TLR8-deficient mice is TLR7-dependent. In addition, evaluation of TLR7 and inflammatory markers in the salivary glands of primary SS patients revealed significantly increased TLR7 expression levels compared to healthy individuals, that were positively correlated to TNF, LT-α, CXCL13 and CXCR5 expression. These findings establish an important role of TLR7 signaling for local and systemic SS disease manifestations, and inhibition of such will likely have therapeutic value.
Collapse
Affiliation(s)
- Yawen Wang
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | - Lionel Chasson
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | | - Andrianos Nezos
- Departments of Physiology and Pathophysiology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Michael H. Sieweke
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany
| | - Clio Mavragani
- Departments of Physiology and Pathophysiology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | |
Collapse
|
7
|
The transcription factors GFI1 and GFI1B as modulators of the innate and acquired immune response. Adv Immunol 2021; 149:35-94. [PMID: 33993920 DOI: 10.1016/bs.ai.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GFI1 and GFI1B are small nuclear proteins of 45 and 37kDa, respectively, that have a simple two-domain structure: The first consists of a group of six c-terminal C2H2 zinc finger motifs that are almost identical in sequence and bind to very similar, specific DNA sites. The second is an N-terminal 20 amino acid SNAG domain that can bind to the pocket of the histone demethylase KDM1A (LSD1) near its active site. When bound to DNA, both proteins act as bridging factors that bring LSD1 and associated proteins into the vicinity of methylated substrates, in particular histone H3 or TP53. GFI1 can also bring methyl transferases such as PRMT1 together with its substrates that include the DNA repair proteins MRE11 and 53BP1, thereby enabling their methylation and activation. While GFI1B is expressed almost exclusively in the erythroid and megakaryocytic lineage, GFI1 has clear biological roles in the development and differentiation of lymphoid and myeloid immune cells. GFI1 is required for lymphoid/myeloid and monocyte/granulocyte lineage decision as well as the correct nuclear interpretation of a number of important immune-signaling pathways that are initiated by NOTCH1, interleukins such as IL2, IL4, IL5 or IL7, by the pre TCR or -BCR receptors during early lymphoid differentiation or by T and B cell receptors during activation of lymphoid cells. Myeloid cells also depend on GFI1 at both stages of early differentiation as well as later stages in the process of activation of macrophages through Toll-like receptors in response to pathogen-associated molecular patterns. The knowledge gathered on these factors over the last decades puts GFI1 and GFI1B at the center of many biological processes that are critical for both the innate and acquired immune system.
Collapse
|
8
|
Wajda A, Łapczuk-Romańska J, Paradowska-Gorycka A. Epigenetic Regulations of AhR in the Aspect of Immunomodulation. Int J Mol Sci 2020; 21:E6404. [PMID: 32899152 PMCID: PMC7504141 DOI: 10.3390/ijms21176404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental factors contribute to autoimmune disease manifestation, and as regarded today, AhR has become an important factor in studies of immunomodulation. Besides immunological aspects, AhR also plays a role in pharmacological, toxicological and many other physiological processes such as adaptive metabolism. In recent years, epigenetic mechanisms have provided new insight into gene regulation and reveal a new contribution to autoimmune disease pathogenesis. DNA methylation, histone modifications, chromatin alterations, microRNA and consequently non-genetic changes in phenotypes connect with environmental factors. Increasing data reveals AhR cross-roads with the most significant in immunology pathways. Although study on epigenetic modulations in autoimmune diseases is still not well understood, therefore future research will help us understand their pathophysiology and help to find new therapeutic strategies. Present literature review sheds the light on the common ground between remodeling chromatin compounds and autoimmune antibodies used in diagnostics. In the proposed review we summarize recent findings that describe epigenetic factors which regulate AhR activity and impact diverse immunological responses and pathological changes.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| | - Joanna Łapczuk-Romańska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| |
Collapse
|
9
|
Rare variants in non-coding regulatory regions of the genome that affect gene expression in systemic lupus erythematosus. Sci Rep 2019; 9:15433. [PMID: 31659207 PMCID: PMC6817816 DOI: 10.1038/s41598-019-51864-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Personalized medicine approaches are increasingly sought for diseases with a heritable component. Systemic lupus erythematosus (SLE) is the prototypic autoimmune disease resulting from loss of immunologic tolerance, but the genetic basis of SLE remains incompletely understood. Genome wide association studies (GWAS) identify regions associated with disease, based on common single nucleotide polymorphisms (SNPs) within them, but these SNPs may simply be markers in linkage disequilibrium with other, causative mutations. Here we use an hierarchical screening approach for prediction and testing of true functional variants within regions identified in GWAS; this involved bioinformatic identification of putative regulatory elements within close proximity to SLE SNPs, screening those regions for potentially causative mutations by high resolution melt analysis, and functional validation using reporter assays. Using this approach, we screened 15 SLE associated loci in 143 SLE patients, identifying 7 new variants including 5 SNPs and 2 insertions. Reporter assays revealed that the 5 SNPs were functional, altering enhancer activity. One novel variant was linked to the relatively well characterized rs9888739 SNP at the ITGAM locus, and may explain some of the SLE heritability at this site. Our study demonstrates that non-coding regulatory elements can contain private sequence variants affecting gene expression, which may explain part of the heritability of SLE.
Collapse
|
10
|
Hanna Kazazian N, Wang Y, Roussel-Queval A, Marcadet L, Chasson L, Laprie C, Desnues B, Charaix J, Irla M, Alexopoulou L. Lupus Autoimmunity and Metabolic Parameters Are Exacerbated Upon High Fat Diet-Induced Obesity Due to TLR7 Signaling. Front Immunol 2019; 10:2015. [PMID: 31552019 PMCID: PMC6738575 DOI: 10.3389/fimmu.2019.02015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) patients have increased prevalence of metabolic syndrome but the underlying mechanisms are unknown. Toll-like receptor 7 (TLR7) that detects single stranded-RNA plays a key role in antimicrobial host defense and also contributes to the initiation and progression of SLE both in mice and humans. Here, we report the implication of TLR7 signaling in high fat diet (HFD)-induced metabolic syndrome and exacerbation of lupus autoimmunity in TLR8-deficient (TLR8ko) mice, which develop spontaneous lupus-like disease due to increased TLR7 signaling by dendritic cells (DCs). The aggravated SLE pathogenesis in HFD-fed TLR8ko mice was characterized by increased overall immune activation, anti-DNA autoantibody production, and IgG/IgM glomerular deposition that were coupled with increased kidney histopathology. Moreover, upon HFD TLR8ko mice developed metabolic abnormalities, including liver inflammation. In contrast, upon HFD TLR7/8ko mice did not develop SLE and both TLR7ko and TLR7/8ko mice were fully protected from metabolic abnormalities, including body weight gain, insulin resistance, and liver inflammation. Interestingly, HFD led to an increase of TLR7 expression in WT mice, that was coupled with increased TNF production by DCs, and this phenotype was more profound in TLR8ko mice. Our study uncovers the implication of TLR7 signaling in the interconnection of SLE and metabolic abnormalities, indicating that TLR7 might be a novel approach as a tailored therapy in SLE and metabolic diseases.
Collapse
Affiliation(s)
| | - Yawen Wang
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | | | | | - Lionel Chasson
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Caroline Laprie
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Benoit Desnues
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | | | - Magali Irla
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | | |
Collapse
|
11
|
Arneth B. Systemic Lupus Erythematosus and DNA Degradation and Elimination Defects. Front Immunol 2019; 10:1697. [PMID: 31440232 PMCID: PMC6692764 DOI: 10.3389/fimmu.2019.01697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Introduction: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is characterized by the production of autoantibodies specific for components of the cell nucleus and that causes damage to body tissues and organs. The pathogenesis of SLE remains unclear, with numerous studies pointing to a combination of genetic and environmental factors. A critical stage in SLE development is cell necrosis, in which undegraded chromatin and nucleoproteins are released into the blood, resulting in circulating cell-free DNA and serum nucleoproteins that trigger anti-dsDNA autoantibody production. This systematic literature review aimed to examine whether SLE stems from a DNA degradation and elimination defect. Materials and Methods: An advanced literature search was conducted in PubMed using the following keywords: [("SLE" OR "Systemic Lupus Erythematosus" OR "Lupus")] AND [("DNA" OR "DNA Degradation")] AND [("Defect Elimination")]. More articles were obtained from the references of the identified articles and basic Google searches. Twenty-five peer-reviewed articles published within the past 10 years (2007-2018) were included for review. Results: The findings of each study are summarized in Tables 1, 2. Discussion and Conclusion: The etiopathogenesis of SLE remains controversial, which limits therapeutic inventions for this disease. However, SLE is a DNA degradation and elimination disorder caused by uncleared histones and nuclear material that leak into the extracellular space and form cell-free DNA, triggering an immune response that destroys tissues and organs. Under normal conditions, apoptosis allows DNA and other nuclear material to be efficiently cleared through degradation and additional complex mechanisms such that this material does not trigger the immune system to produce nuclear autoantibodies.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
12
|
Harris VM, Harley ITW, Kurien BT, Koelsch KA, Scofield RH. Lysosomal pH Is Regulated in a Sex Dependent Manner in Immune Cells Expressing CXorf21. Front Immunol 2019; 10:578. [PMID: 31001245 PMCID: PMC6454867 DOI: 10.3389/fimmu.2019.00578] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/04/2019] [Indexed: 11/24/2022] Open
Abstract
Background:CXorf21 and SLC15a4 both contain risk alleles for systemic lupus erythematosus (SLE) and Sjögren's syndrome (pSS). The former escapes X inactivation. Our group predicts specific endolysosomal-dependent immune responses are driven by the protein products of these genes, which form a complex at the endolysosomal surface. Our previous studies have shown that knocking out CXorf21 increases lysosomal pH in female monocytes, and the present study assesses whether the lysosomal pH in 46,XX women, who overexpress CXorf21 in monocytes, B cells, and dendritic cells (DCs), differs from 46,XY men. Methods: To determine endolysosome compartment pH we used both LysoSensor™ Yellow/Blue DND-160 and pHrodo® Red AM Intracellular pH Indicator in primary monocyte, B cells, DCs, NK cells, and T cells from healthy men and women volunteers. Results: Compared to male samples, female monocytes, B cells, and DCs had lower endolysosomal pH (female/male pH value: monocytes 4.9/5.6 p < 0.0001; DCs 4.9/5.7 p = 0.044; B cells 5.0/5.6 p < 0.05). Interestingly, T cells and NK cells, which both express low levels of CXorf21, showed no differential pH levels between men and women. Conclusion: We have previously shown that subjects with two or more X-chromosomes have increased CXorf21 expression in specific primary immune cells. Moreover, knockdown of CXorf21 increases lysosomal pH in female monocytes. The present data show that female monocytes, DC, B cells, where CXorf21 is robustly expressed, have lower lysosomal pH compared to the same immune cell populations from males. The lower pH levels observed in specific female immune cells provide a function to these SLE/SS-associated genes and a mechanism for the reported inflated endolysosomal-dependent immune response observed in women compared to men (i.e., TLR7/type I Interferon activity).
Collapse
Affiliation(s)
- Valerie M Harris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Research Service, Oklahoma City Department of Veterans Affairs Health Care Center, Oklahoma City, OK, United States
| | - Isaac T W Harley
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Biji T Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Research Service, Oklahoma City Department of Veterans Affairs Health Care Center, Oklahoma City, OK, United States
| | - Kristi A Koelsch
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Research Service, Oklahoma City Department of Veterans Affairs Health Care Center, Oklahoma City, OK, United States
| | - Robert Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Research Service, Oklahoma City Department of Veterans Affairs Health Care Center, Oklahoma City, OK, United States.,Medical Service, Oklahoma City Department of Veterans Affairs Health Care Center, Oklahoma City, OK, United States
| |
Collapse
|
13
|
Amodio G, Cichy J, Conde P, Matteoli G, Moreau A, Ochando J, Oral BH, Pekarova M, Ryan EJ, Roth J, Sohrabi Y, Cuturi MC, Gregori S. Role of myeloid regulatory cells (MRCs) in maintaining tissue homeostasis and promoting tolerance in autoimmunity, inflammatory disease and transplantation. Cancer Immunol Immunother 2018; 68:661-672. [PMID: 30357490 PMCID: PMC6447499 DOI: 10.1007/s00262-018-2264-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/16/2018] [Indexed: 12/29/2022]
Abstract
Myeloid cells play a pivotal role in regulating innate and adaptive immune responses. In inflammation, autoimmunity, and after transplantation, myeloid cells have contrasting roles: on the one hand they initiate the immune response, promoting activation and expansion of effector T-cells, and on the other, they counter-regulate inflammation, maintain tissue homeostasis, and promote tolerance. The latter activities are mediated by several myeloid cells including polymorphonuclear neutrophils, macrophages, myeloid-derived suppressor cells, and dendritic cells. Since these cells have been associated with immune suppression and tolerance, they will be further referred to as myeloid regulatory cells (MRCs). In recent years, MRCs have emerged as a therapeutic target or have been regarded as a potential cellular therapeutic product for tolerance induction. However, several open questions must be addressed to enable the therapeutic application of MRCs including: how do they function at the site of inflammation, how to best target these cells to modulate their activities, and how to isolate or to generate pure populations for adoptive cell therapies. In this review, we will give an overview of the current knowledge on MRCs in inflammation, autoimmunity, and transplantation. We will discuss current strategies to target MRCs and to exploit their tolerogenic potential as a cell-based therapy.
Collapse
Affiliation(s)
- Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132, Milan, Italy
| | - Joanna Cichy
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Patricia Conde
- Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, 28220, , Madrid, Spain
| | - Gianluca Matteoli
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| | - Jordi Ochando
- Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, 28220, , Madrid, Spain
| | - Barbaros H Oral
- Department of Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Michaela Pekarova
- Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Elizabeth J Ryan
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Yahya Sohrabi
- Molecular and Translational Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Maria-Cristina Cuturi
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132, Milan, Italy.
| |
Collapse
|