1
|
Zhu S, Shou X, Kuang G, Kong X, Sun W, Zhang Q, Xia J. Stimuli-responsive hydrogel microspheres encapsulated with tumor-cell-derived microparticles for malignant ascites treatment. Acta Biomater 2024:S1742-7061(24)00691-3. [PMID: 39586349 DOI: 10.1016/j.actbio.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Tumor-cell-derived microparticles (TMPs) have been recognized as chemotherapeutic drug carriers and immunomodulators for anti-tumor therapy. Research in the clinical application of TMPs has been devoted to developing an effective delivery formulation that could enhance their therapeutic effects. Here, we propose thermal-responsive agarose hydrogel microspheres (MTX-TMPs@MSs) with encapsulation of Methotrexate (MTX)-packaging TMPs (MTX-TMPs) and black phosphorus quantum dots (BPQDs) by microfluidic technology for synergistic treatment of malignant ascites. The laden MTX-TMPs, separated from apoptotic tumor cells, could target tumor cells for the delivery of chemotherapy drugs and modulate the tumor immune microenvironment. Under near-infrared (NIR) induced thermal stimulation, MTX-TMPs could be controllably released from the low-melting-point agarose matrix hydrogel microspheres for chemotherapy (CHT) and immunotherapy (IMT). In addition, benefiting from photothermal therapy (PTT)-induced tumor immunogenic death, the anti-tumor immune response triggered by MTX-TMPs was further enhanced. Based on these features, the MTX-TMPs@MSs could remarkably eliminate tumor cells in vitro and obviously suppress tumor growth in vivo through synergistic PTT, CHT, and IMT. Therefore, it is envisaged that this TMPs-integrated microcarrier will have promising applications in clinical tumor therapy. STATEMENT OF SIGNIFICANCE: Primary liver cancer ranks third among the causes of cancer deaths globally, with hepatocellular carcinoma (HCC) being the most common type. In particular, patients with advanced HCC accompanied by malignant ascites, a common complication, indicate tumor metastasis and a poor prognosis. In this paper, we developed stimuli-responsive hydrogel microspheres from microfluidics for the delivery of methotrexate (MTX)-loaded tumor-cell-derived microparticles (MTX-TMPs) for synergistic chemotherapy, photothermal therapy, and immunotherapy. The release of MTX-TMPs from hydrogel microspheres could be on-demand controlled through BPQDs-mediated photothermal stimulus. On the other hand, BPQDs-mediated mild hyperthermia cooperatesss with MTX-TMPs-induced chemotherapy could participate in remodeling the tumor immunosuppressive microenvironment. Thus, the prepared microcarrier system holds great promise for tumor therapy.
Collapse
Affiliation(s)
- Shishi Zhu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xin Shou
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Gaizhen Kuang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiuyan Kong
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Weijian Sun
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Qingfei Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Jinglin Xia
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; National Medical Center & National Clinical Research Center for Interventional Medicine. Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
2
|
Krotofil M, Tota M, Siednienko J, Donizy P. Emerging Paradigms in Cancer Metastasis: Ghost Mitochondria, Vasculogenic Mimicry, and Polyploid Giant Cancer Cells. Cancers (Basel) 2024; 16:3539. [PMID: 39456632 PMCID: PMC11506636 DOI: 10.3390/cancers16203539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The capacity of cancer cells to migrate from a primary tumor, disseminate throughout the body, and eventually establish secondary tumors is a fundamental aspect of metastasis. A detailed understanding of the cellular and molecular mechanisms underpinning this multifaceted process would facilitate the rational development of therapies aimed at treating metastatic disease. Although various hypotheses and models have been proposed, no single concept fully explains the mechanism of metastasis or integrates all observations and experimental findings. Recent advancements in metastasis research have refined existing theories and introduced new ones. This review evaluates several novel/emerging theories, focusing on ghost mitochondria (GM), vasculogenic mimicry (VM), and polyploid giant cancer cells (PGCCs).
Collapse
Affiliation(s)
- Mateusz Krotofil
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Maciej Tota
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Jakub Siednienko
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
- Department of Pathology and Clinical Cytology, Jan Mikulicz-Radecki University Hospital, 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
Lv L, Zhang J, Wang Y, Liang H, Liu Q, Hu F, Li H, Su W, Zhang J, Chen R, Chen Z, Wang Z, Li J, Yan R, Yang M, Chang Y, Li J, Liang T, Xing G, Chen K. Boron Neutron Capture Therapy-Derived Extracellular Vesicles via DNA Accumulation Boost Antitumor Dendritic Cell Vaccine Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405158. [PMID: 39021327 PMCID: PMC11425286 DOI: 10.1002/advs.202405158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/20/2024]
Abstract
Radiated tumor cell-derived extracellular vesicles (RT-EVs) encapsulate abundant DNA fragments from irradiated tumor cells, in addition to acting as integrators of multiple tumor antigens. Accumulating evidence indicates these DNA fragments from damaged cells are involved in downstream immune responses, but most of them are degraded in cells before incorporation into derived RT-EVs, thus the low abundance of DNA fragments limits immune responses of RT-EVs. Here, this study found that different radiations affected fates of DNA fragments in RT-EVs. Boron neutron capture therapy (BNCT) induced DNA accumulation in RT-EVs (BEVs) by causing more DNA breaks and DNA oxidation resisting nuclease degradation. This is attributed to the high-linear energy transfer (LET) properties of alpha particles from the neutron capture reaction of 10B. When being internalized by dendritic cells (DCs), BEVs activated the DNA sensing pathway, resulting in functional enhancements including antigen presentation, migration capacity, and cytokine secretion. After vaccination of the BEVs-educated DCs (BEV@BMDCs), the effector T cells significantly expanded and infiltrated into tumors, suggesting robust anti-tumor immune activation. BEV@BMDCs not only effectively inhibited the primary tumor growth and metastasis formation but also elicited long-term immune memory. In conclusion, a successful DC vaccine is provided as a promising candidate for tumor vaccine.
Collapse
Affiliation(s)
- Linwen Lv
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di HerbsArtemisinin Research Centerand Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Yujiao Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Haojun Liang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Qiuyang Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Fan Hu
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Hao Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Wenxi Su
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Junhui Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ranran Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ziteng Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Zhijie Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Jiacheng Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ruyu Yan
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Mingxin Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ya‐nan Chang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Juan Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Tianjiao Liang
- Guangdong‐Hong Kong‐Macao Joint Laboratory for Neutron Scattering Science and TechnologySpallation Neutron Source Science CenterDongguan523803China
| | - Gengmei Xing
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Kui Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| |
Collapse
|
4
|
Yu M, Jin Y, Yuan K, Liu B, Zhu N, Zhang K, Li S, Tai Z. Effects of exosomes and inflammatory response on tumor: a bibliometrics study and visualization analysis via CiteSpace and VOSviewer. J Cancer Res Clin Oncol 2024; 150:405. [PMID: 39210153 PMCID: PMC11362500 DOI: 10.1007/s00432-024-05915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Tumor is a new organism formed by abnormal hyperplasia of local tissue cells under the action of various tumorigenic factors. Inflammation plays a decisive role in inducing tumorigenesis, promoting tumor development, invasion and migration. More and more evidence indicate that exosomes are involved in regulating the formation of tumor microenvironment in the process of proinflammatory carcinogenesis, leading to the stimulation of anti-tumor immune response or systemic immunosuppression, and exosomes play a crucial role in the development of tumor. METHODS The articles on tumor-derived exosomes and inflammatory responses from January 2005 to January 2024 were collected through Web of Science (WOS), and the inclusion criteria were "Article", "Review Article" and "Early Access". Articles obtained after excluding "Book Chapters", "Editorial Material", "Proceeding Paper", "Meeting Abstract" and "Retracted Publication". Bibliometrics and visualization analysis were carried out on the obtained articles using CiteSpace6.2.R6 and VOSviewer1.6.20. RESULTS Total of 703 articles were included. The number of published documents showed a fluctuating growth trend year by year. A total of 61 countries have participated in the research on the effects of exosomes and inflammatory responses on tumors, among which China and the United States have the largest influence in this field. The obtained articles have been published in 60 journals around the world, among which PLOS ONE and NAT REV IMMUNOL are the journals with the most published articles and the highest co-citations respectively. The article from French author THERY C was cited the most (202 times). As a major researcher on the basic function of exosomes, THERY C established the gold standard for extraction, separation and identification of exosomes, and found that exosomes promote tumor metastasis through direct regulation of miRNA. Her research has had a huge impact on the field. Keyword co-occurrence analysis indicate that extracellular vesicles, inflammation, cancer, miRNAs, mesenchymal stem cells, drug delivery, gastric cancer and circulating endothelial microparticles are the research hotspot at present stage. The main keywords of the cluster analysis show that extracellular vesicles, human papilloma virus, myeloid cells, tumor macro-environment are the current research hotspots and frontier. The research hotspots have developed over time from the time chart of keywords and clustering, especially after 2016, exosomes have established extensive links with drug delivery, cancer treatment, inflammatory response and other fields. Tumor-derived exosomes stimulate receptor cells to secrete pro-inflammatory cytokines and growth factors, enabling immune and inflammatory cells to perceive the intracellular environment of cancer cells even when cancer cells do not express any tumor-specific antigens. For example, in anoxic environment, cancer cells can secrete exosomes containing pro-inflammatory factors to promote the invasion and metastasis of cancer cells. In the complex tumor microenvironment, both tumor cells and various stromal cells will secrete specific exosomes, and promote the development of tumors through various ways, so that tumor cells have drug resistance, and bring adverse effects on the clinical treatment of tumor patients. MicroRNAs and long noncoding RNA as hot keywords play important roles in regulating and mediating tumor development, and their specificity makes them important biomarkers for cancer prediction and diagnosis. Highlighting word analysis shows that microRNAs secreted by leukemia patients can effectively promote the proliferation of malignant cells and the development of cardiovascular diseases. At the same time, exosomes can induce the secretion of some microRNAs in patients, leading to cardiac repair and regeneration. Therefore, the detection and screening of microRNAs plays a crucial role in predicting the incidence of cardiovascular diseases in patients. CONCLUSION Exosomes have attracted increasing attention due to their significant heterogeneity and ability to regulate the tumor immune microenvironment. However, tumor cell-derived exosomes accelerate tumor progression by enhancing immunosuppression and inflammation, increasing oxidative stress, and promoting angiogenesis, which may lead to poor prognosis.
Collapse
Affiliation(s)
- Miao Yu
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases), Tangshan, China
| | - Yaxuan Jin
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases), Tangshan, China
| | - Kaize Yuan
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases), Tangshan, China
| | - Bohao Liu
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases), Tangshan, China
| | - Na Zhu
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases), Tangshan, China
| | - Ke Zhang
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases), Tangshan, China
| | - Shuying Li
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases), Tangshan, China.
| | - Zhihui Tai
- North China University of Science and Technology Affiliated Hospital, Tangshan, China.
| |
Collapse
|
5
|
Li J, Bai M, Jia W, Zhai X, Wang M, Yu J, Zhu H. Irradiated tumor cell-released microparticles enhance the therapeutic efficacy of PD-1 inhibitors by promoting M1-TAMs polarization in NSCLC brain metastases. Cancer Lett 2024; 598:217133. [PMID: 39079563 DOI: 10.1016/j.canlet.2024.217133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Brain metastases (BMs) are the most common sites of metastasis in patients with non-small cell lung cancer (NSCLC). However, BMs are not responsive to immunotherapy because of the blood-brain barrier. This is because intracranial immune cells such as M2 tumor-associated macrophages (TAMs) accumulate, creating an immunosuppressive tumor microenvironment. In this study, we focused on irradiated tumor cell-released microparticles (RT-MPs) that can cross the blood-brain barrier and influence the intracranial immune microenvironment. Using animal models of BMs, we observed that RT-MPs could penetrate the blood-brain barrier and be swallowed by TAMs. Then the microenvironment of TAMs is shifted from the M2 phenotype to the M1 phenotype, thereby modulating the interactions between TAMs and tumor cells. Single-cell sequencing analysis demonstrated that TAMs, after internalizing RT-MPs, active chemokine signaling pathways and secrete more chemokines, such as CCL5, CXCL2, CXCL1, CCL3, CCL4, and CCL22, attracting more CD4+ T cells and CD8+ T cells, improving immune-mediated killing, and enhancing subsequent combination anti-PD-1 therapy. These findings provide a preclinical foundation for exploring alternative treatments for patients with immunoresistant NSCLC BMs.
Collapse
Affiliation(s)
- Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Menglin Bai
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenxiao Jia
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoyang Zhai
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Min Wang
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
6
|
Yang S, Zheng B, Raza F, Zhang S, Yuan WE, Su J, Qiu M. Tumor-derived microvesicles for cancer therapy. Biomater Sci 2024; 12:1131-1150. [PMID: 38284828 DOI: 10.1039/d3bm01980b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Extracellular vesicles (EVs) are vesicles with lipid bilayer structures shed from the plasma membrane of cells. Microvesicles (MVs) are a subset of EVs containing proteins, lipids, nucleic acids, and other metabolites. MVs can be produced under specific cell stimulation conditions and isolated by modern separation technology. Due to their tumor homing and large volume, tumor cell-derived microvesicles (TMVs) have attracted interest recently and become excellent delivery carriers for therapeutic vaccines, imaging agents or antitumor drugs. However, preparing sufficient and high-purity TMVs and conducting clinical transformation has become a challenge in this field. In this review, the recent research achievements in the generation, isolation, characterization, modification, and application of TMVs in cancer therapy are reviewed, and the challenges facing therapeutic applications are also highlighted.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Bo Zheng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Shulei Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Wei-En Yuan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
- Engineering Research Center of Cell & Therapeuti c Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| |
Collapse
|
7
|
Yu L, Zeng X, Hu X, Wen Q, Chen P. Advances and challenges in clinical applications of tumor cell-derived extracellular vesicles. Colloids Surf B Biointerfaces 2024; 234:113704. [PMID: 38113751 DOI: 10.1016/j.colsurfb.2023.113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Extracellular vesicles (EVs) are a class of substances that feature vesicle-like structures. Initially deemed to be "biological waste", recent studies have highlighted the crucial role of EVs in mediating information communication between cells by transporting bioactive components. Specifically, tumor cell-derived extracellular vesicles (TEVs) contain components that can be utilized for disease diagnosis and as vaccines to activate the immune system. Moreover, since TEVs have a phospholipid bilayer shell and can transport exogenous substances, they are being increasingly explored as drug delivery vehicles in anti-tumor therapy. TEVs have proven highly compatible with their corresponding tumor cells, allowing for efficient drug delivery and exerting killing effects on tumor cells through various mechanisms such as domino effects, lysosomal pathways, and inhibition of drug efflux from tumor tissues. Despite these promising developments, challenges remain in the clinical applications of EVs derived from tumor cells. This paper outlines the current advances and limitations in this field, highlighting the potential of TEVs as a powerful tool for combating cancer.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Xiaonan Zeng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
8
|
Ahmadi M, Abbasi R, Rezaie J. Tumor immune escape: extracellular vesicles roles and therapeutics application. Cell Commun Signal 2024; 22:9. [PMID: 38167133 PMCID: PMC10763406 DOI: 10.1186/s12964-023-01370-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/28/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Immune escape, a process by which tumor cells evade immune surveillance, remains a challenge for cancer therapy. Tumor cells produce extracellular vesicles (EVs) that participate in immune escape by transferring bioactive molecules between cells. EVs refer to heterogeneous vesicles that participate in intercellular communication. EVs from tumor cells usually carry tumor antigens and have been considered a source of tumor antigens to induce anti-tumor immunity. However, evidence also suggests that these EVs can accelerate immune escape by carrying heat shock proteins (HSPs), programmed death-ligand 1 (PD-L1), etc. to immune cells, suppressing function and exhausting the immune cells pool. EVs are progressively being evaluated for therapeutic implementation in cancer therapies. EVs-based immunotherapies involve inhibiting EVs generation, using natural EVs, and harnessing engineering EVs. All approaches are associated with advantages and disadvantages. The EVs heterogeneity and diverse physicochemical properties are the main challenges to their clinical applications. SHORT CONCLUSION Although EVs are criminal; they can be useful for overcoming immune escape. This review discusses the latest knowledge on EVs population and sheds light on the function of tumor-derived EVs in immune escape. It also describes EVs-based immunotherapies with a focus on engineered EVs, followed by challenges that hinder the clinical translation of EVs that are essential to be addressed in future investigations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Sun Y, Tian Y, Wu S, Huang A, Hu Y, Liao Z, Swift M, Deng S, Yang X, Zhang B, Zhang Z, Wu B, Huang J, Jiang K, Huang F, Jin H, Wan C, Yang K. Engineering irradiated tumor-derived microparticles as personalized vaccines to enhance anti-tumor immunity. Cell Rep Med 2023; 4:101303. [PMID: 38029750 PMCID: PMC10772344 DOI: 10.1016/j.xcrm.2023.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/05/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
The inadequate activation of antigen-presenting cells, the entanglement of T cells, and the highly immunosuppressive conditions in the tumor microenvironment (TME) are important factors that limit the effectiveness of cancer vaccines. Studies show that a personalized and broad antigen repertoire fully activates anti-tumor immunity and that inhibiting the function of transforming growth factor (TGF)-β facilitates T cell migration. In our study, we introduce a vaccine strategy by engineering irradiated tumor cell-derived microparticles (RT-MPs), which have both personalized and broad antigen repertoire, to induce comprehensive anti-tumor effects. Encouraged by the proinflammatory effects of the spike protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the high affinity between TGF-β receptor 2 (TGFBR2) and TGF-β, we develop RT-MPs with the SARS-CoV-2 spike protein and TGFBR2. This spike protein and high TGFBR2 expression induce the innate immune response and ameliorate the immunosuppressive TME, thereby promoting T cell activation and infiltration and ultimately inhibiting tumor growth. Our study provides a strategy for producing an effective personalized anti-tumor vaccine.
Collapse
Affiliation(s)
- Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuhui Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ai Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Michelle Swift
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhanjie Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
10
|
Li Y, Liu F. The extracellular vesicles targeting tumor microenvironment: a promising therapeutic strategy for melanoma. Front Immunol 2023; 14:1200249. [PMID: 37575250 PMCID: PMC10419216 DOI: 10.3389/fimmu.2023.1200249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Extracellular vesicles (EVs) are small particles secreted by numerous cell types and circulate in almost all body fluids, acting as crucial messengers for cell-to-cell communication. EVs involves multiple physiological and pathological processes, including tumor progression, via their multiple cargoes. Therefore, EVs have become attractive candidates for the treatment of tumor, including melanoma. Notably, due to the crucial role of the tumor microenvironment (TME) in promoting tumor malignant phenotype, and the close intercellular communication in TME, EVs-based therapy by targeting TME has become a cutting-edge and prospective strategy for inhibiting melanoma progression and strengthening the anti-tumor immunity. In this review, we aimed to summarize and discuss the role of therapeutic EVs, which target the components of TME in melanoma, thereby providing insights into these promising clinical strategies for the treatment of melanoma patients.
Collapse
Affiliation(s)
- Yongmin Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Fei Liu
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
11
|
Wang J, Yin T, Liu S. Dysregulation of immune response in PCOS organ system. Front Immunol 2023; 14:1169232. [PMID: 37215125 PMCID: PMC10196194 DOI: 10.3389/fimmu.2023.1169232] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common reproductive endocrine disorder affecting women, which can lead to infertility. Infertility, obesity, hirsutism, acne, and irregular menstruation are just a few of the issues that PCOS can be linked to. PCOS has a complicated pathophysiology and a range of clinical symptoms. Chronic low-grade inflammation is one of the features of PCOS. The inflammatory environment involves immune and metabolic disturbances. Numerous organ systems across the body, in addition to the female reproductive system, have been affected by the pathogenic role of immunological dysregulation in PCOS in recent years. Insulin resistance and hyperandrogenism are associated with immune cell dysfunction and cytokine imbalance. More importantly, obesity is also involved in immune dysfunction in PCOS, leading to an inflammatory environment in women with PCOS. Hormone, obesity, and metabolic interactions contribute to the pathogenesis of PCOS. Hormone imbalance may also contribute to the development of autoimmune diseases. The aim of this review is to summarize the pathophysiological role of immune dysregulation in various organ systems of PCOS patients and provide new ideas for systemic treatment of PCOS in the future.
Collapse
Affiliation(s)
- Jingxuan Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
12
|
Jing H, Wu X, Xiang M, Wang C, Novakovic VA, Shi J. Microparticle Phosphatidylserine Mediates Coagulation: Involvement in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:cancers15071957. [PMID: 37046617 PMCID: PMC10093313 DOI: 10.3390/cancers15071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor progression and cancer metastasis has been linked to the release of microparticles (MPs), which are shed upon cell activation or apoptosis and display parental cell antigens, phospholipids such as phosphatidylserine (PS), and nucleic acids on their external surfaces. In this review, we highlight the biogenesis of MPs as well as the pathophysiological processes of PS externalization and its involvement in coagulation activation. We review the available evidence, suggesting that coagulation factors (mainly tissue factor, thrombin, and fibrin) assist in multiple steps of tumor dissemination, including epithelial-mesenchymal transition, extracellular matrix remodeling, immune escape, and tumor angiogenesis to support the formation of the pre-metastatic niche. Platelets are not just bystander cells in circulation but are functional players in primary tumor growth and metastasis. Tumor-induced platelet aggregation protects circulating tumor cells (CTCs) from the blood flow shear forces and immune cell attack while also promoting the binding of CTCs to endothelial cells and extravasation, which activates tumor invasion and sustains metastasis. Finally, in terms of therapy, lactadherin can inhibit coagulation by competing effectively with coagulation factors for PS binding sites and may similarly delay tumor progression. Furthermore, we also investigate the therapeutic potential of coagulation factor inhibitors within the context of cancer treatment. The development of multiple therapies targeting platelet activation and platelet-tumor cell interactions may not only reduce the lethal consequences of thrombosis but also impede tumor growth and spread.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02132, USA
| |
Collapse
|
13
|
Boggio E, Gigliotti CL, Stoppa I, Pantham D, Sacchetti S, Rolla R, Grattarola M, Monge C, Pizzimenti S, Dianzani U, Dianzani C, Battaglia L. Exploiting Nanomedicine for Cancer Polychemotherapy: Recent Advances and Clinical Applications. Pharmaceutics 2023; 15:937. [PMID: 36986798 PMCID: PMC10057931 DOI: 10.3390/pharmaceutics15030937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The most important limitations of chemotherapeutic agents are severe side effects and the development of multi-drug resistance. Recently, the clinical successes achieved with immunotherapy have revolutionized the treatment of several advanced-stage malignancies, but most patients do not respond and many of them develop immune-related adverse events. Loading synergistic combinations of different anti-tumor drugs in nanocarriers may enhance their efficacy and reduce life-threatening toxicities. Thereafter, nanomedicines may synergize with pharmacological, immunological, and physical combined treatments, and should be increasingly integrated in multimodal combination therapy regimens. The goal of this manuscript is to provide better understanding and key considerations for developing new combined nanomedicines and nanotheranostics. We will clarify the potential of combined nanomedicine strategies that are designed to target different steps of the cancer growth as well as its microenvironment and immunity interactions. Moreover, we will describe relevant experiments in animal models and discuss issues raised by translation in the human setting.
Collapse
Affiliation(s)
- Elena Boggio
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Ian Stoppa
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Deepika Pantham
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Sara Sacchetti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Roberta Rolla
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Margherita Grattarola
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Chiara Monge
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Umberto Dianzani
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
- Centro Interdipartimentale Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, Università degli Studi di Torino, 10124 Torino, Italy
| |
Collapse
|
14
|
Hu X, Yu L, Bian Y, Zeng X, Luo S, Wen Q, Chen P. Paclitaxel-loaded tumor cell-derived microparticles improve radiotherapy efficacy in triple-negative breast cancer by enhancing cell killing and stimulating immunity. Int J Pharm 2023; 632:122560. [PMID: 36586632 DOI: 10.1016/j.ijpharm.2022.122560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/03/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous tumor characterized by high recurrence and metastasis, with a very poor prognosis, and there are still great challenges in its clinical treatment. Here, we describe the development of a novel modality for the treatment of TNBC with tumor cell-derived microparticles loaded with paclitaxel (MP-PTX) in combination with radiotherapy. We show that MP can deliver agents to tumor cells by homologous targeting, thereby increasing the absorption rate of the chemotherapeutic agent and enhancing its killing effects on tumor cells. We further demonstrate that MP-PTX combined with radiotherapy shows a synergistic antitumor effect by enhancing the inhibition of tumor cell proliferation, promoting tumor cell apoptosis, reducing the immunosuppressive microenvironment at the tumor site, and activating the antitumor immune response. Altogether, this study provides a referable and optional method for the clinical treatment of refractory tumors such as TNBC based on the combination of T-MP-delivered chemotherapeutic drugs and radiotherapy. Chemical compounds: paclitaxel (PTX), paclitaxel-loaded tumor cell-derived microparticles (MP-PTX).
Collapse
Affiliation(s)
- Xiao Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Li Yu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuan Bian
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaonan Zeng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shan Luo
- Chengdu Institute of Biological Products Co., Ltd, Chengdu 610023, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China.
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China.
| |
Collapse
|
15
|
Jing B, Guo F, An R, Gao Y, Li Y, Xie Y, Wang J, Chen Y, Li H, Gao T, Jin Q, Zhang L, Xie M. Apoptotic tumor cell-derived microparticles loading Napabucasin inhibit CSCs and synergistic immune therapy. J Nanobiotechnology 2023; 21:37. [PMID: 36732759 PMCID: PMC9893668 DOI: 10.1186/s12951-023-01792-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are crucial for the growth, metastasis, drug resistance, recurrence, and spread of tumors. Napabucasin (NAP) could effectively inhibit CSC, but its mechanism has not been fully explained. Additionally, NAP also has the drawbacks of poor water solubility and low utilization. Therefore, this study not only elaborated the new mechanism of NAP inhibiting CSCs, but also built NAP-loaded nanoprobes using apoptotic tumor-derived microparticles (TMPs) as carriers to combine diagnose and treat of colon cancer and lessen the adverse effects of NAP. RESULTS The study discovered a new mechanism for NAP inhibiting tumors. NAP, in addition to inhibiting STAT3, may also inhibit STAT1, thereby inhibiting the expression of CD44, and the stemness of colon cancer. N3-TMPs@NAP was successfully synthesized, and it possessed a lipid bilayer with a particle size of 220.13 ± 4.52 nm, as well as strong tumor binding ability and anti-tumor effect in vitro. In static PET/CT imaging studies, the tumor was clearly visible and showed higher uptake after N3-TMPs@NAP injection than after oral administration. The average tumor volume and weight of the N3-TMPs@NAP group on day 14 of the treatment studies were computed to be 270.55 ± 107.59 mm3 and 0.30 ± 0.12 g, respectively. These values were significantly lower than those of the other groups. Additionally, N3-TMPs@NAP might prevent colon cancer from spreading to the liver. Furthermore, due to TMPs' stimulation of innate immunity, N3-TMPs@NAP might stimulate anti-tumor. CONCLUSIONS As a combined diagnostic and therapeutic nanoprobe, N3-TMPs@NAP could successfully conduct PET/CT imaging, suppress CSCs, and synergistically stimulate anticancer immune responses. Additionally, this nanoprobe might someday be employed in clinical situations because TMPs for it can be produced from human tissue and NAP has FDA approval.
Collapse
Affiliation(s)
- Boping Jing
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Feng Guo
- grid.33199.310000 0004 0368 7223Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Rui An
- grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yu Gao
- grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yuman Li
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Yuji Xie
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Jing Wang
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Yihan Chen
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - He Li
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Tang Gao
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Qiaofeng Jin
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Li Zhang
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518607 China
| | - Mingxing Xie
- grid.33199.310000 0004 0368 7223Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Clinical Research Center for Medical Imaging in Hubei Province, 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518607 China
| |
Collapse
|
16
|
Xu X, Xiang Y, Yang Y, Liu K, Cui Z, Tong X, Chen J, Hou F, Luo Z. The application of tumor cell-derived vesicles in oncology therapy. Clin Transl Oncol 2023; 25:364-374. [PMID: 36207510 DOI: 10.1007/s12094-022-02966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Tumor cell-derived vesicles are released by tumor cells, have a phospholipid bilayer, and are widely distributed in various biological fluids. In recent years, it has been found that tumor cell-derived vesicles contain proteins, metabolites and nucleic acids and can be delivered to recipient cells to perform their physiological functions, such as mediating specific intercellular communication, activating or inhibiting signaling pathways, participating in regulating the modulation of tumor microenvironment and influencing tumor development, which can be used for early detection and diagnosis of cancer. In addition, tumor cell-derived vesicles exhibit multiple properties in tumor therapeutic applications and may serve as a new class of delivery systems. In this review, we elaborate on the application of tumor cell-derived vesicles in oncology therapy.
Collapse
Affiliation(s)
- Ximei Xu
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China.
| | - Yin Xiang
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Yang Yang
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Kai Liu
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Zhiwei Cui
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Xiaodong Tong
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Junliang Chen
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Fang Hou
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Zhiqiang Luo
- The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| |
Collapse
|
17
|
Zhao Y, Yu L, Wang L, Wu Y, Chen H, Wang Q, Wu Y. Current status of and progress in the treatment of malignant pleural effusion of lung cancer. Front Oncol 2023; 12:961440. [PMID: 36818672 PMCID: PMC9933866 DOI: 10.3389/fonc.2022.961440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/30/2022] [Indexed: 01/22/2023] Open
Abstract
Malignant pleural effusion (MPE) is a common complication in the late stage of malignant tumors. The appearance of MPE indicates that the primary tumor has spread to the pleura or progressed to an advanced stage. The survival time of the patients will be significantly shortened, with a median survival of only a few months. There are a variety of traditional treatments, and their advantages and disadvantages are relatively clear. There are still many problems that cannot be solved by traditional methods in clinical work. The most common one is intrapleural perfusion therapy with chemotherapy drugs, but it has a large side effect of chemotherapy. At present, with the development of medical technology, there are a variety of treatment methods, and many innovative, significant and valuable treatment methods have emerged, which also bring hope for the treatment of refractory and recurrent MPE patients. Several clinical trials had confirmed that drug-carrying microparticles has less adverse reactions and obvious curative effect. However, there is still a long way to go to completely control and cure MPE, and the organic combination of clinical work and scientific research results is needed to bring dawn to refractory MPE patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yufeng Wu
- *Correspondence: Qiming Wang, ; Yufeng Wu,
| |
Collapse
|
18
|
Wei K, Zhang H, Yang S, Cui Y, Zhang B, Liu J, Tang L, Tan Y, Liu S, Chen S, Yuan W, Luo X, Chen C, Li F, Liu J, Chen J, Xu P, Lv J, Tang K, Zhang Y, Ma J, Huang B. Chemo-drugs in cell microparticles reset antitumor activity of macrophages by activating lysosomal P450 and nuclear hnRNPA2B1. Signal Transduct Target Ther 2023; 8:22. [PMID: 36658134 PMCID: PMC9852455 DOI: 10.1038/s41392-022-01212-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/01/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023] Open
Abstract
Macrophages in tumors (tumor-associated macrophages, TAMs), a major population within most tumors, play key homeostatic functions by stimulating angiogenesis, enhancing tumor cell growth, and suppressing antitumor immunity. Resetting TAMs by simple, efficacious and safe approach(s) is highly desirable to enhance antitumor immunity and attenuate tumor cell malignancy. Previously, we used tumor cell-derived microparticles to package chemotherapeutic drugs (drug-MPs), which resulted in a significant treatment outcome in human malignant pleural effusions via neutrophil recruitments, implicating that drug-MPs might reset TAMs, considering the inhibitory effects of M2 macrophages on neutrophil recruitment and activation. Here, we show that drug-MPs can function as an antitumor immunomodulator by resetting TAMs with M1 phenotype and IFN-β release. Mechanistically, drug molecules in tumor MPs activate macrophage lysosomal P450 monooxygenases, resulting in superoxide anion formation, which further amplifies lysosomal ROS production and pH value by activating lysosomal NOX2. Consequently, lysosomal Ca2+ signaling is activated, thus polarizing macrophages towards M1. Meanwhile, the drug molecules are delivered from lysosomes into the nucleus where they activate DNA sensor hnRNPA2B1 for IFN-β production. This lysosomal-nuclear machinery fully arouses the antitumor activity of macrophages by targeting both lysosomal pH and the nuclear innate immunity. These findings highlight that drug-MPs can act as a new immunotherapeutic approach by revitalizing antitumor activity of macrophages. This mechanistic elucidation can be translated to treat malignant ascites by drug-MPs combined with PD-1 blockade.
Collapse
Affiliation(s)
- Keke Wei
- grid.33199.310000 0004 0368 7223Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Huafeng Zhang
- grid.33199.310000 0004 0368 7223Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Shuaishuai Yang
- grid.33199.310000 0004 0368 7223Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Yuxiao Cui
- grid.33199.310000 0004 0368 7223Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Bingxia Zhang
- grid.33199.310000 0004 0368 7223Cardiovascular Surgery, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430071 China
| | - Jincheng Liu
- grid.33199.310000 0004 0368 7223Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Liang Tang
- grid.33199.310000 0004 0368 7223Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Yaoyao Tan
- grid.33199.310000 0004 0368 7223Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Simin Liu
- grid.33199.310000 0004 0368 7223Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Shiqi Chen
- grid.33199.310000 0004 0368 7223Cardiovascular Surgery, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430071 China
| | - Wu Yuan
- grid.33199.310000 0004 0368 7223Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Xiao Luo
- grid.33199.310000 0004 0368 7223Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Chen Chen
- grid.33199.310000 0004 0368 7223Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Fei Li
- grid.33199.310000 0004 0368 7223Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Junwei Liu
- grid.33199.310000 0004 0368 7223Cardiovascular Surgery, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430071 China
| | - Jie Chen
- grid.506261.60000 0001 0706 7839Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005 China
| | - Pingwei Xu
- grid.414906.e0000 0004 1808 0918Translational Medicine Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Jiadi Lv
- grid.506261.60000 0001 0706 7839Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005 China
| | - Ke Tang
- grid.33199.310000 0004 0368 7223Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Yi Zhang
- grid.412633.10000 0004 1799 0733Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| | - Bo Huang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China. .,Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
19
|
Jacopo M. Unconventional protein secretion (UPS): role in important diseases. MOLECULAR BIOMEDICINE 2023; 4:2. [PMID: 36622461 PMCID: PMC9827022 DOI: 10.1186/s43556-022-00113-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Unconventional protein secretion (UPS) is the new secretion process discovered in liquid form over three decades ago. More recently, UPS has been shown to operate also in solid forms generated from four types of organelles: fractions of lysosomes and autophagy (APh) undergoing exocytosis; exosomes and ectosomes, with their extracellular vesicles (EVs). Recently many mechanisms and proteins of these solid forms have been shown to depend on UPS. An additional function of UPS is the regulation of diseases, often investigated separately from each other. In the present review, upon short presentation of UPS in healthy cells and organs, interest is focused on the mechanisms and development of diseases. The first reported are neurodegenerations, characterized by distinct properties. Additional diseases, including inflammasomes, inflammatory responses, glial effects and other diseases of various origin, are governed by proteins generated, directly or alternatively, by UPS. The diseases most intensely affected by UPS are various types of cancer, activated in most important processes: growth, proliferation and invasion, relapse, metastatic colonization, vascular leakiness, immunomodulation, chemoresistence. The therapy role of UPS diseases depends largely on exosomes. In addition to affecting neurodegenerative diseases, its special aim is the increased protection against cancer. Its immense relevance is due to intrinsic features, including low immunogenicity, biocompatibility, stability, and crossing of biological barriers. Exosomes, loaded with factors for pharmacological actions and target cell sensitivity, induce protection against various specific cancers. Further expansion of disease therapies is expected in the near future.
Collapse
Affiliation(s)
- Meldolesi Jacopo
- grid.18887.3e0000000417581884San Raffaele Institute, Vita-Salute San Raffaele University, Milan, Italy ,CNR Institute of Neuroscience at the Milano-Bicocca University, Milan, Italy
| |
Collapse
|
20
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 232.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
21
|
Sun W, Dai L, Cao Y, Pan P, Zhi L, Wang X, Yuan X, Gao Z, Guo S, Liu G, Yin J, Xie L, Wang L, Wang Y, Li W, Li H, Jia Y. Monocytes reprogrammed by tumor microparticle vaccine inhibit tumorigenesis and tumor development. Cancer Nanotechnol 2023; 14:34. [PMID: 37089435 PMCID: PMC10106871 DOI: 10.1186/s12645-023-00190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Tumor microparticles (T-MPs) are considered as a tumor vaccine candidate. Although some studies have analyzed the mechanism of T-MPs as tumor vaccine, we still lack understanding of how T-MPs stimulate a strong anti-tumor immune response. Here, we show that T-MPs induce macrophages to release a key chemotactic factor CCL2, which attracts monocytes to the vaccine injection site and enhances endocytosis of antigen. Monocytes subsequently enter the draining lymph node, and differentiate into monocyte-derived DCs (moDCs), which present tumor antigens to T lymphocytes and deliver a potent anti-tumor immune response. Mechanically, T-MPs activate the cGAS-STING signaling through DNA fragments, and then induce monocytes to upregulate the expression of IRF4, which is a key factor for monocyte differentiation into moDCs. More importantly, monocytes that have endocytosed T-MPs acquire the ability to treat tumors. Collectively, this work might provide novel vaccination strategy for the development of tumor vaccines and facilitate the application of T-MPs for clinic oncotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12645-023-00190-x.
Collapse
Affiliation(s)
- Weiwei Sun
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Lili Dai
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Yuqing Cao
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Pengtao Pan
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Lijuan Zhi
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Xinke Wang
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Xinzhong Yuan
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Zi Gao
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Sheng Guo
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Guoyan Liu
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Junlei Yin
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Liangliang Xie
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Liping Wang
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Yanling Wang
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Wensheng Li
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Hong Li
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Yunjie Jia
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| |
Collapse
|
22
|
Ahmadi M, Hassanpour M, Rezaie J. Engineered extracellular vesicles: A novel platform for cancer combination therapy and cancer immunotherapy. Life Sci 2022; 308:120935. [PMID: 36075472 DOI: 10.1016/j.lfs.2022.120935] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs), phospholipid membrane-bound vesicles, produced by most cells, contribute to cell-cell communication. They transfer several proteins, lipids, and nucleic acids between cells both locally and systemically. Owing to the biocompatibility and immune activity of EVs, therapeutic approaches using these vesicles as drug delivery systems are being developed. Different methods are used to design more effective engineered EVs, which can serve as smart tools in cancer therapy and immunotherapy. Recent progress in the field of targeted-cancer therapy has led to the gradual use of engineered EVs in combinational therapy to combat heterogeneous tumor cells and multifaceted tumor microenvironments. The high plasticity, loading ability, and genetic manipulation capability of engineered EVs have made them the ideal platforms to realize numerous combinations of cancer therapy approaches. From the combination therapy view, engineered EVs can co-deliver chemotherapy with various therapeutic agents to target tumor cells effectively, further taking part in immunotherapy-related cancer combination therapy. However, a greater number of studies were done in pre-clinical platforms and the clinical translation of these studies needs further scrutiny because some challenges are associated with the application of engineered EVs. Given the many therapeutic potentials of engineered EVs, this review discusses their function in various cancer combination therapy and immunotherapy-related cancer combination therapy. In addition, this review describes the opportunities and challenges associated with the clinical application of engineered EVs.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassanpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
23
|
The potential applications of microparticles in the diagnosis, treatment, and prognosis of lung cancer. Lab Invest 2022; 20:404. [PMID: 36064415 PMCID: PMC9444106 DOI: 10.1186/s12967-022-03599-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022]
Abstract
Microparticles (MPs) are 100–1000 nm heterogeneous submicron membranous vesicles derived from various cell types that express surface proteins and antigenic profiles suggestive of their cellular origin. MPs contain a diverse array of bioactive chemicals and surface receptors, including lipids, nucleic acids, and proteins, which are essential for cell-to-cell communication. The tumour microenvironment (TME) is enriched with MPs that can directly affect tumour progression through their interactions with receptors. Liquid biopsy, a minimally invasive test, is a promising alternative to tissue biopsy for the early screening of lung cancer (LC). The diverse biomolecular information from MPs provides a number of potential biomarkers for LC risk assessment, early detection, diagnosis, prognosis, and surveillance. Remodelling the TME, which profoundly influences immunotherapy and clinical outcomes, is an emerging strategy to improve immunotherapy. Tumour-derived MPs can reverse drug resistance and are ideal candidates for the creation of innovative and effective cancer vaccines. This review described the biogenesis and components of MPs and further summarised their main isolation and quantification methods. More importantly, the review presented the clinical application of MPs as predictive biomarkers in cancer diagnosis and prognosis, their role as therapeutic drug carriers, particularly in anti-tumour drug resistance, and their utility as cancer vaccines. Finally, we discussed current challenges that could impede the clinical use of MPs and determined that further studies on the functional roles of MPs in LC are required.
Collapse
|
24
|
Wang Z, Li S, Huang B. Alveolar macrophages: Achilles' heel of SARS-CoV-2 infection. Signal Transduct Target Ther 2022; 7:242. [PMID: 35853858 PMCID: PMC9295089 DOI: 10.1038/s41392-022-01106-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/11/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused more than 6.3 million deaths to date. Despite great efforts to curb the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccines and neutralizing antibodies are in the gloom due to persistent viral mutations and antiviral compounds face challenges of specificity and safety. In addition, vaccines are unable to treat already-infected individuals, and antiviral drugs cannot be used prophylactically. Therefore, exploration of unconventional strategies to curb the current pandemic is highly urgent. Alveolar macrophages (AMs) residing on the surface of alveoli are the first immune cells that dispose of alveoli-invading viruses. Our findings demonstrate that M1 AMs have an acidic endosomal pH, thus favoring SARS-CoV-2 to leave endosomes and release into the cytosol where the virus initiates replication; in contrast, M2 AMs have an increased endosomal pH, which dampens the viral escape and facilitates delivery of the virus for lysosomal degradation. In this review, we propose that AMs are the Achilles’ heel of SARS-CoV-2 infection and that modulation of the endosomal pH of AMs has the potential to eliminate invaded SARS-CoV-2; the same strategy might also be suitable for other lethal respiratory viruses.
Collapse
Affiliation(s)
- Zhenfeng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, 100005, Beijing, China
| | - Shunshun Li
- Department of Immunology, Basic Medicine College, China Medical University, 110122, Shenyang, Liaoning, China
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, 100005, Beijing, China. .,Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, 430030, Wuhan, China.
| |
Collapse
|
25
|
Zhai D, Huang J, Hu Y, Wan C, Sun Y, Meng J, Zi H, Lu L, He Q, Hu Y, Jin H, Yang K. Irradiated Tumor Cell-Derived Microparticles Prevent Lung Metastasis by Remodeling the Pulmonary Immune Microenvironment. Int J Radiat Oncol Biol Phys 2022; 114:502-515. [PMID: 35840114 DOI: 10.1016/j.ijrobp.2022.06.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE The majority of cancer-related deaths are attributed to metastasis rather than localized primary tumor progression. However, the factors that regulate the pre-metastatic niche (PMN) and metastasis have not yet been clearly elucidated. We investigated the antimetastatic effects of irradiated tumor cell-derived microparticles (RT-MPs) and highlighted the role of innate immune cells in PMN formation. METHODS AND MATERIALS Mice were treated three times with isolated RT-MPs, followed by tumor cell injection via the tail vein. H&E staining was performed to assess the number of tumor nodules in the lungs, and in vivo luciferase-based noninvasive bioluminescence imaging was conducted to detected tumor burden. The mechanisms of RT-MPs mediated PMN formation was evaluated using flow cytometry, transwell assay, and RT-PCR. RESULTS RT-MPs inhibited tumor cell colonization in the lungs. Neutrophils phagocytosed RT-MPs and secreted CCL3 and CCL4, which induced monocytes chemotaxis and maturation into macrophages. RT-MPs promoted the transition of neutrophils and macrophages into antitumor phenotypes, hence inhibiting cancer cell colonization and proliferation. CONCLUSIONS RT-MPs inhibited PMN formation and lung metastasis in a neutrophil- and macrophage-dependent but T cell-independent manner.
Collapse
Affiliation(s)
- Danyi Zhai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huaduan Zi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lisen Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianyuan He
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
26
|
Li N, Zhang X, Zhou J, Li W, Shu X, Wu Y, Long M. Multiscale biomechanics and mechanotransduction from liver fibrosis to cancer. Adv Drug Deliv Rev 2022; 188:114448. [PMID: 35820602 DOI: 10.1016/j.addr.2022.114448] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/08/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
A growing body of multiscale biomechanical studies has been proposed to highlight the mechanical cues in the development of hepatic fibrosis and cancer. At the cellular level, changes in mechanical microenvironment induce phenotypic and functional alterations of hepatic cells, initiating a positive feedback loop that promotes liver fibrogenesis and hepatocarcinogenesis. Tumor mechanical microenvironment of hepatocellular carcinoma facilitates tumor cell growth and metastasis, and hinders the drug delivery and immunotherapy. At the molecular level, mechanical forces are sensed and transmitted into hepatic cells via allosteric activation of mechanoreceptors on the cell membrane, leading to the activation of various mechanotransduction pathways including integrin and YAP signaling and then regulating cell function. Thus, the application of mechanomedicine concept in the treatment of liver diseases is promising for rational design and cell-specific delivery of therapeutic drugs. This review mainly discusses the correlation between biomechanical cues and liver diseases from the viewpoint of mechanobiology.
Collapse
Affiliation(s)
- Ning Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhou
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Lv S, Sun J, Guo C, Qin Y, Zhang R. PAI/MRI Visualization of Tumor Derived Cellular Microvesicles with Endogenous Biopolymer Nanoparticles Modification. Int J Nanomedicine 2022; 17:2883-2890. [PMID: 35795080 PMCID: PMC9252299 DOI: 10.2147/ijn.s367721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Tumor derived cellular microvesicles (TDMVs), as excellent drug delivery vehicles in vivo, play an important role in the treatment of cancers. However, it is difficult to obtain intuitional biodistribution behavior and internalization mechanisms of TDMVs in vivo. Thus, it is very urgent and important to establish a stable and reliable visualization technology to track the biological behavior and function of TDMVs. As an endogenous biopolymer, melanin possesses natural biocompatibility and biodegradability, and various biological imaging could be realized by modifying it. Therefore, melanin-based nanoparticles are excellent candidates for in vivo visualization of TDMVs. Methods In this work, the biodistribution and metabolic behavior of TDMVs were visualized by dual-modality imaging with PAI and MRI after incubation with gadolinium ion-chelated melanin nanoparticles. Results In this study, MRI and PAI dual-modality imaging of the in vivo distribution behavior of TDMVs was achieved with the help of MNP-Gd. The good targeting ability of TDMVs at the homologous tumor site was observed, and their distribution and metabolism behavior in the whole body were studied at the meantime. The results indicated that TDMVs preferentially accumulated in syngeneic tumor sites and liver regions after intravenous injection and were eventually metabolized by the kidneys over time. Conclusion This work proposed a novel dual-modal imaging strategy for the visualization of TDMVs, which is of great significance for further understanding the biological mechanisms of extracellular vesicles.
Collapse
Affiliation(s)
- Shuxin Lv
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Jinghua Sun
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Chunyan Guo
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Yufei Qin
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| |
Collapse
|
28
|
Zhang Y, Wu L, Wang Z, Wang J, Roychoudhury S, Tomasik B, Wu G, Wang G, Rao X, Zhou R. Replication Stress: A Review of Novel Targets to Enhance Radiosensitivity-From Bench to Clinic. Front Oncol 2022; 12:838637. [PMID: 35875060 PMCID: PMC9305609 DOI: 10.3389/fonc.2022.838637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
DNA replication is a process fundamental in all living organisms in which deregulation, known as replication stress, often leads to genomic instability, a hallmark of cancer. Most malignant tumors sustain persistent proliferation and tolerate replication stress via increasing reliance to the replication stress response. So whilst replication stress induces genomic instability and tumorigenesis, the replication stress response exhibits a unique cancer-specific vulnerability that can be targeted to induce catastrophic cell proliferation. Radiation therapy, most used in cancer treatment, induces a plethora of DNA lesions that affect DNA integrity and, in-turn, DNA replication. Owing to radiation dose limitations for specific organs and tumor tissue resistance, the therapeutic window is narrow. Thus, a means to eliminate or reduce tumor radioresistance is urgently needed. Current research trends have highlighted the potential of combining replication stress regulators with radiation therapy to capitalize on the high replication stress of tumors. Here, we review the current body of evidence regarding the role of replication stress in tumor progression and discuss potential means of enhancing tumor radiosensitivity by targeting the replication stress response. We offer new insights into the possibility of combining radiation therapy with replication stress drugs for clinical use.
Collapse
Affiliation(s)
- Yuewen Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinpeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Bartlomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Igami K, Uchiumi T, Shiota M, Ueda S, Tsukahara S, Akimoto M, Eto M, Kang D. Extracellular vesicles expressing CEACAM proteins in the urine of bladder cancer patients. Cancer Sci 2022; 113:3120-3133. [PMID: 35611462 PMCID: PMC9459299 DOI: 10.1111/cas.15438] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 12/26/2022] Open
Abstract
Early detection and long‐term monitoring are important for urothelial carcinoma of the bladder (UCB). Urine cytology and existing markers have insufficient diagnostic performance. Here, we examined medium‐sized extracellular vesicles (EVs) in urine to identify specific markers for UCB and evaluated their usefulness as diagnostic material. To identify specific markers in urinary EVs derived from UCB, we undertook shotgun proteomics using urine from four UCB patients and four healthy subjects. Next, 29 healthy specimens, 18 noncancer specimens, and 33 UCB specimens, all from men, were analyzed for urinary EVs by flow cytometry to evaluate the diagnostic performance of UCB‐specific EVs. Nanoparticle‐tracking analysis indicated that the size of EVs extracted from urine was mostly <400 nm. By shotgun proteomics, we detected several proteins characteristic of UCB and found that carcinoembryonic antigen‐related adhesion molecule (CEACAM) proteins were increased in patients. Flow cytometric analysis revealed that the degree of expression of CEACAM1, CEACAM5, and CEACAM6 proteins on the surface of EVs varied among patients. Extracellular vesicles expressing CEACAM proteins also expressed mucin 1, suggesting that they were derived from tumorigenic uroepithelial cells. The number of EVs expressing CEACAM1, 5, and 6 proteins was significantly increased in UCB (mean ± SD, 8.6 ± 13%) compared to non‐UCB (0.69 ± 0.46) and healthy (0.46 ± 0.34) by flow cytometry. The results of receiver operating characteristic (ROC) analysis showed a good score of area under the ROC curve of 0.907. We identified EVs that specifically express CEACAM proteins in urine and have potential for diagnostic applications. These EVs are potential targets in a new liquid biopsy test for UCB patients.
Collapse
Affiliation(s)
- Ko Igami
- Business Management Division, Clinical Laboratory Business Segment, LSI Medience Corporation, Tokyo, Japan.,Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan.,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Ueda
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Shigehiro Tsukahara
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan.,Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaru Akimoto
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| |
Collapse
|
30
|
Chen J, Tan Q, Yang Z, Jin Y. Engineered extracellular vesicles: potentials in cancer combination therapy. J Nanobiotechnology 2022; 20:132. [PMID: 35292030 PMCID: PMC8922858 DOI: 10.1186/s12951-022-01330-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are a group of secretory vesicles with cell-derived membrane and contents. Due to the cargo delivery capability, EVs can be designed as drug delivery platforms for cancer therapy. Biocompatibility and immune compatibility endow EVs with unique advantages compared with other nanocarriers. With the development of this field, multiple ingenious modification methods have been developed to obtain engineered EVs with desired performance. Application of engineered EVs in cancer therapy has gradually shifted from monotherapy to combinational therapy to fight against heterogeneous cancer cells and complex tumor microenvironment. In addition, the strong plasticity and load capacity of engineered EV make it potential to achieve various combinations of cancer treatment methods. In this review, we summarize the existing schemes of cancer combination therapy realized by engineered EVs, highlight the mechanisms and representative examples of these schemes and provide guidance for the future application of engineered EVs to design more effective cancer combination treatment plans.
Collapse
Affiliation(s)
- Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Zimo Yang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
31
|
Zhu S, Li S, Yi M, Li N, Wu K. Roles of Microvesicles in Tumor Progression and Clinical Applications. Int J Nanomedicine 2021; 16:7071-7090. [PMID: 34703228 PMCID: PMC8536885 DOI: 10.2147/ijn.s325448] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Microvesicles are extracellular vesicles with diameter ranging from 100 to 1000 nm that are secreted by tumor cells or other cells in the tumor microenvironment. A growing number of studies demonstrate that tumor-derived microvesicles are involved in tumor initiation and progression, as well as drug resistance. In addition, tumor-derived microvesicles carry a variety of immunogenic molecules and inhibit tumor response to immunotherapy; therefore, they can be exploited for use in tumor vaccines. Moreover, because of their high stability, tumor-derived microvesicles extracted from body fluids can be used as biomarkers for cancer diagnosis or assessment of prognosis. Tumor-derived microvesicles can also be deployed to reverse drug resistance of tumor regenerative cells, or to deliver chemotherapeutic drugs and oncolytic adenovirus for the treatment of cancer patients. This review summarizes the general characteristics of tumor-derived microvesicles, focusing on their biological characteristics, their involvement in tumor progression, and their clinical applications.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| |
Collapse
|
32
|
Ma J, Tang K, Zhang H, Wei K, Huang B. Characterization and Functional Analysis of Tumor-Derived Microparticles. Curr Protoc 2021; 1:e144. [PMID: 34101382 DOI: 10.1002/cpz1.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microparticles (MPs) are heterogeneous populations of cell-derived vesicles that play an important role in intercellular communications. The release of MPs by tumor cells is a very common event in tumor microenvironments (TMEs). Tumor cell-derived MPs (T-MPs) contain a variety of bioactive molecules, thus modulating various biological processes, including the regulation of immune cell phenotype and function, as well as immune responses. Moreover, T-MPs can be used as natural carriers to deliver therapeutic drugs into tumor cells and immune cells, thus remodeling TMEs and modifying anti-tumor immune responses. These features allow T-MPs to function as potential biomaterials to be applied in tumor immunotherapies and vaccines. This article describes protocols for the isolation of T-MPs from supernatants of cultured tumor cells by multi-step centrifugations. Tools and protocols are also provided in order to characterize and validate the isolated MPs and to analyze the interaction between T-MPs and different target cells. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of tumor cell-derived microparticles by multi-step centrifugations Basic Protocol 2: Characterization and validation of tumor cell-derived microparticles Basic Protocol 3: Functional analysis of the uptake of tumor cell-derived microparticles by different cell types.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Keke Wei
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Bo Huang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, CAMS, Beijing, China
| |
Collapse
|