1
|
de Farias NO, Rodrigues AR, Botelho MT, Magalhães GR, Räisänen R, Freeman HS, Umbuzeiro GDA. The natural anthraquinone dye emodin: Eco/genotoxicological characterization for aquatic organisms. Food Chem Toxicol 2024; 189:114749. [PMID: 38768938 DOI: 10.1016/j.fct.2024.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Emodin is an anthraquinone secondary metabolite produced by several species of plants and fungi. Emodin is known for its pharmacological versatility, and, in the textile industry, for its good dyeing properties. However, its use in the textile industry can result in the formation and disposal of large volumes of wastewater. Emodin mutagenicity has been shown in bacteria and in human cells, but little is known about its possible toxic, genotoxic, or mutagenic effects in aquatic organisms. We have evaluated the eco/genotoxicity of emodin to aquatic organisms. Emodin was toxic to Daphnia similis (EC50 = 130 μg L-1) and zebrafish embryos (LC50 = 25 μg L-1). No toxicity was observed for Raphidocelis subcapitata, Ceriodaphnia dubia, or Parhyale hawaiensis. Additional biochemistry/molecular studies are needed to elucidate the toxic/mutagenic pathways of emodin in aquatic organisms. The PNEC value for emodin was 0.025 μg L-1. In addition to mutagenicity in the Salmonella/microsome assay, emodin was mutagenic in the micronucleus assay in the amphipod P. hawaiensis. Among the anthraquinone dyes tested to date, natural or synthetic, emodin was the most toxic to aquatic species.
Collapse
Affiliation(s)
- Natália Oliveira de Farias
- Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, SP, Brazil; Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazil
| | - Amanda Rocha Rodrigues
- Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, SP, Brazil
| | - Marina Tenório Botelho
- Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, SP, Brazil
| | | | - Riikka Räisänen
- Helsinki Institute of Sustainability Science, Craft Studies, University of Helsinki, UH, Helsinki, Finland
| | - Harold S Freeman
- Wilson College of Textiles, North Carolina State University, NCSU, Raleigh, USA
| | - Gisela de Aragão Umbuzeiro
- Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, SP, Brazil; Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Botelho MT, Militão GG, Brinkmann M, Umbuzeiro GDA. Toxicity and mutagenicity studies of 6PPD-quinone in a marine invertebrate species and bacteria. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:335-341. [PMID: 37402651 DOI: 10.1002/em.22560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone), an oxidation product of the tire additive, 6PPD, has been associated with high mortality of salmonids (0.1 μg/L). The objective of this study was to determine the acute toxicity using neonates and mutagenicity (micronuclei in hemolymph of exposed adults) of 6PPD-quinone in the marine amphipod Parhyale hawaiensis. Also, we studied its mutagenicity in the Salmonella/microsome assay using five strains of Salmonella with and without metabolic system (rat liver S9, 5%). 6PPD-quinone did not present acute toxicity to P. hawaiensis from 31.25 to 500 μg/L. Micronuclei frequency increased after 96 h-exposure to 6PPD-quinone (250 and 500 μg/L) when compared to the negative control. 6PPD-quinone also showed a weak mutagenic effect for TA100 only in the presence of S9. We conclude that 6PPD-quinone is mutagenic to P. hawaiensis and weakly mutagenic to bacteria. Our work provides information for future risk assessment of the presence of 6PPD-quinone in the aquatic environment.
Collapse
Affiliation(s)
| | | | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
3
|
Bergmann AJ, Breitenbach M, Muñoz C, Simon E, McCombie G, Biedermann M, Schönborn A, Vermeirssen EL. Towards detecting genotoxic chemicals in food packaging at thresholds of toxicological concern using bioassays with high-performance thin-layer chromatography. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
Herrala M, Yli-Öyrä J, de Albuquerque AF, de Farias NO, Morales DA, Räisänen R, Freeman HS, Umbuzeiro GA, Rysä J. Waterless Dyeing and In Vitro Toxicological Properties of Biocolorants from Cortinarius sanguineus. J Fungi (Basel) 2022; 8:1129. [PMID: 36354896 PMCID: PMC9694584 DOI: 10.3390/jof8111129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 09/25/2023] Open
Abstract
As a part of an ongoing interest in identifying environmentally friendly alternatives to synthetic dyes and in using liquid CO2 as a waterless medium for applying the resulting colorants to textiles, our attention turned to yellow-to-red biocolorants produced by Cortinarius sanguineus fungus. The three principal target anthraquinone colorants (emodin, dermocybin, and dermorubin) were isolated from the fungal bodies using a liquid-liquid separation method and characterized using 700 MHz NMR and high-resolution mass spectral analyses. Following structure confirmations, the three colorants were examined for dyeing synthetic polyester (PET) textile fibers in supercritical CO2. We found that all three biocolorants were suitable for dyeing PET fibers using this technology, and our attention then turned to determining their toxicological properties. As emodin has shown mutagenic potential in previous studies, we concentrated our present toxicity studies on dermocybin and dermorubin. Both colorants were non-mutagenic, presented low cellular toxicity, and did not induce skin sensitization. Taken together, our results indicate that dermocybin and dermorubin possess the technical and toxicological properties needed for consideration as synthetic dye alternatives under conditions that are free of wastewater production.
Collapse
Affiliation(s)
- Mikko Herrala
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Johanna Yli-Öyrä
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | | | | | | | - Riikka Räisänen
- Craft Studies, University of Helsinki, 00014 Helsinki, Finland
| | - Harold S. Freeman
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695-8301, USA
| | | | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
5
|
Passos LS, Gomes LC, Pereira TM, Sadauskas-Henrique H, Pont GD, Ostrensky A, Pinto E. Response of Oreochromis niloticus (Teleostei: Cichlidae) exposed to a guanitoxin-producing cyanobacterial strain using multiple biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155471. [PMID: 35472340 DOI: 10.1016/j.scitotenv.2022.155471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Changes in environmental conditions in aquatic ecosystems caused by anthropic actions can modify the composition of primary producers, promoting the excessive proliferation of cyanobacteria. These organisms can form cyanobacterial blooms, which directly affect aquatic life. The present study investigated the mutagenicity of the cyanobacterium Sphaerospermopsis torques-reginae (strain ITEP-024), guanitoxin-producing (natural organophosphate), and sublethal effects on fish in relevant environment concentrations. For this, the Ames test (Salmonella/microsome) was performed as a mutagenic assay for extracts of the ITEP-024 strain. Specimens of Oreochromis niloticus (Teleostei: Cichlidae) were subjected to acute 96 h exposure to different concentrations of aqueous extract of the strain: C = control group; T1 = 31.25 mg/L; T2 = 62.5 mg/L; T3 = 125 mg/L; and T4 = 250 mg/L. Genotoxic, biochemical, osmoregulatory, and physiologic biomarkers were analyzed. Our results showed that the cyanobacterium had a weak mutagenic response for the TA102 strain of Salmonella with and without metabolic activation by S9. Strains TA98 and TA100 were not affected. Fish from treatments T3 and T4 showed changes in oxidative stress (CAT, SOD, and GST enzymes), inhibition of the enzyme acetylcholinesterase activity, micronucleus formation, and osmoregulatory disorders. No guanitoxin accumulation was detected in the different tissues of O. niloticus by LC-MS/MS. Our results showed unprecedented mutagenicity data of the guanitoxin-producing cyanobacteria by the Ames test and biochemical, osmoregulatory, and genotoxic disorders in fish, providing efficient aquatic contamination biomarkers. Despite the great concern related to the presence of guanitoxin in blooms in freshwater ecosystems, its concentration is not yet regulated, and thus there is no monitoring agenda in current legislation.
Collapse
Affiliation(s)
- Larissa Souza Passos
- Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 05508-000 São Paulo, Brazil.
| | - Levy Carvalho Gomes
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | - Tatiana Miura Pereira
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | - Helen Sadauskas-Henrique
- Laboratory of Marine and Coastal Organisms, University of Santa Cecília, Rua Oswaldo Cruz, 11045-907 Santos, Brazil
| | - Giorgi Dal Pont
- Integrated Group for Aquaculture and Environmental Studies, Department of Animal Science, Federal University of Paraná, Rua dos Funcionários, 80035-050 Curitiba, Brazil
| | - Antonio Ostrensky
- Integrated Group for Aquaculture and Environmental Studies, Department of Animal Science, Federal University of Paraná, Rua dos Funcionários, 80035-050 Curitiba, Brazil
| | - Ernani Pinto
- Laboratory of Toxins and Natural Algae Products, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 05508-000 São Paulo, Brazil; Tropical Ecosystems Operation Division, Nuclear Energy in Agriculture Center, University of São Paulo, Av. Centenário, 13416-000 Piracicaba, Brazil; Food Research Center (FoRC-CEPID), University of São Paulo, Rua do Lago, 05508-080 São Paulo, Brazil
| |
Collapse
|
6
|
Dou J, Ilina P, Hemming J, Malinen K, Mäkkylä H, Oliveira de Farias N, Tammela P, de Aragão Umbuzeiro G, Räisänen R, Vuorinen T. Effect of Hybrid Type and Harvesting Season on Phytochemistry and Antibacterial Activity of Extracted Metabolites from Salix Bark. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2948-2956. [PMID: 35200036 PMCID: PMC8915259 DOI: 10.1021/acs.jafc.1c08161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Hundreds of different fast-growing Salix hybrids have been developed mainly for energy crops. In this paper, we studied water extracts from the bark of 15 willow hybrids and species as potential antimicrobial additives. Treatment of ground bark in water under mild conditions extracted 12-25% of the dry material. Preparative high-performance liquid chromatography is proven here as a fast and highly efficient tool in the small-scale recovery of raffinose from Salix bark crude extracts for structural elucidation. Less than half of the dissolved material was assigned by chromatographic (gas chromatography and liquid chromatography) and spectroscopic (mass spectrometry and nuclear magnetic resonance spectroscopy) techniques for low-molecular-weight compounds, including mono- and oligosaccharides (sucrose, raffinose, and stachyose) and aromatic phytochemicals (triandrin, catechin, salicin, and picein). The composition of the extracts varied greatly depending on the hybrid or species and the harvesting season. This information generated new scientific knowledge on the variation in the content and composition of the extracts between Salix hybrids and harvesting season depending on the desired molecule. The extracts showed high antibacterial activity on Staphylococcus aureus with a minimal inhibitory concentration (MIC) of 0.6-0.8 mg/mL; however, no inhibition was observed against Escherichia coli, Enterococcus faecalis, and Salmonella typhimurium. MIC of triandrin (i.e., 1.25 mg/mL) is reported for the first time. Although antibacterial triandrin and (+)-catechin were present in extracts, clear correlation between the antibacterial effect and the chemical composition was not established, which indicates that antibacterial activity of the extracts mainly originates from some not yet elucidated substances. Aquatic toxicity and mutagenicity assessments showed the safe usage of Salix water extracts as possible antibacterial additives.
Collapse
Affiliation(s)
- Jinze Dou
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Polina Ilina
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Jarl Hemming
- Johan
Gadolin Process Chemistry Centre, c/o Laboratory of Natural Materials
Technology, Åbo Akademi University, Turku 20500, Finland
| | - Kiia Malinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Heidi Mäkkylä
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Natália Oliveira de Farias
- Laboratory
of Ecotoxicology and Genotoxicity—LAEG, School of Technology, University of Campinas, Campinas 13083-970, Brazil
| | - Päivi Tammela
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Gisela de Aragão Umbuzeiro
- Laboratory
of Ecotoxicology and Genotoxicity—LAEG, School of Technology, University of Campinas, Campinas 13083-970, Brazil
| | - Riikka Räisänen
- HELSUS
Helsinki Institute of Sustainability Science, Craft Studies, University of Helsinki, Helsinki 00014, Finland
| | - Tapani Vuorinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
7
|
Souza JCD, Silva BFD, Morales DA, Umbuzeiro GDA, Zanoni MVB. Assessment of the compounds formed by oxidative reaction between p-toluenediamine and p-aminophenol in hair dyeing processes: Detection, mutagenic and toxicological properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148806. [PMID: 34243001 DOI: 10.1016/j.scitotenv.2021.148806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have demonstrated the presence of precursors and coupling agents in wastewater from hair dyeing processes. The complex reaction involved in the oxidation of these compounds can generate extremely hazardous sub-products, leading to an increase in the mutagenicity and toxicity of wastewater. Without proper treatment, this highly toxic wastewater may find its way into the drinking water treatment plant. The present work aimed to investigate the main products generated after the oxidation reaction involving p-toluenediamine (PTD) and p-aminophenol (PAP) - precursors that widely used in the composition of commercial permanent hair dyes, under experimental conditions close to the routine hair dyeing process (in the presence and absence of hydrogen peroxide in ammoniacal medium), using spectroscopic techniques. The study also investigated the mutagenicity and toxicity of the products formed in the hairdressing wash water and conducted detection analysis to determine the presence of the precursors and Bandrowski's Base Derivative (BBD) in samples of wastewater, surface and drinking water using HPLC-DAD and linear voltammetry techniques. Based on this investigation, we identified several PTD and PAP self-oxidation products and eleven sub-products derived from the reaction between PTD and PAP. Assays conducted using Salmonella typhimurium YG1041, with and without activation-induced rat liver metabolism (S9), indicated mutagenicity of the reaction products in concentrations above 10.0 μg μL-1. The concentrations of PTD, PAP, and several reactions and oxidation products of these precursors were detected in wastewater and water samples.
Collapse
Affiliation(s)
- João Carlos de Souza
- São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for Detection, Toxicological Assessment and Removal of Micropollutants and Radioactive (INCT-DATREM), Rua Professor Francisco Degni, 55, Araraquara 14800-060, São Paulo, Brazil.
| | - Bianca Ferreira da Silva
- São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for Detection, Toxicological Assessment and Removal of Micropollutants and Radioactive (INCT-DATREM), Rua Professor Francisco Degni, 55, Araraquara 14800-060, São Paulo, Brazil
| | - Daniel Alexandre Morales
- State University of Campinas (UNICAMP), Faculty of Technology, Rua Paschoal Marmo, 1888, Limeira 13484-332, São Paulo, Brazil
| | - Gisela de Aragão Umbuzeiro
- State University of Campinas (UNICAMP), Faculty of Technology, Rua Paschoal Marmo, 1888, Limeira 13484-332, São Paulo, Brazil
| | - Maria Valnice Boldrin Zanoni
- São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for Detection, Toxicological Assessment and Removal of Micropollutants and Radioactive (INCT-DATREM), Rua Professor Francisco Degni, 55, Araraquara 14800-060, São Paulo, Brazil
| |
Collapse
|
8
|
Vendemiatti JAS, Camparotto NG, Vidal C, Cristale J, Agapito EVDM, Oliveira ÁC, Rodrigues EA, Montagner CC, Umbuzeiro GA, Prediger P. New benzotriazoles generated during textile dyeing process: Synthesis, hazard, water occurrence and aquatic risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123732. [PMID: 32846262 DOI: 10.1016/j.jhazmat.2020.123732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Phenylbenzotriazoles (PBTA) can be generated unintentionally during textile dyeing factories by reduction of dinitrophenylazo dyes and their subsequent chlorination in disinfection process. Eight non-chlorinated PBTAs (non-Cl PBTA) and their related chlorinated PBTAs have been found in rivers and presented mutagenic activity. No data on their aquatic toxicity are available. In this work, two new phenylbenzotriazoles, non-Cl PBTA-9 and PBTA-9, derived from the dye C.I. Disperse Violet 93 (DV93) were synthesized and chemically/toxicologically characterized. Both compounds were more mutagenic than the parental dye in the Salmonella/microsome assay in the presence of metabolic activation (S9). Mutagenicity studies in vivo with mammals would confirm their potential hazard to humans. The two compounds were acutely toxic to Daphnia similis. We developed an analytical method to simultaneously quantify non-Cl PBTA-9, PBTA-9 and DV93 in river waters. Non-Cl PBTA-9 was found in sites under influence of textile effluents but at concentrations that do not pose risk to the aquatic life according to the P-PNEC calculated based on the acute toxicity tests. PBTA-9 was not detected in any samples analyzed. More studies on the aquatic toxicity and water occurrence of PBTAs should be conducted to verify the relevance of this class of compounds as aquatic contaminants.
Collapse
Affiliation(s)
| | | | - Cristiane Vidal
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Joyce Cristale
- School of Technology, University of Campinas, Limeira, SP, Brazil
| | | | | | | | | | - Gisela A Umbuzeiro
- School of Technology, University of Campinas, Limeira, SP, Brazil; Wilson College of Textiles, North Carolina State University, Raleigh, NC, USA; Biology Institute, UNICAMP, Campinas, SP, Brazil
| | | |
Collapse
|
9
|
Umbuzeiro GA, Morales DA, Vacchi FI, Albuquerque AF, Szymczyk M, Sui X, Vinueza N, Freeman HS. A promising Ames battery for mutagenicity characterization of new dyes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:52-65. [PMID: 33252143 DOI: 10.1002/em.22417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
When testing new products, potential new products, or their impurities for genotoxicity in the Ames test, the quantity available for testing can be a limiting factor. This is the case for a dye repository of around 98,000 substances the Max Weaver Dye Library (MWDL). Mutagenicity data on dyes in the literature, although vast, in several cases is not reliable, compromising the performance of the in silico models. In this report, we propose a strategy for the generation of high-quality mutagenicity data for dyes using a minimum amount of sample. We evaluated 15 dyes from different chemical classes selected from 150 representative dyes of the MWDL. The purity and molecular confirmation of each dye were determined, and the microplate agar protocol (MPA) was used. Dyes were tested at the limit of solubility in single and concentration-response experiments using seven strains without and with metabolic activation except for anthraquinone dyes which were tested with eight strains. Six dyes were mutagenic. The most sensitive was YG1041, followed by TA97a > TA98 > TA100 = TA1538 > TA102. YG7108 as well as TA1537 did not detect any mutagenic response. We concluded that the MPA was successful in identifying the mutagenicity of dyes using less than 12.5 mg of sample. We propose that dyes should be tested in a tiered approach using YG1041 followed by TA97a, TA98, and TA100 in concentration-response experiments. This work provides additional information on the dye mutagenicity database available in the literature.
Collapse
Affiliation(s)
- Gisela A Umbuzeiro
- School of Technology, UNICAMP, Limeira, São Paulo, Brazil
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina, USA
- Biology Institute, UNICAMP, Campinas, São Paulo, Brazil
| | | | - Francine I Vacchi
- School of Technology, UNICAMP, Limeira, São Paulo, Brazil
- Biology Institute, UNICAMP, Campinas, São Paulo, Brazil
| | | | - Malgorzata Szymczyk
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina, USA
| | - Xinyi Sui
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina, USA
| | - Nelson Vinueza
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina, USA
| | - Harold S Freeman
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
de Souza JC, da Silva BF, Morales DA, Umbuzeiro GDA, Zanoni MVB. Assessment of p-aminophenol oxidation by simulating the process of hair dyeing and occurrence in hair salon wastewater and drinking water from treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:122000. [PMID: 31901848 DOI: 10.1016/j.jhazmat.2019.122000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
This work reports the study of oxidation reaction of p-aminophenol (PAP) in ammoniacal medium in dissolved atmospheric oxygen and hydrogen peroxide, simulating the process of hair dyeing with permanent dyes. The products formed, which included semi-quinoneimine radical, quinoneimine, dimers, trimers and tetramers, were identified by mass spectrometry, infrared spectroscopy, UV-vis spectrophotometry, and nuclear magnetic resonance of hydrogen. The process was found to involve an autoxidation mechanism. The mutagenicity of the products was carried out by Salmonella Typhimurium YG1041 assay, and the results indicated no mutagenic properties. The presence of PAP and its oxidative products in samples of wastewater collected from hairdressing salon effluent (WW), raw river water (RRW), and water inlet and outlet of drinking water treatment plant (DWTP) was analyzed by HPLC-DAD. PAP was detected in the collected samples of WW, water samples from DWTP (before and after treatment), at concentrations of 2.1 ± 0.5 mg L-1, 1.9 ± 0.3 × 10-3 mg L-1 and 1.3 ± 0.2 × 10-3 mg L-1, respectively. The reaction products, including dimers, trimers and tetramers were identified only in the WW sample; this shows that both the precursor in the sample and its derivatives were released into the wastewater.
Collapse
Affiliation(s)
- João Carlos de Souza
- São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), Rua Professor Francisco Degni, 55, Araraquara, 14800-060, São Paulo State, Brazil.
| | - Bianca Ferreira da Silva
- São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), Rua Professor Francisco Degni, 55, Araraquara, 14800-060, São Paulo State, Brazil
| | - Daniel Alexandre Morales
- State University of Campinas (UNICAMP), Faculty of Technology, Rua Paschoal Marmo, 1888, Limeira, 13484-332, São Paulo State, Brazil
| | - Gisela de Aragão Umbuzeiro
- State University of Campinas (UNICAMP), Faculty of Technology, Rua Paschoal Marmo, 1888, Limeira, 13484-332, São Paulo State, Brazil
| | - Maria Valnice Boldrin Zanoni
- São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), Rua Professor Francisco Degni, 55, Araraquara, 14800-060, São Paulo State, Brazil
| |
Collapse
|
11
|
Roubicek DA, Rech CM, Umbuzeiro GA. Mutagenicity as a parameter in surface water monitoring programs-opportunity for water quality improvement. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:200-211. [PMID: 31294883 DOI: 10.1002/em.22316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/30/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
Effect-based analyses are being recognized as excellent tools to a comprehensive and reliable water quality evaluation to complement physical and chemical parameters. The Salmonella/microsome mutagenicity test was introduced in the São Paulo State water quality-monitoring program in 1999 and waters from 104 sites used to the production of drinking water were analyzed. Samples were tested after organic extraction, using the microsuspension version of the Salmonella/microsome assay with strains TA98 and TA100 with and without S9-mammalian metabolic system. Of the 1720 water samples analyzed in 20 years, 20% were positive; TA98 was the most sensitive strain, detecting alone 99%. Results were presented in hazard categories to facilitate water managers' understanding and general public communication. Hot spots of mutagenicity were identified, and pollution sources investigated. A flow scheme with instructions of how to proceed in case of mutagenic samples was developed and implemented in the monitoring program. Enforcement actions were taken to reduce exposure of humans and aquatic biota to mutagenic compounds. The results presented provide scientific basis for the incorporation of the Salmonella/microsome assay in a regulatory framework, and to guide water-quality managers. The inclusion of a mutagenicity assay using standardized conditions proved to be an opportunity to improve the quality of water, and the strategy presented here could be applied by any environmental agency around the world. Environ. Mol. Mutagen. 61:200-211, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Célia M Rech
- São Paulo State Environmental Agency, CETESB, São Paulo, SP, Brazil
| | - Gisela A Umbuzeiro
- School of Technology, University of Campinas, UNICAMP, Limeira, SP, Brazil
| |
Collapse
|
12
|
Souza JCD, Silva BFD, Morales DA, Umbuzeiro GDA, Zanoni MVB. Assessment of the autoxidation mechanism of p-toluenediamine by air and hydrogen peroxide and determination of mutagenic environmental contaminant in beauty salon effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:911-922. [PMID: 31247438 DOI: 10.1016/j.scitotenv.2019.06.252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/10/2019] [Accepted: 06/16/2019] [Indexed: 05/20/2023]
Abstract
The present work investigated the autoxidation reaction of p-toluenediamine (PTD) - a precursor - widely used in permanent hair dyeing formulation, under experimental conditions close to the hair dyeing process (oxygen and/or peroxide in ammoniacal medium), by chromatographic and spectroscopic techniques. In additional, evaluated the mutagenicity of the PTD oxidation products and the presence of PTD and this products in wastewater from beauty salon, as well as in surface water and drinking water using HPLC coupled to a diode array detector and linear scan voltammetry. Through this study, it was possible the identification of semi-quinonediimine, quinonediimine, dimers (derived from toluenediamine), and trimer radical identified as Bandrowski's Base derivative (BBD) formed during autoxidation of PTD. Salmonella Typhimurium YG1041 assay with and without metabolic activation induced rat-liver (S9) indicated mutagenic activity for BBD. Levels of PTD were determined by the standard addition method in samples collected from the wastewater of a beauty salon, as well as from the water before and after treatment in a drinking water treatment plant (DWTP) reached concentrations of 2.08 ± 0.21, 2.36 ± 0.10 × 10-3, and 1.77 ± 0.13 × 10-3 mg L-1, respectively. In addition, linear sweep voltammetry was used to monitor the BBD found at the concentration of 1.59 ± 0.35 mg L-1 in wastewater collected from the beauty salon.
Collapse
Affiliation(s)
- João Carlos de Souza
- São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for Detection, Toxicological Assessment and Removal of Micropollutants and Radioactive (INCT-DATREM), Brazil.
| | - Bianca Ferreira da Silva
- São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for Detection, Toxicological Assessment and Removal of Micropollutants and Radioactive (INCT-DATREM), Brazil
| | | | | | - Maria Valnice Boldrin Zanoni
- São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for Detection, Toxicological Assessment and Removal of Micropollutants and Radioactive (INCT-DATREM), Brazil
| |
Collapse
|
13
|
Schilter B, Burnett K, Eskes C, Geurts L, Jacquet M, Kirchnawy C, Oldring P, Pieper G, Pinter E, Tacker M, Traussnig H, Van Herwijnen P, Boobis A. Value and limitation of in vitro bioassays to support the application of the threshold of toxicological concern to prioritise unidentified chemicals in food contact materials. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1903-1936. [PMID: 31550212 DOI: 10.1080/19440049.2019.1664772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Some of the chemicals in materials used for packaging food may leak into the food, resulting in human exposure. These include so-called Non-intentionally Added Substances (NIAS), many of them being unidentified and toxicologically uncharacterized. This raises the question of how to address their safety. An approach consisting of identification and toxicologically testing all of them appears neither feasible nor necessary. Instead, it has been proposed to use the threshold of toxicological concern (TTC) Cramer class III to prioritise unknown NIAS on which further safety investigations should focus. Use of the Cramer class III TTC for this purpose would be appropriate if amongst others sufficient evidence were available that the unknown chemicals were not acetylcholinesterase inhibitors or direct DNA-reactive mutagens. While knowledge of the material and analytical chemistry may efficiently address the first concern, the second could not be addressed in this way. An alternative would be use of a bioassay capable of detecting DNA-reactive mutagens at very low levels. No fully satisfactory bioassay was identified. The Ames test appeared the most suitable since it specifically detects DNA-reactive mutagens and the limit of biological detection of highly potent genotoxic carcinogens is low. It is proposed that for a specific migrate, the evidence for absence of mutagenicity based on the Ames test, together with analytical chemistry and information on packaging manufacture could allow application of the Cramer class III TTC to prioritise unknown NIAS. Recommendations, as well as research proposals, have been developed on sample preparation and bioassay improvement with the ultimate aim of improving limits of biological detection of mutagens. Although research is still necessary, the proposed approach should bring significant benefits over the current practices used for safety evaluation of food contact materials.
Collapse
Affiliation(s)
- Benoit Schilter
- Food Safety Research Department, Nestlé Research, Vers-chez-les-Blanc, Switzerland
| | | | - Chantra Eskes
- Services & Consultations on Alternative Methods (SeCAM), Magliaso, Switzerland and Swiss 3R Competence Centre (3RCC), Bern, Switzerland
| | - Lucie Geurts
- International Life Sciences Institute Europe, Brussels, Belgium
| | - Mélanie Jacquet
- Danone Food Safety Center, Danone S.A., Danone Food Safety Center, Palaiseau, France
| | - Christian Kirchnawy
- Technical Competence Center, OFI - Austrian Research Institute for Chemistry and Technology, Vienna, Austria
| | | | | | - Elisabeth Pinter
- Department of Applied Life Sciences, University of Applied Sciences, Vienna, Austria
| | - Manfred Tacker
- Department of Applied Life Sciences, University of Applied Sciences, Vienna, Austria
| | | | | | - Alan Boobis
- Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
14
|
Zaidy SSH, Vacchi FI, Umbuzeiro GA, Freeman HS. Approach to Waterless Dyeing of Textile Substrates—Use of Atmospheric Plasma. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Syed S. H. Zaidy
- Wilson College of Textiles, North Carolina State University, 1020 Main Campus Dr, Raleigh, North Carolina 27606, United States
| | - Francine I. Vacchi
- Department of Animal Biology, Institute of Biology, UNICAMP Rua Monteiro Lobato, 255 Cidade Universitária, Campinas, São Paulo 13083-862, Brazil
- Laboratory of Ecotoxicology and Genotoxicity, School of Technology, UNICAMP, Rua Paschoal Marmo, 1888, Limeira 13484332, Brazil
| | - Gisela A. Umbuzeiro
- Wilson College of Textiles, North Carolina State University, 1020 Main Campus Dr, Raleigh, North Carolina 27606, United States
- Department of Animal Biology, Institute of Biology, UNICAMP Rua Monteiro Lobato, 255 Cidade Universitária, Campinas, São Paulo 13083-862, Brazil
- Laboratory of Ecotoxicology and Genotoxicity, School of Technology, UNICAMP, Rua Paschoal Marmo, 1888, Limeira 13484332, Brazil
| | - Harold S. Freeman
- Wilson College of Textiles, North Carolina State University, 1020 Main Campus Dr, Raleigh, North Carolina 27606, United States
| |
Collapse
|