1
|
Jafernik K, Kokotkiewicz A, Dziurka M, Kruk A, Hering A, Jędrzejewski K, Waligórski P, Graczyk P, Kubica P, Stefanowicz-Hajduk J, Granica S, Łuczkiewicz M, Szopa A. Phytochemical Profiling and Biological Activities of Extracts from Bioreactor-Grown Suspension Cell Cultures of Schisandra henryi. Molecules 2024; 29:5260. [PMID: 39598649 PMCID: PMC11596403 DOI: 10.3390/molecules29225260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Plant biotechnology creates opportunities for the cultivation of plants regardless of their natural habitats, which are often protected or difficult to access. Maintaining suspension cell cultures in bioreactors is an advanced part of biotechnological research that provides possibilities for obtaining plant tissue on a large scale. In this study, the suspension culture cultivation of a Chinese endemic plant, Schisandra henryi, in a stirred tank bioreactor was elaborated for the first time. The phytochemical profile of the tissue extracts was determined with UHPLC-MS/MS for the lignans (fifteen dibenzocyclooctadiene lignans, one aryltetralin lignan, and two neolignans) and UHPLC-DAD-ESI-MS3 for the phenolic compounds (procyanidins and their derivatives and catechin). The maximum total lignan content of 1289 µg/100 g DW was detected for the extracts from suspensions cultured in a bioreactor for over 10 days. For the phenolic compounds, catechin was the dominant compound (390.44 mg/100 g DW). The biological activity of the extracts was tested too. To determine antioxidant potential we used DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), Molybdenum reduction, and β-carotene bleaching tests. The inhibition activity of the S. henryi extract on the enzymes responsible for skin aging, hyaluronidase and tyrosinase, was assessed with spectrophotometry. The cytotoxic activity of the extracts was estimated on human ovarian SKOV-3, cervical HeLa, and gastric AGS cancer cells and non-cancer, normal fibroblasts by an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The results showed the great potential of the obtained cell biomass extracts. The results of the antioxidant tests indicated their strong ability to reduce the level of free radicals, similarly to that of ascorbic acid, as well as the weak capacity to protect lipids from oxidation. Moreover, anticancer potential, particularly on the cervical and gastric cancer cells, was confirmed too.
Collapse
Affiliation(s)
- Karolina Jafernik
- Department of Medicinal Plant and Mushroom Biotechnology, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (K.J.); (P.K.)
| | - Adam Kokotkiewicz
- Department of Pharmacognosy, Medical University of Gdańsk, Al. Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.K.); (K.J.); (M.Ł.)
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, ul. Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.W.)
| | - Aleksandra Kruk
- Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, ul. Banacha 1, 02-097 Warszawa, Poland; (A.K.); (S.G.)
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, Al. Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.H.); (P.G.); (J.S.-H.)
| | - Krzysztof Jędrzejewski
- Department of Pharmacognosy, Medical University of Gdańsk, Al. Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.K.); (K.J.); (M.Ł.)
| | - Piotr Waligórski
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, ul. Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.W.)
| | - Piotr Graczyk
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, Al. Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.H.); (P.G.); (J.S.-H.)
| | - Paweł Kubica
- Department of Medicinal Plant and Mushroom Biotechnology, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (K.J.); (P.K.)
| | - Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, Al. Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.H.); (P.G.); (J.S.-H.)
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, ul. Banacha 1, 02-097 Warszawa, Poland; (A.K.); (S.G.)
| | - Maria Łuczkiewicz
- Department of Pharmacognosy, Medical University of Gdańsk, Al. Generała Józefa Hallera 107, 80-416 Gdańsk, Poland; (A.K.); (K.J.); (M.Ł.)
| | - Agnieszka Szopa
- Department of Medicinal Plant and Mushroom Biotechnology, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (K.J.); (P.K.)
| |
Collapse
|
2
|
Murthy HN, Joseph KS, Paek KY, Park SY. Bioreactor configurations for adventitious root culture: recent advances toward the commercial production of specialized metabolites. Crit Rev Biotechnol 2024; 44:837-859. [PMID: 37500186 DOI: 10.1080/07388551.2023.2233690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/13/2023] [Accepted: 06/01/2023] [Indexed: 07/29/2023]
Abstract
In vitro plant cell and organ cultures are appealing alternatives to traditional methods of producing valuable specialized metabolites for use as: pharmaceuticals, food additives, cosmetics, perfumes, and agricultural chemicals. Cell cultures have been adopted for the production of specialized metabolites in certain plants. However, in certain other systems, adventitious roots are superior to cell suspension cultures as they are organized structures that accumulate high levels of specialized metabolites. The cultivation of adventitious roots has been investigated in various bioreactor systems, including: mechanically agitated, pneumatically agitated, and modified bioreactors. The main relevance and importance of this work are to develop a long-lasting industrial biotechnological technology as well as to improve the synthesis of these metabolites from the plant in vitro systems. These challenges are exacerbated by: the peculiarities of plant cell metabolism, the complexity of specialized metabolite pathways, the proper selection of bioreactor systems, and bioprocess optimization. This review's major objective is to analyze several bioreactor types for the development of adventitious roots, as well as the advantages and disadvantages of each type of bioreactor, and to describe the strategies used to increase the synthesis of specialized metabolites. This review also emphasizes current advancements in the field, and successful instances of scaled-up cultures and the generation of specialized metabolites for commercial purposes are also covered.
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad, India
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - So Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
3
|
Badjakov I, Dincheva I, Vrancheva R, Georgiev V, Pavlov A. Plant In Vitro Culture Factories for Pentacyclic Triterpenoid Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:17-49. [PMID: 38319391 DOI: 10.1007/10_2023_245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Pentacyclic triterpenoids are a diverse subclass of naturally occurring terpenes with various biological activities and applications. These compounds are broadly distributed in natural plant resources, but their low abundance and the slow growth cycle of plants pose challenges to their extraction and production. The biosynthesis of pentacyclic triterpenoids occurs through two main pathways, the mevalonic acid (MVA) pathway and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, which involve several enzymes and modifications. Plant in vitro cultures, including elicited and hairy root cultures, have emerged as an effective and sustainable system for pentacyclic triterpenoid production, circumventing the limitations associated with natural plant resources. Bioreactor systems and controlling key parameters, such as media composition, temperature, light quality, and elicitor treatments, have been optimized to enhance the production and characterization of specific pentacyclic triterpenoids. These systems offer a promising bioprocessing tool for producing pentacyclic triterpenoids characterized by a low carbon footprint and a sustainable source of these compounds for various industrial applications.
Collapse
Affiliation(s)
| | | | - Radka Vrancheva
- Department of Analytical Chemistry and Physical Chemistry, University of Food Technologies-Plovdiv, Plovdiv, Bulgaria
| | - Vasil Georgiev
- Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Atanas Pavlov
- Department of Analytical Chemistry and Physical Chemistry, University of Food Technologies-Plovdiv, Plovdiv, Bulgaria
- Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| |
Collapse
|
4
|
Ramírez-Trejo L, Núñez-Pastrana R, Soto-Contreras A. Micropropagation of Chayote (Sechium edule L.) var. virens levis in RITA ®. Methods Mol Biol 2024; 2759:97-104. [PMID: 38285143 DOI: 10.1007/978-1-0716-3654-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Chayote (Sechium edule) belongs to the Cucurbitaceae family, an important family at the nutritional and medicinal levels, that has been covering international markets. Having vigorous and healthy plants is important for producers, who are very interested in cultivating chayote plants obtained from in vitro tissue culture in their orchards. Bioreactors have become an alternative with high potential for plant propagation, showing significant advantages over micropropagation in semisolid medium, by generating more plant material, larger, and more vigorous. In this chapter, a micropropagation protocol of S. edule in RITA® bioreactors is reported.
Collapse
Affiliation(s)
- Lizandro Ramírez-Trejo
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Amatlán de los Reyes, Veracruz, Mexico
| | - Rosalía Núñez-Pastrana
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Amatlán de los Reyes, Veracruz, Mexico
| | - Anell Soto-Contreras
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Amatlán de los Reyes, Veracruz, Mexico
| |
Collapse
|
5
|
Pożoga M, Olewnicki D, Wójcik-Gront E, Latocha P. An Efficient Method of Pennisetum × advena 'Rubrum' Plantlets Production Using the Temporary Immersion Bioreactor Systems and Agar Cultures. PLANTS (BASEL, SWITZERLAND) 2023; 12:1534. [PMID: 37050161 PMCID: PMC10096853 DOI: 10.3390/plants12071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The aim of this study is to develop an efficient method for micropropagation of Pennisetum × advena 'Rubrum'. Agar cultures containing Murashige and Skoog (MS) medium supplemented with 6-benzyl-amino-purine (BAP) in various concentrations (0.5 mg/L to 2 mg/L) and a temporary immersion bioreactor system (TIS) using liquid medium MS with an addition of 1 mg/L BAP were tested. Rooting was performed using ½ MS medium supplemented with different auxin combinations (indole-3-butyric acid IBA and α-naphthalene acetic acid NAA) and activated charcoal. The TIS method was found to be the most efficient, producing 36.9 new plants within four weeks. The resulting plantlets were thin and bright green in color, with no signs of hyperhydricity. The most suitable agar medium yielded 19.5 new plants within eight weeks. For rooting, ½ MS supplemented with 0.5 mg/L IBA and 0.5 mg/L NAA exhibited an 84% rooting rate, whereas the addition of activated charcoal inhibited rooting.
Collapse
Affiliation(s)
- Mariusz Pożoga
- Section of Horticultural Economics, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Dawid Olewnicki
- Section of Horticultural Economics, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Elżbieta Wójcik-Gront
- Department of Biometry, Institute of Agriculture, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| | - Piotr Latocha
- Department of Environmental Protection and Dendrology, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
| |
Collapse
|
6
|
Nongdam P, Beleski DG, Tikendra L, Dey A, Varte V, EL Merzougui S, Pereira VM, Barros PR, Vendrame WA. Orchid Micropropagation Using Conventional Semi-Solid and Temporary Immersion Systems: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:1136. [PMID: 36904000 PMCID: PMC10005664 DOI: 10.3390/plants12051136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Orchids, with their astonishingly stunning flowers, dominate the international floricultural market. They are considered prized assets for commercial applications in pharmaceutical and floricultural industries as they possess high therapeutic properties and superior ornamental values. The alarming depletion of orchid resources due to excessive unregulated commercial collection and mass habitat destruction makes orchid conservation measures an extreme priority. Conventional propagation methods cannot produce adequate number of orchids, which would meet the requirement of these ornamental plants for commercial and conservational purposes. In vitro orchid propagation using semi-solid media offers an outstanding prospect of rapidly producing quality plants on a large scale. However, the semi-solid (SS) system has shortcomings with low multiplication rates and high production costs. Orchid micropropagation using a temporary immersion system (TIS) overcomes the limitations of the SS system by reducing production costs and making scaleup and full automation possible for mass plant production. The current review highlights different aspects of in vitro orchid propagation using SS and TIS and their benefits and drawbacks on rapid plant generation.
Collapse
Affiliation(s)
- Potshangbam Nongdam
- Department of Biotechnology, Manipur University, Canchipur 795003, India
- Environmental Horticulture Department, University of Florida, Gainesville, FL 32611, USA
| | - David G. Beleski
- Environmental Horticulture Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Vanlalrinchhani Varte
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Soumaya EL Merzougui
- Laboratory of Biotechnologies and Valorization of Natural Resources, Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Vania M. Pereira
- Environmental Horticulture Department, University of Florida, Gainesville, FL 32611, USA
| | - Patricia R. Barros
- Department of Soil, Federal University of Vicosa, Vicosa 36570-900, Brazil
| | - Wagner A. Vendrame
- Environmental Horticulture Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Murthy HN, Joseph KS, Paek KY, Park SY. Bioreactor systems for micropropagation of plants: present scenario and future prospects. FRONTIERS IN PLANT SCIENCE 2023; 14:1159588. [PMID: 37152119 PMCID: PMC10154609 DOI: 10.3389/fpls.2023.1159588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023]
Abstract
Plant micropropagation has been adapted in the fields of agriculture, horticulture, forestry, and other related fields for large-scale production of elite plants. The use of liquid media and adoption of bioreactors have escalated the production of healthy plants. Several liquid-phase, gas-phase, temporary immersion, and other modified bioreactors have been used for plant propagation. The design, principle, operational mode, merits, and demerits of various bioreactors used for the regeneration of propagules, such as bulblets, cormlets, rhizomes, microtubers, shoots (subsequent rooting), and somatic embryos, are discussed here. In addition, various parameters that affect plant regeneration are discussed with suitable examples.
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad, India
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
- *Correspondence: Hosakatte Niranjana Murthy, ; So Young Park,
| | | | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - So Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
- *Correspondence: Hosakatte Niranjana Murthy, ; So Young Park,
| |
Collapse
|
8
|
Krasteva G, Berkov S, Pavlov A, Georgiev V. Metabolite Profiling of Gardenia jasminoides Ellis In Vitro Cultures with Different Levels of Differentiation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248906. [PMID: 36558039 PMCID: PMC9784620 DOI: 10.3390/molecules27248906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Gardenia jasminoides Ellis is an aromatic and medicinal plant of high economic value. Much research has focused on the phytochemistry and biological activities of Gardenia fruit extracts; however, the potential of the Gardenia plant in vitro cultures used as mass production systems of valuable secondary metabolites has been understudied. This paper presents data on metabolite profiling (GC/MS and HPLC), antioxidant activities (DPPH, TEAC, FRAP, and CUPRAC), and SSR profiles of G. jasminoides plant leaves and in vitro cultures with different levels of differentiation (shoots, callus, and cell suspension). The data show strong correlations (r = 0.9777 to r = 0.9908) between antioxidant activity and the concentrations of chlorogenic acid, salicylic acid, rutin, and hesperidin. Eleven co-dominant microsatellite simple sequence repeats (SSRs) markers were used to evaluate genetic variations (average PIC = 0.738 ± 0.153). All of the investigated Gardenia in vitro cultures showed high genetic variabilities (average Na = 5.636 ± 2.157, average Ne = 3.0 ± 1.095). This is the first report on a study on metabolite profiles, antioxidant activities, and genetic variations of G. jasminoides in vitro cultures with different levels of differentiation.
Collapse
Affiliation(s)
- Gergana Krasteva
- Laboratory of Cell Biosystems, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Strahil Berkov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev, 1113 Sofia, Bulgaria
| | - Atanas Pavlov
- Laboratory of Cell Biosystems, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
- Department of Analytical Chemistry and Physical Chemistry, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Vasil Georgiev
- Laboratory of Cell Biosystems, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
9
|
Mirzabe AH, Hajiahmad A, Fadavi A, Rafiee S. Temporary immersion systems (TISs): A comprehensive review. J Biotechnol 2022; 357:56-83. [PMID: 35973641 DOI: 10.1016/j.jbiotec.2022.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
The temporary immersion systems (TISs) have been widely used in plant biotechnology. TISs have different advantages from the point of micropropagation and production of secondary metabolites over other continuous liquid-phase bioreactors. The current work presents the structure, operation mode, configuration type, and micropropagation or secondary metabolite production in TISs. This review deals with the advantages and disadvantages of TISs and the factors affecting their performance. Future research could focus on new designs based on CFD simulation, facilitating sterilization, and combining TISs with other bioreactors (e.g., mist bioreactors) to make a hybrid bioreactor.
Collapse
Affiliation(s)
- Amir Hossein Mirzabe
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran.
| | - Ali Hajiahmad
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran.
| | - Ali Fadavi
- Department of Food Technology, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Shahin Rafiee
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran.
| |
Collapse
|
10
|
Schott C, Bley T, Walter T, Brusius J, Steingroewer J. Monitoring the apical growth characteristics of hairy roots using non-invasive laser speckle contrast imaging. Eng Life Sci 2022; 22:288-298. [PMID: 35382543 PMCID: PMC8961043 DOI: 10.1002/elsc.202100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Hairy roots are used to produce plant agents and additives. Due to their heterogeneous structure and growth characteristics, it is difficult to determine growth-related parameters continuously and in real time. Laser speckle contrast analysis is widely used as a non-destructive measurement technique in material testing or in medical technology. This type of analysis is based on the principle that moving objects or particles cause fluctuations in stochastic interference patterns known as speckle patterns. They are formed by the random backscattering of coherent laser light on an optically rough surface. A Laser Speckle Imager, which is well established for speckle studies of hemodynamics, was used for the first time for non-invasive speckle measurements on hairy roots to study dynamic behavior in plant tissue. Based on speckle contrast, a specific flux value was defined to map the dynamic changes in the investigated tissue. Using this method, we were able to predict the formation of lateral strands and to identify the growth zone in the apical root region, as well as dividing it into functional regions. This makes it possible to monitor physiological processes in the apical growth zone in vivo and in real time without labeling the target structures.
Collapse
Affiliation(s)
- Carolin Schott
- Institute of Natural Materials TechnologyTU DresdenBioprocess EngineeringDresdenGermany
| | - Thomas Bley
- Institute of Natural Materials TechnologyTU DresdenBioprocess EngineeringDresdenGermany
| | - Thomas Walter
- Institute of Natural Materials TechnologyTU DresdenBioprocess EngineeringDresdenGermany
| | | | - Juliane Steingroewer
- Institute of Natural Materials TechnologyTU DresdenBioprocess EngineeringDresdenGermany
| |
Collapse
|
11
|
Lyu X, Lyu Y, Yu H, Chen W, Ye L, Yang R. Biotechnological advances for improving natural pigment production: a state-of-the-art review. BIORESOUR BIOPROCESS 2022; 9:8. [PMID: 38647847 PMCID: PMC10992905 DOI: 10.1186/s40643-022-00497-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In current years, natural pigments are facing a fast-growing global market due to the increase of people's awareness of health and the discovery of novel pharmacological effects of various natural pigments, e.g., carotenoids, flavonoids, and curcuminoids. However, the traditional production approaches are source-dependent and generally subject to the low contents of target pigment compounds. In order to scale-up industrial production, many efforts have been devoted to increasing pigment production from natural producers, via development of both in vitro plant cell/tissue culture systems, as well as optimization of microbial cultivation approaches. Moreover, synthetic biology has opened the door for heterologous biosynthesis of pigments via design and re-construction of novel biological modules as well as biological systems in bio-platforms. In this review, the innovative methods and strategies for optimization and engineering of both native and heterologous producers of natural pigments are comprehensively summarized. Current progress in the production of several representative high-value natural pigments is also presented; and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - WeiNing Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
12
|
Rico S, Garrido J, Sánchez C, Ferreiro-Vera C, Codesido V, Vidal N. A Temporary Immersion System to Improve Cannabis sativa Micropropagation. FRONTIERS IN PLANT SCIENCE 2022; 13:895971. [PMID: 35812929 PMCID: PMC9262383 DOI: 10.3389/fpls.2022.895971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 05/08/2023]
Abstract
The aim of this study was to propagate axillary shoots of Cannabis sativa L. using liquid medium in temporary immersion bioreactors. The effect of immersion frequency (3 or 6 immersions per day), explant type (apical or basal sections), explant number (8, 10, and 16 explants), mineral medium (Murashige and Skoog half-strength nitrates, β-A and β-H, all supplemented with 2-μM metatopoline), sucrose supplementation (2, 0.5, and 0% sucrose), culture duration (4 and 6 weeks), and bioreactor type (RITA® and Plantform™) were investigated. As a result, we propose a protocol for the proliferation of cannabis apical segments in RITA® or Plantform™ bioreactors. The explants (8 per RITA® and 24 per Plantform™) are immersed for 1 min, 3 times per day in β-A medium supplemented with 2-μM metatopoline and 0.5% of sucrose and subcultured every 4 weeks. This is the first study using temporary immersion systems in C. sativa production, and our results provide new opportunities for the mass propagation of this species.
Collapse
Affiliation(s)
- Saleta Rico
- Misión Biológica de Galicia- Sede Santiago de Compostela, MBG-CSIC, Departamento Producción Vegetal, Santiago de Compostela, Spain
| | - José Garrido
- Phytoplant Research S.L.U, Departamento Hibridación y Cultivo, Rabanales 21-Parque Científico Tecnológico de Córdoba, Calle Astrónoma Cecilia Payne, Córdoba, Spain
| | - Conchi Sánchez
- Misión Biológica de Galicia- Sede Santiago de Compostela, MBG-CSIC, Departamento Producción Vegetal, Santiago de Compostela, Spain
| | - Carlos Ferreiro-Vera
- Phytoplant Research S.L.U, Departamento Hibridación y Cultivo, Rabanales 21-Parque Científico Tecnológico de Córdoba, Calle Astrónoma Cecilia Payne, Córdoba, Spain
| | - Verónica Codesido
- Phytoplant Research S.L.U, Departamento Hibridación y Cultivo, Rabanales 21-Parque Científico Tecnológico de Córdoba, Calle Astrónoma Cecilia Payne, Córdoba, Spain
| | - Nieves Vidal
- Misión Biológica de Galicia- Sede Santiago de Compostela, MBG-CSIC, Departamento Producción Vegetal, Santiago de Compostela, Spain
- *Correspondence: Nieves Vidal
| |
Collapse
|
13
|
Motolinía-Alcántara EA, Castillo-Araiza CO, Rodríguez-Monroy M, Román-Guerrero A, Cruz-Sosa F. Engineering Considerations to Produce Bioactive Compounds from Plant Cell Suspension Culture in Bioreactors. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122762. [PMID: 34961231 PMCID: PMC8707313 DOI: 10.3390/plants10122762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The large-scale production of plant-derived secondary metabolites (PDSM) in bioreactors to meet the increasing demand for bioactive compounds for the treatment and prevention of degenerative diseases is nowadays considered an engineering challenge due to the large number of operational factors that need to be considered during their design and scale-up. The plant cell suspension culture (CSC) has presented numerous benefits over other technologies, such as the conventional whole-plant extraction, not only for avoiding the overexploitation of plant species, but also for achieving better yields and having excellent scaling-up attributes. The selection of the bioreactor configuration depends on intrinsic cell culture properties and engineering considerations related to the effect of operating conditions on thermodynamics, kinetics, and transport phenomena, which together are essential for accomplishing the large-scale production of PDSM. To this end, this review, firstly, provides a comprehensive appraisement of PDSM, essentially those with demonstrated importance and utilization in pharmaceutical industries. Then, special attention is given to PDSM obtained out of CSC. Finally, engineering aspects related to the bioreactor configuration for CSC stating the effect of the operating conditions on kinetics and transport phenomena and, hence, on the cell viability and production of PDSM are presented accordingly. The engineering analysis of the reviewed bioreactor configurations for CSC will pave the way for future research focused on their scaling up, to produce high value-added PDSM.
Collapse
Affiliation(s)
| | - Carlos Omar Castillo-Araiza
- Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Ciudad de México 09310, Mexico;
| | - Mario Rodríguez-Monroy
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Departamento de Biotecnología, Instituto Politécnico Nacional (IPN), Yautepec 62731, Mexico;
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Ciudad de México 09310, Mexico;
| | - Francisco Cruz-Sosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Ciudad de México 09310, Mexico;
| |
Collapse
|
14
|
Precursor-Boosted Production of Metabolites in Nasturtium officinale Microshoots Grown in Plantform Bioreactors, and Antioxidant and Antimicrobial Activities of Biomass Extracts. Molecules 2021; 26:molecules26154660. [PMID: 34361814 PMCID: PMC8348939 DOI: 10.3390/molecules26154660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The study demonstrated the effects of precursor feeding on the production of glucosinolates (GSLs), flavonoids, polyphenols, saccharides, and photosynthetic pigments in Nasturtium officinale microshoot cultures grown in Plantform bioreactors. It also evaluated the antioxidant and antimicrobial activities of extracts. L-phenylalanine (Phe) and L-tryptophan (Trp) as precursors were tested at 0.05, 0.1, 0.5, 1.0, and 3.0 mM. They were added at the beginning (day 0) or on day 10 of the culture. Microshoots were harvested after 20 days. Microshoots treated with 3.0 mM Phe (day 0) had the highest total GSL content (269.20 mg/100 g DW). The qualitative and quantitative profiles of the GSLs (UHPLC-DAD-MS/MS) were influenced by precursor feeding. Phe at 3.0 mM stimulated the best production of 4-methoxyglucobrassicin (149.99 mg/100 g DW) and gluconasturtiin (36.17 mg/100 g DW). Total flavonoids increased to a maximum of 1364.38 mg/100 g DW with 3.0 mM Phe (day 0), and polyphenols to a maximum of 1062.76 mg/100 g DW with 3.0 mM Trp (day 0). The precursors also increased the amounts of p-coumaric and ferulic acids, and rutoside, and generally increased the production of active photosynthetic pigments. Antioxidant potential increased the most with 0.1 mM Phe (day 0) (CUPRAC, FRAP), and with 0.5 mM Trp (day 10) (DPPH). The extracts of microshoots treated with 3.0 mM Phe (day 0) showed the most promising bacteriostatic activity against microaerobic Gram-positive acne strains (MIC 250–500 µg/mL, 20–21 mm inhibition zones). No extract was cytotoxic to normal human fibroblasts over the tested concentration range (up to 250 μg/mL).
Collapse
|
15
|
Süntar I, Çetinkaya S, Haydaroğlu ÜS, Habtemariam S. Bioproduction process of natural products and biopharmaceuticals: Biotechnological aspects. Biotechnol Adv 2021; 50:107768. [PMID: 33974980 DOI: 10.1016/j.biotechadv.2021.107768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Decades of research have been put in place for developing sustainable routes of bioproduction of high commercial value natural products (NPs) on the global market. In the last few years alone, we have witnessed significant advances in the biotechnological production of NPs. The development of new methodologies has resulted in a better understanding of the metabolic flux within the organisms, which have driven manipulations to improve production of the target product. This was further realised due to the recent advances in the omics technologies such as genomics, transcriptomics, proteomics, metabolomics and secretomics, as well as systems and synthetic biology. Additionally, the combined application of novel engineering strategies has made possible avenues for enhancing the yield of these products in an efficient and economical way. Invention of high-throughput technologies such as next generation sequencing (NGS) and toolkits for genome editing Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) have been the game changers and provided unprecedented opportunities to generate rationally designed synthetic circuits which can produce complex molecules. This review covers recent advances in the engineering of various hosts for the production of bioactive NPs and biopharmaceuticals. It also highlights general approaches and strategies to improve their biosynthesis with higher yields in a perspective of plants and microbes (bacteria, yeast and filamentous fungi). Although there are numerous reviews covering this topic on a selected species at a time, our approach herein is to give a comprehensive understanding about state-of-art technologies in different platforms of organisms.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Etiler, Ankara, Turkey.
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Ülkü Selcen Haydaroğlu
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| |
Collapse
|
16
|
Krasteva G, Georgiev V, Pavlov A. Recent applications of plant cell culture technology in cosmetics and foods. Eng Life Sci 2021; 21:68-76. [PMID: 33716606 PMCID: PMC7923559 DOI: 10.1002/elsc.202000078] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022] Open
Abstract
Plants have been used as the main source of phytochemicals with nutritional, medicinal, cultural and cosmetic applications since times immemorial. Nowadays, achieving sustainable development, global climate change, restricted access to fresh water, limited food supply and growing energy demands are among the critical global challenges faced by humanity. Plant cell culture technology has the potential to address some of these challenges by providing effective tools for sustainable supply of phyto-ingredients with reduced energy, carbon and water footprints. The main aim of this review is to discuss the recent trends in the development of plant cell culture technologies for production of plant-derived substances with application in food products and cosmetic formulations. The specific technological steps and requirements for the final products are discussed in the light of the advances in cultivation technologies used for growing differentiated and undifferentiated plant in vitro systems. Future prospects and existing challenges of the commercialization of plant cell culture-derived products have been outlined through the prism of the authors' point of view. We expect this review will encourage scientists, policymakers and business enterprises to join efforts for speeding-up the mass commercialization and popularization of plant cell culture technology as an eco-friendly alternative method for sustainable production of plant-derived additives with application in food and cosmetic products.
Collapse
Affiliation(s)
- Gergana Krasteva
- Laboratory of Cell BiosystemsThe Stephan Angeloff Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria
| | - Vasil Georgiev
- Laboratory of Cell BiosystemsThe Stephan Angeloff Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria
| | - Atanas Pavlov
- Laboratory of Cell BiosystemsThe Stephan Angeloff Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria
- Department of Analytical Chemistry and PhysicochemistryUniversity of Food TechnologiesPlovdivBulgaria
| |
Collapse
|
17
|
Hairy root culture technology: applications, constraints and prospect. Appl Microbiol Biotechnol 2020; 105:35-53. [PMID: 33226470 DOI: 10.1007/s00253-020-11017-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
Abstract
Hairy root (HR) culture, a successful biotechnology combining in vitro tissue culture with recombinant DNA machinery, is intended for the genetic improvement of plants. This technology has been put to use since the last three decades for genetic advancement of medicinal and aromatic plants and also to harvest the economical products in the form of secondary metabolites that are significantly important for their ethnobotanical and pharmacological properties. It also provides an efficient way out for the quicker extraction and quantification of the valuable phytochemicals. The current review provides an account of the in vitro HR culture technology and its wide-scale applications in the field of research as well as in pharmaceutical industries. Different facets of HR with respect to the culture establishment, phytochemical production as well as research investigations concerning the areas of gene manipulation, biotransformation of the secondary metabolites, phytoremediation, their industrial utilisations and different problems encountered during the application of this technology have been covered in this appraisal. Eventually, an idea has been provided on HR about the recent trends on the progress of this technology that may open up newer prospects in near future and calls for further research and explorations in this field. KEY POINTS: • Genetic engineering-based HR culture aims towards enhanced secondary metabolite production. • This review explores an insight in the HR technology and its multi-faceted approaches. • Up-to-date ground-breaking research applications and constraints of HR culture are discussed.
Collapse
|
18
|
Klimek-Szczykutowicz M, Dziurka M, Blažević I, Đulović A, Granica S, Korona-Glowniak I, Ekiert H, Szopa A. Phytochemical and Biological Activity Studies on Nasturtium officinale (Watercress) Microshoot Cultures Grown in RITA ® Temporary Immersion Systems. Molecules 2020; 25:molecules25225257. [PMID: 33187324 PMCID: PMC7696031 DOI: 10.3390/molecules25225257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
The main compounds in both extracts were gluconasturtiin, 4-methoxyglucobrassicin and rutoside, the amounts of which were, respectively, determined as 182.93, 58.86 and 23.24 mg/100 g dry weight (DW) in biomass extracts and 640.94, 23.47 and 7.20 mg/100 g DW in plant herb extracts. The antioxidant potential of all the studied extracts evaluated using CUPRAC (CUPric Reducing Antioxidant Activity), FRAP (Ferric Reducing Ability of Plasma), and DPPH (1,1-diphenyl-2-picrylhydrazyl) assays was comparable. The anti-inflammatory activity of the extracts was tested based on the inhibition of 15-lipoxygenase, cyclooxygenase-1, cyclooxygenase-2 (COX-2), and phospholipase A2. The results demonstrate significantly higher inhibition of COX-2 for in vitro cultured biomass compared with the herb extracts (75.4 and 41.1%, respectively). Moreover, all the studied extracts showed almost similar antibacterial and antifungal potential. Based on these findings, and due to the fact that the growth of in vitro microshoots is independent of environmental conditions and unaffected by environmental pollution, we propose that biomass that can be rapidly grown in RITA® bioreactors can serve as an alternative source of bioactive compounds with valuable biological properties.
Collapse
Affiliation(s)
- Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.-S.); (H.E.)
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland;
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (I.B.); (A.Đ.)
| | - Azra Đulović
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (I.B.); (A.Đ.)
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis and Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland;
| | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.-S.); (H.E.)
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.-S.); (H.E.)
- Correspondence: ; Tel.: +48-12-620-5436
| |
Collapse
|
19
|
Georgiev V, Ivanov I, Pavlov A. Recent Progress in Amaryllidaceae Biotechnology. Molecules 2020; 25:E4670. [PMID: 33066212 PMCID: PMC7587388 DOI: 10.3390/molecules25204670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Plants belonging to the monocotyledonous Amaryllidaceae family include about 1100 species divided among 75 genera. They are well known as medicinal and ornamental plants, producing pharmaceutically important alkaloids, the most intensively investigated of which are galanthamine and lycorine. Amaryllidaceae alkaloids possess various biological activities, the most important one being their anti-acetylcholinesterase activity, used for the treatment of Alzheimer's disease. Due to increased demand for Amaryllidaceae alkaloids (mainly galanthamine) and the limited availability of plant sources, in vitro culture technology has attracted the attention of researchers as a prospective alternative for their sustainable production. Plant in vitro systems have been extensively used for continuous, sustainable, and economically viable production of bioactive plant secondary metabolites. Over the past two decades, a significant success has been demonstrated in the development of in vitro systems synthesizing Amaryllidaceae alkaloids. The present review discusses the state of the art of in vitro Amaryllidaceae alkaloids production, summarizing recently documented plant in vitro systems producing them, as well as the authors' point of view on the development of biotechnological production processes with a focus on the future prospects of in vitro culture technology for the commercial production of these valuable alkaloids.
Collapse
Affiliation(s)
- Vasil Georgiev
- Laboratory of Cell Biosystems, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv 4000, Bulgaria;
| | - Ivan Ivanov
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, Plovdiv 4002, Bulgaria;
| | - Atanas Pavlov
- Laboratory of Cell Biosystems, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv 4000, Bulgaria;
- Department of Analytical Chemistry and Physical Chemistry, University of Food Technologies, Plovdiv 4002, Bulgaria
| |
Collapse
|
20
|
Weremczuk-Jeżyna I, Lisiecki P, Gonciarz W, Kuźma Ł, Szemraj M, Chmiela M, Grzegorczyk-Karolak I. Transformed Shoots of Dracocephalum forrestii W.W. Smith from Different Bioreactor Systems as a Rich Source of Natural Phenolic Compounds. Molecules 2020; 25:molecules25194533. [PMID: 33022943 PMCID: PMC7583972 DOI: 10.3390/molecules25194533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
Transformed shoots of the Tibetan medicinal plant Dracocephalum forrestii were cultured in temporary immersion bioreactors (RITA and Plantform) and in nutrient sprinkle bioreactor (NSB) for 3 weeks in MS (Murashige and Skoog) liquid medium with 0.5 mg/L BPA (N-benzyl-9-(2-tetrahydropyranyl)-adenine) and 0.2 mg/L IAA (indole-3-acetic acid). The greatest biomass growth index (GI = 52.06 fresh weight (FW) and 55.67 dry weight (DW)) was observed for shoots in the RITA bioreactor, while the highest multiplication rate was found in the NSB (838 shoots per bioreactor). The levels of three phenolic acids and five flavonoid derivatives in the shoot hydromethanolic extract were evaluated using UHPLC (ultra-high performance liquid chromatography). The predominant metabolite was rosmarinic acid (RA)—the highest RA level (18.35 mg/g DW) and total evaluated phenol content (24.15 mg/g DW) were observed in shoots grown in NSB. The NSB culture, i.e., the most productive one, was evaluated for its antioxidant activity on the basis of reduction of ferric ions (ferric reducing antioxidant power, FRAP) and two scavenging radical (O2•– and DPPH, 1,1-diphenyl-2-picrylhydrazyl radical) assays; its antibacterial, antifungal, and antiproliative potential against L929 cells was also tested (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test). The plant material revealed moderate antioxidant and antimicrobial activities and demonstrated high safety in the MTT test—no cytotoxicity at concentrations up to 50 mg/mL was found, and less than a 20% decrease in L929 cell viability was observed at this concentration.
Collapse
Affiliation(s)
- Izabela Weremczuk-Jeżyna
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 1 Muszyńskiego Str., 90-001 Lodz, Poland; (Ł.K.); (I.G.-K.)
- Correspondence:
| | - Paweł Lisiecki
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, 137 Pomorska Str., 90-235 Lodz, Poland; (P.L.); (M.S.)
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 1 Muszyńskiego Str., 90-001 Lodz, Poland; (Ł.K.); (I.G.-K.)
| | - Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, 137 Pomorska Str., 90-235 Lodz, Poland; (P.L.); (M.S.)
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 1 Muszyńskiego Str., 90-001 Lodz, Poland; (Ł.K.); (I.G.-K.)
| |
Collapse
|
21
|
Schott C, Steingroewer J, Bley T, Cikalova U, Bendjus B. Biospeckle-characterization of hairy root cultures using laser speckle photometry. Eng Life Sci 2020; 20:287-295. [PMID: 32647507 PMCID: PMC7336145 DOI: 10.1002/elsc.201900161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 11/30/2022] Open
Abstract
Monitoring is indispensable for the optimization and simulation of biotechnological processes. Hairy roots (hr, plant tissue cultures) are producers of valuable relevant secondary metabolites. The genetically stable cultures are characterized by a rapid filamentous growth, making monitoring difficult with standard methods. This article focuses on the application of laser speckle photometry (LSP) as an innovative, non-invasive method to characterize Beta vulgaris (hr). LSP is based on the analysis of time-resolved interference patterns. Speckle interference patterns of a biological object, known as biospeckles, are characterized by a dynamic behavior that is induced by physical and biological phenomena related to the object. Speckle contrast, a means of measuring the dynamic behavior of biospeckles, was used to assess the biospeckle activity. The biospeckle activity corresponds to processes modifying the object and correlates with the biomass growth. Furthermore, the stage of the cultures' physiological development was assessed by speckle contrast due to the differentiation between active and low active behavior. This method is a new means of monitoring and evaluating the biomass growth of filamentous cultures in real time. As a potential tool to characterize hairy roots, LSP is non-invasive, time-saving, can be used online and stands out for its simple, low-cost setup.
Collapse
Affiliation(s)
- Carolin Schott
- Institute of Natural Materials TechnologyTU DresdenDresdenGermany
| | | | - Thomas Bley
- Institute of Natural Materials TechnologyTU DresdenDresdenGermany
| | - Ulana Cikalova
- Fraunhofer Institute for Ceramic Technologies and Systems IKTSDresdenGermany
| | - Beatrice Bendjus
- Fraunhofer Institute for Ceramic Technologies and Systems IKTSDresdenGermany
| |
Collapse
|
22
|
Abstract
Significant advancements in biotechnology have resulted in the development of numerous fundamental bioprocesses, which have consolidated research and development and industrial progress in the field. These bioprocesses are used in medical therapies, diagnostic and immunization procedures, agriculture, food production, biofuel production, and environmental solutions (to address water-, soil-, and air-related problems), among other areas. The present study is a first approach toward the identification of scientific and technological bioprocess trajectories within the framework of sustainability. The method included a literature search (Scopus), a patent search (Patentscope), and a network analysis for the period from 2010 to 2019. Our results highlight the main technological sectors, countries, institutions, and academic publications that carry out work or publish literature related to sustainability and bioprocesses. The network analysis allowed for the identification of thematic clusters associated with sustainability and bioprocesses, revealing different related scientific topics. Our conclusions confirm that biotechnology is firmly positioned as an emerging knowledge area. Its dynamics, development, and outcomes during the study period reflect a substantial number of studies and technologies focused on the creation of knowledge aimed at improving economic development, environmental protection, and social welfare.
Collapse
|
23
|
Adsorption of gallic acid, propyl gallate and polyphenols from Bryophyllum extracts on activated carbon. Sci Rep 2019; 9:14830. [PMID: 31616022 PMCID: PMC6794375 DOI: 10.1038/s41598-019-51322-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 11/09/2022] Open
Abstract
The adsorption of gallic acid (GA) and propyl gallate (PG) on activated carbon (AC) was studied as a function of the AC mass and temperature. Clean first order behavior was obtained for at least three half-lives and the equilibrium was reached after ∼4 h contact time. An increase in the temperature (T = 20–40 °C) increases their adsorption rate constant values (k1) by 2.5 fold but has a negligible effect on the amount of antioxidant adsorbed per mass of AC at equilibrium. We also analyzed the adsorption process of polyphenols from Bryophyllum extracts and ca 100% of the total amount of the polyphenols in the extract were adsorbed when using 7 mg of AC. Results can be explained on the basis of the Freundlich isotherm but do not fit the Langmuir model. Results suggest that the combination of emerging in vitro plant culture technologies with adsorption on activated carbon can be successfully employed to remove important amounts of bioactive compounds from plant extracts by employing effective, sustainable and environmental friendly procedures.
Collapse
|
24
|
Nielsen E, Temporiti MEE, Cella R. Improvement of phytochemical production by plant cells and organ culture and by genetic engineering. PLANT CELL REPORTS 2019; 38:1199-1215. [PMID: 31055622 DOI: 10.1007/s00299-019-02415-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Plants display an amazing ability to synthesize a vast array of secondary metabolites that are an inexhaustible source of phytochemicals, bioactive molecules some of which impact the human health. Phytochemicals present in medicinal herbs and spices have long been used as natural remedies against illness. Plant tissue culture represents an alternative to whole plants as a source of phytochemicals. This approach spares agricultural land that can be used for producing food and other raw materials, thus favoring standardized phytochemical production regardless of climatic adversities and political events. Over the past 20 years, different strategies have been developed to increase the synthesis and the extraction of phytochemicals from tissue culture often obtaining remarkable results. Moreover, the availability of genomics and metabolomics tools, along with improved recombinant methods related to the ability to overexpress, silence or disrupt one or more genes of the pathway of interest promise to open new exciting possibilities of metabolic engineering. This review provides a general framework of the cellular and molecular tools developed so far to enhance the yield of phytochemicals. Additionally, some emerging topics such as the culture of cambial meristemoid cells, the selection of plant cell following the expression of genes encoding human target proteins, and the bioextraction of phytochemicals from plant material have been addressed. Altogether, the herein described techniques and results are expected to improve metabolic engineering tools aiming at improving the production of phytochemicals of pharmaceutical and nutraceutical interest.
Collapse
Affiliation(s)
- Erik Nielsen
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| | | | - Rino Cella
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| |
Collapse
|
25
|
Skrzypczak-Pietraszek E, Urbańska A, Żmudzki P, Pietraszek J. Elicitation with methyl jasmonate combined with cultivation in the Plantform™ temporary immersion bioreactor highly increases the accumulation of selected centellosides and phenolics in Centella asiatica (L.) Urban shoot culture. Eng Life Sci 2019; 19:931-943. [PMID: 32624983 DOI: 10.1002/elsc.201900051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/30/2019] [Accepted: 07/25/2019] [Indexed: 11/08/2022] Open
Abstract
Centella asiatica (L.) Urban is an important pharmacopoeial plant used not only in medicine but also in cosmetology. C. asiatica agitated shoot cultures were established to study the influence of ethephon, methyl jasmonate, l-phenylalanine (Eth 50 µM, MeJa 50 µM, L-Phe 2.4 g/L of medium, respectively; seven variants of the supplementation) on the accumulation of secondary metabolites: the main centellosides (asiaticoside and madecassoside) and selected phenolic acids, and flavonoids in the biomass. Microshoots were harvested two and six days after the supplementation. Secondary metabolites were analyzed in methanolic extracts by UPLC-MS/MS (centellosides) and by HPLC-DAD (phenolics). In comparison with the reference cultures, the concentrations of individual secondary metabolites increased as follows: centellosides up to 5.6-fold (asiaticoside), phenolic acids up to 122-fold (p-coumaric acid) and flavonoids up to 22.4-fold (kaempherol). The highest production increase of individual compounds was observed for different variants of supplementation. Variant C (50 µM MeJa), the most optimal for centellosides and flavonoid accumulation, was selected for the experiment with bioreactors. Bioreactor Plantform™, compared to RITA® system and agitated cultures, appeared to be the most advantageous for secondary metabolites production in C. asiatica shoot cultures. The phenolic acid, flavonoid, centelloside, and total secondary metabolite productivity in Plantform™ system is 1.8-fold, 1.7-fold, 2.8-fold, 2.1-fold, respectively, higher than in MeJa elicitated agitated cultures, and 4.3-fold, 7.3-fold, 12.2-fold, 7.2-fold, respectively, higher than in control agitated cultures.
Collapse
Affiliation(s)
- Ewa Skrzypczak-Pietraszek
- Chair and Department of Pharmaceutical Botany, Collegium Medicum Jagiellonian University Kraków Poland
| | - Aneta Urbańska
- Chair and Department of Pharmaceutical Botany, Collegium Medicum Jagiellonian University Kraków Poland
| | - Paweł Żmudzki
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Collegium Medicum Jagiellonian University Kraków Poland
| | - Jacek Pietraszek
- Department of Software Engineering and Applied Statistics Faculty of Mechanical Engineering Cracow University of Technology Krakow Poland
| |
Collapse
|
26
|
Vrancheva R, Ivanov I, Aneva I, Stoyanova M, Pavlov A. Food additives and bioactive substances from in vitro systems of edible plants from the Balkan peninsula. Eng Life Sci 2018; 18:799-806. [PMID: 32624873 DOI: 10.1002/elsc.201800063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/01/2018] [Accepted: 08/14/2018] [Indexed: 11/07/2022] Open
Abstract
During the last few years there is an increasing demand to the natural biologically active compounds. According to the World Health Organization (WHO) about 11% of the conventional medicines are of plant origin. Nowadays, plant biotechnologies are modern and reliable tool for producing valuable bioactive compounds. Recently, the potential of plant cells as foods also was confirmed. The advantages of plant in vitro systems over the intact plants are well known: growing under controlled and optimized laboratory conditions; independence of climatic and soil differences; preservation of rare and endangered plant species; cultivation in diverse bioreactor systems for increasing production yields of target metabolites. There have been developed many in vitro systems for production of various plant bioactive compounds with potential application in food industries. But potential for industrial implementation of this technology depends on solving problems with the scale-up of bioreactor cultivation, development of additional approaches for improving/modification of bioactivities of the target plant secondary metabolites, and to find way to exclude or replace in the culture media the carcinogenic plant growth regulator 2,4-dichlorophenoxyacetic acid (2,4-D) with its safety analogs, such as α-naphtaleneacetic acid (NAA) and/or indole-3-butyric acid (IBA). The aim of the current mini review is to summarize information about different in vitro systems of edible plants from the Balkan Peninsula with potential for producing food additives and biologically active substances and to describe prospects for successful industrial implementation of this technology.
Collapse
Affiliation(s)
- Radka Vrancheva
- Department of Analytical Chemistry and Physical chemistry University of Food Technologies-Plovdiv Plovdiv Bulgaria
| | - Ivan Ivanov
- Department of Organic Chemistry and Inorganic Chemistry University of Food Technologies-Plovdiv Plovdiv Bulgaria
| | - Ina Aneva
- Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria
| | - Magdalena Stoyanova
- Department of Analytical Chemistry and Physical chemistry University of Food Technologies-Plovdiv Plovdiv Bulgaria
| | - Atanas Pavlov
- Department of Analytical Chemistry and Physical chemistry University of Food Technologies-Plovdiv Plovdiv Bulgaria.,Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences Plovdiv Bulgaria
| |
Collapse
|
27
|
Plant cell culture technology in the cosmetics and food industries: current state and future trends. Appl Microbiol Biotechnol 2018; 102:8661-8675. [PMID: 30099571 PMCID: PMC6153648 DOI: 10.1007/s00253-018-9279-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 12/02/2022]
Abstract
The production of drugs, cosmetics, and food which are derived from plant cell and tissue cultures has a long tradition. The emerging trend of manufacturing cosmetics and food products in a natural and sustainable manner has brought a new wave in plant cell culture technology over the past 10 years. More than 50 products based on extracts from plant cell cultures have made their way into the cosmetics industry during this time, whereby the majority is produced with plant cell suspension cultures. In addition, the first plant cell culture-based food supplement ingredients, such as Echigena Plus and Teoside 10, are now produced at production scale. In this mini review, we discuss the reasons for and the characteristics as well as the challenges of plant cell culture-based productions for the cosmetics and food industries. It focuses on the current state of the art in this field. In addition, two examples of the latest developments in plant cell culture-based food production are presented, that is, superfood which boosts health and food that can be produced in the lab or at home.
Collapse
|
28
|
Georgiev V, Slavov A, Vasileva I, Pavlov A. Plant cell culture as emerging technology for production of active cosmetic ingredients. Eng Life Sci 2018; 18:779-798. [PMID: 32624872 DOI: 10.1002/elsc.201800066] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022] Open
Abstract
Plants have always been the main source for active cosmetic ingredients, having proven health beneficial effects on human, such as anti-aging, antioxidant, anti-inflammatory, UV-protective, anti-cancer, anti-wrinkle, skin soothing, whitening, moisturizing, etc. Extracts from herbal, aromatic and/or medicinal plants have been widely used as effective active ingredients in cosmeceuticals or nutricosmetics, especially in products for topical application and skin-care formulations. However, over the past decade, there has been an increasing interest to plant cell culture - derived active cosmetic ingredients. These are "new generation" of high quality natural products, produced by the modern plan biotechnology methods, which usually showed stronger activities than the plant extracts obtained by the classical methods. In this review, the advantages and the current progress in plant cell culture technology for the production of active cosmetic ingredients have been summarized, and discussed in details within a presented case study for calendula stem cell product development.
Collapse
Affiliation(s)
- Vasil Georgiev
- Laboratory of Applied Biotechnology - Plovdiv The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences Plovdiv Bulgaria.,Department of Organic Chemistry and Inorganic Chemistry University of Food Technologies Plovdiv Bulgaria
| | - Anton Slavov
- Department of Organic Chemistry and Inorganic Chemistry University of Food Technologies Plovdiv Bulgaria
| | - Ivelina Vasileva
- Department of Organic Chemistry and Inorganic Chemistry University of Food Technologies Plovdiv Bulgaria
| | - Atanas Pavlov
- Laboratory of Applied Biotechnology - Plovdiv The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences Plovdiv Bulgaria.,Department of Analytical Chemistry and Physicochemistry University of Food Technologies Plovdiv Bulgaria
| |
Collapse
|
29
|
Werner S, Maschke RW, Eibl D, Eibl R. Bioreactor Technology for Sustainable Production of Plant Cell-Derived Products. REFERENCE SERIES IN PHYTOCHEMISTRY 2018. [DOI: 10.1007/978-3-319-54600-1_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Thakore D, Srivastava AK. Production of biopesticide azadirachtin using plant cell and hairy root cultures. Eng Life Sci 2017; 17:997-1005. [PMID: 32624850 DOI: 10.1002/elsc.201700012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/01/2017] [Accepted: 04/13/2017] [Indexed: 11/07/2022] Open
Abstract
The extensive use of nondegradable chemical pesticides for pest management has developed serious environmental hazards. This has necessitated the urgent need to switch over to an alternative mode of biopesticide development for mass agriculture and field crop protection. Azadirachta indica A. Juss (commonly known as neem) houses a plethora of bioactive secondary metabolites with azadirachtin being the most active constituent explored in the sector of ecofriendly and biodegradable biopesticides characterized by low toxicity toward nontarget organisms. It has been reported that the highest content of azadirachtin and related limonoids is present in the seeds, available once in a year. Moreover, the inconsistent content and purity of the metabolites in whole plant makes it imperative to tap the potential of in vitro plant tissue culture applications, which would allow for several controlled manipulations for better yield and productivities. This review gives a summarized literature of the applied research and achievements in plant cell/hairy cultures of A. indica A. Juss mainly in context with the biopesticide azadirachtin and applications thereof.
Collapse
Affiliation(s)
- Dhara Thakore
- Department of Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi Hauz Khas New Delhi India
| | - Ashok K Srivastava
- Department of Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi Hauz Khas New Delhi India
| |
Collapse
|
31
|
Kochan E, Szymczyk P, Kuźma Ł, Lipert A, Szymańska G. Yeast Extract Stimulates Ginsenoside Production in Hairy Root Cultures of American Ginseng Cultivated in Shake Flasks and Nutrient Sprinkle Bioreactors. Molecules 2017; 22:molecules22060880. [PMID: 28587128 PMCID: PMC6152677 DOI: 10.3390/molecules22060880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/23/2017] [Indexed: 12/26/2022] Open
Abstract
One of the most effective strategies to enhance metabolite biosynthesis and accumulation in biotechnological systems is the use of elicitation processes. This study assesses the influence of different concentrations of yeast extract (YE) on ginsenoside biosynthesis in Panax quinquefolium (American ginseng) hairy roots cultivated in shake flasks and in a nutrient sprinkle bioreactor after 3 and 7 days of elicitation. The saponin content was determined using HPLC. The maximum yield (20 mg g−1 d.w.) of the sum of six examined ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1) in hairy roots cultivated in shake flasks was achieved after application of YE at 50 mg L−1 concentration and 3 day exposure time. The ginsenoside level was 1.57 times higher than that attained in control medium. The same conditions of elicitation (3 day time of exposure and 50 mg L−1 of YE) also favourably influenced the biosynthesis of studied saponins in bioreactor cultures. The total ginsenoside content was 32.25 mg g−1 d.w. and was higher than that achieved in control medium and in shake flasks cultures. Obtained results indicated that yeast extract can be used to increase ginsenoside production in hairy root cultures of P. quinquefolium.
Collapse
Affiliation(s)
- Ewa Kochan
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| | - Piotr Szymczyk
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| | - Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego l, Lodz 90-151, Poland.
| | - Anna Lipert
- Department of Sports Medicine, Medical University of Lodz, Pomorska 251, Lodz 92-213, Poland.
| | - Grażyna Szymańska
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| |
Collapse
|
32
|
Biotechnological production of hyperforin for pharmaceutical formulation. Eur J Pharm Biopharm 2017; 126:10-26. [PMID: 28377273 DOI: 10.1016/j.ejpb.2017.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023]
Abstract
Hyperforin is a major active constituent of Hypericum perforatum (St. John's wort). It has amazing pharmacological activities, such as antidepressant properties, but it is labile and difficult to synthesize. Its sensitivity and lipophilicity are challenges for processing and formulation. Its chemical complexity provokes approaches of biotechnological production and modification. Dedifferentiated H. perforatum cell cultures lack appropriate storage sites and hence appreciable hyperforin levels. Shoot cultures are capable of forming hyperforin but less suitable for biomass up-scaling in bioreactors. Roots commonly lack hyperforin but a recently established adventitious root line has been demonstrated to produce hyperforin and derivatives at promising levels. The roots also contained lupulones, the typical constituents of hop (Humulus lupulus). Although shear-sensitive, these root cultures provide a potential production platform for both individual compounds and extracts with novel combinations of constituents and pharmacological activities. Besides in vitro cultivation techniques, the reconstruction of hyperforin biosynthesis in microorganisms is a promising alternative for biotechnological production. The biosynthetic pathway is under study, with omics-technologies being increasingly implemented. These biotechnological approaches may not only yield hyperforin at reasonable productivity but also allow for modifications of its chemical structure and pharmacological profile.
Collapse
|
33
|
Szopa A, Kokotkiewicz A, Luczkiewicz M, Ekiert H. Schisandra lignans production regulated by different bioreactor type. J Biotechnol 2017; 247:11-17. [DOI: 10.1016/j.jbiotec.2017.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/01/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022]
|
34
|
Thakore D, Srivastava AK, Sinha AK. Mass production of Ajmalicine by bioreactor cultivation of hairy roots of Catharanthus roseus. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Barretto SS, Michoux F, Hellgardt K, Nixon PJ. Pneumatic hydrodynamics influence transplastomic protein yields and biological responses during in vitro shoot regeneration of Nicotiana tabacum callus: Implications for bioprocess routes to plant-made biopharmaceuticals. Biochem Eng J 2017; 117:73-81. [PMID: 28111521 PMCID: PMC5221668 DOI: 10.1016/j.bej.2016.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transplastomic plants are capable of high-yield production of recombinant biopharmaceutical proteins. Plant tissue culture combines advantages of agricultural cultivation with the bioprocess consistency associated with suspension culture. Overexpression of recombinant proteins through regeneration of transplastomic Nicotiana tabacum shoots from callus tissue in RITA® temporary immersion bioreactors has been previously demonstrated. In this study we investigated the hydrodynamics of periodic pneumatic suspension of liquid medium during temporary immersion culture (4 min aeration every 8 h), and the impact on biological responses and transplastomic expression of fragment C of tetanus toxin (TetC). Biomass was grown under a range of aeration rates for 3, 20 and 40-day durations. Growth, mitochondrial activity (a viability indicator) and TetC protein yields were correlated against the hydrodynamic parameters, shear rate and energy dissipation rate (per kg of medium). A critical aeration rate of 440 ml min-1 was identified, corresponding to a shear rate of 96.7 s-1, pneumatic power input of 8.8 mW kg-1 and initial 20-day pneumatic energy dissipation of 127 J kg-1, at which significant reductions in biomass accumulation and mitochondrial activity were observed. There was an exponential decline in TetC yields with increasing aeration rates at 40 days, across the entire range of conditions tested. These observations have important implications for the optimisation and scale-up of transplastomic plant tissue culture bioprocesses for biopharmaceutical production.
Collapse
Key Words
- Biopharmaceutical
- CIM, callus induction medium
- Hydrodynamics
- MS medium, Murashige & Skoog medium
- Pneumatic energy dissipation
- RITA®, recipient for automated temporary immersion (translated from French)
- SDS-PAGE, sodium dodecyl sulphate polyacrylamide gel electrophoresis
- TF, triphenylformazan
- TIB, temporary immersion bioreactor
- TSP, total soluble protein
- TTC, 2,3,5-triphenyltetrazolium chloride
- Temporary immersion culture
- TetC, fragment C of tetanus toxin
- Transplastomic protein
- in vitro organogenesis
- kDa, kiloDalton
Collapse
Affiliation(s)
- Sherwin S Barretto
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Franck Michoux
- Alkion Biopharma SAS, Pépinière Entreprise Genopole, 4 rue Pierre Fontaine, 91058, Evry, France
| | - Klaus Hellgardt
- Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Peter J Nixon
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| |
Collapse
|
36
|
Azerad R. Chemical structures, production and enzymatic transformations of sapogenins and saponins from Centella asiatica (L.) Urban. Fitoterapia 2016; 114:168-187. [DOI: 10.1016/j.fitote.2016.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022]
|
37
|
In Vitro Mass Propagation of Cymbopogon citratus Stapf., a Medicinal Gramineae. Methods Mol Biol 2016; 1391:445-57. [PMID: 27108335 DOI: 10.1007/978-1-4939-3332-7_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Cymbopogon citratus (D.C.) Stapf. is a medicinal plant source of lemon grass oils with multiple uses in the pharmaceutical and food industry. Conventional propagation in semisolid culture medium has become a fast tool for mass propagation of lemon grass, but the production cost must be lower. A solution could be the application of in vitro propagation methods based on liquid culture advantages and automation. This chapter provides two efficient protocols for in vitro propagation via organogenesis and somatic embryogenesis of this medicinal plant. Firstly, we report the production of shoots using a temporary immersion system (TIS). Secondly, a protocol for somatic embryogenesis using semisolid culture for callus formation and multiplication, and liquid culture in a rotatory shaker and conventional bioreactors for the maintenance of embryogenic culture, is described. Well-developed plants can be achieved from both protocols. Here we provide a fast and efficient technology for mass propagation of this medicinal plant taking the advantage of liquid culture and automation.
Collapse
|
38
|
Jaisi A, Panichayupakaranant P. Simultaneous heat shock and in situ adsorption enhance plumbagin production inPlumbago indicaroot cultures. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Amit Jaisi
- Department of Pharmacognosy and Pharmaceutical Botany; Faculty of Pharmaceutical Sciences, Prince of Songkla University; Hat-Yai, Songkhla Thailand
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany; Faculty of Pharmaceutical Sciences, Prince of Songkla University; Hat-Yai, Songkhla Thailand
- Excellent Research Laboratory; Phytomedicine and Pharmaceutical Biotechnology Excellence Center; Faculty of Pharmaceutical Sciences; Prince of Songkla University; Hat-Yai Songkhla Thailand
| |
Collapse
|
39
|
Rasche S, Herwartz D, Schuster F, Jablonka N, Weber A, Fischer R, Schillberg S. More for less: Improving the biomass yield of a pear cell suspension culture by design of experiments. Sci Rep 2016; 6:23371. [PMID: 26988402 PMCID: PMC4796904 DOI: 10.1038/srep23371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/02/2016] [Indexed: 12/24/2022] Open
Abstract
Plant cell suspension cultures are widely used for the production of recombinant proteins and secondary metabolites. One of the most important steps during process development is the optimization of yields by testing different cultivation parameters, including the components of the growth medium. However, we have shown that the biomass yield of a cell suspension culture derived from the pear cultivar Pyrus communis cv. Champagner Bratbirne can be significantly improved solely by varying the temperature, inoculum density, illumination, and incubation time. In contrast to medium optimization, these simple physical factors are easily controlled and varied, thereby reducing the effort required. Using an experimental design approach, we improved the biomass yield from 146 g fresh weight (FW)/L to 407 g FW/L in only 5 weeks, simultaneously reducing the costs of goods sold per kg biomass from €125 to €45. Our simple approach therefore offers a rapid, efficient and economical process for the optimization of plant cell suspension cultures.
Collapse
Affiliation(s)
- Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany
| | - Denise Herwartz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany
| | - Flora Schuster
- Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Natalia Jablonka
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany
| | - Andrea Weber
- Dr. Babor GmbH &Co. KG, Neuenhofstraße 180, 52078 Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany.,Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany.,Justus-Liebig University Giessen, Institute for Phytopathology and Applied Zoology, Phytopathology Department, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
40
|
Szopa A, Kokotkiewicz A, Marzec-Wróblewska U, Bucinski A, Luczkiewicz M, Ekiert H. Accumulation of dibenzocyclooctadiene lignans in agar cultures and in stationary and agitated liquid cultures of Schisandra chinensis (Turcz.) Baill. Appl Microbiol Biotechnol 2015; 100:3965-77. [PMID: 26685855 PMCID: PMC4824827 DOI: 10.1007/s00253-015-7230-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 11/30/2022]
Abstract
Schisandra chinensis plant in vitro cultures were maintained on Murashige and Skoog (MS) medium supplemented with 3 mg/l 6-benzyladenine (BA) and 1 mg/l 1-naphthaleneacetic acid (NAA) in an agar system and also in two different liquid systems: stationary and agitated. Liquid cultures were grown in batch (30 and 60 days) and fed-batch modes. In the methanolic extracts from lyophilized biomasses and in the media, quantification of fourteen dibenzocyclooctadiene lignans identified based on co-chromatography with authentic standards using high-performance liquid chromatography with diode array detection (HPLC-DAD) and/or liquid chromatography with diode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI-MS) methods. For comparison purposes, phytochemical analyses were performed of lignans in the leaves and fruits of the parent plant. The main lignans detected in the biomass extracts from all the tested systems were schisandrin (max. 65.62 mg/100 g dry weight (DW)), angeloyl-/tigloylgomisin Q (max. 49.73 mg/100 g DW), deoxyschisandrin (max. 43.65 mg/100 g DW), and gomisin A (max. 34.36 mg/100 g DW). The highest total amounts of lignans in the two tested stationary systems were found in extracts from the biomass harvested after 30 days of batch cultivation: 237.86 mg/100 g DW and 274.65 mg/100 g DW, respectively. In the agitated culture, the total content reached a maximum value of 244.80 mg/100 g DW after 60 days of the fed-batch mode of cultivation. The lignans were not detected in the media. This is the first report which documents the potential usefulness of S. chinensis shoot cultures cultivated in liquid systems for practical purposes.
Collapse
Affiliation(s)
- Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Collegium Medicum, Jagiellonian University, ul. Medyczna 9, 30-688, Kraków, Poland.
| | - Adam Kokotkiewicz
- Chair and Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Urszula Marzec-Wróblewska
- Department of Biopharmacy, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. dr A. Jurasza 2, 85-089, Bydgoszcz, Poland
| | - Adam Bucinski
- Department of Biopharmacy, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. dr A. Jurasza 2, 85-089, Bydgoszcz, Poland
| | - Maria Luczkiewicz
- Chair and Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Collegium Medicum, Jagiellonian University, ul. Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
41
|
Park YJ, Thwe AA, Li X, Kim YJ, Kim JK, Arasu MV, Al-Dhabi NA, Park SU. Triterpene and Flavonoid Biosynthesis and Metabolic Profiling of Hairy Roots, Adventitious Roots, and Seedling Roots of Astragalus membranaceus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8862-9. [PMID: 26402168 DOI: 10.1021/acs.jafc.5b02525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Astragalus membranaceus is an important traditional Chinese herb with various medical applications. Astragalosides (ASTs), calycosin, and calycosin-7-O-β-d-glucoside (CG) are the primary metabolic components in A. membranaceus roots. The dried roots of A. membranaceus have various medicinal properties. The present study aimed to investigate the expression levels of genes related to the biosynthetic pathways of ASTs, calycosin, and CG to investigate the differences between seedling roots (SRs), adventitious roots (ARs), and hairy roots (HRs) using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR study revealed that the transcription level of genes involved in the AST biosynthetic pathway was lowest in ARs and showed similar patterns in HRs and SRs. Moreover, most genes involved in the synthesis of calycosin and CG exhibited the highest expression levels in SRs. High-performance liquid chromatography (HPLC) analysis indicated that the expression level of the genes correlated with the content of ASTs, calycosin, and CG in the three different types of roots. ASTs were the most abundant in SRs. CG accumulation was greater than calycosin accumulation in ARs and HRs, whereas the opposite was true in SRs. Additionally, 40 metabolites were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). Principal component analysis (PCA) documented the differences among SRs, ARs, and HRs. PCA comparatively differentiated among the three samples. The results of PCA showed that HRs were distinct from ARs and SRs on the basis of the dominant amounts of sugars and clusters derived from closely similar biochemical pathways. Also, ARs had a higher concentration of phenylalanine, a precursor for the phenylpropanoid biosynthetic pathway, as well as CG. TCA cycle intermediates levels including succinic acid and citric acid indicated a higher amount in SRs than in the others.
Collapse
Affiliation(s)
- Yun Ji Park
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Aye Aye Thwe
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Xiaohua Li
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Yeon Jeong Kim
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University , Incheon 406-772, Korea
| | | | | | - Sang Un Park
- Department of Crop Science, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| |
Collapse
|
42
|
Ramified Challenges: Monitoring and Modeling of Hairy Root Growth in Bioprocesses--A Review. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 149:253-73. [PMID: 25652006 DOI: 10.1007/10_2015_305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The review presents a comprehensive overview on available solutions for the monitoring and modeling of various aspects of hairy root growth processes. Several online and offline measurement principles get explained exemplary and are being compared. It was found that no direct online measurement principle for hairy root biomass in submerged and solid-state culturing environment is available. However, certain indirect methods involving one or more measurement values have been developed for biomonitoring of hairy roots especially in bioreactors. In the field of modeling of hairy root growth processes, four independent architectures (continuous models, metabolic flux analysis, agent-based models, and artificial neural networks) are described and compared including literature references. The discussion is structured into microscopic model approaches, addressing only certain aspects of growth, and macroscopic model approaches, describing the hairy root network as a whole. An agent-based macroscopic model based on phenomenological data acquired with systematic imaging of hairy roots on culture dishes together with a 3D visualization of simulation results is presented in detail.
Collapse
|
43
|
Vogel M, Boschke E, Bley T, Lenk F. PetriJet Platform Technology. ACTA ACUST UNITED AC 2015; 20:447-56. [DOI: 10.1177/2211068215576191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Indexed: 01/04/2023]
|
44
|
Raj D, Kokotkiewicz A, Luczkiewicz M. Production of therapeutically relevant indolizidine alkaloids in Securinega suffruticosa in vitro shoots maintained in liquid culture systems. Appl Biochem Biotechnol 2014; 175:1576-87. [PMID: 25413794 PMCID: PMC4318985 DOI: 10.1007/s12010-014-1386-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/10/2014] [Indexed: 01/26/2023]
Abstract
Microshoot cultures of the Chinese medicinal plant Securinega suffruticosa (Pall.) Rehd. were established and evaluated for the presence of therapeutically relevant indolizidine alkaloids securinine (S) and allosecurinine (AS). The cultures were maintained in shake flasks (SFs) and a bubble column bioreactor (BCB) using the modified Murashige's shoot multiplication medium supplemented with 1.0 mg l(-1) benzyladenine (BA), 3.0 mg l(-1) 2-isopentenyladenine (2iP), and 0.3 mg l(-1) 1-naphthaleneacetic acid (NAA). The influence of light and medium supplementation strategies with biosynthesis precursor (lysine (LY)) and nutrient formulations (casein hydrolysate (CH) and coconut water (CW)) on biomass growth and alkaloid production were investigated. SF cultures grown in the presence of light yielded up to 6.02 mg g(-1) dry weight (DW) S and 3.70 mg g(-1) DW AS, corresponding to the respective productivities of 98.39 and 60.21 mg l(-1). Among feeding experiments, CW supplementation proved most effective for SF-grown shoots, increasing biomass yield and AS productivity by 52 and 44 %, respectively. Maximum concentrations of securinine (3.25 mg g(-1) DW) and allosecurinine (3.41 mg g(-1) DW) in BCB cultures were achieved in the case of 1.0 g l(-1) LY supplementation. These values corresponded to the productivities of 42.64 and 44.47 mg per bioreactor, respectively.
Collapse
Affiliation(s)
- Danuta Raj
- The Chair and Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211 A, 50-556, Wrocław, Poland
| | | | | |
Collapse
|
45
|
Berkov S, Ivanov I, Georgiev V, Codina C, Pavlov A. Galanthamine biosynthesis in plant in vitro systems. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Strahil Berkov
- Institute of Biodiversity and Ecosystem Research; Sofia Bulgaria
| | - Ivan Ivanov
- Department of Organic Chemistry; University of Food Technologies; Plovdiv Bulgaria
| | - Vasil Georgiev
- Laboratory of Applied Biotechnology; The Stefan Angeloff Institute of Microbiology; Bulgarian Academy of Sciences; Plovdiv Bulgaria
- Center for Viticulture and Small Fruit Research; Florida A&M University; Tallahassee FL USA
| | - Carles Codina
- Departament de Productes Naturals; Biologia Vegetal i Edafologia; Facultat de Farmacia; Universitat de Barcelona; Barcelona Spain
| | - Atanas Pavlov
- Laboratory of Applied Biotechnology; The Stefan Angeloff Institute of Microbiology; Bulgarian Academy of Sciences; Plovdiv Bulgaria
- Department of Analytical Chemistry; University of Food Technologies; Plovdiv Bulgaria
| |
Collapse
|
46
|
Werner S, Greulich J, Geipel K, Steingroewer J, Bley T, Eibl D. Mass propagation ofHelianthus annuussuspension cells in orbitally shaken bioreactors: Improved growth rate in single-use bag bioreactors. Eng Life Sci 2014. [DOI: 10.1002/elsc.201400024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Sören Werner
- School of Life Sciences and Facility Management; Institute of Biotechnology; Zurich University of Applied Sciences; Wädenswil Switzerland
| | - Judith Greulich
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Katja Geipel
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Juliane Steingroewer
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Thomas Bley
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| | - Dieter Eibl
- School of Life Sciences and Facility Management; Institute of Biotechnology; Zurich University of Applied Sciences; Wädenswil Switzerland
| |
Collapse
|
47
|
Georgiev V, Schumann A, Pavlov A, Bley T. Temporary immersion systems in plant biotechnology. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300166] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Vasil Georgiev
- Center for Viticulture and Small Fruit Research; Florida A & M University; Tallahassee FL USA
| | | | - Atanas Pavlov
- Department of Analytical Chemistry; University of Food Technologies; Plovdiv Bulgaria
- Laboratory of Applied Biotechnologies, The Stephan Angeloff Institute of Microbiology; Bulgarian Academy of Sciences; Plovdiv Bulgaria
| | - Thomas Bley
- Institute of Food Technology and Bioprocess Engineering; Technische Universität Dresden; Dresden Germany
| |
Collapse
|
48
|
Gallego A, Ramirez-Estrada K, Vidal-Limon HR, Hidalgo D, Lalaleo L, Khan Kayani W, Cusido RM, Palazon J. Biotechnological production of centellosides in cell cultures ofCentella asiatica(L) Urban. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300164] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ana Gallego
- Departament de Ciencies Experimentals i de la Salut; Universitat Pompeu Fabra; Barcelona Spain
| | - Karla Ramirez-Estrada
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia; Universitat de Barcelona; Barcelona Spain
| | | | - Diego Hidalgo
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia; Universitat de Barcelona; Barcelona Spain
| | - Liliana Lalaleo
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia; Universitat de Barcelona; Barcelona Spain
| | - Waqas Khan Kayani
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia; Universitat de Barcelona; Barcelona Spain
- Department of Biochemistry, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Rosa M. Cusido
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia; Universitat de Barcelona; Barcelona Spain
| | - Javier Palazon
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia; Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
49
|
Davies KM, Deroles SC. Prospects for the use of plant cell cultures in food biotechnology. Curr Opin Biotechnol 2014; 26:133-40. [PMID: 24448214 DOI: 10.1016/j.copbio.2013.12.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/13/2013] [Accepted: 12/27/2013] [Indexed: 01/05/2023]
Abstract
Plant cell cultures can offer continuous production systems for high-value food and health ingredients, independent of geographical or environmental variations and constraints. Yet despite many improvements in culture technologies, cell line selection, and bioreactor design, there are few commercial successes. This is principally due to the culture yield and market price of food products not being sufficient to cover the plant cell culture production costs. A better understanding of the underpinning biological mechanisms that control the target metabolite biosynthetic pathways may allow the metabolic engineering of cell lines to provide for economically competitive product yields. However, uncertainty around the regulatory and public acceptance of products derived from engineered cell cultures presents a barrier to the uptake of the technology by food product companies.
Collapse
Affiliation(s)
- Kevin M Davies
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand.
| | - Simon C Deroles
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, New Zealand
| |
Collapse
|
50
|
Induction of a photomixotrophic plant cell culture of Helianthus annuus and optimization of culture conditions for improved α-tocopherol production. Appl Microbiol Biotechnol 2013; 98:2029-40. [PMID: 24318010 DOI: 10.1007/s00253-013-5431-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/21/2013] [Accepted: 11/23/2013] [Indexed: 12/17/2022]
Abstract
Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, which are synthesized only by photosynthetic organisms. Due to their enormous potential to protect cells from oxidative damage, tocopherols are used, e.g., as nutraceuticals and additives in pharmaceuticals. The most biologically active form of vitamin E is α-tocopherol. Most tocopherols are currently produced via chemical synthesis. Nevertheless, this always results in a racemic mixture of different and less effective stereoisomers because the natural isomer has the highest biological activity. Therefore, tocopherols synthesized in natural sources are preferred for medical purposes. The annual sunflower (Helianthus annuus L.) is a well-known source for α-tocopherol. Within the presented work, sunflower callus and suspension cultures were established growing under photomixotrophic conditions to enhance α-tocopherol yield. The most efficient callus induction was achieved with sunflower stems cultivated on solid Murashige and Skoog medium supplemented with 30 g l(-1) sucrose, 0.5 mg l(-1) of the auxin 1-naphthalene acetic acid, and 0.5 mg l(-1) of the cytokinin 6-benzylaminopurine. Photomixotrophic sunflower suspension cultures were induced by transferring previously established callus into liquid medium. The effects of light intensity, sugar concentration, and culture age on growth rate and α-tocopherol synthesis rate were characterized. A considerable increase (max. 230%) of α-tocopherol production in the cells was obtained within the photomixotrophic cell culture compared to a heterotrophic cell culture. These results will be useful for improving α-tocopherol yields of plant in vitro cultures.
Collapse
|