1
|
Boyall S, Clarke H, Dixon T, Davidson RWM, Leslie K, Clemens G, Muller FL, Clayton AD, Bourne RA, Chamberlain TW. Automated Optimization of a Multistep, Multiphase Continuous Flow Process for Pharmaceutical Synthesis. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:15125-15133. [PMID: 39421637 PMCID: PMC11481092 DOI: 10.1021/acssuschemeng.4c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 10/19/2024]
Abstract
Flow synthesis is becoming increasingly relevant as a sustainable and safe alternative to traditional batch processes, as reaction conditions that are not usually achievable in batch chemistry can be exploited (for example, higher temperatures and pressures). Telescoped continuous reactions have the potential to reduce waste by decreasing the number of separate unit operations (e.g., crystallization, filtration, washing, and drying), increase safety due to limiting operator interaction with potentially harmful materials that can be reacted in subsequent steps, minimize supply chain disruption, and reduce the need to store large inventories of intermediates as they can be synthesized on demand. Optimization of these flow processes leads to further efficiency when exploring new reactions, as with a higher yield comes higher purity, reduced waste, and a greener synthesis. This project explored a two-step process consisting of a three-phase heterogeneously catalyzed hydrogenation followed by a homogeneous amidation reaction. The steps were optimized individually and as a multistep telescoped process for yield using remote automated control via a Bayesian optimization algorithm and HPLC analysis to assess the performance of a reaction for a given set of experimental conditions. 2-MeTHF was selected as a green solvent throughout the process, and the heterogeneous step provided good atom economy due to the use of pure hydrogen gas as a reagent. This research highlights the benefits of using multistage automated optimization in the development of pharmaceutical syntheses. The combination of telescoping and optimization with automation allows for swift investigation of synthetic processes in a minimum number of experiments, leading to a reduction in the number of experiments performed and a large reduction in process mass intensity values.
Collapse
Affiliation(s)
- Sarah
L. Boyall
- Institute
of Process Research and Development, School of Chemistry & School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, England
| | - Holly Clarke
- Institute
of Process Research and Development, School of Chemistry & School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, England
| | - Thomas Dixon
- Institute
of Process Research and Development, School of Chemistry & School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, England
| | - Robert W. M. Davidson
- Dr.
Reddy’s Laboratories (EU), 410 Science Park, Milton Road, Cambridge CB4 0PE, U.K.
| | - Kevin Leslie
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Graeme Clemens
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Frans L. Muller
- Institute
of Process Research and Development, School of Chemistry & School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, England
| | - Adam D. Clayton
- Institute
of Process Research and Development, School of Chemistry & School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, England
| | - Richard A. Bourne
- Institute
of Process Research and Development, School of Chemistry & School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, England
| | - Thomas W. Chamberlain
- Institute
of Process Research and Development, School of Chemistry & School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, England
| |
Collapse
|
2
|
Kitamura H, Tanaka Y, Fuse S. Switching between P-acylation and O-acylation of H-phosphonates with chloroformates by changing acyl pyridinium and acyl ammonium ions in a microflow reactor. Chem Commun (Camb) 2024; 60:10874-10877. [PMID: 39189309 DOI: 10.1039/d4cc02871f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report the first switchable acylation of H-phosphonate with chloroformate. The acylation site (P vs. O) in H-phosphonate was switched by changing the acyl pyridinium/ammonium ions. Unexpected phosphite formation was observed during the O-acylation of H-phosphonate. Twenty-six structurally diverse phosphotriesters and phosphonoformate esters were synthesized in microflow reactors.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| | - Yuma Tanaka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| |
Collapse
|
3
|
Bianchi P, Monbaliu JCM. New Opportunities for Organic Synthesis with Superheated Flow Chemistry. Acc Chem Res 2024; 57:2207-2218. [PMID: 39043368 PMCID: PMC11308364 DOI: 10.1021/acs.accounts.4c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
ConspectusFlow chemistry has brought a fresh breeze with great promises for chemical manufacturing, yet critical deterrents persist. To remain economically viable at production scales, flow processes demand quick reactions, which are actually not that common. Superheated flow technology stands out as a promising alternative poised to confront modern chemistry challenges. While continuous micro- and mesofluidic reactors offer uniform heating and rapid cooling across different scales, operating above solvent boiling points (i.e., operating under superheated conditions) significantly enhances reaction rates. Despite the energy costs associated with high temperatures, superheated flow chemistry aligns with sustainability goals by improving productivity (process intensification), offering solvent flexibility, and enhancing safety.However, navigating the unconventional chemical space of superheated flow chemistry can be cumbersome, particularly for neophytes. Expanding the temperature/pressure process window beyond the conventional boiling point under the atmospheric pressure limit vastly increases the optimization space. When associated with conventional trial-and-error approaches, this can become exceedingly wasteful, resource-intensive, and discouraging. Over the years, flow chemists have developed various tools to mitigate these challenges, with an increased reliance on statistical models, artificial intelligence, and experimental (kinetics, preliminary test reactions under microwave irradiation) or theoretical (quantum mechanics) a priori knowledge. Yet, the rationale for using superheated conditions has been slow to emerge, despite the growing emphasis on predictive methodologies.To fill this gap, this Account provides a concise yet comprehensive overview of superheated flow chemistry. Key concepts are illustrated with examples from our laboratory's research, as well as other relevant examples from the literature. These examples have been thoroughly studied to answer the main questions Why? At what cost? How? For what? The answers we provide will encourage educated and widespread adoption. The discussion begins with a demonstration of the various advantages arising from superheated flow chemistry. Different reactor alternatives suitable for high temperatures and pressures are then presented. Next, a clear workflow toward strategic adoption of superheated conditions is resorted either using Design of Experiments (DoE), microwave test chemistry, kinetics data, or Quantum Mechanics (QM). We provide rationalization for chemistries that are well suited for superheated conditions (e.g., additions to carbonyl functions, aromatic substitutions, as well as C-Y [Y = N, O, S, C, Br, Cl] heterolytic cleavages). Lastly, we bring the reader to a rational decision analysis toward superheated flow conditions. We believe this Account will become a reference guide for exploring extended chemical spaces, accelerating organic synthesis, and advancing molecular sciences.
Collapse
Affiliation(s)
- Pauline Bianchi
- Center
for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, Allée du Six Août 13, 4000 Liège (Sart
Tilman), Belgium
| | - Jean-Christophe M. Monbaliu
- Center
for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, Allée du Six Août 13, 4000 Liège (Sart
Tilman), Belgium
- WEL
Research Institute, Avenue
Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
4
|
Chen TH, Ando A, Shamoto O, Fuse S. Effect of Brønsted Acids on the Activation of Mixed Anhydride/Mixed Carbonic Anhydride and C-Terminal-Free N-Methylated Peptide Synthesis in a Micro-Flow Reactor. Chemistry 2024; 30:e202401402. [PMID: 38719730 DOI: 10.1002/chem.202401402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 06/19/2024]
Abstract
Amidations employing mixed (carbonic) anhydrides have long been favoured in peptide synthesis because of their cost-effectiveness and less waste generation. Despite their long history, no study has compared the effects of additives on the activation of mixed anhydrides and carbonic anhydrides. In this study, we investigated the amidation of mixed (carbonic) anhydride in the presence of a base and/or Brønsted acids. The use of NMI⋅HCl significantly improved the conversion of the mixed carbonic anhydride, while expediting nucleophilic attacks on the desired carbonyl group. In contrast, in the case of mixed anhydrides, neither the conversion nor the desired nucleophilic attack improved significantly. We developed a C-terminus-free N-methylated peptide synthesis method using mixed carbonic anhydrides in a micro-flow reactor. Fourteen N-alkylated peptides were synthesized in moderate to high yields (55-99 %) without severe racemization (<1 %). Additionally, a significant enhancement in the amidation between mixed carbonic anhydrides and bis-TMS-protected N-methyl amino acids with the inclusion of NMI⋅HCl was observed for the first time. In addition, we observed unexpected C-terminal epimerization of the C-terminus-free N-methyl peptides.
Collapse
Affiliation(s)
- Ting-Ho Chen
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Akira Ando
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Otoka Shamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
5
|
Matsuura Y, Fuse S. Rapid in situ generation of 2-(halomethyl)-5-phenylfuran and nucleophilic addition in a microflow reactor. Org Biomol Chem 2024; 22:3448-3452. [PMID: 38595317 DOI: 10.1039/d4ob00358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
2,5-Disubstituted furans are frequently found in pharmaceuticals and bioactive natural products. Nucleophilic substitution reactions on the carbon atom adjacent to the furan ring are useful for producing various furan derivatives. However, the formation of 5-substituted 2-halomethylfuran and the subsequent nucleophilic substitution reactions are often limited by severe undesired reactions caused by the highly reactive halomethylfurans. This paper reports the successful rapid synthesis of various 2,5-disubstituted furans using microflow technology, which suppresses undesired reactions including dimerization and ring opening of the furans. We observed that Brønsted acids had a significant effect on the nucleophilic substitution reaction and the use of HBr and HI gave the best results. A plausible mechanism of the Brønsted acid-mediated nucleophilic substitutions in the developed approach was proposed.
Collapse
Affiliation(s)
- Yuma Matsuura
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
6
|
Donnelly K, Baumann M. Advances in the Continuous Flow Synthesis of 3- and 4-Membered Ring Systems. Chemistry 2024:e202400758. [PMID: 38564288 DOI: 10.1002/chem.202400758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Small carbo- and heterocyclic ring systems have experienced a significant increase in importance in recent years due to their relevance in modern pharmaceuticals, as building blocks for designer materials or as synthetic intermediates. This necessitated the development of new synthetic methods for the preparation of these strained ring systems focusing on effectiveness and scalability. The high ring strain of these entities as well as the use of high-energy reagents and intermediates has often challenged their synthesis. Continuous flow approaches have thus emerged as highly effective means to safely and reliably access these strained scaffolds. In this short review, key developments in this field are summarised showcasing the power of continuous flow approaches for accessing 3- and 4-membered ring systems via thermal, photo- and electrochemical processes.
Collapse
Affiliation(s)
- Kian Donnelly
- School of Chemistry, University College Dublin, Science Centre South, Belfield, Dublin 4, Ireland
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, Belfield, Dublin 4, Ireland
| |
Collapse
|
7
|
Nakabayashi K, Kitamura H, Fuse S. Microflow, Sequential Coupling and Cyclization Approach for Synthesis of Cyclic Phosphotriesters from PCl 3. Chem Asian J 2024:e202400256. [PMID: 38556466 DOI: 10.1002/asia.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
An approach for the synthesis of cyclic phosphotriesters with various ring sizes (5- to 8-membered rings) from phosphorus trichloride and diols was developed. The major challenge in developing this approach is the suppression of the undesired reactions caused by substrates containing multiple highly reactive sites. These undesired reactions were successfully suppressed by microflow technology, which can precisely control the reaction time and temperature. Two optimal conditions were developed, depending on the speed of cyclization. Fifteen cyclic phosphotriesters and their analogs were synthesized. A plausible mechanism for suppressing undesired reactions is proposed.
Collapse
Affiliation(s)
- Kohei Nakabayashi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Kitamura
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
8
|
Laporte AAH, Masson TM, Zondag SDA, Noël T. Multiphasic Continuous-Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes. Angew Chem Int Ed Engl 2024; 63:e202316108. [PMID: 38095968 DOI: 10.1002/anie.202316108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 12/29/2023]
Abstract
The use of reactive gaseous reagents for the production of active pharmaceutical ingredients (APIs) remains a scientific challenge due to safety and efficiency limitations. The implementation of continuous-flow reactors has resulted in rapid development of gas-handling technology because of several advantages such as increased interfacial area, improved mass- and heat transfer, and seamless scale-up. This technology enables shorter and more atom-economic synthesis routes for the production of pharmaceutical compounds. Herein, we provide an overview of literature from 2016 onwards in the development of gas-handling continuous-flow technology as well as the use of gases in functionalization of APIs.
Collapse
Affiliation(s)
- Annechien A H Laporte
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tom M Masson
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Matsuura Y, Fuse S. Micro-flow heteroatom alkylation via TfOH-mediated rapid in situ generation of carbocations and subsequent nucleophile addition. Chem Commun (Camb) 2024; 60:2497-2500. [PMID: 38285468 DOI: 10.1039/d3cc06308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A rapid nucleophilic substitution reaction was developed using carbocations generated from diarylmethanol and trifluoromethanesulfonic acid. Undesired reactions caused by the carbocations were suppressed, presumably due to the rapid and uniform generation of carbocations and the subsequent rapid and uniform distribution of nucleophiles by the micro-flow technology.
Collapse
Affiliation(s)
- Yuma Matsuura
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
10
|
García-Lacuna J, Baumann M. Continuous Flow Synthesis of Nitrosoarenes via Photochemical Rearrangement of Aryl Imines. J Org Chem 2024; 89:617-623. [PMID: 38131303 PMCID: PMC10777388 DOI: 10.1021/acs.joc.3c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Nitrosoarenes are versatile organic building blocks; however, their intrinsic instability and limited synthetic accessibility have so far restricted their widespread use. Herein, we present a new continuous flow route toward these entities that is based on a direct photochemical rearrangement process using o-nitrophenylimines as starting materials. Due to the underlying redox mechanism, a new amide group accompanies the formation of the nitroso group. Crucial to the success of this approach is the use of trifluoroethanol as a solvent and high-power light-emitting diodes (365 nm) as light sources that provide uniform irradiation and high efficiency of the resulting continuous flow method. The process is fast and robust, with high functional group tolerance and high throughput. The formation of the nitroso moiety is supported by full spectroscopic analysis, including X-ray crystallography. The scalability of this flow approach allows access to gram quantities of nitroso species for which we highlight a small set of derivatization reactions underlining their synthetic utility.
Collapse
Affiliation(s)
- Jorge García-Lacuna
- University College Dublin, School of Chemistry, Science Centre South, Belfield, Dublin 4, Ireland
| | - Marcus Baumann
- University College Dublin, School of Chemistry, Science Centre South, Belfield, Dublin 4, Ireland
| |
Collapse
|
11
|
Fuse S, Kanda S, Masui H. One-Flow Synthesis of Substituted Indoles via Sequential 1,2-Addition/Nucleophilic Substitution of Indolyl-3-Carbaldehydes. Chem Asian J 2024; 19:e202300909. [PMID: 37962410 DOI: 10.1002/asia.202300909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
Substituted indoles are important as drugs. A number of valuable indoles have been synthesized via nucleophilic substitution at the 3'-position of indoles. However, the preparation of an indolylmethyl electrophile containing a tertiary carbon at the 3'-position and its subsequent nucleophilic substitution are challenging owing to the instability of the electrophile. Herein, we demonstrated the rapid one-flow synthesis of indoles via sequential 1,2-addition/nucleophilic substitution of indolyl-3-carbaldehydes. The use of a microflow technology helped in suppressing the undesired reactions caused by the unstable intermediates, resulting in significantly higher yields and reproducibility compared to those under batch conditions. A crown ether was effective when 1-alkylindole-3-carboxaldehyde was used as a substrate. However, the crown ether exerted a detrimental effect when 1H-indole-3-carboxaldehyde was used. A total of 15 structurally diverse indole derivatives were obtained in generally acceptable to good yields.
Collapse
Affiliation(s)
- Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Sena Kanda
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
12
|
Rohman N, Ardiansah B, Cahyana AH, Nurhayati. Preparation of azachalcone derivatives vial-proline/ Et 3N-catalyzed aldol condensation and study of their antioxidant potential. MethodsX 2023; 11:102427. [PMID: 37876829 PMCID: PMC10590995 DOI: 10.1016/j.mex.2023.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023] Open
Abstract
Chalcones, with two connected aromatic rings through an α,β-unsaturated carbonyl skeleton, display diverse biological roles like antimalarial, antibacterial, anticancer, and antioxidant activities. This research focuses on crafting azachalcone derivatives from 2-acetylpyridine and aromatic aldehydes using l-proline/Et3N as a catalyst. Refinements encompass catalyst dosage, solvents, temperature, and post-reaction treatments. The optimized approach employs l-proline (0.15 equiv.)/ Et3N (0.30 equiv.) at room temperature in methanol. Derivatives are successfully synthesized in moderate to favorable yields, akin to sodium hydroxide as the benchmark catalyst. Notably, antioxidant assessment via the DPPH method spotlights compound 2b and 2d (100 ppm concentration), showcasing significant antioxidant potency with inhibition percentages of 92.22 % and 74.41 %, respectively.•l-proline/ Et3N is successful to use in aldol condensation reaction.•Azachalcones based 2-acetylpyridine were successfully synthesized using the catalyst.•Azachalcones showed antioxidant activity against DPPH radical.
Collapse
Affiliation(s)
- Nur Rohman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Bayu Ardiansah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Antonius Herry Cahyana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Nurhayati
- Research Center for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN), Pademangan, Jakarta 14430, Indonesia
| |
Collapse
|
13
|
Zhang Z, Zhang Y, Tian Y, Fu Z, Guo J, He G, Li L, Zhao F, Guo X. Continuous Synthesis of Spherical Polyelectrolyte Brushes by Photo-Emulsion Polymerization in a Microreactor. Polymers (Basel) 2023; 15:4576. [PMID: 38231985 PMCID: PMC10708043 DOI: 10.3390/polym15234576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Nanosized spherical polyelectrolyte brushes (SPBs) are ideal candidates for the preparation of nanometal catalysts, protein separation, and medical diagnostics. Until now, SPBs have been synthesized by photo-emulsion polymerization in a batch reactor, which remains challenging to scale up. This paper reports a successful continuous preparation of SPBs by photo-emulsion polymerization in a self-made microreactor. The effects of residence time, monomer concentration, and feed ratios on the conversion of monomers and SPB structures are systematically investigated by dynamic lighting scattering and transmission electron microscopy. Poly(acrylic acid) (PAA) SPBs obtained in a microreactor exhibiting a narrow size distribution with a short reaction time are very effective in inhibiting the calcium carbonate scale and are comparable to those produced in a batch reactor. This work confirms the feasibility of continuous preparation and scaled-up production of SPBs.
Collapse
Affiliation(s)
- Ziyu Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Yuhua Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Yang Tian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Jiangtao Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Guofeng He
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
- Jiangsu Feymer Technology Co., Ltd., Zhangjiagang 215613, China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Fang Zhao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
14
|
Maestro A, Nagy BS, Ötvös SB, Kappe CO. A Telescoped Continuous Flow Enantioselective Process for Accessing Intermediates of 1-Aryl-1,3-diols as Chiral Building Blocks. J Org Chem 2023; 88:15523-15529. [PMID: 37844195 PMCID: PMC10629223 DOI: 10.1021/acs.joc.3c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A telescoped continuous flow process is reported for the enantioselective synthesis of chiral precursors of 1-aryl-1,3-diols, intermediates in the synthesis of ezetimibe, dapoxetine, duloxetine, and atomoxetine. The two-step sequence consists of an asymmetric allylboration of readily available aldehydes using a polymer-supported chiral phosphoric acid catalyst to introduce asymmetry, followed by selective epoxidation of the resulting alkene. The process is highly stable for at least 7 h and represents a transition-metal free enantioselective approach to valuable 1-aryl-1,3-diols.
Collapse
Affiliation(s)
- Aitor Maestro
- Department of Organic Chemistry I, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Institute of Chemistry, University of Graz, NAWI Graz, A-8010 Graz, Austria
| | - Bence S Nagy
- Institute of Chemistry, University of Graz, NAWI Graz, A-8010 Graz, Austria
| | - Sándor B Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), A-8010 Graz, Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), A-8010 Graz, Austria
| |
Collapse
|
15
|
Peña LF, González-Andrés P, Parte LG, Escribano R, Guerra J, Barbero A, López E. Continuous Flow Chemistry: A Novel Technology for the Synthesis of Marine Drugs. Mar Drugs 2023; 21:402. [PMID: 37504932 PMCID: PMC10381277 DOI: 10.3390/md21070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
In this perspective, we showcase the benefits of continuous flow chemistry and photochemistry and how these valuable tools have contributed to the synthesis of organic scaffolds from the marine environment. These technologies have not only facilitated previously described synthetic pathways, but also opened new opportunities in the preparation of novel organic molecules with remarkable pharmacological properties which can be used in drug discovery programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Enol López
- Department of Organic Chemistry, Campus Miguel Delibes, University of Valladolid, 47011 Valladolid, Spain; (L.F.P.); (P.G.-A.); (L.G.P.); (R.E.); (J.G.); (A.B.)
| |
Collapse
|
16
|
Masui H, Kanda S, Fuse S. Verification of preparations of (1H-indol-3-yl)methyl electrophiles and development of their microflow rapid generation and substitution. Commun Chem 2023; 6:47. [PMID: 36871078 PMCID: PMC9985609 DOI: 10.1038/s42004-023-00837-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although highly reactive (1H-indol-3-yl)methyl electrophiles such as (1H-indol-3-yl)methyl halides are potential precursors for the synthesis of various indole derivatives, some researchers have reported difficulties in their preparation due to concomitant undesired dimerization/oligomerization. Nevertheless, there have been some reports on the preparation of (1H-indol-3-yl)methyl halides. To resolve this contradiction, all the previously reported preparations of (1H-indol-3-yl)methyl halides were examined. However, we could not reproduce any of these preparations, and we revised several structures of indole derivatives. Here we show the rapid (0.02 s) and mild (25 °C) generation of an (1H-indol-3-yl)methyl electrophile that enables the rapid (0.1 s) and mild (25 °C) nucleophilic substitution in a microflow reactor. Eighteen unprotected indole analogues can be successfully synthesized using the developed microflow nucleophilic substitution with various nucleophiles.
Collapse
Affiliation(s)
- Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Sena Kanda
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
17
|
Monbaliu JCM, Legros J. Will the next generation of chemical plants be in miniaturized flow reactors? LAB ON A CHIP 2023; 23:1349-1357. [PMID: 36278262 DOI: 10.1039/d2lc00796g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For decades, a production paradigm based on centralized, stepwise, large scale processes has dominated the chemical industry horizon. While effective to meet an ever increasing demand for high value-added chemicals, the so-called macroscopic batch reactors are also associated with inherent weaknesses and threats; some of the most obvious ones were tragically illustrated over the past decades with major industrial disasters and impactful disruptions of advanced chemical supplies. The COVID pandemic has further emphasized that a change in paradigm was necessary to sustain chemical production with an increased safety, reliable supply chains and adaptable productivities. More than a decade of research and technology development has led to alternative and effective chemical processes relying on miniaturised flow reactors (a.k.a. micro and mesofluidic reactors). Such miniaturised reactors bear the potential to solve safety concerns and to improve the reliability of chemical supply chains. Will they initiate a new paradigm for a more localized, safe and reliable chemical production?
Collapse
Affiliation(s)
- Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Liège (Sart Tilman), Belgium.
| | - Julien Legros
- COBRA Laboratory, CNRS, UNIROUEN, INSA Rouen, Normandie Université, 76000 Rouen, France.
| |
Collapse
|
18
|
Flow platform for the synthesis of benzodiazepines. J Flow Chem 2023. [DOI: 10.1007/s41981-022-00243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
19
|
Nagy BS, Fu G, Hone CA, Kappe CO, Ötvös SB. Harnessing a Continuous-Flow Persulfuric Acid Generator for Direct Oxidative Aldehyde Esterifications. CHEMSUSCHEM 2023; 16:e202201868. [PMID: 36377674 PMCID: PMC10107610 DOI: 10.1002/cssc.202201868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Persulfuric acid is a well-known oxidant in various industrial-scale purification procedures. However, due to its tendency toward explosive decomposition, its usefulness in organic synthesis remained largely underexplored. Herein, a continuous in situ persulfuric acid generator was developed and applied for oxidative esterification of aldehydes under flow conditions. Sulfuric acid served as a readily available and benign precursor to form persulfuric acid in situ. By taking advantage of the continuous-flow generator concept, safety hazards were significantly reduced, whilst a robust and effective approach was ensured for direct transformations of aldehydes to valuable esters. The process proved useful for the transformation of diverse aliphatic as well as aromatic aldehydes, while its preparative capability was verified by the multigram-scale synthesis of a pharmaceutically relevant key intermediate. The present flow protocol demonstrates the safe, sustainable, and scalable application of persulfuric acid in a manner that would not be amenable to conventional batch processing.
Collapse
Affiliation(s)
- Bence S. Nagy
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
| | - Gang Fu
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
| | - Christopher A. Hone
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
- Center for Continuous Flow Synthesis and Processing (CC FLOW)Research CenterPharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13A-8010GrazAustria
| | - C. Oliver Kappe
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
- Center for Continuous Flow Synthesis and Processing (CC FLOW)Research CenterPharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13A-8010GrazAustria
| | - Sándor B. Ötvös
- Institute of ChemistryUniversity of GrazNAWI GrazHeinrichstrasse 28A-8010GrazAustria
- Center for Continuous Flow Synthesis and Processing (CC FLOW)Research CenterPharmaceutical Engineering GmbH (RCPE)Inffeldgasse 13A-8010GrazAustria
| |
Collapse
|
20
|
Electrophilic cyclization of reticuline-type alkaloids in flow via o-quinol intermediates. J Flow Chem 2023. [DOI: 10.1007/s41981-022-00256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Scott D, Briggs NEB, Formosa A, Burnett A, Desai B, Hammersmith G, Rapp K, Capellades G, Myerson AS, Roper TD. Impurity Purging through Systematic Process Development of a Continuous Two-Stage Crystallization. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Drew Scott
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23284, United States
| | - Naomi E. B. Briggs
- On Demand Pharmaceuticals, 1550 E Gude Drive, Rockville, Maryland20850, United States
| | - Anna Formosa
- On Demand Pharmaceuticals, 1550 E Gude Drive, Rockville, Maryland20850, United States
| | - Annessa Burnett
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23284, United States
| | - Bimbisar Desai
- TCG GreenChem, Inc., 701 Charles Ewing Boulevard, Ewing, New Jersey08628, United States
| | - Greg Hammersmith
- On Demand Pharmaceuticals, 1550 E Gude Drive, Rockville, Maryland20850, United States
| | - Kersten Rapp
- On Demand Pharmaceuticals, 1550 E Gude Drive, Rockville, Maryland20850, United States
| | - Gerard Capellades
- Henry M. Rowan College of Engineering, Rowan University, Glassboro, New Jersey08028, United States
| | - Allan S. Myerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Thomas D. Roper
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23284, United States
| |
Collapse
|
22
|
Brown EE. Minireview: recent efforts toward upgrading lignin-derived phenols in continuous flow. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Kaisin G, Bovy L, Joyard Y, Maindron N, Tadino V, Monbaliu JCM. A perspective on automated advanced continuous flow manufacturing units for the upgrading of biobased chemicals toward pharmaceuticals. J Flow Chem 2022; 13:1-15. [PMID: 36467977 PMCID: PMC9707424 DOI: 10.1007/s41981-022-00247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/04/2022] [Indexed: 11/30/2022]
Abstract
Biomass is a renewable, almost infinite reservoir of a large diversity of highly functionalized chemicals. The conversion of biomass toward biobased platform molecules through biorefineries generally still lacks economic viability. Profitability could be enhanced through the development of new market opportunities for these biobased platform chemicals. The fine chemical industry, and more specifically the manufacturing of pharmaceuticals is one of the sectors bearing significant potential for these biobased building blocks to rapidly emerge and make a difference. There are, however, still many challenges to be dealt with before this market can thrive. Continuous flow technology and its integration for the upgrading of biobased platform molecules for the manufacturing of pharmaceuticals is foreseen as a game-changer. This perspective reflects on the main challenges relative to chemical, process, regulatory and supply chain-related burdens still to be addressed. The implementation of integrated continuous flow processes and their automation into modular units will help for tackling with these challenges. Graphical abstract
Collapse
Affiliation(s)
- Geoffroy Kaisin
- SynLock SRL, Rue de la Vieille Sambre 153, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Loïc Bovy
- Center for Integrated Technology and Organic Synthesis, Research Unit MolSys, University of Liège, B-4000 Liège, Sart Tilman, Belgium
| | - Yoann Joyard
- SynLock SRL, Rue de la Vieille Sambre 153, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Nicolas Maindron
- SynLock SRL, Rue de la Vieille Sambre 153, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Vincent Tadino
- SynLock SRL, Rue de la Vieille Sambre 153, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Research Unit MolSys, University of Liège, B-4000 Liège, Sart Tilman, Belgium
| |
Collapse
|
24
|
Masui H, Fuse S. Micro-Flow <i>N</i>-Acylation Using Highly Electrophilic Acyl Ammonium Cations for Peptide and Urethane-Protected <i>N</i>-Carboxyanhydride Syntheses. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Al‐Naji M, Brandi F, Drieß M, Rosowski F. From Lignin to Chemicals: An Expedition from Classical to Modern Catalytic Valorization Technologies. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Majd Al‐Naji
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
| | - Francesco Brandi
- KU Leuven Center for Sustainable Catalysis and Engineering Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Matthias Drieß
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
- Technische Universität Berlin Department of Chemistry, Metalorganics and Inorganic Materials Straße des 17. Juni 115, Sekr. C2 10623 Berlin Germany
| | - Frank Rosowski
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
- BASF SE Process Research and Chemical Engineering 67056 Ludwigshafen Germany
| |
Collapse
|
26
|
Murakami Y, Inoue K, Akiyama R, Orita Y, Shimoyama Y. LipTube: Liposome Formation in the Tube Process Using Supercritical CO 2. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuya Murakami
- Department of Industrial Chemistry, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo125-8585, Japan
| | - Keita Inoue
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| | - Ryunosuke Akiyama
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| | - Yasuhiko Orita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| | - Yusuke Shimoyama
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1 S1-33, Meguro-ku, Tokyo152-8550, Japan
| |
Collapse
|
27
|
Dhara D, Dhara A, Murphy PV, Mulard LA. Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis. Carbohydr Res 2022; 521:108644. [PMID: 36030632 DOI: 10.1016/j.carres.2022.108644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chemical synthesis is a powerful tool to access homogeneous complex glycans, which relies on protecting group (PG) chemistry. However, the overall efficiency of chemical glycan assembly is still low when compared to oligonucleotide or oligopeptide synthesis. There have been many contributions giving rise to collective improvement in carbohydrate synthesis that includes PG manipulation and stereoselective glycoside formation and some of this chemistry has been transferred to the solid phase or adapted for programmable one pot synthesis approaches. However, after all glycoside bond formation reactions are completed, the global deprotection (GD) required to give the desired target OS can be challenging. Difficulties observed in the removal of permanent PGs to release the desired glycans can be due to the number and diversity of PGs present in the protected OSs, nature and structural complexity of glycans, etc. Here, we have reviewed the difficulties associated with the removal of PGs from densely protected OSs to obtain their free glycans. In particularly, this review focuses on the challenges associated with hydrogenolysis of benzyl groups, saponification of esters and functional group interconversion such as oxidation/reduction that are commonly performed in GD stage. More generally, problems observed in the removal of permanent PGs is reviewed herein, including benzyl, acyl (levulinoyl, acetyl), N-trichloroacetyl, N-2,2,2-trichloroethoxycarbonyl, N-phthaloyl etc. from a number of fully protected OSs to release the free sugar, that have been previously reported in the literature.
Collapse
Affiliation(s)
- Debashis Dhara
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France; School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France
| |
Collapse
|
28
|
Synthesis of new heterocyclic resveratrol analogues in milli- and microreactors: intensification of the Wittig reaction. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
29
|
Martins GM, Magalhães MFA, Brocksom TJ, Bagnato VS, de Oliveira KT. Scaled up and telescoped synthesis of propofol under continuous-flow conditions. J Flow Chem 2022; 12:371-379. [PMID: 35873601 PMCID: PMC9295094 DOI: 10.1007/s41981-022-00234-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
Herein we report a machine-assisted and scaled-up synthesis of propofol, a short-acting drug used in procedural sedation, which is extensively in demand during this COVID-19 pandemic. The continuous-flow protocol proved to be efficient, with great potential for industrial translation, reaching a production up to 71.6 g per day with process intensification (24 h-continuous experiments). We have successfully telescoped a continuous flow approach obtaining 5.74 g of propofol with productivity of 23.0 g/day (6 h-continuous experiment), proving the robustness of the method in both separated and telescoped modes. Substantial progress was also achieved for the in-line workup, which provides greater safety and less waste, also relevant for industrial application. Overall, the synthetic strategy is based on the Friedel-Crafts di-isopropylation of low-cost p-hydroxybenzoic acid, followed by a decarboxylation reaction, giving propofol in up to 84% overall yield and very low by-product formation. The continuous flow synthesis of propofol 3 is presented as a two-step protocol. The isopropylated intermediate 2 was obtained from 4-hydroxybenzoic acid (1) in up 43.8 g, 85% yield and 30 min residence time. Propofol 3 was then obtained in 71.6 g, 87% yield, and 16 min residence time. A safe and cost-competitive machine-assisted protocol is described with a process intensification demonstration (24 h experiments) and a telescoped process intensification (6 h).
Collapse
Affiliation(s)
- Guilherme M. Martins
- Department of Chemistry, Federal University of Sao Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
- Sao Carlos Institute of Physics – University of Sao Paulo (USP), São Carlos, SP Brazil
| | - Maria F. A. Magalhães
- Department of Chemistry, Federal University of Sao Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Timothy J. Brocksom
- Department of Chemistry, Federal University of Sao Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Vanderlei S. Bagnato
- Sao Carlos Institute of Physics – University of Sao Paulo (USP), São Carlos, SP Brazil
| | - Kleber T. de Oliveira
- Department of Chemistry, Federal University of Sao Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| |
Collapse
|
30
|
Kitamura H, Otake Y, Sugisawa N, Sugisawa H, Ida T, Nakamura H, Fuse S. Sequential Nucleophilic Substitution of Phosphorus Trichloride with Alcohols in a Continuous‐Flow Reactor and Consideration of a Mechanism for Reduced Over‐reaction through the Addition of Imidazole. Chemistry 2022; 28:e202200932. [DOI: 10.1002/chem.202200932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Hiroshi Kitamura
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Yuma Otake
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Naoto Sugisawa
- Department of Basic Medicinal Sciences Graduate School of Pharmaceutical Sciences Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Hiroki Sugisawa
- Division of Material Chemistry Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Tomonori Ida
- Division of Material Chemistry Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences Graduate School of Pharmaceutical Sciences Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| |
Collapse
|
31
|
Vinet L, Di Marco L, Kairouz V, Charette AB. Process Intensive Synthesis of Propofol Enabled by Continuous Flow Chemistry. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Laurent Vinet
- Centre in Green Chemistry and Catalysis, Center for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Lorenzo Di Marco
- Centre in Green Chemistry and Catalysis, Center for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Vanessa Kairouz
- Centre in Green Chemistry and Catalysis, Center for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - André B. Charette
- Centre in Green Chemistry and Catalysis, Center for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
32
|
Mandai K, Yamamoto T, Mandai H, Nagaki A. Rapid gas–liquid reaction in flow. Continuous synthesis and production of cyclohexene oxide. Beilstein J Org Chem 2022; 18:660-668. [PMID: 35821694 PMCID: PMC9235905 DOI: 10.3762/bjoc.18.67] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
The enhanced reaction rate in the epoxidation of cyclohexene with air as an oxidant was discovered without any added catalyst utilizing a continuous flow reactor constructed with readily available stainless steel parts and devices. This continuous-flow process demonstrates a significant improvement in reaction time for highly selective epoxide production over the batch process due to the efficient mass transfer between the liquid phase and air. The flow process discovered was operated continuously with good operational stability, evaluated by a constant high yield of cyclohexene oxide, to obtain the desired product with high productivity.
Collapse
Affiliation(s)
- Kyoko Mandai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto, 615-8510, Japan
- Department of Pharmaceutical Science, Faculty of Pharmaceutical Science, Gifu University of Medical Science, Nijigaoka, Kani-city, Gifu Prefecture, 509-0293, Japan
| | - Tetsuya Yamamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Hiroki Mandai
- Department of Pharmaceutical Science, Faculty of Pharmaceutical Science, Gifu University of Medical Science, Nijigaoka, Kani-city, Gifu Prefecture, 509-0293, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto, 615-8510, Japan
| |
Collapse
|
33
|
|
34
|
Masui H, Fuse S. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
35
|
Nagy BS, Kappe CO, Ötvös SB. N
‐Hydroxyphthalimide Catalyzed Aerobic Oxidation of Aldehydes under Continuous Flow Conditions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bence S. Nagy
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
| | - C. Oliver Kappe
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| | - Sándor B. Ötvös
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| |
Collapse
|
36
|
Tra BBJ, Abollé A, Coeffard V, Felpin FX. Flow Conditions‐Controlled Divergent Oxidative Cyclization of Reticuline‐type Alkaloids to Aporphine and Morphinandienone Natural Products. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Francois-Xavier Felpin
- Nantes University: Universite de Nantes UFR Sciences et Techniques, UMR CNRS 6230, CEISAM 2 Rue de la Houssiniere 44322 Nantes FRANCE
| |
Collapse
|
37
|
Shan C, Xu J, Cao L, Liang C, Cheng R, Yao X, Sun M, Ye J. Rapid Synthesis of α-Chiral Piperidines via a Highly Diastereoselective Continuous Flow Protocol. Org Lett 2022; 24:3205-3210. [PMID: 35451304 DOI: 10.1021/acs.orglett.2c00975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A practical continuous flow protocol has been developed using readily accessible N-(tert-butylsulfinyl)-bromoimine and Grignard reagents, providing various functionalized piperidines (34 examples) in superior results (typically >80% yield and with >90:10 dr) within minutes. The high-performance scale-up is smoothly carried out, and efficient synthesis of the drug precursor further showcases its utility. This flow process offers rapid and scalable access to enantioenriched α-substituted piperidines.
Collapse
Affiliation(s)
- Chao Shan
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jinping Xu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Cao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chaoming Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruihua Cheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiantong Yao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Maolin Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinxing Ye
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.,School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
38
|
Okabe R, Sugisawa N, Fuse S. A micro-flow rapid dual activation approach for urethane-protected α-amino acid N-carboxyanhydride synthesis. Org Biomol Chem 2022; 20:3303-3310. [PMID: 35229099 DOI: 10.1039/d2ob00167e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study demonstrated the rapid dual activation (10 s, 20 °C) of a combination of an α-amino acid N-carboxyanhydride and alkyl chloroformate in the synthesis of a urethane-protected α-amino acid N-carboxyanhydride in a micro-flow reactor. The key to success was the combined use of two amines that activated both substrates with proper timing. Three amines, i-Pr2NEt, Me2NBn, or N-ethylmorpholine, were used with pyridine in accordance with the steric bulkiness of a side chain in the α-amino acid N-carboxyanhydride. A variety of 16 urethane-protected α-amino acid N-carboxyanhydrides were synthesized in high yields. The role of amines was investigated based on the measurement of the time-dependent (0.5 to 10 s) decrease of α-amino acid N-carboxyanhydrides and alkyl chloroformates in the presence of amines via flash mixing technology using a micro-flow reactor. It was suggested that the in situ generated acylpyridinium cation was highly active and less prone to causing undesired decomposition compared with the acylammonium cation examined in this study. Thus, even at a very low concentration, the acylpyridinium cation facilitated the desired coupling reaction.
Collapse
Affiliation(s)
- Ren Okabe
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Naoto Sugisawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
39
|
Rosatella AA, Afonso CAM. One-Pot Transformation of Salicylaldehydes to Spiroepoxydienones via the Adler-Becker Reaction in a Continuous Flow. ACS OMEGA 2022; 7:11570-11577. [PMID: 35449962 PMCID: PMC9017099 DOI: 10.1021/acsomega.1c05559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The Adler-Becker reaction is a useful approach for the oxidative dearomatization of salicylic alcohols to spiroepoxydienones and has been applied in the total synthesis of several natural products. Despite the advantages, the substrate and product instability under the reaction conditions can decrease the reaction efficiency, leading to lower yields. Herein, we report the Adler-Becker reaction in a continuous flow for the transformation of reduced salicylaldehydes into spiroepoxydienones in a one-pot approach. For that, a heterogeneous oxidant based on periodate is developed, leading to an efficient continuous flow process, with higher productivity and shorter reaction times, when compared with batch conditions.
Collapse
Affiliation(s)
- Andreia A. Rosatella
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- CBIOS—Universidade
Lusófona’s Research Center for Biosciences & Health
Technologies, Campo Grande,
376, 1749-024 Lisbon, Portugal
| | - Carlos A. M. Afonso
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
40
|
Lehmann H, Ruppen T, Knoepfel T. Scale-Up of Diazonium Salts and Azides in a Three-Step Continuous Flow Sequence. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hansjoerg Lehmann
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Thomas Ruppen
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Thomas Knoepfel
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| |
Collapse
|
41
|
Toupy T, Monbaliu JCM. Intensified Continuous Flow Michaelis–Arbuzov Rearrangement toward Alkyl Phosphonates. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Toupy
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège (Sart Tilman), B-4000 Liège, Belgium
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège (Sart Tilman), B-4000 Liège, Belgium
| |
Collapse
|
42
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 250] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Nagy BS, Llanes P, Pericas MA, Kappe CO, Ötvös SB. Enantioselective Flow Synthesis of Rolipram Enabled by a Telescoped Asymmetric Conjugate Addition-Oxidative Aldehyde Esterification Sequence Using in Situ-Generated Persulfuric Acid as Oxidant. Org Lett 2022; 24:1066-1071. [PMID: 35050638 PMCID: PMC8822492 DOI: 10.1021/acs.orglett.1c04300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel approach is reported for the enantioselective flow synthesis of rolipram comprising a telescoped asymmetric conjugate addition-oxidative aldehyde esterification sequence followed by trichlorosilane-mediated nitro group reduction and concomitant lactamization. The telescoped process takes advantage of a polystyrene-supported chiral organocatalyst along with in situ-generated persulfuric acid as a robust and scalable oxidant for direct aldehyde esterification. This approach demonstrates significantly improved productivity compared with earlier methodologies while ensuring environmentally benign metal-free conditions.
Collapse
Affiliation(s)
- Bence S Nagy
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Patricia Llanes
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, E-43007 Tarragona, Spain
| | - Miquel A Pericas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, E-43007 Tarragona, Spain.,Departament de Química Inorgànica i Orgànica, Universitat de Barcelona (UB), E-08028 Barcelona, Spain
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
| | - Sándor B Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
| |
Collapse
|
44
|
Simon K, Sagmeister P, Munday RH, Leslie K, Hone CA, Kappe CO. Automated Flow and Real-Time Analytics Approach for Screening Functional Group Tolerance in Heterogeneous Catalytic Reactions. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00059h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterogeneous hydrogenation reactions are widely used in synthesis, and performing them using continuous flow technologies addresses many of the safety, scalability and sustainability issues. However, one of the main potential...
Collapse
|
45
|
Morodo R, Riva R, van den Akker NMS, Molin DG, Jerome C, Monbaliu JCM. Accelerating the End-to-end Production of Cyclic Phosphate Monomers with Modular Flow Chemistry. Chem Sci 2022; 13:10699-10706. [DOI: 10.1039/d2sc02891c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
Biocompatibility, tunable degradability, broad functionalities of polyphosphoesters and their potential for biomedical applications stimulated a renewed interest from the Chemistry, Medicinal Chemistry and Polymer Sciences. Commercial applications of polyphosphoesters as...
Collapse
|
46
|
Desrues T, Legros J, Jubault P, Poisson T. Flow synthesis of an α-amino boronic ester as a key precursor of bortezomib drug. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00099g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The flow synthesis of the optically active α-amino boronate precursor of the bortezomib drug is described, including a key diastereoselective Matteson rearrangement.
Collapse
Affiliation(s)
- Titouan Desrues
- INSA Rouen, CNRS, UNIROUEN, COBRA, Normandie Univ, 76600 Rouen, France
| | - Julien Legros
- INSA Rouen, CNRS, UNIROUEN, COBRA, Normandie Univ, 76600 Rouen, France
| | - Philippe Jubault
- INSA Rouen, CNRS, UNIROUEN, COBRA, Normandie Univ, 76600 Rouen, France
| | - Thomas Poisson
- INSA Rouen, CNRS, UNIROUEN, COBRA, Normandie Univ, 76600 Rouen, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris, France
| |
Collapse
|
47
|
Chaudhari MB, Gupta P, Llanes P, Zhou L, Zanda N, Pericàs MA. An enantio- and diastereoselective approach to indoloquinolizidines in continuous flow. Org Biomol Chem 2022; 20:8273-8279. [DOI: 10.1039/d2ob01462a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A solvent-free enantioselective Michael addition mediated by a polymer-supported Jørgensen–Hayashi catalyst and a domino Pictet–Spengler plus lactamisation sequence has been reported in continuous flow.
Collapse
Affiliation(s)
- Moreshwar B. Chaudhari
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Prachi Gupta
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Patricia Llanes
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Leijie Zhou
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Nicola Zanda
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
48
|
Alves AJS, Silvestre JAD, Pinho e Melo TMVD. Synthesis of novel chiral spiro-β-lactams from nitrile oxides and 6-( Z)-(benzoylmethylene)penicillanate: batch, microwave-induced and continuous flow methodologies. RSC Adv 2022; 12:30879-30891. [PMID: 36349033 PMCID: PMC9614636 DOI: 10.1039/d2ra04848e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022] Open
Abstract
The first examples of the diastereoselective 1,3-dipolar cycloaddition reaction of nitrile oxides and 6-alkylidene penicillanates leading to chiral spiroisoxazoline-penicillanates are reported. The synthesis of this new type of penicillanate involved the selective generation of two consecutive stereogenic centers, including a quaternary chiral center. Furthermore, the present work also describes the outcomes of these 1,3-dipolar cycloaddition reactions under three distinct reaction conditions (conventional heating, microwave irradiation and continuous flow). The successful use of the continuous flow technique as well as the proper selection of the reaction media allowed the development of a sustainable route to chiral spiroisoxazoline-penicillanates. The first examples of the diastereoselective 1,3-dipolar cycloaddition reaction of nitrile oxides and 6-alkylidene penicillanates leading to chiral spiroisoxazoline-penicillanates are reported.![]()
Collapse
Affiliation(s)
- Américo J. S. Alves
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, 3004-535 Coimbra, Portugal
| | - João A. D. Silvestre
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Teresa M. V. D. Pinho e Melo
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
49
|
Knoll S, Jusner CE, Sagmeister P, Williams JD, Hone CA, Horn M, Kappe CO. Autonomous model-based experimental design for rapid reaction development. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00208f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To automate and democratize model-based experimental design for flow chemistry applications, we report the development of open-source software, Optipus. Reaction models are built in an iterative and automated fashion, for rapid reaction development.
Collapse
Affiliation(s)
- Sebastian Knoll
- Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21b, 8010 Graz, Austria
| | - Clemens E. Jusner
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Peter Sagmeister
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Jason D. Williams
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Christopher A. Hone
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Martin Horn
- Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21b, 8010 Graz, Austria
| | - C. Oliver Kappe
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
50
|
Polterauer D, Roberge DM, Hanselmann P, Littich R, Hone CA, Kappe CO. A continuous flow investigation of sulfonyl chloride synthesis using N-chloroamides: optimization, kinetics and mechanism. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop a continuous flow protocol for the synthesis of sulfonyl chlorides from disulfides and thiols, using 1,3-dichloro-5,5-dimethylhydantoin (DCH) as a dual-function reagent for oxidative chlorination.
Collapse
Affiliation(s)
- Dominik Polterauer
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | - Paul Hanselmann
- Chemical Manufacturing Technologies, Lonza AG, CH-3930 Visp, Switzerland
| | - Ryan Littich
- Chemical Manufacturing Technologies, Lonza AG, CH-3930 Visp, Switzerland
| | - Christopher A. Hone
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - C. Oliver Kappe
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|