1
|
de Los Santos-Ramirez JM, Boyas-Chavez PG, Cerrillos-Ordoñez A, Mata-Gomez M, Gallo-Villanueva RC, Perez-Gonzalez VH. Trends and challenges in microfluidic methods for protein manipulation-A review. Electrophoresis 2024; 45:69-100. [PMID: 37259641 DOI: 10.1002/elps.202300056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Proteins are important molecules involved in an immensely large number of biological processes. Being capable of manipulating proteins is critical for developing reliable and affordable techniques to analyze and/or detect them. Such techniques would enable the production of therapeutic agents for the treatment of diseases or other biotechnological applications (e.g., bioreactors or biocatalysis). Microfluidic technology represents a potential solution to protein manipulation challenges because of the diverse phenomena that can be exploited to achieve micro- and nanoparticle manipulation. In this review, we discuss recent contributions made in the field of protein manipulation in microfluidic systems using different physicochemical principles and techniques, some of which are miniaturized versions of already established macro-scale techniques.
Collapse
Affiliation(s)
| | - Pablo G Boyas-Chavez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | - Marco Mata-Gomez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | | |
Collapse
|
2
|
Zhou Y, Niu J, Zhou Y, Li F. Liquid Plasticine-Based Electrokinetic Enrichment of Proteins. ChemistryOpen 2023; 12:e202200259. [PMID: 36971105 PMCID: PMC10041546 DOI: 10.1002/open.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Protein analysis is an important approach for disease diagnosis, in which sample pretreatment is an essential step since protein samples are often complex and many protein biomarkers are of low abundance. Here, given the good openness and light transmission of liquid plasticine (LP), which is a liquid entity formed by SiO2 nanoparticles and encapsulated aqueous solution, we developed a LP-based field-amplified sample stacking (FASS) system for protein enrichment. The system was composed of a LP container, a sample solution and a Tris-HCl solution containing hydroxyethyl cellulose (HEC). The system design, mechanism investigation, optimization of experimental parameters and characterization of LP-FASS performance for protein enrichment were well studied. Under the optimized experimental conditions of 1 % HEC, 100 mm Tris-HCl and 100 V in the LP-FASS system, a 40-80 times enrichment of proteins was obtained in 40 min using bovine hemoglobin (BHb) as the model protein using the constructed LP-FASS system. The simultaneous enrichment of multiple proteins (phycocyanin, BHb and cytochrome C) was also realized using the system. The LP-FASS system can serve as a new platform for protein enrichment which is easy to be combined with online and offline detections.
Collapse
Affiliation(s)
- Yulin Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Jicheng Niu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Yan Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| |
Collapse
|
3
|
Kim M, Kim B. Preconcentration of Fluorescent Dyes in Electromembrane Systems via Electrophoretic Migration. MICROMACHINES 2023; 14:398. [PMID: 36838098 PMCID: PMC9967745 DOI: 10.3390/mi14020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Microfluidic preconcentration enables the collection or extraction of low-abundance analytes at specific locations. It has attracted considerable attention as an essential technology in bioengineering, particularly for detection and diagnosis. Herein, we investigated the key parameters in the preconcentration of fluorescent dyes based on electrophoresis in a microfluidic electromembrane system. Commercial ion-exchange membrane (IEM)-integrated polydimethylsiloxane microfluidic devices were fabricated, and Alexa Fluor 488 and Rhodamine 6G were used as fluorescent dyes for sample preconcentration. Through experimental studies, the effect of the channel concentration ratio (CCR, concentration ratio of the main and buffer channels) on the performance of the sample preconcentration was studied. The results show that the preconcentration of the target sample occurs more effectively for a high CCR or high salt concentration of the main channel when the CCR is constant. We also demonstrate a phenomenon that the salt concentration in the electrolyte solution increases as the preconcentration progresses. Our results provide consolidated conditions for electrophoresis-based sample preconcentration in electromembrane systems.
Collapse
Affiliation(s)
- Minsung Kim
- Department of Future Convergence Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Bumjoo Kim
- Department of Future Convergence Engineering, Kongju National University, Cheonan 31080, Republic of Korea
- Department of Mechanical and Automotive Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| |
Collapse
|
4
|
Xie Y, Li H, Chen F, Udayakumar S, Arora K, Chen H, Lan Y, Hu Q, Zhou X, Guo X, Xiu L, Yin K. Clustered Regularly Interspaced short palindromic repeats-Based Microfluidic System in Infectious Diseases Diagnosis: Current Status, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204172. [PMID: 36257813 PMCID: PMC9731715 DOI: 10.1002/advs.202204172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Indexed: 06/02/2023]
Abstract
Mitigating the spread of global infectious diseases requires rapid and accurate diagnostic tools. Conventional diagnostic techniques for infectious diseases typically require sophisticated equipment and are time consuming. Emerging clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) detection systems have shown remarkable potential as next-generation diagnostic tools to achieve rapid, sensitive, specific, and field-deployable diagnoses of infectious diseases, based on state-of-the-art microfluidic platforms. Therefore, a review of recent advances in CRISPR-based microfluidic systems for infectious diseases diagnosis is urgently required. This review highlights the mechanisms of CRISPR/Cas biosensing and cutting-edge microfluidic devices including paper, digital, and integrated wearable platforms. Strategies to simplify sample pretreatment, improve diagnostic performance, and achieve integrated detection are discussed. Current challenges and future perspectives contributing to the development of more effective CRISPR-based microfluidic diagnostic systems are also proposed.
Collapse
Affiliation(s)
- Yi Xie
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Huimin Li
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Fumin Chen
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Srisruthi Udayakumar
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Khyati Arora
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Hui Chen
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02139USA
| | - Yang Lan
- Centre for Nature‐Inspired EngineeringDepartment of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Qinqin Hu
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Xiaonong Zhou
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Xiaokui Guo
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Leshan Xiu
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| | - Kun Yin
- School of Global HealthChinese Center for Tropical Diseases ResearchShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- One Health CenterShanghai Jiao Tong University‐The University of EdinburghShanghai200025P. R. China
| |
Collapse
|
5
|
Abstract
Isotachophoresis (ITP) is a versatile electrophoretic technique that can be used for sample preconcentration, separation, purification, and mixing, and to control and accelerate chemical reactions. Although the basic technique is nearly a century old and widely used, there is a persistent need for an easily approachable, succinct, and rigorous review of ITP theory and analysis. This is important because the interest and adoption of the technique has grown over the last two decades, especially with its implementation in microfluidics and integration with on-chip chemical and biochemical assays. We here provide a review of ITP theory starting from physicochemical first-principles, including conservation of species, conservation of current, approximation of charge neutrality, pH equilibrium of weak electrolytes, and so-called regulating functions that govern transport dynamics, with a strong emphasis on steady and unsteady transport. We combine these generally applicable (to all types of ITP) theoretical discussions with applications of ITP in the field of microfluidic systems, particularly on-chip biochemical analyses. Our discussion includes principles that govern the ITP focusing of weak and strong electrolytes; ITP dynamics in peak and plateau modes; a review of simulation tools, experimental tools, and detection methods; applications of ITP for on-chip separations and trace analyte manipulation; and design considerations and challenges for microfluidic ITP systems. We conclude with remarks on possible future research directions. The intent of this review is to help make ITP analysis and design principles more accessible to the scientific and engineering communities and to provide a rigorous basis for the increased adoption of ITP in microfluidics.
Collapse
Affiliation(s)
- Ashwin Ramachandran
- Department
of Aeronautics and Astronautics, Stanford
University, Stanford, California 94305, United States
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Thompson JR, Crooks RM. Enriching Cations Using Electric Field Gradients Generated by Bipolar Electrodes in the Absence of Buffer. ChemElectroChem 2022. [DOI: 10.1002/celc.202200251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jonathan R. Thompson
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin Texas 78712-1224 United States
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin Texas 78712-1224 United States
| |
Collapse
|
7
|
Eills J, Hale W, Utz M. Synergies between Hyperpolarized NMR and Microfluidics: A Review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:44-69. [PMID: 35282869 DOI: 10.1016/j.pnmrs.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Hyperpolarized nuclear magnetic resonance and lab-on-a-chip microfluidics are two dynamic, but until recently quite distinct, fields of research. Recent developments in both areas increased their synergistic overlap. By microfluidic integration, many complex experimental steps can be brought together onto a single platform. Microfluidic devices are therefore increasingly finding applications in medical diagnostics, forensic analysis, and biomedical research. In particular, they provide novel and powerful ways to culture cells, cell aggregates, and even functional models of entire organs. Nuclear magnetic resonance is a non-invasive, high-resolution spectroscopic technique which allows real-time process monitoring with chemical specificity. It is ideally suited for observing metabolic and other biological and chemical processes in microfluidic systems. However, its intrinsically low sensitivity has limited its application. Recent advances in nuclear hyperpolarization techniques may change this: under special circumstances, it is possible to enhance NMR signals by up to 5 orders of magnitude, which dramatically extends the utility of NMR in the context of microfluidic systems. Hyperpolarization requires complex chemical and/or physical manipulations, which in turn may benefit from microfluidic implementation. In fact, many hyperpolarization methodologies rely on processes that are more efficient at the micro-scale, such as molecular diffusion, penetration of electromagnetic radiation into a sample, or restricted molecular mobility on a surface. In this review we examine the confluence between the fields of hyperpolarization-enhanced NMR and microfluidics, and assess how these areas of research have mutually benefited one another, and will continue to do so.
Collapse
Affiliation(s)
- James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany.
| | - William Hale
- Department of Chemistry, University of Florida, 32611, USA
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
8
|
Zinc-Finger-Protein-Based Microfluidic Electrophoretic Mobility Reversal Assay for Quantitative Double-Stranded DNA Analysis. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Khan JU, Ruland A, Sayyar S, Paull B, Chen J, Innis PC. Wireless bipolar electrode-based textile electrofluidics: towards novel micro-total-analysis systems. LAB ON A CHIP 2021; 21:3979-3990. [PMID: 34636814 DOI: 10.1039/d1lc00538c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Point of care testing using micro-total-analysis systems (μTAS) is critical to emergent healthcare devices with rapid and robust responses. However, two major barriers to the success of this approach are the prohibitive cost of microchip fabrication and poor sensitivity due to small sample volumes in a microfluidic format. Here, we aimed to replace the complex microchip format with a low-cost textile substrate with inherently built microchannels using the fibers' spaces. Secondly, by integrating this textile-based microfluidics with electrophoresis and wireless bipolar electrochemistry, we can significantly improve solute detection by focusing and concentrating the analytes of interest. Herein, we demonstrated that an in situ metal electrode simply inserted inside the textile-based electrophoretic system can act as a wireless bipolar electrode (BPE) that generates localized electric field and pH gradients adjacent to the BPE and extended along the length of the textile construct. As a result, charged analytes were not only separated electrophoretically but also focused where their electrophoretic migration and counter flow (EOF) balances due to redox reactions proceeding at the BPE edges. The developed wireless redox focusing technique on textile constructs was shown to achieve a 242-fold enrichment of anionically charged solute over an extended time of 3000 s. These findings suggest a simple route that achieves separation and analyte focusing on low-cost surface-accessible inverted substrates, which is far simpler than the more complex ITP on conventional closed and inaccessible capillary channels.
Collapse
Affiliation(s)
- Jawairia Umar Khan
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, University of Wollongong, Innovation Campus, New South Wales 2500, Australia.
- Department of Fibre and Textile Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Andres Ruland
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, University of Wollongong, Innovation Campus, New South Wales 2500, Australia.
| | - Sepidar Sayyar
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, University of Wollongong, Innovation Campus, New South Wales 2500, Australia.
- Australian National Fabrication Facility - Materials Node, University of Wollongong, Innovation Campus, New South Wales 2500, Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS) and, ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, University of Wollongong, Innovation Campus, New South Wales 2500, Australia.
| | - Peter C Innis
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, University of Wollongong, Innovation Campus, New South Wales 2500, Australia.
- Australian National Fabrication Facility - Materials Node, University of Wollongong, Innovation Campus, New South Wales 2500, Australia
| |
Collapse
|
10
|
Selvam K, Najib MA, Khalid MF, Mohamad S, Palaz F, Ozsoz M, Aziah I. RT-LAMP CRISPR-Cas12/13-Based SARS-CoV-2 Detection Methods. Diagnostics (Basel) 2021; 11:1646. [PMID: 34573987 PMCID: PMC8467512 DOI: 10.3390/diagnostics11091646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/26/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has attracted public attention. The gold standard for diagnosing COVID-19 is reverse transcription-quantitative polymerase chain reaction (RT-qPCR). However, RT-qPCR can only be performed in centralized laboratories due to the requirement for advanced laboratory equipment and qualified workers. In the last decade, clustered regularly interspaced short palindromic repeats (CRISPR) technology has shown considerable promise in the development of rapid, highly sensitive, and specific molecular diagnostic methods that do not require complicated instrumentation. During the current COVID-19 pandemic, there has been growing interest in using CRISPR-based diagnostic techniques to develop rapid and accurate assays for detecting SARS-CoV-2. In this work, we review and summarize reverse-transcription loop-mediated isothermal amplification (RT-LAMP) CRISPR-based diagnostic techniques for detecting SARS-CoV-2.
Collapse
Affiliation(s)
- Kasturi Selvam
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (K.S.); (M.A.N.); (M.F.K.)
| | - Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (K.S.); (M.A.N.); (M.F.K.)
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (K.S.); (M.A.N.); (M.F.K.)
| | - Suharni Mohamad
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey;
| | - Mehmet Ozsoz
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (K.S.); (M.A.N.); (M.F.K.)
- Department of Biomedical Engineering, Near East University, Nicosia 99138, Turkey
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (K.S.); (M.A.N.); (M.F.K.)
| |
Collapse
|
11
|
Lim AE, Lam YC. Electroosmotic Flow Hysteresis for Fluids with Dissimilar pH and Ionic Species. MICROMACHINES 2021; 12:mi12091031. [PMID: 34577675 PMCID: PMC8467362 DOI: 10.3390/mi12091031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
Electroosmotic flow (EOF) involving displacement of multiple fluids is employed in micro-/nanofluidic applications. There are existing investigations on EOF hysteresis, i.e., flow direction-dependent behavior. However, none so far have studied the solution pair system of dissimilar ionic species with substantial pH difference. They exhibit complicated hysteretic phenomena. In this study, we investigate the EOF of sodium bicarbonate (NaHCO3, alkaline) and sodium chloride (NaCl, slightly acidic) solution pair via current monitoring technique. A developed slip velocity model with a modified wall condition is implemented with finite element simulations. Quantitative agreements between experimental and simulation results are obtained. Concentration evolutions of NaHCO3-NaCl follow the dissimilar anion species system. When NaCl displaces NaHCO3, EOF reduces due to the displacement of NaHCO3 with high pH (high absolute zeta potential). Consequently, NaCl is not fully displaced into the microchannel. When NaHCO3 displaces NaCl, NaHCO3 cannot displace into the microchannel as NaCl with low pH (low absolute zeta potential) produces slow EOF. These behaviors are independent of the applied electric field. However, complete displacement tends to be achieved by lowering the NaCl concentration, i.e., increasing its zeta potential. In contrast, the NaHCO3 concentration has little impact on the displacement process. These findings enhance the understanding of EOF involving solutions with dissimilar pH and ion species.
Collapse
|
12
|
Thormann W, Mosher RA. Dynamic computer simulations of electrophoresis: 2010-2020. Electrophoresis 2021; 43:10-36. [PMID: 34287996 PMCID: PMC9292373 DOI: 10.1002/elps.202100191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023]
Abstract
The transport of components in liquid media under the influence of an applied electric field can be described with the continuity equation. It represents a nonlinear conservation law that is based upon the balance laws of continuous transport processes and can be solved in time and space numerically. This procedure is referred to as dynamic computer simulation. Since its inception four decades ago, the state of dynamic computer simulation software and its use has progressed significantly. Dynamic models are the most versatile tools to explore the fundamentals of electrokinetic separations and provide insights into the behavior of buffer systems and sample components of all electrophoretic separation methods, including moving boundary electrophoresis, CZE, CGE, ITP, IEF, EKC, ACE, and CEC. This article is a continuation of previous reviews (Electrophoresis 2009, 30, S16–S26 and Electrophoresis 2010, 31, 726–754) and summarizes the progress and achievements made during the 2010 to 2020 time period in which some of the existing dynamic simulators were extended and new simulation packages were developed. This review presents the basics and extensions of the three most used one‐dimensional simulators, provides a survey of new one‐dimensional simulators, outlines an overview of multi‐dimensional models, and mentions models that were briefly reported in the literature. A comprehensive discussion of simulation applications and achievements of the 2010 to 2020 time period is also included.
Collapse
Affiliation(s)
- Wolfgang Thormann
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | |
Collapse
|
13
|
Lemay SG, Moazzenzade T. Single-Entity Electrochemistry for Digital Biosensing at Ultralow Concentrations. Anal Chem 2021; 93:9023-9031. [PMID: 34167291 PMCID: PMC8264825 DOI: 10.1021/acs.analchem.1c00510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/09/2021] [Indexed: 12/02/2022]
Abstract
Quantifying ultralow analyte concentrations is a continuing challenge in the analytical sciences in general and in electrochemistry in particular. Typical hurdles for affinity sensors at low concentrations include achieving sufficiently efficient mass transport of the analyte, dealing with slow reaction kinetics, and detecting a small transducer signal against a background signal that itself fluctuates slowly in time. Recent decades have seen the advent of methods capable of detecting single analytes ranging from the nanoscale to individual molecules, representing the ultimate mass sensitivity to these analytes. However, single-entity detection does not automatically translate into a superior concentration sensitivity. This is largely because electrochemical transducers capable of such detection are themselves miniaturized, exacerbating mass transport and binding kinetic limitations. In this Perspective, we discuss how these challenges can be tackled through so-called digital sensing: large arrays of separately addressable single-entity detectors that provide real-time information on individual binding events. We discuss the advantages of this approach and the barriers to its implementation.
Collapse
Affiliation(s)
- Serge G. Lemay
- MESA+ Institute for Nanotechnology
and Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Taghi Moazzenzade
- MESA+ Institute for Nanotechnology
and Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
14
|
Shebindu A, Somaweera H, Estlack Z, Kim J, Kim J. A fully integrated isotachophoresis with a programmable microfluidic platform. Talanta 2021; 225:122039. [PMID: 33592763 DOI: 10.1016/j.talanta.2020.122039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Conventional isotachophoresis (ITP) can be used for pre-concentration of a single analyte, but preconcentration of multiple analytes is time consuming due to handling and washing steps required for the extensive buffer optimization procedure. In this work, we present a programmable microfluidic platform (PMP) to demonstrate fully automated optimization of ITP of multiple analytes. By interfacing a PMP with ITP, buffer selection and repetitive ITP procedures were automated. Using lifting-gate microvalve technology, a PMP consisting of a two-dimensional microvalve array was designed and fabricated for seamless integration with an ITP chip. The microvalve array was used for basic liquid manipulation such as metering, mixing, selecting, delivering, and washing procedures to prime and run ITP. Initially, the performances of the PMP and ITP channel were validated individually by estimating volume per pumping cycle and preconcentrating Alexa Fluor 594 with appropriate trailing (TE) and leading (LE) buffers, respectively. After confirming basic functions, autonomous ITP was demonstrated using multiple analytes (Pacific blue, Alexa Fluor 594, and Alexa Fluor 488). The optimal buffer combination was was determined by performing multiple ITP runs with three different TEs (borate, HEPES, and phosphate buffers) and three different concentrations of Tris-HCl for the LE. We found that 40 mM borate and 100 mM Tris-HCl successfully preconcentrated all analytes during a single ITP run. The integrated PMP-ITP system can simplify overall buffer selection and validation procedures for various biological and chemical target samples. Furthermore, by incorporating analytical tools that interconnect with the PMP, it can provide high sample concentrations to aid in downstream analysis.
Collapse
Affiliation(s)
- Adam Shebindu
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Himali Somaweera
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Zachary Estlack
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Jungkyu Kim
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA; Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
15
|
Park S, Buhnik-Rosenblau K, Abu-Rjal R, Kashi Y, Yossifon G. Periodic concentration-polarization-based formation of a biomolecule preconcentrate for enhanced biosensing. NANOSCALE 2020; 12:23586-23595. [PMID: 33210690 DOI: 10.1039/d0nr05930g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ionic concentration-polarization (CP)-based biomolecule preconcentration is an established method for enhancing the detection sensitivity of target biomolecules. However, the formed preconcentrated biomolecule plug rapidly sweeps over the surface-immobilized antibodies, resulting in a short-term overlap between the capture agent and the analyte, and subsequently suboptimal binding. To overcome this, we designed a setup allowing for the periodic formation of a preconcentrated biomolecule plug by activating the CP for predetermined on/off intervals. This work demonstrated the feasibility of cyclic CP actuation and optimized the sweeping conditions required to obtain the maximum retention time of a preconcentrated plug over a desired sensing region and enhanced detection sensitivity. The ability of this method to efficiently preconcentrate different analytes and to successfully increase immunoassay sensitivity underscore its potential in immunoassays serving the clinical and food testing industries.
Collapse
Affiliation(s)
- Sinwook Park
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion - Israel Institute of Technology, Technion City 3200000, Israel.
| | | | | | | | | |
Collapse
|
16
|
Lackey H, Bottenus D, Liezers M, Shen S, Branch S, Katalenich J, Lines A. A versatile and low-cost chip-to-world interface: Enabling ICP-MS characterization of isotachophoretically separated lanthanides on a microfluidic device. Anal Chim Acta 2020; 1137:11-18. [PMID: 33153594 DOI: 10.1016/j.aca.2020.08.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/28/2022]
Abstract
Microfluidics offer novel and state-of-the-art pathways to process materials. Microfluidic systems drastically reduce timeframes and costs associated with traditional lab-scale efforts in the area of analytical sample preparations. The challenge arises in effectively connecting microfluidics to off-chip analysis tools to accurately characterize samples after treatment on-chip. Fabrication of a chip-to-world connection includes one end of a fused silica capillary interfaced to the outlet of a microfluidic device (MFD). The other end of the capillary is connected to a commercially available CEI-100 interface that passes samples into an inductively coupled plasma mass spectrometer (ICP-MS). This coupling creates an inexpensive and simple chip-to-world connection that enables on-chip and off-chip methods of analyzing the separation of rare earth elements. Specifically, this is demonstrated by utilizing isotachophoresis (ITP) on a microfluidic chip to separate up to 14 lanthanides from a homogenous sample into elementally pure bands. The separated analyte zones are successfully transferred across a 7 nL void volume at the microchip-capillary junction, such that separation resolution is maintained and even increased through the interface and into the ICP-MS, where the elemental composition of the sample is analyzed. Lanthanide samples of varying composition are detected using ICP-MS, demonstrating this versatile and cost-effective approach, which maintains the separation quality achieved on the MFD. This simple connection enables fast, low-cost sample preparation immediately prior to injection into an ICP-MS or other analytical instrument.
Collapse
Affiliation(s)
- Hope Lackey
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA
| | - Danny Bottenus
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA.
| | - Martin Liezers
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA
| | - Steve Shen
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA
| | - Shirmir Branch
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA
| | - Jeff Katalenich
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA
| | - Amanda Lines
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA.
| |
Collapse
|
17
|
Ward CL, Linz TH. Characterizing the impact of thermal gels on isotachophoresis in microfluidic devices. Electrophoresis 2020; 41:691-696. [PMID: 32045492 DOI: 10.1002/elps.201900407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/02/2023]
Abstract
Thermally reversible Pluronic gels have been employed as separation matrices in microfluidic devices in the analysis of biological macromolecules. The phase of these gels can be tuned between liquid and solid states using temperature to vary fluidic resistance and alter peak resolution. Although separations in thermal gels have been characterized, their effect on isotachophoresis has not. This study used fluorescein as a model analyte to evaluate isotachophoretic preconcentration as a function of thermal polymer concentration and temperature. Results demonstrated that increasing polymer concentration in microfluidic channels increased the apparent analyte concentration. A critical minimum of 10% (w/v) Pluronic was required to achieve efficient preconcentration with maximum focusing occurring in 20 and 25% polymer gels. Temperature of the thermal gel also impacted analyte focusing. Most efficient focusing was achieved at 25°C with diminishing analyte accumulation at higher and lower temperatures. Under optimal conditions, isotachophoretic preconcentration increased an additional threefold simply by including thermal gels in the system. This approach can be readily implemented in other applications to increase detection sensitivity and measure low-concentration analytes within simple microfluidic devices.
Collapse
|
18
|
Practical sample pretreatment techniques coupled with capillary electrophoresis for real samples in complex matrices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115702] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Park S, Yossifon G. Electrothermal Active Control of Preconcentrated Biomolecule Plugs. Anal Chem 2019; 92:2476-2482. [DOI: 10.1021/acs.analchem.9b03917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sinwook Park
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion − Israel Institute of Technology, Technion City 3200000, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion − Israel Institute of Technology, Technion City 3200000, Israel
| |
Collapse
|
20
|
Davies CD, Johnson SE, Crooks RM. Effect of Chloride Oxidation on Local Electric Fields in Microelectrochemical Systems. ChemElectroChem 2019. [DOI: 10.1002/celc.201901402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Collin D. Davies
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin, Texas 78712-1224 U.S.A
| | - Sarah E. Johnson
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin, Texas 78712-1224 U.S.A
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin, Texas 78712-1224 U.S.A
| |
Collapse
|
21
|
Ouyang W, Han J. Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration. Proc Natl Acad Sci U S A 2019; 116:16240-16249. [PMID: 31358642 PMCID: PMC6697892 DOI: 10.1073/pnas.1904513116] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rapid and reliable detection of ultralow-abundance nucleic acids and proteins in complex biological media may greatly advance clinical diagnostics and biotechnology development. Currently, nucleic acid tests rely on enzymatic processes for target amplification (e.g., PCR), which have many inherent issues restricting their implementation in diagnostics. On the other hand, there exist no protein amplification techniques, greatly limiting the development of protein-based diagnosis. We report a universal biomolecule enrichment technique termed hierarchical nanofluidic molecular enrichment system (HOLMES) for amplification-free molecular diagnostics using massively paralleled and hierarchically cascaded nanofluidic concentrators. HOLMES achieves billion-fold enrichment of both nucleic acids and proteins within 30 min, which not only overcomes many inherent issues of nucleic acid amplification but also provides unprecedented enrichment performance for protein analysis. HOLMES features the ability to selectively enrich target biomolecules and simultaneously deplete nontargets directly in complex crude samples, thereby enormously enhancing the signal-to-noise ratio of detection. We demonstrate the direct detection of attomolar nucleic acids in urine and serum within 35 min and HIV p24 protein in serum within 60 min. The performance of HOLMES is comparable to that of nucleic acid amplification tests and near million-fold improvement over standard enzyme-linked immunosorbent assay (ELISA) for protein detection, being much simpler and faster in both applications. We additionally measured human cardiac troponin I protein in 9 human plasma samples, and showed excellent agreement with ELISA and detection below the limit of ELISA. HOLMES is in an unparalleled position to unleash the potential of protein-based diagnosis.
Collapse
Affiliation(s)
- Wei Ouyang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
22
|
Bottenus D, Branch S, Lackey H, Ivory C, Katalenich J, Clark S, Lines A. Design and optimization of a fused-silica microfluidic device for separation of trivalent lanthanides by isotachophoresis. Electrophoresis 2019; 40:2531-2540. [PMID: 31206758 DOI: 10.1002/elps.201900027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 11/07/2022]
Abstract
Elemental analysis of rare earth elements is essential in a variety of fields including environmental monitoring and nuclear safeguards; however, current techniques are often labor intensive, time consuming, and/or costly to perform. The difficulty arises in preparing samples, which requires separating the chemically and physically similar lanthanides. However, by transitioning these separations to the microscale, the speed, cost, and simplicity of sample preparation can be drastically improved. Here, all fourteen non-radioactive lanthanides (lanthanum through lutetium minus promethium) are separated by ITP for the first time in a serpentine fused-silica microchannel (70 µm wide × 70 µm tall × 33 cm long) in <10 min at voltages ≤8 kV with limits of detection on the order of picomoles. This time includes the 2 min electrokinetic injection time at 2 kV to load sample into the microchannel. The final leading electrolyte consisted of 10 mM ammonium acetate, 7 mM α-hydroxyisobutyric acid, 1% polyvinylpyrrolidone, and the final terminating electrolyte consisted of 10 mM acetic acid, 7 mM α-hydroxyisobutyric acid, and 1% polyvinylpyrrolidone. Electrophoretic electrodes are embedded in the microchip reservoirs so that voltages can be quickly applied and switched during operation. The limits of detection are quantified using a commercial capacitively coupled contactless conductivity detector (C4 D) to calculate ITP zone lengths in combination with ITP theory. Optimization of experimental procedures and reproducibility based on statistical analysis of subsequent experimental results are addressed. Percent error values in band length and conductivity are ≤8.1 and 0.37%, respectively.
Collapse
Affiliation(s)
- Danny Bottenus
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Shirmir Branch
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Hope Lackey
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Cornelius Ivory
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Jeff Katalenich
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sue Clark
- Pacific Northwest National Laboratory, Richland, Washington, USA.,Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Amanda Lines
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
23
|
Zhu F, Hayes MA. Simulation and experiment of asymmetric electrode placement for electrophoretic exclusion in a microdevice. Electrophoresis 2018; 40:304-314. [PMID: 30350873 DOI: 10.1002/elps.201700497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 11/06/2022]
Abstract
Electrophoretic exclusion (EE) is a counterflow gradient technique that exploits hydrodynamic flow and electrophoretic forces to exclude, enrich, and separate analytes. Resolution for this technique has been theoretically examined and the smallest difference in electrophoretic mobilities that can be completely separated is estimated to be 10-13 cm2 /Vs. Traditional and mesoscale systems have been used, whereas microfluidics offers a greater range of geometries and configurations towards approaching this theoretical limit. To begin to understand the impact of seemingly subtle changes to the entrance flow and the electric field configurations, three closely related microfluidic interfaces were modeled, fabricated, and tested. These interfaces consisted of systematically varying placement of an asymmetric electrode relative to a channel entrance: leading electrode placed outside the channel entrance, leading electrode aligned with the channel, and leading electrode placed within the channel. A charged fluorescent dye is used as a sensitive and accurate probe for the model and to test the concentration variation at these interfaces. Models and experiments focused on visualizing the concentration profile in areas of high temporal dynamics, thus providing a severe test of the models. Experimental data and simulation results showed strong qualitative agreement. The complexity of the electric and flow fields about this interface and the agreement between models and testing suggests the theoretical assessment capabilities can be used to faithfully design novel and more efficient interfaces.
Collapse
Affiliation(s)
- Fanyi Zhu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Mark A Hayes
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
24
|
Lim AE, Lim CY, Lam YC, Taboryski R. Electroosmotic Flow in Microchannel with Black Silicon Nanostructures. MICROMACHINES 2018; 9:E229. [PMID: 30424162 PMCID: PMC6187698 DOI: 10.3390/mi9050229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/01/2023]
Abstract
Although electroosmotic flow (EOF) has been applied to drive fluid flow in microfluidic chips, some of the phenomena associated with it can adversely affect the performance of certain applications such as electrophoresis and ion preconcentration. To minimize the undesirable effects, EOF can be suppressed by polymer coatings or introduction of nanostructures. In this work, we presented a novel technique that employs the Dry Etching, Electroplating and Molding (DEEMO) process along with reactive ion etching (RIE), to fabricate microchannel with black silicon nanostructures (prolate hemispheroid-like structures). The effect of black silicon nanostructures on EOF was examined experimentally by current monitoring method, and numerically by finite element simulations. The experimental results showed that the EOF velocity was reduced by 13 ± 7%, which is reasonably close to the simulation results that predict a reduction of approximately 8%. EOF reduction is caused by the distortion of local electric field at the nanostructured surface. Numerical simulations show that the EOF velocity decreases with increasing nanostructure height or decreasing diameter. This reveals the potential of tuning the etching process parameters to generate nanostructures for better EOF suppression. The outcome of this investigation enhances the fundamental understanding of EOF behavior, with implications on the precise EOF control in devices utilizing nanostructured surfaces for chemical and biological analyses.
Collapse
Affiliation(s)
- An Eng Lim
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Chun Yee Lim
- Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138682, Singapore.
| | - Yee Cheong Lam
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Rafael Taboryski
- Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
25
|
YANG MP, HUANG Z, XIE Y, YOU H. Development of Microchip Electrophoresis and Its Applications in Ion Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61085-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Yang M, Huang Z, You H. A plug-in electrophoresis microchip with PCB electrodes for contactless conductivity detection. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171687. [PMID: 29892366 PMCID: PMC5990721 DOI: 10.1098/rsos.171687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
A plug-in electrophoresis microchip for large-scale use aimed at improving maintainability with low fabrication and maintenance costs is proposed in this paper. The plug-in microchip improves the maintainability of a device because the damaged microchannel layer can be changed without needing to cut off the circuit wires in the detection component. Obviously, the plug-in structure reduces waste compared with earlier microchips; at present the whole microchip has to be discarded, including the electrode layer and the microchannel layer. The fabrication cost was reduced as far as possible by adopting a steel template and printed circuit board electrodes that avoided the complex photolithography, metal deposition and sputtering processes. The detection performance of our microchip was assessed by electrophoresis experiments. The results showed an acceptable gradient and stable detection performance. The effect of the installation shift between the microchannel layer and the electrode layer brought about by the plug-in structure was also evaluated. The results indicated that, as long as the shift was controlled within a reasonable scope, its effect on the detection performance was acceptable. The plug-in microchip described in this paper represents a new train of thought for the large-scale use and design of portable instruments with electrophoresis microchips in the future.
Collapse
Affiliation(s)
- Mingpeng Yang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- University of Science and Technology of China, USTC, Hefei 230026, Anhui, People's Republic of China
| | - Zhe Huang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- University of Science and Technology of China, USTC, Hefei 230026, Anhui, People's Republic of China
| | - Hui You
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
| |
Collapse
|
27
|
Preparative concentration of nucleic acids fragments by capillary isotachophoretic analyzer. J Chromatogr A 2018; 1548:100-103. [DOI: 10.1016/j.chroma.2018.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 01/07/2023]
|
28
|
Abstract
This review discusses research developments and applications of isotachophoresis (ITP) to the initiation, control, and acceleration of chemical reactions, emphasizing reactions involving biomolecular reactants such as nucleic acids, proteins, and live cells. ITP is a versatile technique which requires no specific geometric design or material, and is compatible with a wide range of microfluidic and automated platforms. Though ITP has traditionally been used as a purification and separation technique, recent years have seen its emergence as a method to automate and speed up chemical reactions. ITP has been used to demonstrate up to 14 000-fold acceleration of nucleic acid assays, and has been used to enhance lateral flow and other immunoassays, and even whole bacterial cell detection assays. We here classify these studies into two categories: homogeneous (all reactants in solution) and heterogeneous (at least one reactant immobilized on a solid surface) assay configurations. For each category, we review and describe physical modeling and scaling of ITP-aided reaction assays, and elucidate key principles in ITP assay design. We summarize experimental advances, and identify common threads and approaches which researchers have used to optimize assay performance. Lastly, we propose unaddressed challenges and opportunities that could further improve these applications of ITP.
Collapse
Affiliation(s)
- C Eid
- Department of Mechanical Engineering, Stanford University, USA.
| | | |
Collapse
|
29
|
Li R, Zhang X, Lv X, Geng L, Li Y, Qin K, Deng Y. Microvalve controlled multi-functional microfluidic chip for divisional cell co-culture. Anal Biochem 2017; 539:48-53. [DOI: 10.1016/j.ab.2017.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
|
30
|
Datinská V, Voráčová I, Schlecht U, Berka J, Foret F. Recent progress in nucleic acids isotachophoresis. J Sep Sci 2017; 41:236-247. [DOI: 10.1002/jssc.201700878] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Vladimíra Datinská
- Czech Academy of Sciences; Institute of Analytical Chemistry; Brno Czech Republic
- Masaryk University; Faculty of Science; Brno Czech Republic
| | - Ivona Voráčová
- Czech Academy of Sciences; Institute of Analytical Chemistry; Brno Czech Republic
| | | | - Jan Berka
- Roche Sequencing Solutions, Inc; Pleasanton CA USA
| | - František Foret
- Czech Academy of Sciences; Institute of Analytical Chemistry; Brno Czech Republic
| |
Collapse
|
31
|
Basha IHK, Ho ETW, Yousuff CM, Hamid NHB. Towards Multiplex Molecular Diagnosis-A Review of Microfluidic Genomics Technologies. MICROMACHINES 2017; 8:E266. [PMID: 30400456 PMCID: PMC6190060 DOI: 10.3390/mi8090266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/30/2017] [Accepted: 07/16/2017] [Indexed: 12/21/2022]
Abstract
Highly sensitive and specific pathogen diagnosis is essential for correct and timely treatment of infectious diseases, especially virulent strains, in people. Point-of-care pathogen diagnosis can be a tremendous help in managing disease outbreaks as well as in routine healthcare settings. Infectious pathogens can be identified with high specificity using molecular methods. A plethora of microfluidic innovations in recent years have now made it increasingly feasible to develop portable, robust, accurate, and sensitive genomic diagnostic devices for deployment at the point of care. However, improving processing time, multiplexed detection, sensitivity and limit of detection, specificity, and ease of deployment in resource-limited settings are ongoing challenges. This review outlines recent techniques in microfluidic genomic diagnosis and devices with a focus on integrating them into a lab on a chip that will lead towards the development of multiplexed point-of-care devices of high sensitivity and specificity.
Collapse
Affiliation(s)
- Ismail Hussain Kamal Basha
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Eric Tatt Wei Ho
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Caffiyar Mohamed Yousuff
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Nor Hisham Bin Hamid
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| |
Collapse
|
32
|
Crevillén AG, de Frutos M, Diez-Masa JC. On-chip single column transient isotachophoresis with free zone electrophoresis for preconcentration and separation of α-lactalbumin and β-lactoglobulin. Microchem J 2017. [DOI: 10.1016/j.microc.2017.04.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Rackus DG, de Campos RPS, Chan C, Karcz MM, Seale B, Narahari T, Dixon C, Chamberlain MD, Wheeler AR. Pre-concentration by liquid intake by paper (P-CLIP): a new technique for large volumes and digital microfluidics. LAB ON A CHIP 2017; 17:2272-2280. [PMID: 28604891 PMCID: PMC7734381 DOI: 10.1039/c7lc00440k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/02/2017] [Indexed: 05/24/2023]
Abstract
Microfluidic platforms are an attractive option for incorporating complex fluid handling into low-cost and rapid diagnostic tests. A persistent challenge for microfluidics, however, is the mismatch in the "world-to-chip" interface - it is challenging to detect analytes present at low concentrations in systems that can only handle small volumes of sample. Here we describe a new technique termed pre-concentration by liquid intake by paper (P-CLIP) that addresses this mismatch, allowing digital microfluidics to interface with volumes on the order of hundreds of microliters. In P-CLIP, a virtual microchannel is generated to pass a large volume through the device; analytes captured on magnetic particles can be isolated and then resuspended into smaller volumes for further processing and analysis. We characterize this method and demonstrate its utility with an immunoassay for Plasmodium falciparum lactate dehydrogenase, a malaria biomarker, and propose that the P-CLIP strategy may be useful for a wide range of applications that are currently limited by low-abundance analytes.
Collapse
Affiliation(s)
- Darius G Rackus
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON M5S 3H6, Canada. and Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON M5S 3E1, Canada
| | - Richard P S de Campos
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON M5S 3H6, Canada. and Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON M5S 3E1, Canada
| | - Calvin Chan
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON M5S 3H6, Canada.
| | - Maria M Karcz
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON M5S 3H6, Canada. and Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON M5S 3E1, Canada
| | - Brendon Seale
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON M5S 3H6, Canada.
| | - Tanya Narahari
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON M5S 3H6, Canada. and Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON M5S 3E1, Canada
| | - Christopher Dixon
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON M5S 3H6, Canada.
| | - M Dean Chamberlain
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON M5S 3H6, Canada. and Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON M5S 3E1, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON M5S 3H6, Canada. and Donnelly Centre for Cellular and Biomolecular Research, 160 College St., Toronto, ON M5S 3E1, Canada and Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3G9, Canada
| |
Collapse
|
34
|
Gong MM, Sinton D. Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application. Chem Rev 2017. [PMID: 28627178 DOI: 10.1021/acs.chemrev.7b00024] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infectious diseases are a major global health issue. Diagnosis is a critical first step in effectively managing their spread. Paper-based microfluidic diagnostics first emerged in 2007 as a low-cost alternative to conventional laboratory testing, with the goal of improving accessibility to medical diagnostics in developing countries. In this review, we examine the advances in paper-based microfluidic diagnostics for medical diagnosis in the context of global health from 2007 to 2016. The theory of fluid transport in paper is first presented. The next section examines the strategies that have been employed to control fluid and analyte transport in paper-based assays. Tasks such as mixing, timing, and sequential fluid delivery have been achieved in paper and have enabled analytical capabilities comparable to those of conventional laboratory methods. The following section examines paper-based sample processing and analysis. The most impactful advancement here has been the translation of nucleic acid analysis to a paper-based format. Smartphone-based analysis is another exciting development with potential for wide dissemination. The last core section of the review highlights emerging health applications, such as male fertility testing and wearable diagnostics. We conclude the review with the future outlook, remaining challenges, and emerging opportunities.
Collapse
Affiliation(s)
- Max M Gong
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario, Canada M5S 3G8.,Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| |
Collapse
|
35
|
Fernandez RE, Rohani A, Farmehini V, Swami NS. Review: Microbial analysis in dielectrophoretic microfluidic systems. Anal Chim Acta 2017; 966:11-33. [PMID: 28372723 PMCID: PMC5424535 DOI: 10.1016/j.aca.2017.02.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Infections caused by various known and emerging pathogenic microorganisms, including antibiotic-resistant strains, are a major threat to global health and well-being. This highlights the urgent need for detection systems for microbial identification, quantification and characterization towards assessing infections, prescribing therapies and understanding the dynamic cellular modifications. Current state-of-the-art microbial detection systems exhibit a trade-off between sensitivity and assay time, which could be alleviated by selective and label-free microbial capture onto the sensor surface from dilute samples. AC electrokinetic methods, such as dielectrophoresis, enable frequency-selective capture of viable microbial cells and spores due to polarization based on their distinguishing size, shape and sub-cellular compositional characteristics, for downstream coupling to various detection modalities. Following elucidation of the polarization mechanisms that distinguish bacterial cells from each other, as well as from mammalian cells, this review compares the microfluidic platforms for dielectrophoretic manipulation of microbials and their coupling to various detection modalities, including immuno-capture, impedance measurement, Raman spectroscopy and nucleic acid amplification methods, as well as for phenotypic assessment of microbial viability and antibiotic susceptibility. Based on the urgent need within point-of-care diagnostics towards reducing assay times and enhancing capture of the target organism, as well as the emerging interest in isolating intact microbials based on their phenotype and subcellular features, we envision widespread adoption of these label-free and selective electrokinetic techniques.
Collapse
Affiliation(s)
- Renny E Fernandez
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Ali Rohani
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Vahid Farmehini
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Nathan S Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
36
|
Štěpánová S, Kašička V. Analysis of proteins and peptides by electromigration methods in microchips. J Sep Sci 2016; 40:228-250. [PMID: 27704694 DOI: 10.1002/jssc.201600962] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 11/07/2022]
Abstract
This review presents the developments and applications of microchip electromigration methods in the separation and analysis of peptides and proteins in the period 2011-mid-2016. The developments in sample preparation and preconcentration, microchannel material, and surface treatment are described. Separations by various microchip electromigration methods (zone electrophoresis in free and sieving media, affinity electrophoresis, isotachophoresis, isoelectric focusing, electrokinetic chromatography, and electrochromatography) are demonstrated. Advances in detection methods are reported and novel applications in the areas of proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices, and determination of physicochemical parameters are shown.
Collapse
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
37
|
Abstract
Electroosmotic flow (EOF) with two or more fluids is often encountered in various microfluidic applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during displacement flow of solutions with dissimilar anion species. In this investigation, EOF of dissimilar anionic solutions was studied experimentally through the current monitoring method and numerically through finite element simulations. As opposed to other conventional displacement flows, EOF involving dissimilar anionic solutions exhibits counterintuitive behavior, whereby the current-time curve does not reach the steady-state value of the displacing electrolyte. Two distinct mechanics have been identified as the causes for this observation: (a) ion concentration adjustment when the displacing anions migrate upstream against EOF due to competition between the gradients of electromigrative and convective fluxes and (b) ion concentration readjustment induced by the static diffusive interfacial region between the dissimilar fluids which can only be propagated throughout the entire microchannel with the presence of EOF. The resultant ion distributions lead to the flow rate to be directional-dependent, indicating that the flow conditions are asymmetric between these two different flow directions. The outcomes of this investigation contribute to the in-depth understanding of flow behavior in microfluidic systems involving inhomogeneous fluids, particularly dissimilar anionic solutions. The understanding of EOF hysteresis is fundamentally important for the accurate prediction of analytes transport in microfluidic devices under EOF.
Collapse
Affiliation(s)
- An Eng Lim
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Chun Yee Lim
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Yee Cheong Lam
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
38
|
Koczka PI, Bodor R, Masár M, Gáspár A. Application of isotachophoresis in commercial capillary electrophoresis instrument using C4D and UV detection. Electrophoresis 2016; 37:2384-92. [DOI: 10.1002/elps.201600194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/18/2016] [Accepted: 06/07/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Péter I. Koczka
- Department of Inorganic and Analytical Chemistry; University of Debrecen; Debrecen Hungary
| | - Róbert Bodor
- Department of Analytical Chemistry, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava Slovakia
| | - Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava Slovakia
| | - Attila Gáspár
- Department of Inorganic and Analytical Chemistry; University of Debrecen; Debrecen Hungary
| |
Collapse
|
39
|
Exploring Gradients in Electrophoretic Separation and Preconcentration on Miniaturized Devices. SEPARATIONS 2016. [DOI: 10.3390/separations3020012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Tao Y, Ren Y, Liu W, Wu Y, Jia Y, Lang Q, Jiang H. Enhanced particle trapping performance of induced charge electroosmosis. Electrophoresis 2016; 37:1326-36. [DOI: 10.1002/elps.201500487] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/18/2016] [Accepted: 02/05/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Ye Tao
- School of Mechatronics Engineering; Harbin Institute of Technology; Harbin P. R. China
| | - Yukun Ren
- School of Mechatronics Engineering; Harbin Institute of Technology; Harbin P. R. China
- State Key Laboratory of Fluid Power Transmission and Control; Zhe Jiang University; Hang Zhou P.R. China
| | - Weiyu Liu
- School of Mechatronics Engineering; Harbin Institute of Technology; Harbin P. R. China
| | - Yupan Wu
- School of Mechatronics Engineering; Harbin Institute of Technology; Harbin P. R. China
| | - Yankai Jia
- School of Mechatronics Engineering; Harbin Institute of Technology; Harbin P. R. China
| | - Qi Lang
- School of Mechatronics Engineering; Harbin Institute of Technology; Harbin P. R. China
| | - Hongyuan Jiang
- School of Mechatronics Engineering; Harbin Institute of Technology; Harbin P. R. China
| |
Collapse
|
41
|
Li R, Lv X, Zhang X, Saeed O, Deng Y. Microfluidics for cell-cell interactions: A review. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1550-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis 2015; 37:162-88. [DOI: 10.1002/elps.201500329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
43
|
Rudašová M, Masár M. Precise determination ofN-acetylcysteine in pharmaceuticals by microchip electrophoresis. J Sep Sci 2015; 39:433-9. [DOI: 10.1002/jssc.201501025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Marína Rudašová
- Department of Analytical Chemistry, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava Slovakia
| | - Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava Slovakia
| |
Collapse
|
44
|
Cong Y, Katipamula S, Geng T, Prost SA, Tang K, Kelly RT. Electrokinetic sample preconcentration and hydrodynamic sample injection for microchip electrophoresis using a pneumatic microvalve. Electrophoresis 2015; 37:455-62. [PMID: 26255610 DOI: 10.1002/elps.201500286] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022]
Abstract
A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for zone electrophoresis using a single microvalve. The polydimethylsiloxane microchip comprises a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, serves as a nanochannel preconcentrator under an applied electric potential, enabling current to pass through while preventing bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected into the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ∼450 in 230 s. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high-resolution CE.
Collapse
Affiliation(s)
- Yongzheng Cong
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Shanta Katipamula
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tao Geng
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Spencer A Prost
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
45
|
Janssen KGH, Pennathur S. Electrocavitation in nanofluidics: unique phenomenon and fundamental platform. LAB ON A CHIP 2015; 15:3980-3983. [PMID: 26331593 DOI: 10.1039/c5lc00692a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, we will highlight one phenomenon unique to nanofluidics: electrocavitation. Electrocavitation is defined as cavitation induced by electric fields. Cavitation in general occurs in a liquid when it is subjected to a pressure below its vapor pressure, where the liquid can break apart and form a cavity (bubble). This is frequently seen in macroscale systems, for example, rotating propeller blades on the turbines of ships or water columns in the xylem of trees. Electrocavitation in nanochannels was first reported when researchers applied electric fields within nanochannels containing electrolytes discontinuous in conductivity and found that bubbles formed within the channel. The reasons to highlight electrocavitation to both the lab-on-a-chip community and those interested in the fundamental understanding of cavitation in general are detailed below.
Collapse
Affiliation(s)
- Kjeld G H Janssen
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
| | | |
Collapse
|
46
|
Li X, Luo L, Crooks RM. Low-voltage paper isotachophoresis device for DNA focusing. LAB ON A CHIP 2015; 15:4090-8. [PMID: 26338530 PMCID: PMC4589534 DOI: 10.1039/c5lc00875a] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We present a new paper-based isotachophoresis (ITP) device design for focusing DNA samples having lengths ranging from 23 to at least 1517 bp. DNA is concentrated by more than two orders of magnitude within 4 min. The key component of this device is a 2 mm-long, 2 mm-wide circular paper channel formed by concertina folding a paper strip and aligning the circular paper zones on each layer. Due to the short channel length, a high electric field of ~16 kV m(-1) is easily generated in the paper channel using two 9 V batteries. The multilayer architecture also enables convenient reclamation and analysis of the sample after ITP focusing by simply opening the origami paper and cutting out the desired layers. We profiled the electric field in the origami paper channel during ITP experiments using a nonfocusing fluorescent tracer. The result showed that focusing relied on formation and subsequent movement of a sharp electric field boundary between the leading and trailing electrolyte.
Collapse
Affiliation(s)
- Xiang Li
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St., Stop A5300, Austin, TX 78712-1224, USA.
| | | | | |
Collapse
|
47
|
Park JK, Campos CDM, Neužil P, Abelmann L, Guijt RM, Manz A. Direct coupling of a free-flow isotachophoresis (FFITP) device with electrospray ionization mass spectrometry (ESI-MS). LAB ON A CHIP 2015; 15:3495-3502. [PMID: 26183237 DOI: 10.1039/c5lc00523j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present the online coupling of a free-flow isotachophoresis (FFITP) device to an electrospray ionization mass spectrometer (ESI-MS) for continuous analysis without extensive sample preparation. Free-flow-electrophoresis techniques are used for continuous electrophoretic separations using an electric field applied perpendicular to the buffer and sample flow, with FFITP using a discontinuous electrolyte system to concurrently focus a target analyte and remove interferences. The online coupling of FFITP to ESI-MS decouples the separation and detection timeframe because the electrophoretic separation takes place perpendicular to the flow direction, which can be beneficial for monitoring (bio)chemical changes and/or extensive MS(n) studies. We demonstrated the coupling of FFITP with ESI-MS for simultaneous concentration of target analytes and sample clean-up. Furthermore, we show hydrodynamic control of the fluidic fraction injected into the MS, allowing for fluidically controlled scanning of the ITP window. Future applications of this approach are expected in monitoring biochemical changes and proteomics.
Collapse
Affiliation(s)
- J K Park
- Korea Institute of Science and Technology (KIST)-Europe, Campus e 7 1, 66123, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Recent applications of microchip electrophoresis to biomedical analysis. J Pharm Biomed Anal 2015; 113:72-96. [DOI: 10.1016/j.jpba.2015.03.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
|
49
|
Liu S, Zhang D, Wang H. Transient isotachophoresis focusing of DNA and DNA-protein complexes is essentially enhanced by spontaneously dissolved aerial carbon dioxide in electrolytes. Anal Chem 2015; 87:554-60. [PMID: 25437902 DOI: 10.1021/ac504173b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of a highly adapted high-E zone is critical to isotachophoresis separation and focusing. Recently, we discovered that the high-E zone is present only in a small portion of electrophoresis channel in the presence of EOF (Liu, S. Q. et al. J. Am. Chem. Soc. 2013, 135, 4644-4647). Accordingly, a much narrower high-E zone is presumably present in t-ITP. If so, it is hard to achieve efficient t-ITP focusing. Indeed, by online coupling t-ITP with CE-LIF immunoassay, the immunocomplexes of carcinogenic BPDE-dG adducts are not efficiently focused using a freshly prepared background electrolyte. Intriguingly, we observed that 20-day stored background electrolyte displays a 10-fold better focusing efficiency. We hypothesize that the unexpected phenomenon is associated with the dissolution of aerial carbon dioxide, which is mainly converted to ionic HCO3(-) in the weak alkaline background electrolyte. Consequently, HCO3(-) of high electrophoretic mobility will be continuously injected into the capillary along with the background electrolyte and act as an alternative leading ion to improve the focusing. By addition of dry ice (without causing significant pH decrease, ΔpH < 0.4) to freshly prepared background electrolytes, we immediately observed the enhanced focusing of immunocomplexes of the DNA adducts. NH4HCO3 and Na2CO3, included in the background electrolyte, also improve the focusing efficiency and reproducibility. All these consistently support our hypothesis. To understand the underlying mechanism, an advanced CE-SMFI was exploited to monitor in real time the motion of single DNA molecules and the E change throughout t-ITP. We uncovered that t-ITP can induce a local high-E zone, but the presence of HCO3(-) in the background electrolyte could greatly increase the E value in the high-E zone, which allows more DNA molecules to rapidly move backward and to be efficiently stacked at LE/TE boundary. This study provides new insight into nonuniform electric field-induced electrophoresis focusing.
Collapse
Affiliation(s)
- Shengquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , ShuangQing Road 18, Beijing 100085, China
| | | | | |
Collapse
|
50
|
Breadmore MC, Tubaon RM, Shallan AI, Phung SC, Abdul Keyon AS, Gstoettenmayr D, Prapatpong P, Alhusban AA, Ranjbar L, See HH, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012-2014). Electrophoresis 2015; 36:36-61. [DOI: 10.1002/elps.201400420] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Michael C. Breadmore
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Ria Marni Tubaon
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Aliaa I. Shallan
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Sui Ching Phung
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Aemi S. Abdul Keyon
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
- Faculty of Science; Department of Chemistry, Universiti Teknologi Malaysia; Johor Malaysia
| | - Daniel Gstoettenmayr
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Pornpan Prapatpong
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry, Mahidol University; Rajathevee Bangkok Thailand
| | - Ala A. Alhusban
- Faculty of Health Sciences, School of Pharmacy; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Leila Ranjbar
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Hong Heng See
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
- Ibnu Sina Institute for Fundamental Science Studies; Universiti Teknologi Malaysia; Johor Malaysia
| | - Mohamed Dawod
- Department of Chemistry; University of Michigan; Ann Arbor MI USA
- Faculty of Pharmacy; Department of Analytical Chemistry, Al-Azhar University; Cairo Egypt
| | - Joselito P. Quirino
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|