1
|
Lusiani N, Pavlova E, Hoogenboom R, Sedlacek O. Cationic Ring-Opening Polymerization-Induced Self-Assembly (CROPISA) of 2-Oxazolines: From Block Copolymers to One-Step Gradient Copolymer Nanoparticles. Angew Chem Int Ed Engl 2024:e202416106. [PMID: 39612372 DOI: 10.1002/anie.202416106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
In recent years, polymerization-induced self-assembly (PISA) has emerged as a powerful method for the straightforward synthesis of polymer nanoparticles at high concentration. In this study, we describe for the first time the synthesis of poly(2-oxazoline) nanoparticles by dispersion cationic ring-opening polymerization-induced self-assembly (CROPISA) in n-dodecane. Specifically, a n-dodecane-soluble aliphatic poly(2-(3-ethylheptyl)-2-oxazoline) (PEHOx) block was chain-extended with poly(2-phenyl-2-oxazoline) (PPhOx). While the PhOx monomer is soluble in n-dodecane, its polymerization leads to n-dodecane-insoluble PPhOx, which leads to in situ self-assembly of the formed PEHOx-b-PPhOx copolymers. The polymerization kinetics and micellization upon second block formation were studied, and diverse nanoparticle dispersions were prepared, featuring varying block lengths and polymer concentrations, leading to dispersions with distinctive morphologies and physical properties. Finally, we developed a single-step protocol for the synthesis of polymer nanoparticles directly from monomers via gradient copolymerization CROPISA, which exploits the significantly greater reactivity of EHOx compared to that of PhOx during the statistical copolymerization of both monomers. Notably, this approach provides access to formulations with monomer compositions otherwise unattainable through the block copolymerization method. Given the synthetic versatility and application potential of poly(2-oxazolines), the developed CROPISA method can pave the way for advanced nanomaterials with favorable properties as demonstrated by using the obtained nanoparticles for stabilization of Pickering emulsions.
Collapse
Affiliation(s)
- Niccolò Lusiani
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 40, Prague 2, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, v.v.i, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06, Prague 6, Czech Republic
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000, Ghent, Belgium
| | - Ondrej Sedlacek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 40, Prague 2, Czech Republic
| |
Collapse
|
2
|
Alexakis AE, Ayyachi T, Mousa M, Olsén P, Malmström E. 2-Methoxy-4-Vinylphenol as a Biobased Monomer Precursor for Thermoplastics and Thermoset Polymers. Polymers (Basel) 2023; 15:polym15092168. [PMID: 37177314 PMCID: PMC10181207 DOI: 10.3390/polym15092168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
To address the increasing demand for biobased materials, lignin-derived ferulic acid (FA) is a promising candidate. In this study, an FA-derived styrene-like monomer, referred to as 2-methoxy-4-vinylphenol (MVP), was used as the platform to prepare functional monomers for radical polymerizations. Hydrophobic biobased monomers derived from MVP were polymerized via solution and emulsion polymerization resulting in homo- and copolymers with a wide range of thermal properties, thus showcasing their potential in thermoplastic applications. Moreover, divinylbenzene (DVB)-like monomers were prepared from MVP by varying the aliphatic chain length between the MVP units. These biobased monomers were thermally crosslinked with thiol-bearing reagents to produce thermosets with different crosslinking densities in order to demonstrate their thermosetting applications. The results of this study expand the scope of MVP-derived monomers that can be used in free-radical polymerizations toward the preparation of new biobased and functional materials from lignin.
Collapse
Affiliation(s)
- Alexandros E Alexakis
- Division of Coating Technology, Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| | - Thayanithi Ayyachi
- Division of Coating Technology, Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Maryam Mousa
- Division of Coating Technology, Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Peter Olsén
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
- Division of Biocomposites, Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Eva Malmström
- Division of Coating Technology, Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| |
Collapse
|
3
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
4
|
Yan K, Wang J, Wang Z, Yuan L. Bio-based monomers for amide-containing sustainable polymers. Chem Commun (Camb) 2023; 59:382-400. [PMID: 36524867 DOI: 10.1039/d2cc05161c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The field of sustainable polymers from renewable feedstocks is a fast-reviving field after the decades-long domination of petroleum-based polymers. Amide-containing polymers exhibit a wide range of properties depending on the type of amide (primary, secondary, and tertiary), amide density, and other molecular structural parameters (co-existing groups, molecular weight, and topology). Engineering amide groups into sustainable polymers via the "monomer approach" is an industrially proven strategy, while bio-based monomers are of enormous importance to bridge the gap between renewable sources and amide-containing sustainable polymers (AmSPs). This feature article aims at conceptualizing the monomer-design philosophy behind most of the reported AmSPs and is organized by discussing di-functional monomers for step-growth polymerization, cyclic monomers for ring-opening polymerization and amide-containing monomers for chain-growth polymerization. We also give a perspective on AmSPs with respect to monomer design and performance enhancement.
Collapse
Affiliation(s)
- Kangle Yan
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Jie Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Zhongkai Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Liang Yuan
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| |
Collapse
|
5
|
Liu S, Kobayashi S, Nishimura S, Ueda T, Tanaka M. Effect of pendant groups on the blood compatibility and hydration states of poly(2‐oxazoline)s. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shichen Liu
- Department of Applied Chemistry Graduate School of Kyushu University Fukuoka Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka Japan
| | | | - Tomoya Ueda
- Department of Applied Chemistry Graduate School of Kyushu University Fukuoka Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka Japan
| |
Collapse
|
6
|
Biermann U, Bornscheuer UT, Feussner I, Meier MAR, Metzger JO. Fatty Acids and their Derivatives as Renewable Platform Molecules for the Chemical Industry. Angew Chem Int Ed Engl 2021; 60:20144-20165. [PMID: 33617111 PMCID: PMC8453566 DOI: 10.1002/anie.202100778] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 12/13/2022]
Abstract
Oils and fats of vegetable and animal origin remain an important renewable feedstock for the chemical industry. Their industrial use has increased during the last 10 years from 31 to 51 million tonnes annually. Remarkable achievements made in the field of oleochemistry in this timeframe are summarized herein, including the reduction of fatty esters to ethers, the selective oxidation and oxidative cleavage of C-C double bonds, the synthesis of alkyl-branched fatty compounds, the isomerizing hydroformylation and alkoxycarbonylation, and olefin metathesis. The use of oleochemicals for the synthesis of a great variety of polymeric materials has increased tremendously, too. In addition to lipases and phospholipases, other enzymes have found their way into biocatalytic oleochemistry. Important achievements have also generated new oil qualities in existing crop plants or by using microorganisms optimized by metabolic engineering.
Collapse
Affiliation(s)
- Ursula Biermann
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
- abiosuse.V.Bloherfelder Straße 23926129OldenburgGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Ivo Feussner
- University of GoettingenAlbrecht-von-Haller Institute for Plant SciencesInternational Center for Advanced Studies of Energy Conversion (ICASEC) and Goettingen Center of Molecular Biosciences (GZMB)Dept. of Plant BiochemistryJustus-von-Liebig-Weg 1137077GoettingenGermany
| | - Michael A. R. Meier
- Laboratory of Applied ChemistryInstitute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Straße am Forum 776131KarlsruheGermany
- Laboratory of Applied ChemistryInstitute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Jürgen O. Metzger
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
- abiosuse.V.Bloherfelder Straße 23926129OldenburgGermany
| |
Collapse
|
7
|
Biermann U, Bornscheuer UT, Feussner I, Meier MAR, Metzger JO. Fettsäuren und Fettsäurederivate als nachwachsende Plattformmoleküle für die chemische Industrie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ursula Biermann
- Institut für Chemie Universität Oldenburg 26111 Oldenburg Deutschland
- abiosuse.V. Bloherfelder Straße 239 26129 Oldenburg Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Ivo Feussner
- Universität Göttingen Albrecht-von-Haller Institut für Pflanzenwissenschaften International Center for Advanced Studies of Energy Conversion (ICASEC) und Göttinger Zentrum für Molekulare Biowissenschaften (GZMB) Abt. für die Biochemie der Pflanze Justus-von-Liebig-Weg 11 37077 Göttingen Deutschland
| | - Michael A. R. Meier
- Labor für Angewandte Chemie Institut für Organische Chemie (IOC) Karlsruher Institut für Technology (KIT) Straße am Forum 7 76131 Karlsruhe Deutschland
- Labor für Angewandte Chemie Institut für biologische und chemische Systeme –, Funktionale Molekülsysteme (IBCS-FMS) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Jürgen O. Metzger
- Institut für Chemie Universität Oldenburg 26111 Oldenburg Deutschland
- abiosuse.V. Bloherfelder Straße 239 26129 Oldenburg Deutschland
| |
Collapse
|
8
|
Göppert NE, Kleinsteuber M, Weber C, Schubert US. Degradable Poly(2-oxazoline) Analogues from Partially Oxidized Poly(ethylene imine). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Natalie E. Göppert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Maximilian Kleinsteuber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
9
|
Simon L, Marcotte N, Devoisselle JM, Begu S, Lapinte V. Recent advances and prospects in nano drug delivery systems using lipopolyoxazolines. Int J Pharm 2020; 585:119536. [PMID: 32531447 DOI: 10.1016/j.ijpharm.2020.119536] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 11/29/2022]
Abstract
Facing the growing demand in nano drug delivery systems (nDDS), hybrid excipients based on natural molecules and well-defined synthetic polymers are intensively investigated. Lipopolyoxazolines (LipoPOx) composed of a polyoxazoline block (POx) and a lipid or lipid-like derivative are detailed in this review. The nature of lipids used, the route to synthesize LipoPOx and their advantages for the formulation of drugs are reported. The place of POx family in nanomedicine is discussed compared to PEG, considered as the gold standard of hydrophilic polymers. LipoPOx nanoformulations including liposomes, mixed micelles, lipid nanocapsules are provided alongside discussion of the nDDS for intravenous or topical administration.
Collapse
Affiliation(s)
- L Simon
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - N Marcotte
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - S Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - V Lapinte
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
10
|
Oleszko-Torbus N, Utrata-Wesołek A, Bochenek M, Lipowska-Kur D, Dworak A, Wałach W. Thermal and crystalline properties of poly(2-oxazoline)s. Polym Chem 2020. [DOI: 10.1039/c9py01316d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The review gathers together data concerning the influence of poly(2-substituted-2-oxazoline)s structure on their thermal and crystalline properties, and how this relationship can be adjusted in controlled manner.
Collapse
Affiliation(s)
| | | | - Marcelina Bochenek
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| | - Daria Lipowska-Kur
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| | - Wojciech Wałach
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| |
Collapse
|
11
|
Kempe K. Chain and Step Growth Polymerizations of Cyclic Imino Ethers: From Poly(2‐oxazoline)s to Poly(ester amide)s. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kristian Kempe
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| |
Collapse
|
12
|
Petit C, Grassl B, Mignard E, Luef KP, Wiesbrock F, Reynaud S. Living cationic ring-opening polymerization of 2-ethyl-2-oxazoline following sustainable concepts: microwave-assisted and droplet-based millifluidic processes in an ionic liquid medium. Polym Chem 2017. [DOI: 10.1039/c7py01255a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The synthesis of poly(2-ethyl-2-oxazoline) has been developed in an ionic liquid and performed with microwave-assisted or droplet-based millifluidic processes.
Collapse
Affiliation(s)
- C. Petit
- CNRS/Université de Pau et des Pays de l'Adour
- IPREM-UMR 5254
- Pau
- France
| | - B. Grassl
- CNRS/Université de Pau et des Pays de l'Adour
- IPREM-UMR 5254
- Pau
- France
| | | | - K. P. Luef
- Polymer Competence Center Leoben (PCCL)
- 8700 Leoben
- Austria
- Institute for Chemistry and Technology of Materials
- Graz University of Technology
| | - F. Wiesbrock
- Polymer Competence Center Leoben (PCCL)
- 8700 Leoben
- Austria
| | - S. Reynaud
- CNRS/Université de Pau et des Pays de l'Adour
- IPREM-UMR 5254
- Pau
- France
| |
Collapse
|
13
|
Llevot A, Dannecker PK, von Czapiewski M, Over LC, Söyler Z, Meier MAR. Renewability is not Enough: Recent Advances in the Sustainable Synthesis of Biomass-Derived Monomers and Polymers. Chemistry 2016; 22:11510-21. [PMID: 27355829 DOI: 10.1002/chem.201602068] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 12/18/2022]
Abstract
Taking advantage of the structural diversity of different biomass resources, recent efforts were directed towards the synthesis of renewable monomers and polymers, either for the substitution of petroleum-based resources or for the design of novel polymers. Not only the use of biomass, but also the development of sustainable chemical approaches is a crucial aspect for the production of sustainable materials. This review discusses the recent examples of chemical modifications and polymerizations of abundant biomass resources with a clear focus on the sustainability of the described processes. Topics such as synthetic methodology, catalysis, and development of new solvent systems or greener alternative reagents are addressed. The chemistry of vegetable oil derivatives, terpenes, lignin, carbohydrates, and sugar-based platform chemicals was selected to highlight the trends in the active field of a sustainable use of renewable resources.
Collapse
Affiliation(s)
- Audrey Llevot
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131, Karlsruhe, Germany.
| | - Patrick-Kurt Dannecker
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131, Karlsruhe, Germany
| | - Marc von Czapiewski
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131, Karlsruhe, Germany
| | - Lena C Over
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131, Karlsruhe, Germany
| | - Zafer Söyler
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131, Karlsruhe, Germany
| | - Michael A R Meier
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131, Karlsruhe, Germany.
| |
Collapse
|
14
|
|
15
|
Yuan L, Wang Z, Trenor NM, Tang C. Robust Amidation Transformation of Plant Oils into Fatty Derivatives for Sustainable Monomers and Polymers. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00091] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Liang Yuan
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Zhongkai Wang
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Nathan M. Trenor
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and
Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
16
|
Hespel L, Morandi G, Grossel M, Lecamp L, Picton L, Burel F. Synthesis of lipid-b-poly(2-isopropyl-2-oxazoline) and successive study of pH- and thermo-sensitive mixed micelles by combination with lipid-b-poly(acrylic acid). Polym Chem 2014. [DOI: 10.1039/c4py00062e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Stemmelen M, Travelet C, Lapinte V, Borsali R, Robin JJ. Synthesis and self-assembly of amphiphilic polymers based on polyoxazoline and vegetable oil derivatives. Polym Chem 2013. [DOI: 10.1039/c2py20840g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Maisonneuve L, Lebarbé T, Grau E, Cramail H. Structure–properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics. Polym Chem 2013. [DOI: 10.1039/c3py00791j] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Sedlacek O, Monnery BD, Filippov SK, Hoogenboom R, Hruby M. Poly(2-Oxazoline)s - Are They More Advantageous for Biomedical Applications Than Other Polymers? Macromol Rapid Commun 2012; 33:1648-62. [DOI: 10.1002/marc.201200453] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Effect of carbon chain length of monocarboxylic acids on cloud point temperature of poly(2-ethyl-2-oxazoline). Colloid Polym Sci 2012. [DOI: 10.1007/s00396-012-2810-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Van Kuringen HPC, Lenoir J, Adriaens E, Bender J, De Geest BG, Hoogenboom R. Partial Hydrolysis of Poly(2-ethyl-2-oxazoline) and Potential Implications for Biomedical Applications? Macromol Biosci 2012; 12:1114-23. [DOI: 10.1002/mabi.201200080] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/11/2012] [Indexed: 12/26/2022]
|
22
|
Guillerm B, Monge S, Lapinte V, Robin JJ. How to Modulate the Chemical Structure of Polyoxazolines by Appropriate Functionalization. Macromol Rapid Commun 2012; 33:1600-12. [DOI: 10.1002/marc.201200266] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/12/2012] [Indexed: 02/04/2023]
|
23
|
Kempe K, Hoogenboom R, Schubert US. A Green Approach for the Synthesis and Thiol-ene Modification of Alkene Functio1489lized Poly(2-oxazoline)s. Macromol Rapid Commun 2011; 32:1484-9. [DOI: 10.1002/marc.201100271] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 05/25/2011] [Indexed: 11/06/2022]
|
24
|
Kempe K, Becer CR, Schubert US. Microwave-Assisted Polymerizations: Recent Status and Future Perspectives. Macromolecules 2011. [DOI: 10.1021/ma2004794] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kristian Kempe
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - C. Remzi Becer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| |
Collapse
|
25
|
|
26
|
Lambermont-Thijs HML, Fijten MWM, Schubert US, Hoogenboom R. Star-shaped Poly(2-oxazoline)s by Dendrimer Endcapping. Aust J Chem 2011. [DOI: 10.1071/ch11128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The synthesis of star-shaped poly(2-ethyl-2-oxazoline) is reported by direct end-capping of the living polymer chains with dendritic multiamines. The end-capping kinetics after addition of a first generation polypropylenimine dendrimer are discussed based on monitoring by size exclusion chromatography, revealing less efficient end-capping with larger poly(2-ethyl-2-oxazoline) chains and increasing dendrimer generation. In addition, it is demonstrated that the solution viscosity and cloud point temperature of the star-shaped polymers are much less affected by chain length compared with their linear analogues.
Collapse
|