1
|
Jiang Y, Liu L, Jin B, Liu Y, Liang X. Critical review on the environmental behaviors and toxicity of triclosan and its removal technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173013. [PMID: 38719041 DOI: 10.1016/j.scitotenv.2024.173013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
As a highly effective broad-spectrum antibacterial agent, triclosan (TCS) is widely used in personal care and medical disinfection products, resulting in its widespread occurrence in aquatic and terrestrial environments, and even in the human body. Notably, the use of TCS surged during the COVID-19 outbreak, leading to increasing environmental TCS pollution pressure. From the perspective of environmental health, it is essential to systematically understand the environmental occurrence and behavior of TCS, its toxicological effects on biota and humans, and technologies to remove TCS from the environment. This review comprehensively summarizes the current knowledge regarding the sources and behavior of TCS in surface water, groundwater, and soil systems, focusing on its toxicological effects on aquatic and terrestrial organisms. Effluent from wastewater treatment plants is the primary source of TCS in aquatic systems, whereas sewage application and/or wastewater irrigation are the major sources of TCS in soil. Human exposure pathways to TCS and associated adverse outcomes were also analyzed. Skin and oral mucosal absorption, and dietary intake are important TCS exposure pathways. Reducing or completely degrading TCS in the environment is important for alleviating environmental pollution and protecting public health. Therefore, this paper reviews the removal mechanisms, including adsorption, biotic and abiotic redox reactions, and the influencing factors. In addition, the advantages and disadvantages of the different techniques are compared, and development prospects are proposed. These findings provide a basis for the management and risk assessment of TCS and are beneficial for the application of treatment technology in TCS removal.
Collapse
Affiliation(s)
- Yanhong Jiang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liangying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, PR China.
| | - Biao Jin
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Yi Liu
- Shandong Vocational College of Light Industry, Zibo 255300, PR China.
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Yao L, Liu YH, Zhou X, Yang JH, Zhao JL, Chen ZY. Uptake, tissue distribution, and biotransformation pattern of triclosan in tilapia exposed to environmentally-relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171270. [PMID: 38428603 DOI: 10.1016/j.scitotenv.2024.171270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Although triclosan has been ubiquitously detected in aquatic environment and is known to have various adverse effects to fish, details on its uptake, bioconcentration, and elimination in fish tissues are still limited. This study investigated the uptake and elimination toxicokinetics, bioconcentration, and biotransformation potential of triclosan in Nile tilapia (Oreochromis niloticus) exposed to environmentally-relevant concentrations under semi-static regimes for 7 days. For toxicokinetics, triclosan reached a plateau concentration within 5-days of exposure, and decreased to stable concentration within 5 days of elimination. Approximately 50 % of triclosan was excreted by fish through feces, and up to 29 % of triclosan was excreted through the biliary excretion. For fish exposed to 200 ng·L-1, 2000 ng·L-1, and 20,000 ng·L-1, the bioconcentration factors (log BCFs) of triclosan in fish tissues obeyed similar order: bile ≈ intestine > gonad ≈ stomach > liver > kidney ≈ gill > skin ≈ plasma > brain > muscle. The log BCFs of triclosan in fish tissues are approximately maintained constants, no matter what triclosan concentrations in exposure water. Seven biotransformation products of triclosan, involved in both phase I and phase II metabolism, were identified in this study, which were produced through hydroxylation, bond cleavages, dichlorination, and sulfation pathways. Metabolite of triclosan-O-sulfate was detected in all tissues of tilapia, and more toxic product of 2,4-dichlorophenol was also found in intestine, gonad, and bile of tilapia. Meanwhile, two metabolites of 2,4-dichlorophenol-O-sulfate and monohydroxy-triclosan-O-sulfate were firstly discovered in the skin, liver, gill, intestine, gonad, and bile of tilapia in this study. These findings highlight the importance of considering triclosan biotransformation products in ecological assessment. They also provide a scientific basis for health risk evaluation of triclosan to humans, who are associated with dietary exposure through ingesting fish.
Collapse
Affiliation(s)
- Li Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Yue-Hong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xi Zhou
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jia-Hui Yang
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Zhi-Yong Chen
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
3
|
Milanović M, Đurić L, Milošević N, Milić N. Comprehensive insight into triclosan-from widespread occurrence to health outcomes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25119-25140. [PMID: 34741734 PMCID: PMC8571676 DOI: 10.1007/s11356-021-17273-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
Humans are exposed to the variety of emerging environmental pollutant in everyday life. The special concern is paid to endocrine disrupting chemicals especially to triclosan which could interfere with normal hormonal functions. Triclosan could be found in numerous commercial products such as mouthwashes, toothpastes and disinfectants due to its antibacterial and antifungal effects. Considering the excessive use and disposal, wastewaters are recognized as the main source of triclosan in the aquatic environment. As a result of the incomplete removal, triclosan residues reach surface water and even groundwater. Triclosan has potential to accumulate in sediment and aquatic organisms. Therefore, the detectable concentrations of triclosan in various environmental and biological matrices emerged concerns about the potential toxicity. Triclosan impairs thyroid homeostasis and could be associated with neurodevelopment impairment, metabolic disorders, cardiotoxicity and the increased cancer risk. The growing resistance of the vast groups of bacteria, the evidenced toxicity on different aquatic organisms, its adverse health effects observed in vitro, in vivo as well as the available epidemiological studies suggest that further efforts to monitor triclosan toxicity at environmental levels are necessary. The safety precaution measures and full commitment to proper legislation in compliance with the environmental protection are needed in order to obtain triclosan good ecological status. This paper is an overview of the possible negative triclosan effects on human health. Sources of exposure to triclosan, methods and levels of detection in aquatic environment are also discussed.
Collapse
Affiliation(s)
- Maja Milanović
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia.
| | - Larisa Đurić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| | - Nataša Milošević
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| | - Nataša Milić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| |
Collapse
|
4
|
Muacevic A, Adler JR. Ototoxicity of Triclosan: A Rat Model Study. Cureus 2022; 14:e32189. [PMID: 36505955 PMCID: PMC9728979 DOI: 10.7759/cureus.32189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Triclosan is utilized as an antibacterial factor in many industrial products. Although there are many toxic features of triclosan in the literature, there is no study on the effect of triclosan on hearing. The purpose of this study is to determine the effect of triclosan on hearing in rats. METHODS In this prospective, experimental animal study, 40 healthy Sprague-Dawley rats with normal response to the distortion-product otoacoustic emission (DPOAE) measurements were divided into four groups. Group 1, as the control group, was given only corn oil, group 2 was given 5 mg/kg triclosan dissolved in corn oil, group 3 was given 10 mg/kg triclosan dissolved in corn oil, and group 4 was given 100 mg/kg triclosan dissolved in corn oil; triclosan and corn oil were administered by oral gavage to all groups. RESULTS In our study, low-dose triclosan did not cause hearing loss, but hearing loss was observed in the group that was given high-dose triclosan (100 mg/kg). CONCLUSION These findings suggest that triclosan causes hearing loss in rats. This issue should be investigated further to avoid triclosan ototoxicity in humans.
Collapse
|
5
|
Montagnini BG, Forcato S, Pernoncine KV, Monteiro MC, Pereira MRF, Costa NO, Moreira EG, Anselmo-Franci JA, Gerardin DCC. Developmental and Reproductive Outcomes in Male Rats Exposed to Triclosan: Two-Generation Study. Front Endocrinol (Lausanne) 2021; 12:738980. [PMID: 34721297 PMCID: PMC8548666 DOI: 10.3389/fendo.2021.738980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Triclosan (TCS) is a phenolic compound with broad-spectrum antimicrobial action that has been incorporated into a variety of personal care products and other industry segments such as toys, textiles, and plastics. Due to its widespread use, TCS and its derivatives have been detected in several environmental compartments, with potential bioaccumulation and persistence. Indeed, some studies have demonstrated that TCS may act as a potential endocrine disruptor for the reproductive system. In the current study, we are reporting on the results obtained for male rats after a two-generation reproduction toxicity study conducted with TCS. Female and male Wistar rats were treated daily by gavage with TCS at doses of 0.8, 2.4, and 8.0 mg/kg/day or corn oil (control group) over 10 weeks (F0) and over 14 weeks (F1) before mating and then throughout mating, until weaning F2 generations, respectively. TCS exposure decreased sperm viability and motility of F1 rats at the dose of 2.4 mg/kg. The effects of TCS on sperm quality may be related to the exposure window, which includes the programming of reproductive cells that occurs during fetal/neonatal development.
Collapse
Affiliation(s)
- Bruno Garcia Montagnini
- Laboratory of Pharmacology of Reproduction, Biological Sciences Center, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Simone Forcato
- Laboratory of Pharmacology of Reproduction, Biological Sciences Center, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Karine Vandressa Pernoncine
- Laboratory of Pharmacology of Reproduction, Biological Sciences Center, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Mariana Cunha Monteiro
- Laboratory of Pharmacology of Reproduction, Biological Sciences Center, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Marina Rangel Ferro Pereira
- Laboratory of Pharmacology of Reproduction, Biological Sciences Center, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Nathalia Orlandini Costa
- Laboratory of Pharmacology of Reproduction, Biological Sciences Center, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Estefânia Gastadello Moreira
- Laboratory of Pharmacology of Reproduction, Biological Sciences Center, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Janete Aparecida Anselmo-Franci
- Department of Morphology, Stomatology and Physiology, Dental School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Daniela Cristina Ceccatto Gerardin
- Laboratory of Pharmacology of Reproduction, Biological Sciences Center, Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
6
|
Morgan MK, Clifton MS. Exposure to Triclosan and Bisphenol Analogues B, F, P, S and Z in Repeated Duplicate-Diet Solid Food Samples of Adults. TOXICS 2021; 9:47. [PMID: 33802249 PMCID: PMC8001473 DOI: 10.3390/toxics9030047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Triclosan (TCS) and bisphenol analogues are used in a variety of consumer goods. Few data exist on the temporal exposures of adults to these phenolic compounds in their everyday diets. The objectives were to determine the levels of TCS and five bisphenol analogues (BPB, BPF, BPP, BPS, and BPZ) in duplicate-diet solid food (DDSF) samples of adults and to estimate maximum dietary exposures and intake doses per phenol. Fifty adults collected 776 DDSF samples over a six-week monitoring period in North Carolina in 2009-2011. The levels of the target phenols were concurrently quantified in the DDSF samples using gas chromatography/mass spectrometry. TCS (59%), BPS (32%), and BPZ (28%) were most often detected in the samples. BPB, BPF, and BPP were all detected in <16% of the samples. In addition, 82% of the total samples contained at least one target phenol. The highest measured concentration of 394 ng/g occurred for TCS in the food samples. The adults' maximum 24-h dietary intake doses per phenol ranged from 17.5 ng/kg/day (BPB) to 1600 ng/kg/day (TCS). An oral reference dose (300,000 ng/kg/day) is currently available for only TCS, and the adult's maximum dietary intake dose was well below a level of concern.
Collapse
Affiliation(s)
- Marsha K. Morgan
- United States Environmental Protection Agency’s Center for Public Health and Environmental Assessment, Research Triangle Park, NC 27711, USA
| | - Matthew S. Clifton
- United States Environmental Protection Agency’s Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27711, USA
| |
Collapse
|
7
|
Chambers LE, Chang M, Boyina K, Williams A, Dye R, Miller RV, DeGear MA, Assefa S, Köhler GA, Champlin FR. Disparate outer membrane exclusionary properties underlie intrinsic resistance to hydrophobic substances in Pseudomonas spp. isolated from surface waters under triclosan selection. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:257-268. [PMID: 33411598 DOI: 10.1080/10934529.2020.1868822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Representative members of surface water microbiota were obtained from three unrelated municipal sites in Oklahoma by direct plating under selection by the hydrophobic biocide triclosan. Multiple methods were employed to determine if intrinsic triclosan resistance reflected resistance to hydrophobic molecules by virtue of outer membrane impermeability. While all but one organism isolated in the absence of triclosan were able to initiate growth on MacConkey agar, only one was able to initiate significant growth with triclosan present. In contrast, all bacteria selected with triclosan were identified as Pseudomonas spp. using 16S RNA gene sequencing and exhibited growth comparable to Pseudomonas aeruginosa controls in the presence of hydrophobic antibacterial agents to include triclosan. Two representative bacteria isolated in the absence of triclosan allowed for greater outer membrane association with the fluorescent hydrophobic probe 1-N-phenylnapthylamine than did two triclosan-resistant isolates. Compound 48/80 disruption of outer membrane impermeability properties for hydrophobic substances either partially or fully sensitized nine of twelve intrinsically resistant isolates to triclosan. These data suggest that outer membrane exclusion underlies intrinsic resistance to triclosan in some, but not all Pseudomonas spp. isolated by selection from municipal surface waters and implicates the involvement of concomitant triclosan resistance mechanisms.
Collapse
Affiliation(s)
- Lauren E Chambers
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Mang Chang
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Kavya Boyina
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Ashton Williams
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Rebecca Dye
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Robert V Miller
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Michelle A DeGear
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Senait Assefa
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Gerwald A Köhler
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Franklin R Champlin
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| |
Collapse
|
8
|
Olaniyan LWB, Okoh AI. Determination and ecological risk assessment of two endocrine disruptors from River Buffalo, South Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:750. [PMID: 33155083 PMCID: PMC7644535 DOI: 10.1007/s10661-020-08717-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
4-tert-Octylphenol (4-tOP) and triclosan (TCS) are endocrine disruptors which have been detected in environmental matrices such as air, soil and water at ultra-low levels. Exposure to endocrine disruptors may account at least in part, for the global increase in the incidence of non-communicable diseases like cancers and diabetes and may also lead to an imbalance in the aquatic ecosystem. River Buffalo is an important natural resource in the Eastern Cape of South Africa serving more than half a million people. The presence of the two compounds in the river water hitherto unknown was investigated during winter seasons using solid-phase extraction and gas chromatography-mass spectrometric techniques. The sampling points differed by some physicochemical parameters. The concentration of 4-tOP ranged 0-755 ng/L, median value 88.1 ng/L while that of TCS ranged 0-1264.2 ng/L and the median value was 82.1 ng/L. Hazard quotient as an index of exposure risk varied according to daphnids ˃ fish ˃ algae for 4-tOP exposure while HQ for TCS exposure was algae > daphnids = fish showing that both compounds were capable of causing imbalance in the aquatic ecosystem. Graphical abstract.
Collapse
Affiliation(s)
- Lamidi W B Olaniyan
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
- Biochemistry Department, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology Ogbomoso, Ogbomoso, Nigeria.
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
9
|
Bi R, Zeng X, Mu L, Hou L, Liu W, Li P, Chen H, Li D, Bouchez A, Tang J, Xie L. Sensitivities of seven algal species to triclosan, fluoxetine and their mixtures. Sci Rep 2018; 8:15361. [PMID: 30337662 PMCID: PMC6193942 DOI: 10.1038/s41598-018-33785-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/06/2018] [Indexed: 01/22/2023] Open
Abstract
Increasing release of pharmaceuticals and personal care products (PPCPs) into aquatic ecosystems is a growing environmental concern. Triclosan and fluoxetine are two widely used PPCPs and frequently detected in aquatic ecosystems. In this study, the sensitivities of 7 algal species from 4 genera to triclosan, fluoxetine and their mixture were evaluated. The results showed that the inhibitory effect on algal growth (EC50-96h) of triclosan varied with 50 times differences among the 7 algal species. Chlorella ellipsoidea was the least susceptible species and Dunaliella parva was the most sensitive species to triclosan. The inhibitory effect of fluoxetine was less variable than triclosan. Slightly higher toxicity of fluoxetine than triclosan was shown in the 7 tested algal species. No consistent pattern of the effects from mixture of triclosan and fluoxetine was observed among the 7 algal species and among the 4 genera. Additive effects of the mixture occured in 4 species and antagonistic effects in the other 3 species but no synergistic effect was detected. The algal species might show some sign of phylogenetic response to triclosan, as evidenced by the wide range of differences in their sensitivity at the genus level. This study provides important data which could be beneficial for biomonitoring programs on the ecological risk (algal species diversity) of these two chemicals.
Collapse
Affiliation(s)
- Ran Bi
- Marine Biology Institute, Shantou University, Shantou, Guangdong, 515063, China.
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| | - Lei Mu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510655, China
| | - Wenhua Liu
- Marine Biology Institute, Shantou University, Shantou, Guangdong, 515063, China
| | - Ping Li
- Marine Biology Institute, Shantou University, Shantou, Guangdong, 515063, China
| | - Hongxing Chen
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Dan Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Agnes Bouchez
- Institute National de la Recherche Agronomique, UMR CARRTEL, Thonon-les-Bains, 74200, France
| | - Jiaxi Tang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000, China
| | - Lingtian Xie
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Toxic Effects of Bisphenol A, Propyl Paraben, and Triclosan on Caenorhabditis elegans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040684. [PMID: 29621162 PMCID: PMC5923726 DOI: 10.3390/ijerph15040684] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous plasticizer which is absorbed by ingestion and dermal contact; propyl paraben (PPB) inhibits the microbiome and extends the shelf life of many personal care products, whereas triclosan (TCS) is commonly found in antiseptics, disinfectants, or additives. In this work, Caenorhabditis elegans was used as a biological model to assess the toxic effects of BPA, PPB, and TCS. The wild type strain, Bristol N2, was used in bioassays with the endpoints of lethality, growth, and reproduction; green fluorescent protein (GFP) transgenic strains with the hsp-3, hsp-4, hsp-16.2, hsp-70, sod-1, sod-4, cyp-35A4, cyp-29A2, and skn-1 genes were evaluated for their mRNA expression through fluorescence measurement; and quick Oil Red O (q ORO) was utilized to stain lipid deposits. Lethality was concentration-dependent, while TCS and PPB showed more toxicity than BPA. BPA augmented worm length, while PPB reduced it. All toxicants moderately increased the width and the width–length ratio. BPA and PPB promoted reproduction, in contrast to TCS, which diminished it. All toxicants affected the mRNA expression of genes related to cellular stress, control of reactive oxygen species, and nuclear receptor activation. Lipid accumulation occurred in exposed worms. In conclusion, BPA, PPB, and TCS alter the physiology of growth, lipid accumulation, and reproduction in C. elegans, most likely through oxidative stress mechanisms.
Collapse
|
11
|
Olaniyan LWB, Mkwetshana N, Okoh AI. Triclosan in water, implications for human and environmental health. SPRINGERPLUS 2016; 5:1639. [PMID: 27722057 PMCID: PMC5031584 DOI: 10.1186/s40064-016-3287-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/11/2016] [Indexed: 01/08/2023]
Abstract
Triclosan (TCS) is a broad spectrum antibacterial agent present as an active ingredient in some personal care products such as soaps, toothpastes and sterilizers. It is an endocrine disrupting compound and its increasing presence in water resources as well as in biosolid-amended soils used in farming, its potential for bioaccumulation in fatty tissues and toxicity in aquatic organisms are a cause for concern to human and environmental health. TCS has also been detected in blood, breast milk, urine and nails of humans. The significance of this is not precisely understood. Data on its bioaccumulation in humans are also lacking. Cell based studies however showed that TCS is a pro-oxidant and may be cytotoxic via a number of mechanisms. Uncoupling of oxidative phosphorylation appears to be prevailing as a toxicity mechanism though the compound's role in apoptosis has been cited. TCS is not known to be carcinogenic per se in vitro but has been reported to promote tumourigenesis in the presence of a carcinogen, in mice. Recent laboratory reports appear to support the view that TCS oestrogenicity as well as its anti-oestrogenicity play significant role in cancer progression. Results from epidemiological studies on the effect of TCS on human health have implicated the compound as responsible for certain allergies and reproductive defects. Its presence in chlorinated water also raises toxicity concern for humans as carcinogenic metabolites such as chlorophenols may be generated in the presence of the residual chlorine. In this paper, we carried out a detailed overview of TCS pollution and the implications for human and environmental health.
Collapse
Affiliation(s)
- L. W. B. Olaniyan
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape 5700 South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 South Africa
| | - N. Mkwetshana
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 South Africa
| | - A. I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape 5700 South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700 South Africa
| |
Collapse
|
12
|
Zhou NA, Gough HL. Enhanced Biological Trace Organic Contaminant Removal: A Lab-Scale Demonstration with Bisphenol A-Degrading Bacteria Sphingobium sp. BiD32. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8057-8066. [PMID: 27338240 DOI: 10.1021/acs.est.6b00727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Discharge of trace organic contaminants (TOrCs) from wastewater treatment plants (WWTPs) may contribute to deleterious effects on aquatic life. Release to the environment occurs both through WWTP effluent discharge and runoff following land applications of biosolids. This study introduces Enhanced Biological TOrC Removal (EBTCR), which involves continuous bioaugmentation of TOrC-degrading bacteria for improved removal in WWTPs. Influence of bioaugmentation on enhanced degradation was investigated in two lab-scale sequencing batch reactors (SBRs), using bisphenol A (BPA) as the TOrC. The reactors were operated with 8 cycles per day and at two solids retention times (SRTs). Once each day, the test reactor was bioaugmented with Sphingobium sp. BiD32, a documented BPA-degrading culture. After bioaugmentation, BPA degradation (including both the dissolved and sorbed fractions) was 2-4 times higher in the test reactor than in a control reactor. Improved removal persisted for >5 cycles following bioaugmentation. By the last cycle of the day, enhanced BPA removal was lost, although it returned with the next bioaugmentation. A net loss of Sphingobium sp. BiD32 was observed in the reactors, supporting the original hypothesis that continuous bioaugmentation (rather than single-dose bioaugmentation) would be required to improve TOrCs removal during wastewater treatment. This study represents a first demonstration of a biologically based approach for enhanced TOrCs removal that both reduces concentrations in wastewater effluent and prevents transfer to biosolids.
Collapse
Affiliation(s)
- Nicolette A Zhou
- University of Washington , Department of Civil and Environmental Engineering; More Hall 201, Box 352700, Seattle, Washington 98195-2700, United States
| | - Heidi L Gough
- University of Washington , Department of Civil and Environmental Engineering; More Hall 201, Box 352700, Seattle, Washington 98195-2700, United States
| |
Collapse
|
13
|
Zhang X, Zhang C, Sun X, Kang L, Zhao Y. Chemical conversion pathways and kinetic modeling for the OH-initiated reaction of triclosan in gas-phase. Int J Mol Sci 2015; 16:8128-41. [PMID: 25867482 PMCID: PMC4425071 DOI: 10.3390/ijms16048128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/17/2015] [Accepted: 04/02/2015] [Indexed: 11/16/2022] Open
Abstract
As a widely used antimicrobial additive in daily consumption, attention has been paid to the degradation and conversion of triclosan for a long time. The quantum chemistry calculation and the canonical variational transition state theory are employed to investigate the mechanism and kinetic property. Besides addition and abstraction, oxidation pathways and further conversion pathways are also considered. The OH radicals could degrade triclosan to phenols, aldehydes, and other easily degradable substances. The conversion mechanisms of triclosan to the polychlorinated dibenzopdioxin and furan (PCDD/Fs) and polychlorinated biphenyls (PCBs) are clearly illustrated and the toxicity would be strengthened in such pathways. Single radical and diradical pathways are compared to study the conversion mechanism of dichlorodibenzo dioxin (DCDD). Furthermore, thermochemistry is discussed in detail. Kinetic property is calculated and the consequent ratio of kadd/ktotal and kabs/ktotal at 298.15 K are 0.955 and 0.045, respectively. Thus, the OH radical addition reactions are predominant, the substitute position of OH radical on triclosan is very important to generate PCDD and furan, and biradical is also a vital intermediate to produce dioxin.
Collapse
Affiliation(s)
- Xue Zhang
- Environment Research Institute, Shandong University, Jinan 250100, China.
| | - Chenxi Zhang
- Environment Research Institute, Shandong University, Jinan 250100, China.
- Department of Resource and Environment, Binzhou University, Binzhou 256600, China.
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Jinan 250100, China.
| | - Lingyan Kang
- Environment Research Institute, Shandong University, Jinan 250100, China.
| | - Yan Zhao
- Environment Research Institute, Shandong University, Jinan 250100, China.
- School of Life Sciences, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
14
|
Ajao C, Andersson MA, Teplova VV, Nagy S, Gahmberg CG, Andersson LC, Hautaniemi M, Kakasi B, Roivainen M, Salkinoja-Salonen M. Mitochondrial toxicity of triclosan on mammalian cells. Toxicol Rep 2015; 2:624-637. [PMID: 28962398 PMCID: PMC5598359 DOI: 10.1016/j.toxrep.2015.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 01/08/2023] Open
Abstract
Effects of triclosan (5-chloro-2'-(2,4-dichlorophenoxy)phenol) on mammalian cells were investigated using human peripheral blood mono nuclear cells (PBMC), keratinocytes (HaCaT), porcine spermatozoa and kidney tubular epithelial cells (PK-15), murine pancreatic islets (MIN-6) and neuroblastoma cells (MNA) as targets. We show that triclosan (1-10 μg ml-1) depolarised the mitochondria, upshifted the rate of glucose consumption in PMBC, HaCaT, PK-15 and MNA, and subsequently induced metabolic acidosis. Triclosan induced a regression of insulin producing pancreatic islets into tiny pycnotic cells and necrotic death. Short exposure to low concentrations of triclosan (30 min, ≤1 μg/ml) paralyzed the high amplitude tail beating and progressive motility of spermatozoa, within 30 min exposure, depolarized the spermatozoan mitochondria and hyperpolarised the acrosome region of the sperm head and the flagellar fibrous sheath (distal part of the flagellum). Experiments with isolated rat liver mitochondria showed that triclosan impaired oxidative phosphorylation, downshifted ATP synthesis, uncoupled respiration and provoked excessive oxygen uptake. These exposure concentrations are 100-1000 fold lower that those permitted in consumer goods. The mitochondriotoxic mechanism of triclosan differs from that of valinomycin, cereulide and the enniatins by not involving potassium ionophoric activity.
Collapse
Key Words
- Acidosis
- BCF, bioconcentration factor
- EC50, concentration that diminishes the respective vitality parameter by ≥50%
- Electric transmembrane potential
- Glycolysis
- HaCaT, a spontaneously immortalized (non-neoplastic) keratinocyte cell line
- JC-1, 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl-carbocyanine iodide
- MIC, minimal inhibitory concentration
- MIN-6, a murine pancreatic beta cell line
- MNA, a murine neuroblastoma cells
- Oxidative phosphorylation
- PBMC, monocyte-enriched peripheral blood mononuclear cells
- PI, propidium iodide
- PK-15, a porcine kidney tubular epithelial cell line
- PN, pyridine nucleotides
- RLM, rat liver mitochondria
- Sperm motility
- TPP+, tetraphenylphosphonium
- Uncoupler
- ΔΨ, electric transmembrane potential
- ΔΨm, membrane potential of the mitochondrial membrane
- ΔΨp, membrane potential of the plasma membrane
Collapse
Affiliation(s)
- Charmaine Ajao
- Department of Food and Environmental Sciences, Haartman Institute, University of Helsinki, POB 56, FI-00014, Finland
| | - Maria A. Andersson
- Department of Food and Environmental Sciences, Haartman Institute, University of Helsinki, POB 56, FI-00014, Finland
| | - Vera V. Teplova
- Institute of Theoretical and Experimental Biophysics, RAS, Puschino, Moscow Region, Russia
| | - Szabolcs Nagy
- Department of Animal Science and Animal Husbandry, University of Pannonia, Georgikon Faculty, Deak F. u.,16, H8360 Keszthely, Hungary
| | - Carl G. Gahmberg
- Dept. of Bio- and Environmental Sciences, Haartman Institute, University of Helsinki, FI-00014, Finland
| | - Leif C. Andersson
- Dept. of Pathology, Haartman Institute, University of Helsinki, FI-00014, Finland
| | - Maria Hautaniemi
- Finnish Food Safety Authority (EVIRA), Research and Laboratory Department, Veterinary Virology Research Unit, Mustialankatu 3, FI 00790 Helsinki, Finland
| | - Balazs Kakasi
- Institute of Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200 Veszprem, Hungary
| | - Merja Roivainen
- National Institute for Health and Welfare, Department of Virology, Mannerheimintie 166, 00300 Helsinki, Finland
| | - Mirja Salkinoja-Salonen
- Department of Food and Environmental Sciences, Haartman Institute, University of Helsinki, POB 56, FI-00014, Finland
| |
Collapse
|
15
|
Li S, Zhao J, Wang G, Zhu Y, Rabito F, Krousel-Wood M, Chen W, Whelton PK. Urinary triclosan concentrations are inversely associated with body mass index and waist circumference in the US general population: Experience in NHANES 2003-2010. Int J Hyg Environ Health 2015; 218:401-6. [PMID: 25823951 DOI: 10.1016/j.ijheh.2015.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Humans are extensively exposed to triclosan, an antibacterial and antifungal agent. Triclosan's effects on human health, however, have not been carefully investigated. OBJECTIVE To examine whether triclosan exposure is associated with obesity traits. METHODS This study included 2898 children (6-19 years old) and 5066 adults (20 years or older) who participated in the National Health and Nutrition Examination Surveys (NHANES) 2003-2010 and had a detectable level of urinary triclosan. Multiple linear regression models were used to examine the association between urinary triclosan and both body mass index (BMI) and waist circumference. RESULTS Each standard deviation increase in urinary triclosan was associated with a 0.34 (95% confidence interval, CI: 0.05, 0.64) kg/m² lower level of BMI (P=0.02) and 0.92 (95% CI: 0.09, 1.74)cm smaller waist circumference (P=0.03) in boys, and a 0.62 (95% CI: 0.31, 0.94) kg/m² lower level of BMI (P=0.0002) and 1.32 (95% CI: 0.54, 2.09) cm smaller waist circumference in girls (P=0.001); a 0.42 (95% CI: 0.06, 0.77) kg/m² lower level of BMI (P=0.02) and 1.35 (95% CI: 0.48, 2.22) cm smaller waist circumference (P=0.003) in men, and a 0.71 (95% CI: 0.34, 1.07) kg/m² lower level of BMI (P=0.0002) and 1.68 (95% CI: 0.86, 2.50) cm smaller waist circumference (P=0.0001) in women. In both children and adults, there was a consistent trend for lower levels of BMI and smaller waist circumference with increasing levels of urinary triclosan, from the lowest to the highest quartile of urinary triclosan (P ≤ 0.001 in all cases). CONCLUSION Triclosan exposure is inversely associated with BMI and waist circumference. The biological mechanisms linking triclosan exposure to obesity await further investigation.
Collapse
Affiliation(s)
- Shengxu Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, United States.
| | - Jinying Zhao
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, United States
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, United States
| | - Yun Zhu
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, United States
| | - Felicia Rabito
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, United States
| | - Marie Krousel-Wood
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, United States; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States; Ochsner Health System, New Orleans, LA 70121, United States
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, United States
| | - Paul K Whelton
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, United States
| |
Collapse
|