1
|
Khan AU, Qutob M, Gacem A, Rafatullah M, Yadav KK, Kumar P, Bhutto JK, Rehman M, Bansoid S, Eltayeb LB, Malik N, Ali MA, Alreshidi MA, Alam MW. Investigation of a broad diversity of nanoparticles, including their processes, as well as toxicity testing in diverse organs and systems. Toxicology 2024; 509:153985. [PMID: 39510373 DOI: 10.1016/j.tox.2024.153985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Nanotechnology arising in wide-ranging areas, covers extensively different ranges of approaches attained from fields such as biology, chemistry, physics, and medicine engineering. Nanoparticles are a necessary part of nanotechnology effectually applied in the cure of a number of diseases. Nanoparticles have gained significant importance due to their unique properties, which differ from their bulk counterparts. These distinct properties of nanoparticles are primarily influenced by their morphology, size, and size distribution. At the nanoscale, nanoparticles exhibit behaviours that can enhance therapeutic efficacy and reduce drug toxicity. Their small size and large surface area make them promising candidates for applications such as targeted drug delivery, where they can improve treatment outcomes while minimizing adverse effects. The harmful effects of nanoparticles on the environment were critically investigated to obtain appropriate results and reduce the risk by incorporating the materials. Nanoparticles tend to penetrate the human body, clear the biological barriers to reach sensitive organs and are easily incorporated into human tissue, as well as dispersing to the hepatic tissues, heart tissues, encephalum, and GI tract. This study aims to examine a wide variety of nanoparticles, focusing on their manufacturing methods, functional characteristics, and interactions within biological systems. Particular attention will be directed towards assessing the toxicity of nanoparticles in different organs and physiological systems, yielding a thorough comprehension of their potential health hazards and the processes that drive nanoparticle-induced toxicity. This analysis will also emphasize recent developments in nanoparticle applications and safety assessment methodologies.
Collapse
Affiliation(s)
- Azhar U Khan
- School of Life and Basic Sciences, Jaipur National University, Jaipur, Rajasthan 302017, India
| | - Mohammad Qutob
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Krishna Kumar Yadav
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Thi-Qar, Iraq.
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Meenal Rehman
- School of Life and Basic Sciences, Jaipur National University, Jaipur, Rajasthan 302017, India
| | - Sudhakar Bansoid
- CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University, Al-Kharj, Riyadh 11942, Saudi Arabia
| | - Nazia Malik
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Mohammed Azam Ali
- Department of Mechanical Engineering King Khalid University, Saudi Arabia
| | | | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia.
| |
Collapse
|
2
|
Xu J, Ze X, Zhao L, Sheng L, Ze Y. Titanium dioxide nanoparticles oral exposure induce osteoblast apoptosis, inhibit osteogenic ability and increase lipogenesis in mouse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116367. [PMID: 38669870 DOI: 10.1016/j.ecoenv.2024.116367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used in food, paint, coating, cosmetic, and composite orthodontic material. As a common food additive, TiO2-NPs can accumulate in various organs of human body, but the effect and underlying mechanism of bone remain unclear. Here mice were exposed to TiO2-NPs by oral gavage, and histological staining of femoral sections showed that TiO2-NPs reduced bone formation and enhanced osteoclast activity and lipogenesis, contributing to decreased trabecula bone. Transmission electron microscope (TEM) as well as biochemical and flow cytometry analysis of osteoblast exhibited that TiO2-NPs accumulated in osteoblast cytoplasm and impaired mitochondria ultrastructure with increased reactive oxygen species (ROS) and lipid hyperoxide, resulting in osteoblast apoptosis. In terms of mechanism, TiO2-NPs treatment inhibited expression of AKT and then increased pro-apoptotic protein Bax expression which was failure to form heterodimers with decreased anti-apoptotic Bcl-2, activating downstream Caspase-9 and Caspase-3 and inducing apoptosis. Additionally, TiO2-NPs suppressed Wnt3a level and then activated anti-Glycogen synthesis kinase (GSK-3β) phosphorylation, and ultimately resulted in degradation of β-catenin which down-regulated Runt-related transcription factor 2 (Runx2) and Osterix, inhibiting expression of osteogenic related proteins. Together, these results revealed that exposure of TiO2-NPs induced apoptosis and inhibited osteoblast differentiation through suppressing PI3K/AKT and Wnt/β-catenin signaling pathways, resulting in reduction of trabecula bone.
Collapse
Affiliation(s)
- Jingxi Xu
- Orthopedic Institute, Medical College, Soochow University, 178 Ganjiang Road, Suzhou, Jiangsu 215007, China
| | - Xiao Ze
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China
| | - Linchuan Zhao
- Department of Biological Sciences, School of Basic Medical and Biological Sciences, Soochow University, 199 Ren-ai Road, Soochow, Jiangsu 215123, China
| | - Lei Sheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China.
| | - Yuguan Ze
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, 199 Ren-ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
3
|
Korchevskiy AA, Hill WC, Hull M, Korchevskiy A. Using particle dimensionality-based modeling to estimate lung carcinogenicity of 3D printer emissions. J Appl Toxicol 2024; 44:564-581. [PMID: 37950573 PMCID: PMC11791719 DOI: 10.1002/jat.4561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
The use of 3D printing technologies by industry and consumers is expanding. However, the approaches to assess the risk of lung carcinogenesis from the emissions of 3D printers have not yet been developed. The objective of the study was to demonstrate a methodology for modeling lung cancer risk related to specific exposure levels as derived from an experimental study of 3D printer emissions for various types of filaments (ABS, PLA, and PETG). The emissions of 15 filaments were assessed at varying extrusion temperatures for a total of 23 conditions in a Class 1,000 cleanroom following procedures described by ANSI/CAN/UL 2904. Three approaches were utilized for cancer risk estimation: (a) calculation based on PM2.5 and PM10 concentrations, (b) a proximity assessment based on the pulmonary deposition fraction, and (c) modeling based on the mass-weighted aerodynamic diameter of particles. The combined distribution of emitted particles had the mass median aerodynamic diameter (MMAD) of 0.35 μm, GSD 2.25. The average concentration of PM2.5 was 25.21 μg/m3 . The spline-based function of aerodynamic diameter allowed us to reconstruct the carcinogenic potential of seven types of fine and ultrafine particles (crystalline silica, fine TiO2 , ultrafine TiO2 , ambient PM2.5 and PM10, diesel particulates, and carbon nanotubes) with a correlation of 0.999, P < 0.00001. The central tendency estimation of lung cancer risk for 3D printer emissions was found at the level of 14.74 cases per 10,000 workers in a typical exposure scenario (average cumulative exposure of 0.3 mg/m3 - years), with the lowest risks for PLA filaments, and the highest for PETG type.
Collapse
Affiliation(s)
| | - W Cary Hill
- ITA International, LLC, Blacksburg, Virginia, USA
| | - Matthew Hull
- Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, Virginia, USA
| | | |
Collapse
|
4
|
Cimini A, Borgioni A, Passarini E, Mancini C, Proietti A, Buccini L, Stornelli E, Schifano E, Dinarelli S, Mura F, Sergi C, Bavasso I, Cortese B, Passeri D, Imperi E, Rinaldi T, Picano A, Rossi M. Upscaling of Electrospinning Technology and the Application of Functionalized PVDF-HFP@TiO 2 Electrospun Nanofibers for the Rapid Photocatalytic Deactivation of Bacteria on Advanced Face Masks. Polymers (Basel) 2023; 15:4586. [PMID: 38231986 PMCID: PMC10708761 DOI: 10.3390/polym15234586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
In recent years, Electrospinning (ES) has been revealed to be a straightforward and innovative approach to manufacture functionalized nanofiber-based membranes with high filtering performance against fine Particulate Matter (PM) and proper bioactive properties. These qualities are useful for tackling current issues from bacterial contamination on Personal Protective Equipment (PPE) surfaces to the reusability of both disposable single-use face masks and respirator filters. Despite the fact that the conventional ES process can be upscaled to promote a high-rate nanofiber production, the number of research works on the design of hybrid materials embedded in electrospun membranes for face mask application is still low and has mainly been carried out at the laboratory scale. In this work, a multi-needle ES was employed in a continuous processing for the manufacturing of both pristine Poly (Vinylidene Fluoride-co-Hexafluoropropylene) (PVDF-HFP) nanofibers and functionalized membrane ones embedded with TiO2 Nanoparticles (NPs) (PVDF-HFP@TiO2). The nanofibers were collected on Polyethylene Terephthalate (PET) nonwoven spunbond fabric and characterized by using Scanning Electron Microscopy and Energy Dispersive X-ray (SEM-EDX), Raman spectroscopy, and Atomic Force Microscopy (AFM) analysis. The photocatalytic study performed on the electrospun membranes proved that the PVDF-HFP@TiO2 nanofibers provide a significant antibacterial activity for both Staphylococcus aureus (~94%) and Pseudomonas aeruginosa (~85%), after only 5 min of exposure to a UV-A light source. In addition, the PVDF-HFP@TiO2 nanofibers exhibit high filtration efficiency against submicron particles (~99%) and a low pressure drop (~3 mbar), in accordance with the standard required for Filtering Face Piece masks (FFPs). Therefore, these results aim to provide a real perspective on producing electrospun polymer-based nanotextiles with self-sterilizing properties for the implementation of advanced face masks on a large scale.
Collapse
Affiliation(s)
- Adriano Cimini
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
- Industrial Research Laboratory, LABOR s.r.l., Via Giacomo Peroni 386, 00131 Rome, Italy
| | - Alessia Borgioni
- Department of Biology and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.B.); (E.P.)
| | - Elena Passarini
- Department of Biology and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.B.); (E.P.)
| | - Chiara Mancini
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
| | - Anacleto Proietti
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
| | - Luca Buccini
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
| | - Eleonora Stornelli
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
| | - Emily Schifano
- Department of Biology and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.B.); (E.P.)
| | - Simone Dinarelli
- Institute for the Structure of Matter (ISM), National Research Council (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Francesco Mura
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Claudia Sergi
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome & UdR INSTM, Via Eudossiana 18, 00184 Rome, Italy
| | - Irene Bavasso
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome & UdR INSTM, Via Eudossiana 18, 00184 Rome, Italy
| | - Barbara Cortese
- National Research Council (CNR), Institute of Nanotechnology (CNR Nanotec), c/o Edificio Fermi, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Daniele Passeri
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Imperi
- Industrial Research Laboratory, LABOR s.r.l., Via Giacomo Peroni 386, 00131 Rome, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.B.); (E.P.)
| | - Alfredo Picano
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy (A.P.); (L.B.); (E.S.); (D.P.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
5
|
Cao Y, Chen J, Bian Q, Ning J, Yong L, Ou T, Song Y, Wei S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vivo and In Vitro: A Meta-Analysis. TOXICS 2023; 11:882. [PMID: 37999534 PMCID: PMC10675837 DOI: 10.3390/toxics11110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Recent studies have raised concerns about genotoxic effects associated with titanium dioxide nanoparticles (TiO2 NPs), which are commonly used. This meta-analysis aims to investigate the potential genotoxicity of TiO2 NPs and explore influencing factors. METHODS This study systematically searched Chinese and English literature. The literature underwent quality evaluation, including reliability evaluation using the toxicological data reliability assessment method and relevance evaluation using routine evaluation forms. Meta-analysis and subgroup analyses were performed using R software, with the standardized mean difference (SMD) as the combined effect value. RESULTS A total of 26 studies met the inclusion criteria and passed the quality assessment. Meta-analysis results indicated that the SMD for each genotoxic endpoint was greater than 0. This finding implies a significant association between TiO2 NP treatment and DNA damage and chromosome damage both in vivo and in vitro and gene mutation in vitro. Subgroup analysis revealed that short-term exposure to TiO2 NPs increased DNA damage. Rats and cancer cells exhibited heightened susceptibility to DNA damage triggered by TiO2 NPs (p < 0.05). CONCLUSIONS TiO2 NPs could induce genotoxicity, including DNA damage, chromosomal damage, and in vitro gene mutations. The mechanism of DNA damage response plays a key role in the genotoxicity induced by TiO2 NPs.
Collapse
Affiliation(s)
- Yue Cao
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road, Wuhan 430030, China
| | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Yihuan Road, Chengdu 610041, China;
| | - Qian Bian
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Road, Nanjing 210009, China;
| | - Junyu Ning
- Institute of Toxicology, Beijing Center for Disease Prevention and Control, Hepingli Middle Street, Beijing 100013, China;
| | - Ling Yong
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
| | - Tong Ou
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
| | - Yan Song
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
| | - Sheng Wei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road, Wuhan 430030, China
| |
Collapse
|
6
|
Tuli HS, Joshi R, Kaur G, Garg VK, Sak K, Varol M, Kaur J, Alharbi SA, Alahmadi TA, Aggarwal D, Dhama K, Jaswal VS, Mittal S, Sethi G. Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2023; 13:321-348. [DOI: 10.1007/s40097-022-00504-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 07/28/2024]
|
7
|
Caruso G, Scalisi EM, Pecoraro R, Cardaci V, Privitera A, Truglio E, Capparucci F, Jarosova R, Salvaggio A, Caraci F, Brundo MV. Effects of carnosine on the embryonic development and TiO 2 nanoparticles-induced oxidative stress on Zebrafish. Front Vet Sci 2023; 10:1148766. [PMID: 37035814 PMCID: PMC10078361 DOI: 10.3389/fvets.2023.1148766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Oxidative stress is due to an unbalance between pro-oxidants, such as reactive oxygen (ROS) and nitrogen (RNS) species, and antioxidants/antioxidant system. Under physiological conditions these species are involved in different cellular processes such as cellular homeostasis and immune response, while an excessive production of ROS/RNS has been linked to the development of various diseases such as cancer, diabetes, and Alzheimer's disease. In this context, the naturally occurring dipeptide carnosine has shown the ability to scavenge ROS, counteract lipid peroxidation, and inhibit proteins oxidation. Titanium dioxide nanoparticles (TiO2-NPs) have been widely used to produce cosmetics, in wastewater treatment, in food industry, and in healthcare product. As consequence, these NPs are often released into aquatic environments. The Danio rerio (commonly called zebrafish) embryos exposure to TiO2-NPs did not affect the hatching rate, but induced oxidative stress. According to this scenario, in the present study, we first investigated the effects of carnosine exposure and of a sub-toxic administration of TiO2-NPs on the development and survival of zebrafish embryos/larvae measured through the acute embryo toxicity test (FET-Test). Zebrafish larvae represent a useful model to study oxidative stress-linked disorders and to test antioxidant molecules, while carnosine was selected based on its well-known multimodal mechanism of action that includes a strong antioxidant activity. Once the basal effects of carnosine were assessed, we then evaluated its effects on TiO2-NPs-induced oxidative stress in zebrafish larvae, measured in terms of total ROS production (measured with 2,7-dichlorodihydrofluorescein diacetate probe) and protein expression by immunohistochemistry of two cellular stress markers, 70 kDa-heat shock protein (Hsp70) and metallothioneins (MTs). We demonstrated that carnosine did not alter the phenotypes of both embryos and larvae of zebrafish at different hours post fertilization. Carnosine was instead able to significantly decrease the enhancement of ROS levels in zebrafish larvae exposed to TiO2-NPs and its antioxidant effect was paralleled by the rescue of the protein expression levels of Hsp70 and MTs. Our results suggest a therapeutic potential of carnosine as a new pharmacological tool in the context of pathologies characterized by oxidative stress such as neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Elena Maria Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vincenzo Cardaci
- Vita-Salute San Raffaele University, Milan, Italy
- Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Emanuela Truglio
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Romana Jarosova
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
| | | | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| |
Collapse
|
8
|
Sallam MF, Ahmed HMS, El-Nekeety AA, Diab KA, Abdel-Aziem SH, Sharaf HA, Abdel-Wahhab MA. Assessment of the Oxidative Damage and Genotoxicity of Titanium Dioxide Nanoparticles and Exploring the Protective Role of Holy Basil Oil Nanoemulsions in Rats. Biol Trace Elem Res 2023; 201:1301-1316. [PMID: 35416606 PMCID: PMC9898350 DOI: 10.1007/s12011-022-03228-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
This study was designed to evaluate the oxidative damage, genotoxicity, and DNA damage in the liver of rats treated with titanium nanoparticles (TiO2-NPs) with an average size of 28.0 nm and ξ-potential of - 33.97 mV, and to estimate the protective role of holy basil essential oil nanoemulsion (HBEON). Six groups of Male Sprague-Dawley rats were treated orally for 3 weeks as follows: the control group, HBEO or HBEON-treated groups (5 mg/kg b.w), TiO2-NPs-treated group (50 mg/kg b.w), and the groups treated with TiO2-NPs plus HBEO or HBEON. Samples of blood and tissues were collected for different analyses. The results revealed that 55 compounds were identified in HBEO, and linalool and methyl chavicol were the major compounds (53.9%, 12.63%, respectively). HBEON were semi-round with the average size and ζ-potential of 120 ± 4.5 nm and - 28 ± 1.3 mV, respectively. TiO2-NP administration increased the serum biochemical indices, oxidative stress markers, serum cytokines, DNA fragmentation, and DNA breakages; decreased the antioxidant enzymes; and induced histological alterations in the liver. Co-administration of TiO2-NPs plus HBEO or HBEON improved all the tested parameters and the liver histology, and HBEON was more effective than HBEO. Therefore, HEBON is a promising candidate able to protect against oxidative damage, disturbances in biochemical markers, gene expression, DNA damage, and histological changes resulting from exposure to TiO2-NPs and may be applicable in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Mohamed F Sallam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Helmy M S Ahmed
- Toxicology & Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Hafiza A Sharaf
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
9
|
Mansuri A, Chaudhari R, Nasra S, Meghani N, Ranjan S, Kumar A. Development of food-grade antimicrobials of fenugreek oil nanoemulsion-bioactivity and toxicity analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24907-24918. [PMID: 35150423 DOI: 10.1007/s11356-022-19116-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Antimicrobials of natural origin are proving to be an effective solution to emerging antimicrobial resistance and its physiological side effects. Recent studies have demonstrated that essential oils encapsulated in the form of nanoemulsions have better antimicrobial activity than the oil itself, possibly due to its high stability, solubility, sustained release, and increased bioavailability. In the present study, fenugreek oil-a well-known antimicrobial and antioxidant-has been used to fabricate nanoemulsion (NE), with an objective to meet potential alternative to synthesized antimicrobials. A combination of three different components, water, fenugreek oil, and Tween 80, has been used to prepare the nanoemulsions of different size and one of the most stable nanoemulsion with lowest concentration of surfactant Tween 80 was used to assess its bioactivity, antimicrobial properties, and toxicity against human hepatic cell line. Among all the formulations, nano-emulsion with 2.5% oil concentration, 30 min sonication (hydrodynamic size 135.2 nm, zeta potential 36.8 mV, PDI 0.135, and pH 5.12), was selected for all studies. The nanoemulsion showed potential antibacterial activity against all the microbial strains (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa) used in this study. Interestingly, the nanoemulsion showed potential antibacterial activity against P. aeruginosa, known to show resistance against ampicillin. The toxicity evaluation in human hepatic cell line (WRL-68) indicated no significant toxicity of nanoemulsion up to the concentration of 800 µg/ml. The synthesized nanoemulsion thus has a translational potential as a food-grade non-toxic natural nanoantimicrobials.
Collapse
Affiliation(s)
- Abdulkhalik Mansuri
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Ramesh Chaudhari
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Simran Nasra
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Nikita Meghani
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Shivendu Ranjan
- Department of Biotechnology, Institute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, (formerly Kanpur University), Kanpur, Uttar Pradesh, 208024, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
10
|
Freitag L, Spinell T, Kröger A, Würfl G, Lauseker M, Hickel R, Kebschull M. Dental implant material related changes in molecular signatures in peri-implantitis - A systematic review and integrative analysis of omics in-vitro studies. Dent Mater 2023; 39:101-113. [PMID: 36526446 DOI: 10.1016/j.dental.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Since peri-implantitis differs clinically and histopathologically from periodontitis, implant wear debris is considered to play a role in the destructive processes. This work aims to systematically review if titanium particles affect oral-related cells through changes in molecular signatures (e.g., transcriptome, proteome, epigenome), thereby promoting peri-implantitis. METHODS Leveraging three literature databases (Medline, Embase, Cochrane) a systematic search based on a priori defined PICOs was conducted: '-omics' studies examining titanium exposure in oral-related cells. After risk of bias assessments, lists of differentially expressed genes, proteins, and results of functional enrichment analyses were compiled. The significance of overlapping genes across multiple studies was assessed via Monte Carlo simulation and their ranking was verified using rank aggregation. RESULTS Out of 2104 screened articles we found 12 eligible publications. A significant overlap of gene expression in oral-related cells exposed to titanium particles was found in four studies. Furthermore, changes in biological processes like immune/inflammatory or stress response as well as toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling pathways were linked to titanium in transcriptome and proteome studies. Epigenetic changes caused by titanium were detected but inconsistent. CONCLUSION An influence of titanium implant wear debris on the development and progression of peri-implantitis is plausible but needs to be proven in further studies. Limitations arise from small sample sizes of included studies and insufficient publication of re-analyzable data.
Collapse
Affiliation(s)
- Lena Freitag
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | - Thomas Spinell
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.
| | - Annika Kröger
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK; Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
| | | | - Michael Lauseker
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | - Moritz Kebschull
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK; Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK; Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA
| |
Collapse
|
11
|
Flasz B, Dziewięcka M, Ajay AK, Tarnawska M, Babczyńska A, Kędziorski A, Napora-Rutkowski Ł, Ziętara P, Świerczek E, Augustyniak M. Age- and Lifespan-Dependent Differences in GO Caused DNA Damage in Acheta domesticus. Int J Mol Sci 2022; 24:ijms24010290. [PMID: 36613733 PMCID: PMC9820743 DOI: 10.3390/ijms24010290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The rising applicability of graphene oxide (GO) should be preceded by detailed tests confirming its safety and lack of toxicity. Sensitivity to GO of immature, or with different survival strategy, individuals has not been studied so far. Therefore, in the present research, we focused on the GO genotoxic effects, examining selected parameters of DNA damage (total DNA damage, double-strand breaks-DSB, 8-hydroxy-2'-deoxyguanosine-8-OHdG, abasic site-AP sites), DNA damage response parameters, and global methylation in the model organism Acheta domesticus. Special attention was paid to various life stages and lifespans, using wild (H), and selected for longevity (D) strains. DNA damage was significantly affected by stage and/or strain and GO exposure. Larvae and young imago were generally more sensitive than adults, revealing more severe DNA damage. Especially in the earlier life stages, the D strain reacted more intensely/inversely than the H strain. In contrast, DNA damage response parameters were not significantly related to stage and/or strain and GO exposure. Stage-dependent DNA damage, especially DSB and 8-OHdG, with the simultaneous lack or subtle activation of DNA damage response parameters, may result from the general life strategy of insects. Predominantly fast-living and fast-breeding organisms can minimize energy-demanding repair mechanisms.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Amrendra K. Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Chybie, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
- Correspondence: ; Tel.: +48-32-359-1235
| |
Collapse
|
12
|
A weight of evidence review of the genotoxicity of titanium dioxide (TiO2). Regul Toxicol Pharmacol 2022; 136:105263. [DOI: 10.1016/j.yrtph.2022.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
|
13
|
Bacova J, Knotek P, Kopecka K, Hromadko L, Capek J, Nyvltova P, Bruckova L, Schröterova L, Sestakova B, Palarcik J, Motola M, Cizkova D, Bezrouk A, Handl J, Fiala Z, Rudolf E, Bilkova Z, Macak JM, Rousar T. Evaluating the Use of TiO 2 Nanoparticles for Toxicity Testing in Pulmonary A549 Cells. Int J Nanomedicine 2022; 17:4211-4225. [PMID: 36124012 PMCID: PMC9482439 DOI: 10.2147/ijn.s374955] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 12/11/2022] Open
Abstract
Purpose Titanium dioxide nanoparticles, 25 nm in size of crystallites (TiO2 P25), are among the most produced nanomaterials worldwide. The broad use of TiO2 P25 in material science has implied a request to evaluate their biological effects, especially in the lungs. Hence, the pulmonary A549 cell line has been used to estimate the effects of TiO2 P25. However, the reports have provided dissimilar results on caused toxicity. Surprisingly, the physicochemical factors influencing TiO2 P25 action in biological models have not been evaluated in most reports. Thus, the objective of the present study is to characterize the preparation of TiO2 P25 for biological testing in A549 cells and to evaluate their biological effects. Methods We determined the size and crystallinity of TiO2 P25. We used four techniques for TiO2 P25 dispersion. We estimated the colloid stability of TiO2 P25 in distilled water, isotonic NaCl solution, and cell culture medium. We applied the optimal dispersion conditions for testing the biological effects of TiO2 P25 (0–100 µg.mL−1) in A549 cells using biochemical assays (dehydrogenase activity, glutathione levels) and microscopy. Results We found that the use of fetal bovine serum in culture medium is essential to maintain sufficient colloid stability of dispersed TiO2 P25. Under these conditions, TiO2 P25 were unable to induce a significant impairment of A549 cells according to the results of biochemical and microscopy evaluations. When the defined parameters for the use of TiO2 P25 in A549 cells were met, similar results on the biological effects of TiO2 P25 were obtained in two independent cell laboratories. Conclusion We optimized the experimental conditions of TiO2 P25 preparation for toxicity testing in A549 cells. The results presented here on TiO2 P25-induced cellular effects are reproducible. Therefore, our results can be helpful for other researchers using TiO2 P25 as a reference material.
Collapse
Affiliation(s)
- Jana Bacova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Petr Knotek
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Katerina Kopecka
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Ludek Hromadko
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Pavlina Nyvltova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Lenka Bruckova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Ladislava Schröterova
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Blanka Sestakova
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jiri Palarcik
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Martin Motola
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Dana Cizkova
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ales Bezrouk
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Zdenek Fiala
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Jan M Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| |
Collapse
|
14
|
Sallam MF, Ahmed HMS, Diab KA, El-Nekeety AA, Abdel-Aziem SH, Sharaf HA, Abdel-Wahhab MA. Improvement of the antioxidant activity of thyme essential oil against biosynthesized titanium dioxide nanoparticles-induced oxidative stress, DNA damage, and disturbances in gene expression in vivo. J Trace Elem Med Biol 2022; 73:127024. [PMID: 35753172 DOI: 10.1016/j.jtemb.2022.127024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/04/2022] [Accepted: 06/18/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Titanium dioxide nanoparticles (TiO2-NPs) are widely utilized in medicine and industry; however, their safety in biological organisms is still unclear. In this study, we determined the bioactive constitutes of thyme essential oil (TEO) and utilized the nanoemulsion technique to improve its protective efficiency against oxidative stress, genotoxicity, and DNA damage of biosynthesized titanium dioxide nanoparticles (TiO2-NPs). METHODS TEO nanoemulsion (TEON) was prepared using whey protein isolate (WPI). Sixty male Sprague-Dawley rats were divided into six groups and treated orally for 21 days including the control group, TEO, or TEON- treated groups (5 mg/kg b.w), TiO2-NPs-treated group (50 mg/kg b.w) and the groups received TiO2-NPs plus TEO or TEON. Blood and tissues samples were collected for different assays. RESULTS The GC-MS analysis identified 17 bioactive compounds in TEO and thymol and carvacrol were the major compounds. TEON was irregular with average particles size of 230 ± 3.7 nm and ζ-potential of -24.17 mV. However, TiO2-NPs showed a polygonal shape with an average size of 50 ± 2.4 nm and ζ-potential of -30.44 mV. Animals that received TiO2-NPs showed severe disturbances in liver and kidney indices, lipid profile, oxidant/antioxidant indices, inflammatory cytokines, gene expressions, increased DNA damage, and pathological changes in hepatic tissue. Both TEO and TEON showed potential protection against these hazards and TEON was more effective than TEO. CONCLUSION The nanoemulsion of TEO enhances the oil bioactivity, improves its antioxidant characteristics, and protects against oxidative damage and genotoxicity of TiO2-NPs.
Collapse
Affiliation(s)
- Mohamed F Sallam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Helmy M S Ahmed
- Toxicology & Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Kawther A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Hafiza A Sharaf
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
15
|
Chang H, Wang Q, Meng X, Chen X, Deng Y, Li L, Yang Y, Song G, Jia H. Effect of Titanium Dioxide Nanoparticles on Mammalian Cell Cycle In Vitro: A Systematic Review and Meta-Analysis. Chem Res Toxicol 2022; 35:1435-1456. [PMID: 35998370 DOI: 10.1021/acs.chemrestox.1c00402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although most studies that explore the cytotoxicity of titanium dioxide nanoparticles (nano-TiO2) have focused on cell viability and oxidative stress, the cell cycle, a basic process of cell life, can also be affected. However, the results on the effects of nano-TiO2 on mammalian cell cycle are still inconsistent. A systematic review and meta-analysis were therefore performed in this research based on the effects of nano-TiO2 on the mammalian cell cycle in vitro to explore whether nano-TiO2 can induce cell cycle arrest. Meanwhile, the impact of physicochemical properties of nano-TiO2 on the cell cycle in vitro was investigated, and the response of normal cells and cancer cells was compared. A total of 33 articles met the eligibility criteria after screening. We used Review Manager 5.4 and Stata 15.1 for analysis. The results showed an increased percentage of cells in the sub-G1 phase and an upregulation of the p53 gene after being exposed to nano-TiO2. Nevertheless, nano-TiO2 had no effect on cell percentage in other phases of the cell cycle. Furthermore, subgroup analysis revealed that the cell percentage in both the sub-G1 phase of normal cells and S phase of cancer cells were significantly increased under anatase-form nano-TiO2 treatment. Moreover, nano-TiO2 with a particle size <25 nm or exposure duration of nano-TiO2 more than 24 h induced an increased percentage of normal cells in the sub-G1 phase. In addition, the cell cycle of cancer cells was arrested in the S phase no matter if the exposure duration of nano-TiO2 was more than 24 h or the exposure concentration was over 50 μg/mL. In conclusion, this study demonstrated that nano-TiO2 disrupted the cell cycle in vitro. The cell cycle arrest induced by nano-TiO2 varies with cell status and physicochemical properties of nano-TiO2.
Collapse
Affiliation(s)
- Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Qianqian Wang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 210019 Nanjing, China
| | - Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Huaimiao Jia
- Department of Endemic Disease, Shihezi Center for Disease Control and Prevention, Shihezi 832003, Xinjiang, China
| |
Collapse
|
16
|
Effects of Titanium Dioxide Nanoparticles on Cell Growth and Migration of A549 Cells under Simulated Microgravity. NANOMATERIALS 2022; 12:nano12111879. [PMID: 35683734 PMCID: PMC9182076 DOI: 10.3390/nano12111879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023]
Abstract
With the increasing application of nanomaterials in aerospace technology, the long-term space exposure to nanomaterials especially in the space full of radiation coupled with microgravity condition has aroused great health concerns of the astronauts. However, few studies have been conducted to assess these effects, which are crucial for seeking the possible intervention strategy. Herein, using a random positioning machine (RPM) to simulate microgravity, we investigated the behaviors of cells under simulated microgravity and also evaluated the possible toxicity of titanium dioxide nanoparticles (TiO2 NPs), a multifunctional nanomaterial with potential application in aerospace. Pulmonary epithelial cells A549 were exposed to normal gravity (1 g) and simulated gravity (~10−3 g), respectively. The results showed that simulated microgravity had no significant effect on the viability of A549 cells as compared with normal gravity within 48 h. The effects of TiO2 NPs exposure on cell viability and apoptosis were marginal with only a slightly decrease in cell viability and a subtle increase in apoptosis rate observed at a high concentration of TiO2 NPs (100 μg/mL). However, it was observed that the exposure to simulated microgravity could obviously reduce A549 cell migration compared with normal gravity. The disruption of F-actin network and the deactivation of FAK (Tyr397) might be responsible for the impaired mobility of simulated microgravity-exposed A549 cells. TiO2 NPs exposure inhibited cell migration under two different gravity conditions, but to different degrees, with a milder inhibition under simulated microgravity. Meanwhile, it was found that A549 cells internalized more TiO2 NPs under normal gravity than simulated microgravity, which may account for the lower cytotoxicity and the lighter inhibition of cell migration induced by the same exposure concentration of TiO2 NPs under simulated microgravity at least partially. Our study has provided some tentative information on the effects of TiO2 NPs exposure on cell behaviors under simulated microgravity.
Collapse
|
17
|
Sarikhani M, Vaghefi Moghaddam S, Firouzamandi M, Hejazy M, Rahimi B, Moeini H, Alizadeh E. Harnessing rat derived model cells to assess the toxicity of TiO 2 nanoparticles. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:41. [PMID: 35507219 PMCID: PMC9068637 DOI: 10.1007/s10856-022-06662-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/08/2022] [Indexed: 05/11/2023]
Abstract
Until now, a few studies have been conducted on the destructive effects of TiO2 NPs in living organisms, and studies on the toxicity of TiO2 NPs are still in the beginning phases. Because of the widespread use of TiO2 NPs in all areas of human life, it is essential to study their profound and fundamental toxic effects on each organ and body cell. Herein, we evaluate the effect of exposure to TiO2 NPs on in vitro models derived from the rat bone marrow and adipose tissues. Exposure to TiO2 NPs at 100 and 200 μg/ml exhibited cytotoxicity for the rat bone marrow mesenchymal stem cells (rBMSCs) and rat adipose mesenchymal stem cells (rATSC), respectively. Additionally, reduced rBMSCs and rATSCs frequencies in the S phase of the cell cycle. Moreover, TiO2 NPs enhanced the activity of cellular senescence-associated β-galactosidase in both model cells. Significantly higher relative expression of aging-related genes P53 and NF-kB (p < 0.05) and lower expression levels of anti-aging-related genes Nanog and SIRT1 were found in the treated cells (p < 0.05). Colony-forming and DAPI staining showed the reduction of cell growth and DNA damage in both rBMSCs and rATSCs. Our findings along with other similar findings showed that TiO2 NPs probably have negative effects on the cell growth, prompt the cells for entry into proliferation stop, DNA damage, and trigger the aging process. Graphical abstract.
Collapse
Affiliation(s)
- Manizheh Sarikhani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Section, Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sevil Vaghefi Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Firouzamandi
- Biotechnology Section, Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Marzie Hejazy
- Toxicology Section, Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Moeini
- Institute of Virology, Faculty of Medicine, Technische Universität of München, Munich, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Shi J, Han S, Zhang J, Liu Y, Chen Z, Jia G. Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NANOIMPACT 2022; 25:100377. [PMID: 35559883 DOI: 10.1016/j.impact.2021.100377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 06/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most widely used nanomaterials. Due to an increasing scope of applications, the exposure of humans to TiO2 NP is inevitable, such as entering the body through the mouth with food additives or drugs, invading the damaged skin with cosmetics, and entering the body through the respiratory tract during the process of production and handling. Compared with TiO2 coarse particles, TiO2 NPs have stronger conductivity, reaction activity, photocatalysis, and permeability, which may lead to greater toxicity to organisms. Given that TiO2 was classified as a category 2B carcinogen (possibly carcinogenic to humans), the genotoxicity of TiO2 NPs has become the focus of attention. There have been a series of previous studies investigating the potential genotoxicity of TiO2 NPs, but the existing research results are still controversial and difficult to conclude. More than half of studies have shown that TiO2 NPs can cause genotoxicity, suggesting that TiO2 NPs are likely to be genotoxic to humans. And the genotoxicity of TiO2 NPs is closely related to the exposure concentration, mode and time, and experimental cells/animals as well as its physicochemical properties (crystal type, size, and shape). This review summarized the latest research progress of related genotoxic effects through in vivo studies and in vitro cell tests, hoping to provide ideas for the evaluation of TiO2 NPs genotoxicity.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| |
Collapse
|
19
|
Pedrino M, Brassolatti P, Maragno Fattori AC, Bianchi J, de Almeida Rodolpho JM, de Godoy KF, Assis M, Longo E, Nogueira Zambone Pinto Rossi K, Speglich C, de Freitas Anibal F. Analysis of cytotoxicity and genotoxicity in a short-term dependent manner induced by a new titanium dioxide nanoparticle in murine fibroblast cells. Toxicol Mech Methods 2021; 32:213-223. [PMID: 34645367 DOI: 10.1080/15376516.2021.1994075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The extensive use of titanium dioxide nanoparticles (TiO2 NPs) in cosmetics, food, personal care products, and industries brought concerns about their possible harmful effects. Nowadays it has become important to assess TiO2 NPs toxic effects as a way to understand their primary risks. In the cellular environment, after cell uptake, TiO2 NPs were described to induce reactive oxygen species (ROS) production, unbalance oxidative state, and activate apoptosis in several cell lines. Therefore, we aimed to evaluate the cytotoxicity and genotoxicity of a new TiO2 NP surface-functionalized with sodium carboxylic ligands in a murine fibroblast cell line (LA-9). TEM and DLS analyses were performed to define nanoparticle physicochemical characteristics. We evaluated the metabolic activity and LDH released after 24 h exposition to determine cytotoxic effects. Also, we evaluated DNA damage, intracellular reactive oxygen species (ROS) production, and apoptosis induction after 24 h exposure. The TiO2 NP impaired the cell membrane integrity at 1000 μg/mL, induced intracellular ROS production and late apoptosis at 24 h. The genotoxic effects were observed at all conditions tested at 24 h. Indeed, in fibroblasts exposed at 100 μg/mL was observed early apoptosis cells. The intracellular ROS content was increased in a dose-dependent manner. Thus, short-term exposure to TiO2 NP promoted cytotoxicity, genotoxicity and activated apoptosis pathways based on the potential role of oxygen species in the fibroblasts cell line.
Collapse
Affiliation(s)
- Matheus Pedrino
- Morphology and Pathology Department, Federal University of São Carlos, São Carlos, Brazil
| | - Patrícia Brassolatti
- Morphology and Pathology Department, Federal University of São Carlos, São Carlos, Brazil
| | | | - Jaqueline Bianchi
- Morphology and Pathology Department, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Marcelo Assis
- Center of Development of Functional Materials (CDMF), Federal University of São Carlos, São Carlos, Brazil
| | - Elson Longo
- Center of Development of Functional Materials (CDMF), Federal University of São Carlos, São Carlos, Brazil
| | | | - Carlos Speglich
- Leopoldo Américo Miguez Mello Research Center (CENPES), Rio de Janeiro, Brazil
| | | |
Collapse
|
20
|
Alaraby M, Hernández A, Marcos R. Novel insights into biodegradation, interaction, internalization and impacts of high-aspect-ratio TiO 2 nanomaterials: A systematic in vivo study using Drosophila melanogaster. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124474. [PMID: 33187802 DOI: 10.1016/j.jhazmat.2020.124474] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
The elongated nature of the high-aspect-ratio nanomaterials (NMs) can help us to obtain valuable information on its biodegradation, physical interaction with target-cells, and internalization. Three different length nano-titanium have been studied using Drosophila, TEM, and different biological markers. Nano-titanium, regardless of its shape, was eroded and degraded just entering the gut lumen of the larvae. Results showed that the distinguished shape of nanowires helps to understand the interactions of NMs with the intestinal barrier. The peritrophic membrane, as the first defense line of the intestinal barrier, succeeded in the reservation of NMs, though the perpendicular particles of nanowires stabbing it, making pores, and permitting their translocation into intestinal cells. On the other side, the exposure to TiO2NPs did not decrease egg-to-adult viability, but all its different shapes, especially nanowires, mediated a wide molecular response including changes of expression in genes involved in stress, antioxidant, repair, and physical interaction responses. All these changes concerning their ability to elevate ROS levels ultimately led to potential genotoxicity. So, the high aspect ratio NMs are efficient in understanding the outstanding issues of NMs exposure, but at the same time could induce genotoxic impact rather than the low aspect ones.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès (Barcelona), Spain; Zoology Department, Faculty of Sciences, Sohag University, 82524 Sohag, Egypt
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès (Barcelona), Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Campus of Bellaterra, 08193 Cerdanyola del Vallès (Barcelona), Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
21
|
Ling C, An H, Li L, Wang J, Lu T, Wang H, Hu Y, Song G, Liu S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vitro: a Systematic Review of the Literature and Meta-analysis. Biol Trace Elem Res 2021; 199:2057-2076. [PMID: 32770326 DOI: 10.1007/s12011-020-02311-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
With the wide use of titanium dioxide nanoparticles (TiO2-NPs), the genotoxicity of TiO2-NPs, which is a factor for safety assessment, has attracted people's attention. However, their genotoxic effects in vitro remain controversial due to inconsistent reports. Therefore, a systematic review was conducted followed by a meta-analysis to reveal whether TiO2-NPs cause genotoxicity in vitro. A total of 59 studies were identified in this review through exhaustive database retrieval and exclusion. Meta-analysis results were presented based on different evaluation methods. The results showed that TiO2-NP exposure considerably increased the percentage of DNA in tail and olive tail moment in comet assay. Gene mutation assay revealed that TiO2-NPs could also induce gene mutation. However, TiO2-NP exposure had no effect on micronucleus (MN) formation in the MN assay. Subgroup analysis showed that normal cells were more vulnerable to toxicity induced by TiO2-NPs. Moreover, mixed form and small particles of TiO2-NPs increased the percentage of DNA in tail. In addition, short-term exposure could detect more DNA damage. The size, coating, duration, and concentration of TiO2-NPs influenced MN formation. This study presented that TiO2-NP exposure could cause genotoxicity in vitro. The physicochemical properties of TiO2-NPs and experimental protocols influence the genotoxic effects in vitro. Comet and gene mutation assays may be more sensitive to the detection of TiO2-NP genotoxic effects.
Collapse
Affiliation(s)
- Chunmei Ling
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Hongmei An
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Li Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Jiaqi Wang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Tianjiao Lu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Haixia Wang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Yunhua Hu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Guanling Song
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
| | - Sixiu Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
22
|
Wani MR, Maheshwari N, Shadab G. Eugenol attenuates TiO 2 nanoparticles-induced oxidative damage, biochemical toxicity and DNA damage in Wistar rats: an in vivo study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22664-22678. [PMID: 33420693 DOI: 10.1007/s11356-020-12139-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in food, edible dyes, and other commercial products. Human exposure to TiO2 NPs has raised concerns regarding their toxic potential. Various studies have evaluated the TiO2 NPs-induced toxicity, oxidative damage to the cellular components, and genotoxicity. In the present study, we examined whether co-treatment with the dietary antioxidant eugenol can attenuate or protect against TiO2 NPs-induced toxicity. We exposed the adult male Wistar rats to TiO2 NPs (150 mg/kg body weight) by intraperitoneal injection (i.p.) either alone or as co-treatment with eugenol (1-10 mg/kg body weight) once a day for 14 days. The untreated rats were supplied saline and served as control. Titanium (Ti) accumulation in various tissues was analyzed by inductively coupled plasma mass spectrometry. Serum levels of liver and kidney biomarkers and oxidative stress markers in the liver, kidney, and spleen were determined. A significant increase in hydrogen peroxide level confirmed that oxidative stress occurred in these tissues. TiO2 NPs induced oxidation of lipids, and decreased glutathione level and antioxidant enzyme activity in the kidney, liver, and spleen of treated rats. TiO2 NPs also increased the serum levels of alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase, albumin, and total cholesterol and decreased the blood urea nitrogen, uric acid, and total bilirubin in serum, which indicates oxidative damage to the liver and kidney. In eugenol and TiO2 NPs co-treated rats, all these changes were mitigated. Single-cell gel electrophoresis (comet assay) of lymphocytes showed longer comet tail length in TiO2 NPs-treated groups, indicating DNA damage while tail length was reduced in eugenol and TiO2 NPs co-treated groups. Thus, it seems that eugenol can be used as a chemoprotective agent against TiO2 NPs-induced toxicity.
Collapse
Affiliation(s)
- Mohammad Rafiq Wani
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Ghulam Shadab
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
23
|
Freire K, Ordóñez Ramos F, Soria DB, Pabón Gelves E, Di Virgilio AL. Cytotoxicity and DNA damage evaluation of TiO 2 and ZnO nanoparticles. Uptake in lung cells in culture. Toxicol Res (Camb) 2021; 10:192-202. [PMID: 33884170 DOI: 10.1093/toxres/tfaa112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 11/12/2022] Open
Abstract
The cytotoxicity and DNA damage of titanium dioxide and zinc oxide nanoparticles (TiO2 and ZnO NPs) have been studied in a human lung carcinoma cell line (A549) after 24 h exposure. TiO2 and ZnO NPs had mean diameters of 12.9 ± 2.8 and 24.1 ± 8.0 nm, respectively. ZnO NPs reduced cell viability from 250 μg/mL, increasing reactive oxygen species (ROS) and decreased GSH/GSSG ratio. The comet assay detected DNA damage from 50 μg/mL. TiO2 NPs induced cytotoxicity and DNA damage from 50 to 100 μg/mL, respectively, along with a decrease of the GSH/GSSG ratio. Both particles were found inside the cells, within membrane-bound vesicles. The internalization mechanism is promoted partially by caveolae-mediated endocytosis and, in the case of TiO2 NPs, also by macropinocytosis.
Collapse
Affiliation(s)
- K Freire
- CEQUINOR, (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina
| | - F Ordóñez Ramos
- Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín. Cra 65 #59A -110, Medellín, Colombia
| | - D B Soria
- CEQUINOR, (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina
| | - E Pabón Gelves
- Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín. Cra 65 #59A -110, Medellín, Colombia
| | - A L Di Virgilio
- CEQUINOR, (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina
| |
Collapse
|
24
|
Toxic effect of titanium dioxide nanoparticles on corneas in vitro and in vivo. Aging (Albany NY) 2021; 13:5020-5033. [PMID: 33534781 PMCID: PMC7950276 DOI: 10.18632/aging.202412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in a variety of areas. However, TiO2 NPs possess cytotoxicity which involves oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key molecule preventing cells from oxidative stress damage. In the current study, we explored the effect of Nrf2 signaling pathway in TiO2 NPs-induced corneal endothelial cell injury. Firstly, we found TiO2 NPs inhibited proliferation and damaged morphology and mitochondria of mouse primary corneal endothelial cells. Moreover, TiO2 NPs-induced oxidative damage of mouse primary corneal endothelial cells was inhibited by antioxidant NAC by evaluating production of reactive oxygen species (ROS), malondialdehyde (MDA), and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Next, flow cytometry analysis showed TiO2 NPs promoted apoptosis and cell cycle G2/M phase arrest of mouse primary corneal endothelial cells. Further investigation suggested that Nrf2 signaling pathway activation and the downregulation of ZO-1, β-catenin and Na-K-ATPase were involved in TiO2 NPs-induced mouse primary corneal endothelial cell injury. Our research highlighted the toxic effect of TiO2 NPs on corneas in vitro and in vivo, providing an alternative insight into TiO2 NPs-induced corneal endothelial cell injury.
Collapse
|
25
|
Krishnaiah D, Khiari M, Klibet F, Kechrid Z. Oxidative stress toxicity effect of potential metal nanoparticles on human cells. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Wani MR, Shadab GGHA. Titanium dioxide nanoparticle genotoxicity: A review of recent in vivo and in vitro studies. Toxicol Ind Health 2020; 36:514-530. [DOI: 10.1177/0748233720936835] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs, size <100 nm) find applications in a wide range of products including food and cosmetics. Studies have found that exposure to TiO2 NPs can cause inflammation, cytotoxicity, genotoxicity and cell apoptosis. In this article, we have reviewed the recent literature on the potential of TiO2 NPs to cause genotoxicity and summarized the results of two standard genotoxicity assays, the comet and micronucleus (MN) assays. Analysis of these peer-reviewed publications shows that the comet assay is the most common genotoxicity test, followed by MN, Ames, and chromosome aberration tests. These assays have reported positive as well as negative results, although there is inconsistency in some results that need to be confirmed further by well-designed experiments. We also discuss the possible mechanisms of TiO2 NP genotoxicity and point out areas that warrant further research.
Collapse
Affiliation(s)
- Mohammad Rafiq Wani
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - GGHA Shadab
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
27
|
Chen D, Li B, Jiang L, Li Y, Yang Y, Luo Z, Wang J. Pristine Cu-MOF Induces Mitotic Catastrophe and Alterations of Gene Expression and Cytoskeleton in Ovarian Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:4081-4094. [PMID: 35025483 DOI: 10.1021/acsabm.0c00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metals-organic frameworks (MOFs) have been widely explored in biomedicine, mostly in drug delivery, biosensing, and bioimaging due to their large surface area, tunable porosity, readily chemical functionalization, and good biocompatibility. However, the underlining cellular mechanisms controlling the process for MOF cytotoxicity remains almost completely unknown. Here, we demonstrate that pristine Cu-MOF without any loaded drug selectively inhibited ovarian cancer mainly through promoting tubulin polymerization and destroying the cell actin cytoskeleton (F-actin) to trigger the mitotic catastrophe, accompanying by conventional programmed cell death. To our knowledge, this is the first report claiming that mitotic catastrophe may be an explaining mechanism of MOF cytotoxicity. Cu-MOF with an intrinsic protease-like activity also hydrolyzed cellular cytoskeleton proteins (F-actin). The RNA sequencing data indicated the differential expressional mRNA of cell proliferation and actin cytoskeleton (ACTA2, ACTN3, FSCN2, and SCIN) and mitotic spindles (PLK1 and TPX2) related genes. We found that Cu-MOF as a promising candidate in the disruption of cellular cytoskeleton and the change of the gene expression could be actin altering and antimitotic agents against cancer cells, allowing for fundamental biological and biophysical studies of MOFs.
Collapse
Affiliation(s)
- Daomei Chen
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P.R. China
| | - Bin Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P.R. China
| | - Liang Jiang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Yizhou Li
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Yepeng Yang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Zhifang Luo
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Jiaqiang Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
28
|
Carriere M, Arnal ME, Douki T. TiO 2 genotoxicity: An update of the results published over the last six years. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 854-855:503198. [PMID: 32660822 DOI: 10.1016/j.mrgentox.2020.503198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
TiO2 particles are broadly used in daily products, including cosmetics for their UV-absorbing property, food for their white colouring property, water and air purification systems, self-cleaning surfaces and photoconversion electrical devices for their photocatalytic properties. The toxicity of TiO2 nano- and microparticles has been studied for decades, and part of this investigation has been dedicated to the identification of their potential impact on DNA, i.e., their genotoxicity. This review summarizes data retrieved from their genotoxicity testing during the past 6 years, encompassing both in vitro and in vivo studies, mostly performed on lung and intestinal models. It shows that TiO2 particles, both nano- and micro-sized, produce genotoxic damage to a variety of cell types, even at low, realistic doses.
Collapse
Affiliation(s)
- Marie Carriere
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| | - Marie-Edith Arnal
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| | - Thierry Douki
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| |
Collapse
|
29
|
Ranjan S, Dasgupta N, Mishra D, Ramalingam C. Involvement of Bcl-2 Activation and G1 Cell Cycle Arrest in Colon Cancer Cells Induced by Titanium Dioxide Nanoparticles Synthesized by Microwave-Assisted Hybrid Approach. Front Bioeng Biotechnol 2020; 8:606. [PMID: 32760701 PMCID: PMC7373722 DOI: 10.3389/fbioe.2020.00606] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
The toxic effect of TiO2 nanoparticles (TNP) greatly varies with the variation in synthesis protocol followed. Any morphological alteration of TNPs affects their activity. In the present study, we report the detailed toxicological analysis of TNPs fabricated by a microwave irradiation–assisted hybrid chemical approach. The toxicological mechanism was studied in human colon cancer cell lines (HCT116). Results indicate that TNP induces oxidative stress on HCT116, which, in turn, causes mitochondrial membrane depolarization. We also observed activation of Bcl-2 and caspase-3 by Western blot analysis. This indicates TNPs induce mitochondrial-mediated apoptosis. Furthermore, G1 cell cycle arrest was observed by flow-cytometric analysis. This study provides an understanding of the mechanism of action for apoptosis induced by TNPs, which can be further used to design safe TNPs for various consumer products and also suggests that extensive research needs to be done on harmful effects of TNPs synthesized from different approaches before commercial application.
Collapse
Affiliation(s)
- Shivendu Ranjan
- Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - Nandita Dasgupta
- Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - Debasish Mishra
- Bio-Inspired Design Laboratory, School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Chidambaram Ramalingam
- Industrial Biotechnology Division, School of Bio Sciences and Technology, VIT University, Vellore, India
| |
Collapse
|
30
|
Adriana-Berenice PV, Alberto PB, del Pilar RGM, Rebeca LM, José AG, Gutiérrez-Iglesias G. Toxic effect of titanium dioxide nanoparticles on human mesenchymal stem cells. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00084-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Mutalik SP, Pandey A, Mutalik S. Nanoarchitectronics: A versatile tool for deciphering nanoparticle interaction with cellular proteins, nucleic acids and phospholipids at biological interfaces. Int J Biol Macromol 2020; 151:136-158. [DOI: 10.1016/j.ijbiomac.2020.02.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
|
32
|
Ren Y, Geng R, Lu Q, Tan X, Rao R, Zhou H, Yang X, Liu W. Involvement of TGF-β and ROS in G1 Cell Cycle Arrest Induced by Titanium Dioxide Nanoparticles Under UVA Irradiation in a 3D Spheroid Model. Int J Nanomedicine 2020; 15:1997-2010. [PMID: 32273698 PMCID: PMC7102912 DOI: 10.2147/ijn.s238145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
Background As one of the most widely produced engineered nanomaterials, titanium dioxide nanoparticles (nano-TiO2) are used in biomedicine and healthcare products, and as implant scaffolds; therefore, the toxic mechanism of nano-TiO2 has been extensively investigated with a view to guiding application. Three-dimensional (3D) spheroid models can simplify the complex physiological environment and mimic the in vivo architecture of tissues, which is optimal for the assessment of nano-TiO2 toxicity under ultraviolet A (UVA) irradiation. Methods and Results In the present study, the toxicity of nano-TiO2 under UVA irradiation was investigated in 3D H22 spheroids cultured in fibrin gels. A significant reduction of approximately 25% in spheroid diameter was observed following treatment with 100 μg/mL nano-TiO2 under UVA irradiation after seven days of culture. Nano-TiO2 under UVA irradiation triggered the initiation of the TGF-β/Smad signaling pathway, increasing the expression levels of TGF-β1, Smad3, Cdkn1a, and Cdkn2b at both the mRNA and protein level, which resulted in cell cycle arrest in the G1 phase. In addition, nano-TiO2 under UVA irradiation also triggered the production of reactive oxygen species (ROS), which were shown to be involved in cell cycle regulation and the induction of TGF-β1 expression. Conclusion Nano-TiO2 under UVA irradiation induced cell cycle arrest in the G1 phase and the formation of smaller spheroids, which were associated with TGF-β/Smad signaling pathway activation and ROS generation. These results reveal the toxic mechanism of nano-TiO2 under UVA irradiation, providing the possibility for 3D spheroid models to be used in nanotoxicology studies.
Collapse
Affiliation(s)
- Yuanyuan Ren
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Runqing Geng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Qunwei Lu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xi Tan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Rong Rao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Hong Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
33
|
Zhang S, Jiang X, Cheng S, Fan J, Qin X, Wang T, Zhang Y, Zhang J, Qiu Y, Qiu J, Zou Z, Chen C. Titanium dioxide nanoparticles via oral exposure leads to adverse disturbance of gut microecology and locomotor activity in adult mice. Arch Toxicol 2020; 94:1173-1190. [PMID: 32162007 DOI: 10.1007/s00204-020-02698-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 12/22/2022]
Abstract
Titanium dioxide nanoparticles (TiO2NPs) have been widely used as food additives in daily life. However, the impact of oral intake of TiO2NPs on the nervous system is largely unknown. In this study, 7-week-old mice were treated with either vehicle or TiO2NPs suspension solution at 150 mg/kg by intragastric administration for 30 days. Our results demonstrated that oral exposure to TiO2NPs resulted in aberrant excitement of enteric neurons, although unapparent pathological changes were observed in gut. We also found the richness and evenness of gut microbiota were remarkably decreased and the gut microbial community compositions were significantly changed in the TiO2NP-treated group as compared with vehicle controls. Interestingly, oral exposure to TiO2NPs was capable to induce the inhibitory effects on locomotor activity, but it did not lead to significant change on the spatial learning and memory ability. We further revealed the mechanism that TiO2NPs could specifically cause locomotor dysfunction by elevating the excitement of enteric neuron, which might spread to brain via gut-brain communication by vagal pathway. However, inflammation response, enteric neurotransmitter 5-HT and major gut peptides might not be involved in this pathological process. Together, these findings provide valuable insights into the novel mechanism of TiO2NP-induced neurotoxicity. Understanding the microbiota-gut-brain axis will provide the foundation for potential therapeutic or prevention approaches against TiO2NP-induced gut and brain-related disorders.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jingchuan Fan
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tianxiong Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yujia Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yu Qiu
- Department of Neurology, The Affiliated University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Dongsheng Lung-Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Dongsheng Lung-Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
34
|
Brandão F, Fernández-Bertólez N, Rosário F, Bessa MJ, Fraga S, Pásaro E, Teixeira JP, Laffon B, Valdiglesias V, Costa C. Genotoxicity of TiO 2 Nanoparticles in Four Different Human Cell Lines (A549, HEPG2, A172 and SH-SY5Y). NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E412. [PMID: 32120981 PMCID: PMC7152841 DOI: 10.3390/nano10030412] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/16/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have a wide variety of applications in many consumer products, including as food additives, increasing the concern about the possible hazards that TiO2 NPs may pose to human health. Although most previous studies have focused on the respiratory system, ingestion must also be considered as an important exposure route. Furthermore, after inhalation or ingestion, TiO2 NPs can reach several organs, such as the liver, brain or lungs. Taking this into consideration, the present study focuses on the uptake and potential genotoxicity (micronuclei induction) of TiO2 NPs on four human cell lines of diverse origin: lung cells (A549), liver cells (HepG2), glial cells (A172) and neurons (SH-SY5Y), using flow cytometry methods. Results showed a concentration-, time- and cell-type- dependent increase in TiO2 NPs uptake but no significant induction of micronuclei in any of the tested conditions. Data obtained reinforce the importance of cell model and testing protocols choice for toxicity assessment. However, some questions remain to be answered, namely on the role of cell culture media components on the agglomeration state and mitigation of TiO2 NPs toxic effects.
Collapse
Affiliation(s)
- Fátima Brandão
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (F.R.); (M.J.B.); (S.F.); (C.C.)
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, U. Porto—University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Natalia Fernández-Bertólez
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071 A Coruña, Spain; (N.F.-B.); (E.P.); (B.L.); (V.V.)
| | - Fernanda Rosário
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (F.R.); (M.J.B.); (S.F.); (C.C.)
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
| | - Maria João Bessa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (F.R.); (M.J.B.); (S.F.); (C.C.)
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, U. Porto—University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sónia Fraga
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (F.R.); (M.J.B.); (S.F.); (C.C.)
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
| | - Eduardo Pásaro
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071 A Coruña, Spain; (N.F.-B.); (E.P.); (B.L.); (V.V.)
| | - João Paulo Teixeira
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (F.R.); (M.J.B.); (S.F.); (C.C.)
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
| | - Blanca Laffon
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071 A Coruña, Spain; (N.F.-B.); (E.P.); (B.L.); (V.V.)
| | - Vanessa Valdiglesias
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071 A Coruña, Spain; (N.F.-B.); (E.P.); (B.L.); (V.V.)
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Campus Elviña, 15071 A Coruña, Spain
| | - Carla Costa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (F.R.); (M.J.B.); (S.F.); (C.C.)
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
| |
Collapse
|
35
|
Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. NANO-MICRO LETTERS 2020; 12:45. [PMID: 34138283 PMCID: PMC7770847 DOI: 10.1007/s40820-020-0383-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023]
Abstract
Nanotechnology is a key advanced technology enabling contribution, development, and sustainable impact on food, medicine, and agriculture sectors. Nanomaterials have potential to lead qualitative and quantitative production of healthier, safer, and high-quality functional foods which are perishable or semi-perishable in nature. Nanotechnologies are superior than conventional food processing technologies with increased shelf life of food products, preventing contamination, and production of enhanced food quality. This comprehensive review on nanotechnologies for functional food development describes the current trends and future perspectives of advanced nanomaterials in food sector considering processing, packaging, security, and storage. Applications of nanotechnologies enhance the food bioavailability, taste, texture, and consistency, achieved through modification of particle size, possible cluster formation, and surface charge of food nanomaterials. In addition, the nanodelivery-mediated nutraceuticals, synergistic action of nanomaterials in food protection, and the application of nanosensors in smart food packaging for monitoring the quality of the stored foods and the common methods employed for assessing the impact of nanomaterials in biological systems are also discussed.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Venkidasamy Baskar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Dhivya Selvaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Arti Nile
- Department of Bioresources and Food Science, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau, Macau SAR, People's Republic of China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
36
|
Biola-Clier M, Gaillard JC, Rabilloud T, Armengaud J, Carriere M. Titanium Dioxide Nanoparticles Alter the Cellular Phosphoproteome in A549 Cells. NANOMATERIALS 2020; 10:nano10020185. [PMID: 31973118 PMCID: PMC7074930 DOI: 10.3390/nano10020185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/02/2022]
Abstract
TiO2 nanoparticles (NPs) are one of the most produced NPs worldwide and are used in many consumer products. Their impact on human health, especially through inhalation, has been studied for more than two decades. TiO2 is known for its strong affinity towards phosphates, and consequently interaction with cellular phosphates may be one of the mechanisms driving its toxicity. In the present study, we used a phosphoproteomics approach to document the interaction of TiO2-NP with phosphoproteins from A549 human pulmonary alveolar epithelial cells. Cells were exposed to 21 nm anatase/rutile TiO2-NPs, then their phosphopeptides were extracted and analyzed using shotgun proteomics. By comparing the phosphoprotein content, phosphorylation status and phosphorylation sites of exposed cells with that of control cells, our results show that by affecting the phosphoproteome, TiO2-NPs affect cellular processes such as apoptosis, linked with cell cycle and the DNA damage response, TP53 being central to these pathways. Other pathways including inflammation and molecular transport are also affected. These molecular mechanisms of TiO2-NP toxicity have been reported previously, our study shows for the first time that they may derive from phosphoproteome modulation, which could be one of their upstream regulators.
Collapse
Affiliation(s)
| | - Jean-Charles Gaillard
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France;
| | - Thierry Rabilloud
- Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS UMR5249, CEA, IRIG-DIESE-LCBM-ProMD, F-38054 Grenoble, France;
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France;
- Correspondence: (J.A.); (M.C.)
| | - Marie Carriere
- Univ. Grenoble-Alpes, IRIG, SyMMES, CIBEST, F-38000 Grenoble, France;
- Correspondence: (J.A.); (M.C.)
| |
Collapse
|
37
|
Lojk J, Repas J, Veranič P, Bregar VB, Pavlin M. Toxicity mechanisms of selected engineered nanoparticles on human neural cells in vitro. Toxicology 2020; 432:152364. [PMID: 31927068 DOI: 10.1016/j.tox.2020.152364] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/16/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
Environmental exposure to nanoparticles (NPs) has significantly increased in the last decades, mostly due to increased environmental pollution and frequent use of NP containing consumer products. Such NPs may enter our body and cause various health-related problems. The brain is a particularly problematic accumulation site due to its physiological and anatomical restrictions. Several mechanisms of NP neurotoxicity have already been identified, however not enough is known especially regarding toxicity of engineered/industrial NPs. The focus of this in vitro study was on analysis of neurotoxicity of different engineered NPs, with which we come into contact in our daily lives; SiO2 NPs, food grade (FG) TiO2 NPs, TiO2 P25 and silver NPs as examples of industrial NPs, and polyacrylic acid (PAA) coated cobalt ferrite NPs as an example of biomedical NPs. All short term exposure experiments (24-72 h) were performed on SH-SY5Y human neuroblastoma cell line in vitro using higher (25-50 μg/ml) as well as lower (2-10 μg/ml), concentrations that are more relevant for in vivo NPs exposure. We show that NPs can cause neurotoxicity through different mechanisms, such as membrane damage, cell cycle interference, ROS formation and accumulation of autophagosomes, depending on their physico-chemical properties and stability in physiological media. Low, in vivo achievable concentrations of NPs induced only minor or no changes in vitro, however prolonged exposure and accumulation in vivo could negatively affect the cells. This was also shown in case of autophagy dysfunction for TiO2 P25 NPs and decrease of cell viability for TiO2 FG NPs, which were only evident after 72 h of incubation.
Collapse
Affiliation(s)
- Jasna Lojk
- Group for nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vladimir B Bregar
- Group for nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Pavlin
- Group for nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
38
|
Ghaemi B, Moshiri A, Herrmann IK, Hajipour MJ, Wick P, Amani A, Kharrazi S. Supramolecular Insights into Domino Effects of Ag@ZnO-Induced Oxidative Stress in Melanoma Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46408-46418. [PMID: 31729218 DOI: 10.1021/acsami.9b13420] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent studies suggest that cancer cell death accompanied by organelle dysfunction might be a promising approach for cancer therapy. The Golgi apparatus has a key role in cell function and may initiate signaling pathways to mitigate stress and, if irreparable, start apoptosis. It has been shown that Golgi disassembly and fragmentation under oxidative stress act as indicators for stress-mediated cell death pathways through cell cycle arrest in the G2/M phase. The present study shows that UV-induced reactive oxygen species (ROS) generation by Ag@ZnO nanoparticles (NPs) transform the Golgi structures from compressed perinuclear ribbons into detached vesicle-like structures distributed in the entire cytoplasm of melanoma cells. This study also demonstrates that Ag@ZnO NP-induced Golgi fragmentation cooccurs with G2 block of cell cycle progression, preventing cells from entering the mitosis phase. Additionally, the increased intracellular ROS production triggered by Ag@ZnO NPs upon UV exposure promoted autophagy. Taken together, Ag@ZnO NPs induce stress-related Golgi fragmentation and autophagy, finally leading to melanoma cell apoptosis. Intracellular oxidative stress generated by Ag@ZnO NPs upon UV irradiation may thus represent a targeted approach to induce cancer cell death through organelle destruction in melanoma cells, while fibroblast cells remained largely unaffected.
Collapse
Affiliation(s)
- Behnaz Ghaemi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM) , Tehran University of Medical Sciences , 1417755469 Tehran , Iran
- Laboratory for Particles-Biology Interactions , Swiss Federal Laboratories for Material Science and Technology (Empa) , 9014 St. Gallen , Switzerland
| | - Arfa Moshiri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases , Shahid Beheshti University of Medical Sciences , 1985717413 Tehran , Iran
- Laboratory of Experimental Therapies in Oncology , IRCCS Instituto Giannina Gaslini , 16147 Genova , Italy
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions , Swiss Federal Laboratories for Material Science and Technology (Empa) , 9014 St. Gallen , Switzerland
| | - Mohammad Javad Hajipour
- Precision Health Program , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Peter Wick
- Laboratory for Particles-Biology Interactions , Swiss Federal Laboratories for Material Science and Technology (Empa) , 9014 St. Gallen , Switzerland
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center , North Khorasan University of Medical Sciences , 9414975516 Bojnurd , Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM) , Tehran University of Medical Sciences , 1417755469 Tehran , Iran
| |
Collapse
|
39
|
Liao F, Chen L, Liu Y, Zhao D, Peng W, Wang W, Feng S. The size-dependent genotoxic potentials of titanium dioxide nanoparticles to endothelial cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:1199-1207. [PMID: 31294929 DOI: 10.1002/tox.22821] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 05/28/2023]
Abstract
Despite intensive research activities, there are still many major knowledge gaps over the potential adverse effects of titanium dioxide nanoparticles (TiO2 -NPs), one of the most widely produced and used nanoparticles, on human cardiovascular health and the underlying mechanisms. In the present study, alkaline comet assay and cytokinesis-block micronucleus test were employed to determine the genotoxic potentials of four sizes (100, 50, 30, and 10 nm) of anatase TiO2 -NPs to human umbilical vein endothelial cells (HUVECs) in culture. Also, the intracellular redox statuses were explored through the measurement of the levels of reactive oxygen species (ROS) and reduced glutathione (GSH) with kits, respectively. Meanwhile, the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were also detected by western blot. The results showed that at the exposed levels (1, 5, and 25 μg/mL), all the four sizes of TiO2 -NPs could elicit an increase of both DNA damage and MN frequency in HUVECs in culture, with a positive dose-dependent and negative size-dependent effect relationship (T100 < T50 < T30 < T10). Also, increased levels of intracellular ROS, but decreased levels of GSH, were found in all the TiO2 -NP-treated groups. Intriguingly, a very similar manner of dose-dependent and size-dependent effect relationship was observed between the ROS test and both comet assay and MN test, but contrary to that of GSH assay. Correspondingly, the levels of Nrf2 protein were also elevated in the TiO2 -NP-exposed HUVECs, with an inversely size-dependent effect relationship. These findings indicated that induction of oxidative stress and subsequent genotoxicity might be an important biological mechanism by which TiO2 -NP exposure would cause detrimental effects to human cardiovascular health.
Collapse
Affiliation(s)
- Fen Liao
- The School of Public Health, University of South China, Hengyang, China
| | - Lingying Chen
- The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yuanfeng Liu
- The School of Public Health, University of South China, Hengyang, China
| | - Dongting Zhao
- The School of Public Health, University of South China, Hengyang, China
| | - Wenyi Peng
- The School of Public Health, University of South China, Hengyang, China
| | - Wuxiang Wang
- The School of Public Health, University of South China, Hengyang, China
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Shaolong Feng
- The School of Public Health, University of South China, Hengyang, China
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
40
|
Li F, Li Z, Jin X, Liu Y, Li P, Shen Z, Wu A, Zheng X, Chen W, Li Q. Radiosensitizing Effect of Gadolinium Oxide Nanocrystals in NSCLC Cells Under Carbon Ion Irradiation. NANOSCALE RESEARCH LETTERS 2019; 14:328. [PMID: 31637533 PMCID: PMC6803611 DOI: 10.1186/s11671-019-3152-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/09/2019] [Indexed: 05/17/2023]
Abstract
Gadolinium-based nanomaterials can not only serve as contrast agents but also contribute to sensitization in the radiotherapy of cancers. Among radiotherapies, carbon ion irradiation is considered one of the superior approaches with unique physical and biological advantages. However, only a few metallic nanoparticles have been used to improve carbon ion irradiation. In this study, gadolinium oxide nanocrystals (GONs) were synthesized using a polyol method to decipher the radiosensitizing mechanisms in non-small cell lung cancer (NSCLC) cell lines irradiated by carbon ions. The sensitizer enhancement ratio at the 10% survival level was correlated with the concentration of Gd in NSCLC cells. GONs elicited an increase in hydroxyl radical production in a concentration-dependent manner, and the yield of reactive oxygen species increased obviously in irradiated cells, which led to DNA damage and cell cycle arrest. Apoptosis and cytostatic autophagy were also significantly induced by GONs under carbon ion irradiation. The GONs may serve as an effective theranostic material in carbon ion radiotherapy for NSCLC.
Collapse
Affiliation(s)
- Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000 Gansu Province China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zihou Li
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Magnetic Materials and Devices, Chinese Academy of Sciences, Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 Zhejiang China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000 Gansu Province China
| | - Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000 Gansu Province China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000 Gansu Province China
| | - Zheyu Shen
- Key Laboratory of Magnetic Materials and Devices, Chinese Academy of Sciences, Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 Zhejiang China
| | - Aiguo Wu
- Key Laboratory of Magnetic Materials and Devices, Chinese Academy of Sciences, Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201 Zhejiang China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000 Gansu Province China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000 Gansu Province China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000 Gansu Province China
| |
Collapse
|
41
|
Engin AB, Engin A. Nanoantibiotics: A Novel Rational Approach to Antibiotic Resistant Infections. Curr Drug Metab 2019; 20:720-741. [DOI: 10.2174/1389200220666190806142835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023]
Abstract
Background:The main drawbacks for using conventional antimicrobial agents are the development of multiple drug resistance due to the use of high concentrations of antibiotics for extended periods. This vicious cycle often generates complications of persistent infections, and intolerable antibiotic toxicity. The problem is that while all new discovered antimicrobials are effective and promising, they remain as only short-term solutions to the overall challenge of drug-resistant bacteria.Objective:Recently, nanoantibiotics (nAbts) have been of tremendous interest in overcoming the drug resistance developed by several pathogenic microorganisms against most of the commonly used antibiotics. Compared with free antibiotic at the same concentration, drug delivered via a nanoparticle carrier has a much more prominent inhibitory effect on bacterial growth, and drug toxicity, along with prolonged drug release. Additionally, multiple drugs or antimicrobials can be packaged within the same smart polymer which can be designed with stimuli-responsive linkers. These stimuli-responsive nAbts open up the possibility of creating multipurpose and targeted antimicrobials. Biofilm formation still remains the leading cause of conventional antibiotic treatment failure. In contrast to conventional antibiotics nAbts easily penetrate into the biofilm, and selectively target biofilm matrix constituents through the introduction of bacteria specific ligands. In this context, various nanoparticles can be stabilized and functionalized with conventional antibiotics. These composites have a largely enhanced bactericidal efficiency compared to the free antibiotic.Conclusion:Nanoparticle-based carriers deliver antibiotics with better biofilm penetration and lower toxicity, thus combating bacterial resistance. However, the successful adaptation of nanoformulations to clinical practice involves a detailed assessment of their safety profiles and potential immunotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Ankara, Turkey
| |
Collapse
|
42
|
Toxicity assessment of magnesium oxide nano and microparticles on cancer and non-cancer cell lines. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00298-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
43
|
Kim H, Jeon D, Oh S, Nam K, Son S, Gye MC, Shin I. Titanium dioxide nanoparticles induce apoptosis by interfering with EGFR signaling in human breast cancer cells. ENVIRONMENTAL RESEARCH 2019; 175:117-123. [PMID: 31112848 DOI: 10.1016/j.envres.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/10/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Titanium dioxide nanoparticles, due to their smaller size and increased surface area comparted to the bulk form, are known to be bioreactive and have unexpected toxicological outcomes. Previous studies have shown that nanoscale titanium dioxide induces reactive oxygen species (ROS)-mediated cytotoxicity and genotoxicity. Although many reports have discussed the ROS-mediated cytotoxic effects of titanium dioxide nanoparticles (TiO2-NPs), their effects on the receptor-ligand association are unknown. In this study, the possibility that TiO2-NPs can interfere with the receptor-ligand binding was assessed by monitoring alterations in the phosphorylation status of proteins downstream of the epidermal growth factor receptor (EGFR) signaling cascade. TiO2-NPs blocked ligand-induced EGFR autophosphorylation, leading to the deactivation of EGFR downstream effectors such as Akt and extracellular signal-regulated kinase signaling, inducing cell death.
Collapse
Affiliation(s)
- Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Donghwan Jeon
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sunhwa Oh
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - KeeSoo Nam
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seogho Son
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea; Natural Science Institute, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
44
|
Bengalli R, Ortelli S, Blosi M, Costa A, Mantecca P, Fiandra L. In Vitro Toxicity of TiO 2:SiO 2 Nanocomposites with Different Photocatalytic Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1041. [PMID: 31330895 PMCID: PMC6669742 DOI: 10.3390/nano9071041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023]
Abstract
The enormous technological relevance of titanium dioxide (TiO2) nanoparticles (NPs) and the consequent concerns regarding potentially hazardous effects that exposure during production, use, and disposal can generate, encourage material scientists to develop and validate intrinsically safe design solution (safe-by-design). Under this perspective, the encapsulation in a silica dioxide (SiO2) matrix could be an effective strategy to improve TiO2 NPs safety, preserving photocatalytic and antibacterial properties. In this work, A549 cells were used to investigate the toxic effects of silica-encapsulated TiO2 having different ratios of TiO2 and SiO2 (1:1, 1:3, and 3:1). NPs were characterized by electron microscopy and dynamic light scattering, and cell viability, oxidative stress, morphological changes, and cell cycle alteration were evaluated. Resulting data demonstrated that NPs with lower content of SiO2 are able to induce cytotoxic effects, triggered by oxidative stress and resulting in cell necrosis and cell cycle alteration. The physicochemical properties of NPs are responsible for their toxicity. Particles with small size and high stability interact with pulmonary cells more effectively, and the different ratio among silica and titania plays a crucial role in the induced cytotoxicity. These results strengthen the need to take into account a safe(r)-by-design approach in the development of new nanomaterials for research and manufacturing.
Collapse
Affiliation(s)
- Rossella Bengalli
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy.
| | - Simona Ortelli
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Magda Blosi
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Anna Costa
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Paride Mantecca
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy
| | - Luisa Fiandra
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy
| |
Collapse
|
45
|
Montalvo-Quiros S, Luque-Garcia JL. Combination of bioanalytical approaches and quantitative proteomics for the elucidation of the toxicity mechanisms associated to TiO2 nanoparticles exposure in human keratinocytes. Food Chem Toxicol 2019; 127:197-205. [DOI: 10.1016/j.fct.2019.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
|
46
|
Louro H, Saruga A, Santos J, Pinhão M, Silva MJ. Biological impact of metal nanomaterials in relation to their physicochemical characteristics. Toxicol In Vitro 2019; 56:172-183. [PMID: 30707927 DOI: 10.1016/j.tiv.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; Toxicogenomics and Human Health (ToxOmics), Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal; PToNANO, Lisbon, Portugal.
| | - Andreia Saruga
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Joana Santos
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Mariana Pinhão
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; Toxicogenomics and Human Health (ToxOmics), Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal; PToNANO, Lisbon, Portugal
| |
Collapse
|
47
|
Rahmani Kukia N, Rasmi Y, Abbasi A, Koshoridze N, Shirpoor A, Burjanadze G, Saboory E. Bio-Effects of TiO2 Nanoparticles on Human Colorectal Cancer and Umbilical Vein Endothelial Cell Lines. Asian Pac J Cancer Prev 2018; 19:2821-2829. [PMID: 30361551 PMCID: PMC6291037 DOI: 10.22034/apjcp.2018.19.10.2821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Due to the possible biomedical potential of nanoparticles, titanium dioxide nanoparticles (TiO2 NPs)
have received great attention in cancer research. Although selectivity of cytotoxicity with TiO2 NPs in various cells is
clinically significant comparisons of cancer and non-cancer cells have been limited. Therefore, we here studied exposure
to TiO2 NPs in colorectal cancer cells (CRCs) and human umbilical vein endothelial cells (HUVECs). Methods: After
characterization of TiO2 NPs, culture and treatment of cells (HCT116, HT29 and HUVEC), viability was assessed by
MTT assay and in terms of morphological features. Acridine orange (AO) and propidium iodide (PI) assays were carried
out to estimate the incidence of apoptosis. The RT-PCR method was also employed to evaluate the expression of P53,
Bax, Bcl-2 and Caspase 3. Results: Exposure to increasing concentrations of TiO2 NPs enhanced overall cell survival
of HCT116 cells and reduced the Bcl-2 and Caspase 3 expression while the ratio of Bax/Bcl-2 was down-regulated.
TiO2 NPs at 400 and 50 μg/ml concentrations suppressed cell proliferation and induced apoptosis of HT29 cells and
also up-regulated P53 and Bax at the mRNA level, enhanced the Bax/Bcl-2 ratio and eventually up-regulated Caspase
3 mRNA. Although, inhibition of cell proliferation in HUVECs was seen at 200 and 400 μg/ml TiO2 NPs, it was not
marked. Conclusion: TiO2 NPs have selective bio-effects on exposed cells with dose- and cell-dependent influence on
viability. Cell proliferation in HCT116 as a metastatic colorectal cancer cell line appeared to be stimulated via multiple
signaling pathways, with promotion of apoptosis in less metastatic cells at 50 and 400 μg/ml concentrations. This was
associated with elevated P53, Bax and Caspase 3 mRNA and reduced Bcl-2 expression. However, TiO2 NPs did not
exert any apparent significant effects on HUVECs as hyperproliferative angiogenic cells.
Collapse
Affiliation(s)
- Nasim Rahmani Kukia
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | | | | | | | | | | | | |
Collapse
|
48
|
Kumari P, Panda PK, Jha E, Pramanik N, Nisha K, Kumari K, Soni N, Mallick MA, Verma SK. Molecular insight to in vitro biocompatibility of phytofabricated copper oxide nanoparticles with human embryonic kidney cells. Nanomedicine (Lond) 2018; 13:2415-2433. [DOI: 10.2217/nnm-2018-0175] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To investigate the biocompatibility of green synthesized copper oxide nanoparticles (CuO Np) using floral extract of Calotropis gigantea in room condition. Materials & methods: Green synthesized and characterized CuO Np was evaluated for their cellular and molecular biocompatibility by experimentally and computational molecular docking. Results: Synthesized CuO NP was found to have a size 32 ± 09 nm with ζ potential -35 ± 12 mV. LC50 value was found to be 190 μg/ml. In vitro and in silico cytotoxicity analysis with HEK293 cells revealed the cytotoxic effect of CuO Np as consequences of interaction with histidine and arginine amino acid residues of Sod3 and p53 proteins via hydrogen bond of length 3.09 and 3.32 Å leading to oxidative stress ensuing toward apoptosis and cell cycle arrest. Conclusion: The outcomes proved the synthesized material as an alternative to the conventional method of synthesizing copper nanoparticles for biomedical and clinical applications.
Collapse
Affiliation(s)
- Puja Kumari
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Pritam Kumar Panda
- Division of Pediatric Hematology & Oncology, University Children's Hospital, University of Freiburg, 79106, Germany
| | - Ealisha Jha
- Department of Physics & Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, NL A1C 5S7 Canada
| | - Nandini Pramanik
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Kumari Nisha
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Khushboo Kumari
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Nikita Soni
- School of Biotechnology & Bioinformatics, D. Y. Patil (deemed to be university), Navi Mumbai, India
| | - M Anwar Mallick
- Advance Science & Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
49
|
Huerta-García E, Zepeda-Quiroz I, Sánchez-Barrera H, Colín-Val Z, Alfaro-Moreno E, Ramos-Godinez MDP, López-Marure R. Internalization of Titanium Dioxide Nanoparticles Is Cytotoxic for H9c2 Rat Cardiomyoblasts. Molecules 2018; 23:molecules23081955. [PMID: 30082584 PMCID: PMC6222559 DOI: 10.3390/molecules23081955] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO₂ NPs) are widely used in industry and daily life. TiO₂ NPs can penetrate into the body, translocate from the lungs into the circulation and come into contact with cardiac cells. In this work, we evaluated the toxicity of TiO₂ NPs on H9c2 rat cardiomyoblasts. Internalization of TiO₂ NPs and their effect on cell proliferation, viability, oxidative stress and cell death were assessed, as well as cell cycle alterations. Cellular uptake of TiO₂ NPs reduced metabolic activity and cell proliferation and increased oxidative stress by 19-fold measured as H₂DCFDA oxidation. TiO₂ NPs disrupted the plasmatic membrane integrity and decreased the mitochondrial membrane potential. These cytotoxic effects were related with changes in the distribution of cell cycle phases resulting in necrotic death and autophagy. These findings suggest that TiO₂ NPs exposure represents a potential health risk, particularly in the development of cardiovascular diseases via oxidative stress and cell death.
Collapse
Affiliation(s)
- Elizabeth Huerta-García
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Colonia Sección XVI, Tlalpan, C.P. 14080, Ciudad de México, Mexico.
| | - Iván Zepeda-Quiroz
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Colonia Sección XVI, Tlalpan, C.P. 14080, Ciudad de México, Mexico.
| | - Helen Sánchez-Barrera
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Colonia Sección XVI, Tlalpan, C.P. 14080, Ciudad de México, Mexico.
| | - Zaira Colín-Val
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Colonia Sección XVI, Tlalpan, C.P. 14080, Ciudad de México, Mexico.
| | - Ernesto Alfaro-Moreno
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden.
| | - María Del Pilar Ramos-Godinez
- Departamento de Microscopía Electrónica, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Colonia Sección XVI, Tlalpan, C.P. 14080 Ciudad de México, Mexico.
| | - Rebeca López-Marure
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Colonia Sección XVI, Tlalpan, C.P. 14080, Ciudad de México, Mexico.
| |
Collapse
|
50
|
Dhall A, Self W. Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications. Antioxidants (Basel) 2018; 7:E97. [PMID: 30042320 PMCID: PMC6116044 DOI: 10.3390/antiox7080097] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
Cerium oxide nanoparticles (CeNPs) exhibit antioxidant properties both in vitro and in vivo. This is due to the self-regeneration of their surface, which is based on redox-cycling between 3+ and 4+ states for cerium, in response to their immediate environment. Additionally, oxygen vacancies in the lattice structure allow for alternating between CeO₂ and CeO2-x during redox reactions. Research to identify and characterize the biomedical applications of CeNPs has been heavily focused on investigating their use in treating diseases that are characterized by higher levels of reactive oxygen species (ROS). Although the bio-mimetic activities of CeNPs have been extensively studied in vitro, in vivo interactions and associated protein corona formation are not well understood. This review describes: (1) the methods of synthesis for CeNPs, including the recent green synthesis methods that offer enhanced biocompatibility and a need for establishing a reference CeNP material for consistency across studies; (2) their enzyme-mimetic activities, with a focus on their antioxidant activities; and, (3) recent experimental evidence that demonstrates their ROS scavenging abilities and their potential use in personalized medicine.
Collapse
Affiliation(s)
- Atul Dhall
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.
| | - William Self
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|