1
|
Melrose J. Separation and Identification of Native Proteoglycans by Composite Agarose-Polyacrylamide Gel Electrophoresis and Immunoblotting. Methods Mol Biol 2023; 2619:187-209. [PMID: 36662471 DOI: 10.1007/978-1-0716-2946-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Composite agarose-polyacrylamide gel electrophoresis (CAPAGE) in gels of 1.2% w/v polyacrylamide and 0.6% w/v agarose can be used to examine the heterogeneity of full-length native proteoglycan populations and their fragments in crude tissue extracts, and when used in conjunction with immunoblotting and specific antibodies to proteoglycan core protein and glycosaminoglycan, side chain epitopes can provide significant information on the level of proteoglycan polydispersity/heterogeneity and a number of proteoglycan populations present in tissue samples. This can be a technically difficult technique, but it reveals significant information on proteoglycans from small tissue samples not possible by any other separation methodology. Native full-length and proteoglycan fragments are examined in this technique something which cannot be done in the popular SDS-PAGE format unless the glycosaminoglycan side chains are first removed. Furthermore, since proteoglycans do not require renaturation from SDS-protein complexes, the proteoglycan populations separated by native electrophoresis are highly reactive with antibodies in immunoblotting procedures. Despite the massive sizes of proteoglycans, transfer conditions have been determined which provide close to quantitative transfer to nitrocellulose membranes without exceeding the binding capacity of such membranes, avoiding bleed-through of the transferred proteoglycans. Development of biotinylated hyaluronan and its application in an affinity blotting procedure has also yielded significant information on aggregatable proteoglycan populations separated by CAPAGE from a number of cartilages and vascular tissues in health and disease. While the CAPAGE system can be a technically demanding technique to master particularly in gel preparation, all other steps are straightforward, and the method yields invaluable information on proteoglycan populations extracted from connective tissues in health and disease that cannot be ascertained by any other technique. Further improvements in the detection of proteoglycan features with the development of novel bio-affinity probes or new antibody preparations are expected to further improve the utility of CAPAGE separation methodology.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia.
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonard's, NSW, Australia.
| |
Collapse
|
2
|
Paul D, Roy A, Nandy A, Datta B, Borar P, Pal SK, Senapati D, Rakshit T. Identification of Biomarker Hyaluronan on Colon Cancer Extracellular Vesicles Using Correlative AFM and Spectroscopy. J Phys Chem Lett 2020; 11:5569-5576. [PMID: 32573237 DOI: 10.1021/acs.jpclett.0c01018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Extracellular vesicles (EVs), naturally occurring nanosized vesicles secreted from cells, are essential for intercellular communication. They carry unique biomolecules on the surface or interior that are of great interest as biomarkers for various pathological conditions such as cancer. In this work, we use high-resolution atomic force microscopy (AFM) and spectroscopy (AFS) techniques to demonstrate differences between EVs derived from colon cancer cells and colon epithelial cells at the single-vesicle level. We observe that EV populations are significantly increased in the cancer cell media compared to the normal cell EVs. We show that both EVs display an EV marker, CD9, while EVs derived from the cancer cells are slightly higher in density. Hyaluronan (HA) is a nonsulfated glycosaminoglycan linked to malignant tumor growth according to recent reports. Interestingly, at the single-vesicle level, colon cancer EVs exhibit significantly increased HA surface densities compared to the normal EVs. Spectroscopic measurements such as Fourier transform infrared (FT-IR), circular dichroism (CD), and Raman spectroscopy unequivocally support the AFM and AFS measurements. To our knowledge, it represents the first report of detecting HA-coated EVs as a potential colon cancer biomarker. Taken together, this sensitive approach will be useful in identifying biomarkers in the early stages of detection and evaluation of cancer.
Collapse
Affiliation(s)
- Debashish Paul
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector - III, Salt Lake City, Kolkata 700106, India
| | - Anuradha Roy
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - Arpita Nandy
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - Brateen Datta
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector - III, Salt Lake City, Kolkata 700106, India
| | - Prateeka Borar
- Department of Biophysics, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector - III, Salt Lake City, Kolkata 700106, India
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - Tatini Rakshit
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector - III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|
3
|
Smith SM, Melrose J. A Retrospective Analysis of the Cartilage Kunitz Protease Inhibitory Proteins Identifies These as Members of the Inter-α-Trypsin Inhibitor Superfamily with Potential Roles in the Protection of the Articulatory Surface. Int J Mol Sci 2019; 20:ijms20030497. [PMID: 30678366 PMCID: PMC6387120 DOI: 10.3390/ijms20030497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Aim: The aim of this study was to assess if the ovine articular cartilage serine proteinase inhibitors (SPIs) were related to the Kunitz inter-α-trypsin inhibitor (ITI) family. Methods: Ovine articular cartilage was finely diced and extracted in 6 M urea and SPIs isolated by sequential anion exchange, HA affinity and Sephadex G100 gel permeation chromatography. Selected samples were also subjected to chymotrypsin and concanavalin-A affinity chromatography. Eluant fractions from these isolation steps were monitored for protein and trypsin inhibitory activity. Inhibitory fractions were assessed by affinity blotting using biotinylated trypsin to detect SPIs and by Western blotting using antibodies to α1-microglobulin, bikunin, TSG-6 and 2-B-6 (+) CS epitope generated by chondroitinase-ABC digestion. Results: 2-B-6 (+) positive 250, 220,120, 58 and 36 kDa SPIs were detected. The 58 kDa SPI contained α1-microglobulin, bikunin and chondroitin-4-sulfate stub epitope consistent with an identity of α1-microglobulin-bikunin (AMBP) precursor and was also isolated by concanavalin-A lectin affinity chromatography indicating it had N-glycosylation. Kunitz protease inhibitor (KPI) species of 36, 26, 12 and 6 kDa were autolytically generated by prolonged storage of the 120 and 58 kDa SPIs; chymotrypsin affinity chromatography generated the 6 kDa SPI. KPI domain 1 and 2 SPIs were separated by concanavalin lectin affinity chromatography, domain 1 displayed affinity for this lectin indicating it had N-glycosylation. KPI 1 and 2 displayed potent inhibitory activity against trypsin, chymotrypsin, kallikrein, leucocyte elastase and cathepsin G. Localisation of versican, lubricin and hyaluronan (HA) in the surface regions of articular cartilage represented probable binding sites for the ITI serine proteinase inhibitors (SPIs) which may preserve articulatory properties and joint function. Discussion/Conclusions: The Kunitz SPI proteins synthesised by articular chondrocytes are members of the ITI superfamily. By analogy with other tissues in which these proteins occur we deduce that the cartilage Kunitz SPIs may be multifunctional proteins. Binding of the cartilage Kunitz SPIs to HA may protect this polymer from depolymerisation by free radical damage and may also protect other components in the cartilage surface from proteolytic degradation preserving joint function.
Collapse
Affiliation(s)
- Susan M Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
- Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| |
Collapse
|
4
|
Harper EI, Sheedy EF, Stack MS. With Great Age Comes Great Metastatic Ability: Ovarian Cancer and the Appeal of the Aging Peritoneal Microenvironment. Cancers (Basel) 2018; 10:E230. [PMID: 29996539 PMCID: PMC6070816 DOI: 10.3390/cancers10070230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Age is one of the biggest risk factors for ovarian cancer. Older women have higher rates of diagnosis and death associated with the disease. In mouse models, it was shown that aged mice had greater tumor burden than their younger counterparts when intraperitoneally injected with ovarian tumor cells. While very few papers have been published looking at the direct link between ovarian cancer metastasis and age, there is a wealth of information on how age affects metastatic microenvironments. Mesothelial cells, the peritoneal extracellular matrix (ECM), fibroblasts, adipocytes and immune cells all exhibit distinct changes with age. The aged peritoneum hosts a higher number of senescent cells than its younger counterpart, in both the mesothelium and the stroma. These senescent cells promote an inflammatory profile and overexpress Matrix Metalloproteinases (MMPs), which remodel the ECM. The aged ECM is also modified by dysregulated collagen and laminin synthesis, increases in age-related crosslinking and increasing ovarian cancer invasion into the matrix. These changes contribute to a vastly different microenvironment in young and aged models for circulating ovarian cancer cells, creating a more welcoming “soil”.
Collapse
Affiliation(s)
- Elizabeth I Harper
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46617, USA.
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
- Integrated Biomedical Sciences Program, University of Notre Dame, South Bend, IN 46617, USA.
| | - Emma F Sheedy
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
- Department of Mathematics, University of Notre Dame, South Bend, IN 46617, USA.
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46617, USA.
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
| |
Collapse
|
5
|
Shu CC, Melrose J. The adolescent idiopathic scoliotic IVD displays advanced aggrecanolysis and a glycosaminoglycan composition similar to that of aged human and ovine IVDs. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:2102-2113. [PMID: 29441417 DOI: 10.1007/s00586-018-5515-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/22/2018] [Accepted: 02/04/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE The present study was designed to ascertain how altered biomechanics in adolescent idiopathic scoliotic (AIS) intervertebral discs (IVDs) affected tissue compositions and aggrecan processing compared to age matched and aged human IVDs. Newborn, 2- and 10-year-old ovine IVDs were also examined. METHODS Aggrecan populations were separated by Sepharose CL2B chromatography, composite agarose polyacrylamide gel electrophoresis (CAPAGE) and identified by immunoblotting. The KS and CS content of IVD tissue extracts from AIS IVDs were compared with age-matched normal adolescent IVDs and with old human IVDs. Extracts from newborn, 2- and 10-year-old ovine IVDs were also examined in a similar manner. RESULTS Adolescent idiopathic scoliotic IVD Aggrecan populations shared similar levels of polydispersity and aggregatability with hyaluronan as old IVD proteoglycans. CAPAGE demonstrated three aggrecan populations in AIS, aged human and ovine IVDs increased polydispersity and mobility in CAPAGE. AIS IVDs had GAG compositions similar to aged human and ovine IVDs. Sulphated KS (5-D-4) and chondroitin-6-sulphate, 3-B-3(+) were markers of tissue maturation, and chondroitin-4-sulphate, 2-B-6(+) was prominent in immature IVDs but its levels were lower in mature IVDs. DISCUSSION Sulphated KS and 3-B-3(+) CS were prominently associated with IVD maturation and AIS IVDs, while the 2-B-6(+) CS isomer was associated with immature IVD tissues. The polydispersity of aggrecan in AIS IVDs, which was similar to in old human and ovine IVDs, reflected altered processing in the AIS IVDs in response to the biomechanical microenvironments the disc cells were exposed to in AIS IVDs. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Cindy C Shu
- Raymond Purves Bone and Joint Research Laboratories, Level 10 Kolling Institute of Medical Research (B6), North Sydney Area Health Authority, University of Sydney at the Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Level 10 Kolling Institute of Medical Research (B6), North Sydney Area Health Authority, University of Sydney at the Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia. .,Department of Surgery, Northern Clinical School, University of Sydney, Sydney, Australia. .,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
6
|
Gallorini M, Berardi AC, Berardocco M, Gissi C, Maffulli N, Cataldi A, Oliva F. Hyaluronic acid increases tendon derived cell viability and proliferation in vitro: comparative study of two different hyaluronic acid preparations by molecular weight. Muscles Ligaments Tendons J 2017; 7:208-214. [PMID: 29264330 DOI: 10.11138/mltj/2017.7.2.208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Hyaluronic Acid (HA) has been already approved by Food and Drug Administration (FDA) for osteoarthritis (OA), while its use in the treatment of tendinopathy is still debated. The aim of this study was to evaluate the effects of two different HA on human rotator cuff tendon derived cells in terms of cell viability, proliferation and apoptosis. Methods An in vitro model was developed on human tendon derived cells from rotator cuff tears to study the effects of two different HA preparations: Sinovial HL® (High-Low molecular weight) (MW: 80-100 kDa) and KDa Sinovial Forte SF (MW: 800-1200), at various concentrations. Tendon derived cells morphology was evaluated after 0, 7 and 14 d of culture. Viability and proliferation were analyzed after 0, 24, and 48 h of culture and apoptosis occurrence was assessed after 24 h of culture. Results All the HAPs tested here increased viability and proliferation, in a dose-dependent manner and they reduced apoptosis at early stages (24 h) compared to control cells (without HAPs). Conclusions HAPs enhanced viability and proliferation and counteracted apoptosis in tendon derived cells.
Collapse
Affiliation(s)
| | - Anna C Berardi
- UOC of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Martina Berardocco
- UOC of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Clarissa Gissi
- UOC of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Nicola Maffulli
- Head of Department of Orthopaedics and Traumatology, Azienda Ospedaliera San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy; Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, London, UK
| | - Amelia Cataldi
- Department of Pharmacy, University G. d'Annunzio, Chieti, Italy
| | - Francesco Oliva
- Department of Orthopedics and Traumatology, University of Rome "Tor Vergata" School of Medicine, Rome, Italy
| |
Collapse
|
7
|
Lord MS, Farrugia BL, Yan CMY, Vassie JA, Whitelock JM. Hyaluronan coated cerium oxide nanoparticles modulate CD44 and reactive oxygen species expression in human fibroblasts. J Biomed Mater Res A 2016; 104:1736-46. [DOI: 10.1002/jbm.a.35704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/10/2016] [Accepted: 03/02/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Megan S. Lord
- Graduate School of Biomedical Engineering, University of New South WalesSydneyNSW 2052 Australia
| | - Brooke L. Farrugia
- Graduate School of Biomedical Engineering, University of New South WalesSydneyNSW 2052 Australia
| | - Claudia M. Y. Yan
- Graduate School of Biomedical Engineering, University of New South WalesSydneyNSW 2052 Australia
| | - James A. Vassie
- Graduate School of Biomedical Engineering, University of New South WalesSydneyNSW 2052 Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering, University of New South WalesSydneyNSW 2052 Australia
| |
Collapse
|
8
|
Osti L, Berardocco M, di Giacomo V, Di Bernardo G, Oliva F, Berardi AC. Hyaluronic acid increases tendon derived cell viability and collagen type I expression in vitro: Comparative study of four different Hyaluronic acid preparations by molecular weight. BMC Musculoskelet Disord 2015; 16:284. [PMID: 26444018 PMCID: PMC4596363 DOI: 10.1186/s12891-015-0735-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/24/2015] [Indexed: 01/25/2023] Open
Abstract
Background Hyaluronic Acid (HA) has been already approved by Food and Drug Administration (FDA) for osteoarthritis (OA), while its use in the treatment of tendinopathy is still debated. The aim of this study was to evaluate in human rotator cuff tendon derived cells the effects of four different HA on cell viability, proliferation, apoptosis and the expression of collagen type I and collagen type III. Methods An in vitro model was developed on human tendon derived cells from rotator cuff tears to study the effects of four different HA preparations (Ps) (sodium hyaluronate MW: 500-730 KDa - Hyalgan®, 1000 kDa Artrosulfur HA®, 1600 KDa Hyalubrix® and 2200 KDa Synolis-VA®) at various concentrations. Tendon derived cells morphology were evaluated after 0, 7 and 14 d of culture. Viability, proliferation, apoptosis were evaluated after 0, 24 and 48 h of culture. The expression and deposition of collagen type I and collagen type III were evaluated after 1, 7 and 14 d of culture. Results All HAPs tested increased viability and proliferation, in dose dependent manner. HAPs already reduce apoptosis at 24 h compared to control cells (without HAPs). Furthermore, HAPs stimulated the synthesis of collagen type I in a dose dependent fashion over 14 d, without increase in collagen type III; moreover, in the presence of Synolis-VA® the expression and deposition of collagen type I was significantly higher as compare with the other HAPs. Conclusions HAPs enhanced viability, proliferation and expression of collagen type I in tendon derived cells.
Collapse
Affiliation(s)
- Leonardo Osti
- Unit of Arthoscopy and Sports Trauma Surgery, Hesperia Hospital, Modena, Italy.
| | - Martina Berardocco
- U.O.C. of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, via Fonte Romana 8, 65125, Pescara, Italy.
| | | | - Graziella Di Bernardo
- U.O.C. of Immunohaematology and Transfusion Medicine, Santo Spirito Hospital, Pescara, Italy.
| | - Francesco Oliva
- Department of Orthopedics and Traumatology, University of Rome "Tor Vergata" School of Medicine, Rome, Italy.
| | - Anna C Berardi
- U.O.C. of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, via Fonte Romana 8, 65125, Pescara, Italy.
| |
Collapse
|
9
|
Lord MS, Day AJ, Youssef P, Zhuo L, Watanabe H, Caterson B, Whitelock JM. Sulfation of the bikunin chondroitin sulfate chain determines heavy chain·hyaluronan complex formation. J Biol Chem 2013; 288:22930-41. [PMID: 23801333 PMCID: PMC3743471 DOI: 10.1074/jbc.m112.404186] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Indexed: 11/06/2022] Open
Abstract
Inter-α-trypsin inhibitor (IαI) is a complex comprising two heavy chains (HCs) that are covalently bound by an ester bond to chondroitin sulfate (CS), which itself is attached to Ser-10 of bikunin. IαI is essential for the trans-esterification of HCs onto hyaluronan (HA). This process is important for the stabilization of HA-rich matrices during ovulation and some inflammatory processes. Bikunin has been isolated previously by anion exchange chromatography with a salt gradient up to 0.5 M NaCl and found to contain unsulfated and 4-sulfated CS disaccharides. In this study, bikunin-containing fractions in plasma and urine were separated by anion exchange chromatography with a salt gradient of 0.1-1.0 M NaCl, and fractions were analyzed for their reactivity with the 4-sulfated CS linkage region antibody (2B6). The fractions that reacted with the 2B6 antibody (0.5-0.8 M NaCl) were found to predominantly contain sulfated CS disaccharides, including disulfated disaccharides, whereas the fractions that did not react with this antibody (0.1-0.5 M NaCl) contained unsulfated and 4-sulfated CS disaccharides. IαI in the 0.5-0.8 M NaCl plasma fraction was able to promote the trans-esterification of HCs to HA in the presence of TSG-6, whereas the 0.1-0.5 M NaCl fraction had a much reduced ability to transfer HC proteins to HA, suggesting that the CS containing 4-sulfated linkage region structures and disulfated disaccharides are involved in the HC transfer. Furthermore, these data highlight that the structure of the CS attached to bikunin is important for the transfer of HC onto HA and emphasize a specific role of CS chain sulfation.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | | | | | | | | | | | |
Collapse
|
10
|
Miwa HE, Gerken TA, Huynh TD, Flory DM, Hering TM. Mammalian expression of full-length bovine aggrecan and link protein: formation of recombinant proteoglycan aggregates and analysis of proteolytic cleavage by ADAMTS-4 and MMP-13. Biochim Biophys Acta Gen Subj 2005; 1760:472-86. [PMID: 16427204 DOI: 10.1016/j.bbagen.2005.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/01/2005] [Accepted: 12/04/2005] [Indexed: 11/18/2022]
Abstract
Aggrecan, a large chondroitin sulfate (CS) and keratan sulfate (KS) proteoglycan, has not previously been expressed as a full-length recombinant molecule. To facilitate structure/function analysis, we have characterized recombinant bovine aggrecan (rbAgg) and link protein expressed in COS-7 cells. We demonstrate that C-terminally truncated rbAgg was not secreted. Gel filtration chromatography of rbAgg and isolated glycosaminoglycan (GAG) chains, and their susceptibility to chondroitinase ABC digestion indicate that the GAG chains are predominantly CS, which likely occupy fewer serine residues than native aggrecan. To confirm functionality, we determined that rbAgg bound hyaluronan and recombinant link protein to form proteoglycan aggregates. In addition, cleavage of rbAgg by ADAMTS-4 revealed that the p68 form of ADAMTS-4 preferentially cleaves within the CS-2 domain, whereas the p40 form only effectively cleaves within the interglobular domain (IGD). MMP-13 cleaved rbAgg within the IGD, but cleaved more rapidly at a site within the CS domains, suggesting a role in C-terminal processing of aggrecan. Our results demonstrate that recombinant aggrecan can be used for in vitro analyses of matrix protease-dependent degradation of aggrecan in the IGD and CS domains, and both recombinant aggrecan and link protein can be used to study the assembly of proteoglycan aggregates with hyaluronan.
Collapse
Affiliation(s)
- Hazuki E Miwa
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
11
|
Amemiya K, Nakatani T, Saito A, Suzuki A, Munakata H. Hyaluronan-binding motif identified by panning a random peptide display library. Biochim Biophys Acta Gen Subj 2005; 1724:94-9. [PMID: 15921857 DOI: 10.1016/j.bbagen.2005.04.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 04/24/2005] [Accepted: 04/25/2005] [Indexed: 11/22/2022]
Abstract
The glycosaminoglycan hyaluronan (HA) is involved in a variety of functions such as cell migration, adhesion, activation of intracellular signaling, metastasis, inflammation and wound repair. These functions of HA are mediated via HA-binding proteins (HABPs). To derive details of the HA-binding site in HABPs, here, we panned a random peptide display library expressed on the E. coli flagellin protein using HA-coated plates. Using this random peptide display library, 40 positive clones were obtained and the nucleotide sequences were determined. As a result, an Arg-Arg sequence, in addition to the known B-X7-B motif, was found to bind to HA. A binding experiment using the IAsys resonant mirror biosensor verified that a peptide containing an Arg-Arg sequence binds to HA.
Collapse
Affiliation(s)
- Kana Amemiya
- Department of Biochemistry, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | | | | | | | | |
Collapse
|
12
|
Schultz K, Rasmussen LM, Ledet T. Expression levels and functional aspects of the hyaluronan receptor CD44. Effects of insulin, glucose, IGF-I, or growth hormone on human arterial smooth muscle cells. Metabolism 2005; 54:287-95. [PMID: 15736104 DOI: 10.1016/j.metabol.2004.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An increased amount of hyaluronan (HA) in the arterial wall is a feature of the diabetic macroangiopathy. The functional consequences of accumulated HA are mediated through binding to CD44. The regulation of this receptor by diabetic metabolic and hormonal factors is, however unknown. The objective of this study was to examine the influence of glucose, insulin, insulin-like growth factor I (IGF-I), and human growth hormone (hGH) on the formation and function of the HA receptor CD44 in cultures of human aortic smooth muscle cells (SMCs). Migration of nonproliferating SMCs were determined by estimating the area covered by cells 6 days after removal of a barrier. Cellular content of standard CD44 and its isoforms, CD44v3 and CD44v6, and HA-binding capacity were measured using a modified enzyme-linked immunosorbent assay procedure. The analysis is made either with antibodies against CD44 or with HA as a ligand. The migration assay showed that glucose, insulin, and IGF-I were able to stimulate SMC migration (2 P < .01). Anti-CD44 antibody inhibited the stimulated migration at most concentrations. Insulin increased HA binding at 100 to 1000 micro U/mL insulin (2 P < .03). CD44 expression was only elevated at 1000 micro U/mL insulin (2 P < .03), whereas CD44 content decreased at 2 ng/mL hGH and increased at 16 ng/mL hGH (2 P < .01). Glucose and IGF-I reduced the amount of the variant isoform CD44v3 (2 P < .01) but did not change the amount of total CD44. CD44v6 was not present on human arterial SMCs. In conclusion, the present data obtained with human arterial SMCs in vitro support a role of CD44 and its isoform, CD44v3, in the SMC response to the metabolic and hormonal disorders of diabetes.
Collapse
Affiliation(s)
- Kirsten Schultz
- Research Laboratory for Biochemical Pathology, Aarhus Kommunehospital, DK-8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
13
|
Segura T, Anderson BC, Chung PH, Webber RE, Shull KR, Shea LD. Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 2005; 26:359-71. [PMID: 15275810 DOI: 10.1016/j.biomaterials.2004.02.067] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 02/20/2004] [Indexed: 11/22/2022]
Abstract
The physiological activity of hyaluronic acid (HA) polymers and oligomers makes it a promising material for a variety of applications. The development of HA-hydrogel scaffolds with improved mechanical stability against degradation and biochemical functionality may enhance their application to tissue engineering. In this report, a crosslinking strategy targeting the alcohol groups via a poly(ethylene glycol) diepoxide crosslinker was investigated for the generation of degradable HA hydrogels. To provide support for cell adhesion in vitro, collagen was incorporated into the HA solution prior to the crosslinking process. The hydrogels have a continuous exterior and a porous interior, with pore diameters ranging from 6 to 9 microm. HA and HA-collagen hydrogels degrade in the presence of hyaluronidase and collagenase enzymes, indicating that the chemical modification does not prevent biodegradation. Complete degradation of the hydrogels occurred within 14 days in hyaluronidase (100 U/ml) and 3 days in collagenase (66 U/ml). Pattern transfer was employed to introduce a surface topography onto the hydrogel, which was able to orient cell growth. Furthermore, the hydrogels could be functionalized with the biomolecule neutravidin by incorporation of biotin along the HA backbone. This biotinylation approach may allow attachment of bioactive molecules that are conjugated to avidin.
Collapse
Affiliation(s)
- Tatiana Segura
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, E156 Evanston, IL 60208-3120, USA
| | | | | | | | | | | |
Collapse
|
14
|
Chockalingam PS, Zeng W, Morris EA, Flannery CR. Release of hyaluronan and hyaladherins (aggrecan G1 domain and link proteins) from articular cartilage exposed to ADAMTS-4 (aggrecanase 1) or ADAMTS-5 (aggrecanase 2). ACTA ACUST UNITED AC 2004; 50:2839-48. [PMID: 15457452 DOI: 10.1002/art.20496] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine whether aggrecanase (ADAMTS) activities in articular cartilage can directly lead to the release of hyaluronan (HA) and hyaladherins (aggrecan G1 domain and link proteins), as may occur ex vivo during stimulation of cartilage explants with interleukin-1 (IL-1) or retinoic acid or in vivo in synovial joints during aging and joint pathology. METHODS Bovine articular cartilage discs (live or freeze-killed) were cultured in the presence of IL-1 or were incubated in digestion buffer containing recombinant human ADAMTS-4 (rHuADAMTS-4; aggrecanase 1) or rHuADAMTS-5 (aggrecanase 2). Culture media, digestion supernatants, and tissue extracts were assayed for sulfated glycosaminoglycan (sGAG) content and analyzed by Western blotting to detect aggrecanase-generated G1 domain (using neoepitope monoclonal antibody AGG-C1/anti-NITEGE(373)) and link proteins (using monoclonal antibody 8-A-4), as well as by quantitative enzyme-linked immunosorbent assays to detect aggrecanase-generated G1 domain (G1-NITEGE(373)) and HA. RESULTS IL-1 treatment of live cartilage explants induced a time-dependent release of sGAG, aggrecanase-generated G1 domain (G1-NITEGE(373)), and HA into the culture media. Exposure of live or freeze-killed articular cartilage discs to rHuADAMTS-4 or rHuADAMTS-5 resulted in a dose- and time-dependent release of sGAG and hyaluronan from the tissue, accompanied by a concomitant release of functionally intact hyaladherins (aggrecan G1-NITEGE(373) and link proteins). CONCLUSION Coincident with aggrecanolysis, aggrecanase activities in articular cartilage may actuate the release of HA and associated hyaladherins, thereby further compromising the integrity of the cartilage matrix during degenerative joint diseases such as osteoarthritis.
Collapse
|
15
|
Moyer KE, Ehrlich HP. Modulation of human fibroblast gap junction intercellular communication by hyaluronan. J Cell Physiol 2003; 196:165-70. [PMID: 12767052 DOI: 10.1002/jcp.10288] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The composition of the extracellular matrix changes during dermal repair. Initially, hyaluronan (HA) concentration is high, however, by day 3, HA is eliminated. HA optimizes collagen organization within granulation tissue. One possible mechanism of HA modulation of collagen packing is through the promotion of gap junction intercellular communication (GJIC). Gap junctions are gated channels that allow rapid intercellular communication and synchronization of coupled cell activities. The gap junction channel is composed of connexin (Cx) proteins that form a gated channel between coupled cells. HA is reported to enhance Cx43 expression in transformed fibroblasts. GJIC was quantified by the scrape loading technique and reported as a coupling index. The coupling index for human dermal fibroblasts was 4.6 +/- 0.2, while the coupling index for fibroblasts treated with HA more than doubled to 10.6 +/- 0.7. By Western blot analysis no differences were appreciated in the protein levels of Cx43 or beta-catenin, a protein involved in the translocation of Cx to the cell surface. By immuno-histology Cx43 and beta-catenin were evenly distributed throughout the cell in controls, but in cells treated with HA these proteins were co-localized to the cell surface. Coupled fibroblasts are reported to enhance the organization of collagen fibrils. It is proposed that HA increases the accumulation of Cx43 and beta-catenin on the cell surface, leading to greater GJIC and enhanced collagen organization.
Collapse
Affiliation(s)
- K E Moyer
- Division of Plastic Surgery, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | | |
Collapse
|
16
|
Dowthwaite GP, Flannery CR, Flannelly J, Lewthwaite JC, Archer CW, Pitsillides AA. A mechanism underlying the movement requirement for synovial joint cavitation. Matrix Biol 2003; 22:311-22. [PMID: 12935816 DOI: 10.1016/s0945-053x(03)00037-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many studies have highlighted the importance of movement-induced mechanical stimuli in the development of functional synovial joints. However, such phenomenological results have failed to provide a full explanation of the mechanism essential for the morphogenesis of fluid-filled joint cavities. We have previously demonstrated that the large glycosaminoglycan hyaluronan (HA), in association with its principal cell surface receptor CD44, plays a major role during the morphogenesis of chick joints. We have taken cells from the surface of recently cavitated joints and subjected them to a brief period of dynamic mechanical strain (3800 microE for 10 min) and measured changes in HA synthesis/release, CD44 expression and HA synthase gene expression. In addition, we subjected cells to matrix depletion prior to the application of mechanical strain in order to examine any potential modulatory function of the ECM during the cell response to strain. Removal of the cell-associated HA-containing matrix with hyaluronidase significantly increased the release of HA into tissue culture media over 24 h and is associated with increased CD44 expression, alterations in HA synthase gene expression and enhanced binding of HA to the cell surface. Such changes in HA release were shown to be blocked by addition of exogenous HA and synergistically enhanced by the application of dynamic mechanical strain. These results show that cell-matrix interactions modify the response of embryonic cells to mechanical strain and provide further insight into the mechano-dependent mechanism of joint cavity morphogenesis.
Collapse
Affiliation(s)
- G P Dowthwaite
- School of Biosciences and Cardiff Institute of Tissue Engineering and Repair, University of Wales Cardiff, PO Box 900, Museum Avenue, Cardiff CF10 3US, UK
| | | | | | | | | | | |
Collapse
|
17
|
Flannery CR, Zeng W, Corcoran C, Collins-Racie LA, Chockalingam PS, Hebert T, Mackie SA, McDonagh T, Crawford TK, Tomkinson KN, LaVallie ER, Morris EA. Autocatalytic cleavage of ADAMTS-4 (Aggrecanase-1) reveals multiple glycosaminoglycan-binding sites. J Biol Chem 2002; 277:42775-80. [PMID: 12202483 DOI: 10.1074/jbc.m205309200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADAMTS-4, also referred to as aggrecanase-1, is a glutamyl endopeptidase capable of generating catabolic fragments of aggrecan analogous to those released from articular cartilage during degenerative joint diseases such as osteoarthritis. Efficient aggrecanase activity requires the presence of sulfated glycosaminoglycans (GAGs) attached to the aggrecan core protein, implying the contribution of substrate recognition/binding site(s) to ADAMTS-4 activity. In the present study, we demonstrate that full-length ADAMTS-4 (M(r) approximately 68,000) undergoes autocatalytic C-terminal truncation to generate two discrete isoforms (M(r) approximately 53,000 and M(r) approximately 40,000), which exhibit a marked reduction in affinity of binding to sulfated GAGs. C-terminal sequencing and mass analyses revealed that the GAG-binding thrombospondin type I motif was retained following autocatalysis, indicating that sites present in the C-terminal cysteine (cys)-rich and/or spacer domains also effect binding of full-length ADAMTS-4 to sulfated GAGs. Binding-competition experiments conducted using native and deglycosylated aggrecan provided direct evidence for interaction of the ADAMTS-4 cysteine-rich/spacer domains with aggrecan GAGs. Furthermore, synthetic peptides mimicking putative (consensus) GAG-binding sequences located within the ADAMTS-4 cysteine-rich and spacer domains competitively blocked binding of sulfated GAGs to full-length ADAMTS-4, thereby identifying multiple GAG-binding sites, which may contribute to the regulation of ADAMTS-4 function.
Collapse
|
18
|
Dowthwaite GP, Ward AC, Flannely J, Suswillo RF, Flannery CR, Archer CW, Pitsillides AA. The effect of mechanical strain on hyaluronan metabolism in embryonic fibrocartilage cells. Matrix Biol 1999; 18:523-32. [PMID: 10607914 DOI: 10.1016/s0945-053x(99)00044-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The development of the synovial joint cavity between the cartilage anlagen of the long bones is thought to be mediated by differential matrix synthesis at the developing articular surfaces. In addition, many studies have shown that removal of movement-induced mechanical stimuli from developing diarthrodial joints prevents cavity formation or produces a secondary fusion of previously cavitated joints. Herein, we describe an inductive influence of mechanical strain on hyaluronan metabolism and the expression of hyaluronan-binding proteins in cultured cells isolated from the articular surface of the distal tibial condyles of 18-day chick embryos. The effect of 10 min of mechanical strain on hyaluronan release into culture media, intracellular uridine diphospho-glucose dehydrogenase activity (an enzyme required for hyaluronan saccharide precursor production), cell surface hyaluronan-binding protein expression and HA synthase mRNA expression were analysed up to 24 h later. Six hours after the application of strain, there was a significant increase in the accumulation of hyaluronan released into tissue culture media by strained fibrocartilage cells compared with controls, an effect still detectable after 24 h. Strained cells also showed increased activity for uridine diphospho-glucose dehydrogenase and expressed higher levels of the hyaluronan-binding protein CD44 at 24 h. In addition, at 24 h mRNA for HA synthase 2 was expressed in all samples whereas mRNA for HA synthase 3 was only expressed in strained cells. These results further highlight the role for movement-induced stimuli in differential extracellular matrix metabolism during joint development and also show that strain may facilitate differential HA synthase gene expression.
Collapse
Affiliation(s)
- G P Dowthwaite
- Cardiff School of Biosciences, Cardiff University, P.O. Box 911 Museum Avenue, Cardiff, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Hu M, Sabelman EE, Lai S, Timek EK, Zhang F, Hentz VR, Lineaweaver WC. Polypeptide resurfacing method improves fibroblast's adhesion to hyaluronan strands. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1999; 47:79-84. [PMID: 10400884 DOI: 10.1002/(sici)1097-4636(199910)47:1<79::aid-jbm11>3.0.co;2-j] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hyaluronic acid (hyaluronan, HyA) is a matrix component that takes part in cell adhesion and growth in normal and repaired tissues. Since it is soluble in water, HyA has been of limited use in tissue engineering of artificial matrices. Recent studies demonstrate that polypeptides have the twin advantages of reducing solubility of HyA and improving cellular attachment via cell surface adhesion molecule receptors. This paper describes a new approach of using a polypeptide resurfacing method to enhance the attachment of cells to HyA strands. HyA strands were crosslinked by glutaraldehyde and then resurfaced with poly-D-lysine, poly-L-lysine, glycine, or glutamine. After inoculation with fibroblasts in vitro, modified HyA was evaluated with histological and immunohistochemical staining methods for cell adhesion and proliferation. Modified HyA with fibroblast cells also were implanted in vivo. The results show that (1) both polylysines enhanced fibroblast adhesion to crosslinked HyA strands; (2) HyA strands were able to be crosslinked well by 3 days of treatment in glutaraldehyde, and as a biomaterial they could resist biodegradation; (3) modified HyA has good biocompatibility, both in vitro and in vivo. The results demonstrate that HyA material resurfaced by polypeptides has positive advantages for cellular adhesion. Resurfaced HyA has much potential as an improved biomaterial for clinical usage.
Collapse
Affiliation(s)
- M Hu
- Department of Functional Restoration, Stanford University, Palo Alto, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Dowthwaite GP, Edwards JC, Pitsillides AA. An essential role for the interaction between hyaluronan and hyaluronan binding proteins during joint development. J Histochem Cytochem 1998; 46:641-51. [PMID: 9562572 DOI: 10.1177/002215549804600509] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We studied the expression of hyaluronan binding proteins (HABPs) during the development of embryonic chick joints, using immunocytochemistry and biotinylated HA. The expression of actin capping proteins and of actin itself was also studied because the cytoskeleton is important in controlling HA-HABP interactions. Three cell surface HABPs were localized in the epiphyseal cartilage, articular fibrocartilage, and interzone that comprise the developing joint. Of these three HABPs, CD44 was associated with the articular fibrocartilages and interzone, whereas RHAMM and the IVd4 epitope were associated with all three tissues. Biotinylated HA was localized to interzone and articular fibrocartilages before cavity formation and within epiphyseal chondrocytes post cavitation. Actin filament bundles were observed at the developing joint line, as was the expression of the actin capping protein moesin. Manipulation of joint cavity development, using oligosaccharides of HA, disrupted joint formation and was associated with decreases in CD44 and actin filament expression as well as decreased hyaluronan synthetic capability. These results suggest that HA is actively bound by CD44 at the developing joint line and that HA-HABP interactions play a major role in the initial separation events occurring during joint formation.
Collapse
Affiliation(s)
- G P Dowthwaite
- Department of Veterinary Basic Sciences, The Royal Veterinary College, University of London, London, United Kingdom
| | | | | |
Collapse
|
21
|
Tortorella MD, Pratta MA, Fox JW, Arner EC. The interglobular domain of cartilage aggrecan is cleaved by hemorrhagic metalloproteinase HT-d (atrolysin C) at the matrix metalloproteinase and aggrecanase sites. J Biol Chem 1998; 273:5846-50. [PMID: 9488721 DOI: 10.1074/jbc.273.10.5846] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two primary cleavage sites have been identified within the interglobular domain of the cartilage aggrecan core protein: one is between amino acid residues Asn 341 and Phe342, where many matrix metalloproteinases (MMP) have been shown to cleave; and the other is between amino acid residues Glu373 and Ala374. Although cleavage at the Glu373-Ala374 site is believed to play a critical role in cartilage aggrecan degradation in arthritic diseases, the enzyme responsible for cleavage at this site, "aggrecanase," has not been identified. Members of the ADAM (a disintegrin and metalloproteinase) family of proteins, which shows structural homology to the snake venom hemorrhagic metalloproteinases (reprolysins), have recently been demonstrated to be expressed in articular chondrocytes. Because many ADAM family members have a putative proteinase function, this raises the possibility that aggrecanase may be a member of this family of proteases. To examine whether reprolysins have the ability to cleave aggrecan at either the aggrecanase site or the MMP site, the snake venom hemorrhagic toxin metalloproteinase HT-d (atrolysin C) was tested for its ability to cleave bovine aggrecan monomer. Cleavage was monitored using the BC-3 antibody, which recognizes aggrecan fragments with the new NH2 terminus ARGSV generated by cleavage at the aggrecanase site, and with the AF-28 antibody, which recognizes aggrecan fragments with the new NH2 terminus FFGVG generated by cleavage at the MMP site. Cleavage at both the aggrecanase and MMP sites occurred in a concentration-dependent manner with 100 nM atrolysin C or greater. AF-28-reactive fragments were generated by 30 min of incubation, and levels were maximal by 8 h; BC-3-reactive fragments were detected at 2 h and continued to increase through 48 h, thus suggesting that atrolysin C can cleave at the MMP and aggrecanase sites. NH2-terminal aggrecan fragments generated by cleavage at the aggrecanase site were also detected using antisera recognizing the new COOH terminus, NITEGE, formed by cleavage at the Glu373-Ala374 bond, indicating that cleavage at this site does not require prior cleavage at the MMP site. These data provide the first demonstration that a reprolysin can cleave the core protein of aggrecan and the first example of a specific protease that can cleave at the aggrecanase site independent of cleavage at the MMP cleavage site.
Collapse
Affiliation(s)
- M D Tortorella
- Inflammatory Diseases Research, The DuPont Merck Pharmaceutical Company, Wilmington, Delaware 19880, USA
| | | | | | | |
Collapse
|
22
|
Melrose J, Little CB, Ghosh P. Detection of aggregatable proteoglycan populations by affinity blotting using biotinylated hyaluronan. Anal Biochem 1998; 256:149-57. [PMID: 9473272 DOI: 10.1006/abio.1997.2509] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proteoglycans (PGs) were extracted from a range of cartilaginous ovine connective tissues using 4 M GuHCl and separated by composite agarose polyacrylamide gel electrophoresis. Individual PG populations resolved by this electrophoretic system were identified in toluidine blue and Stains-All stained gel segments and also by conventional immunoblotting using a range of monoclonal antibodies to defined PG epitopes. These PG species were compared with aggregatable PG populations identified by affinity blotting using a biotinylated hyaluronan, and an avidin alkaline phosphatase/nitro blue tetrazolium 5-bromo-4-chloro indolyl phosphate detection system. Two major chondroitin sulfate- and keratan sulfate-substituted aggrecan populations were readily identified by affinity blotting in all of the connective tissue extracts. An additional slower migrating aggrecan species was also detected by affinity and immunoblotting in fetal disc extracts. This may represent an aggrecan species containing an intact carboxyl terminal G3 domain. Link protein was also detectable by affinity blotting; this was confirmed by immunoblotting using an anti-link protein monoclonal antibody (8-A-4). Fragments of aggrecan which contained a functional G1 domain were also detectable by affinity blotting. The biotinylated hyaluronan affinity blotting technique could detect as little as 100 ng (as hexuronic acid) of aggregatable PG. Affinity blotting therefore represents a useful new detection methodology which complements conventional immunoblotting protocols and yields information regarding the functional status of the G1 domain of individual PG populations.
Collapse
Affiliation(s)
- J Melrose
- The Department of Surgery, The University of Sydney at The Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | | | | |
Collapse
|