1
|
Fernández-Trujillo S, Jiménez-Moreno M, Rodríguez-Fariñas N, Rodríguez Martín-Doimeadios RC. Critical evaluation of the potential of ICP-MS-based systems in toxicological studies of metallic nanoparticles. Anal Bioanal Chem 2024; 416:2657-2676. [PMID: 38329514 PMCID: PMC11009754 DOI: 10.1007/s00216-024-05181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The extensive application of metallic nanoparticles (NPs) in several fields has significantly impacted our daily lives. Nonetheless, uncertainties persist regarding the toxicity and potential risks associated with the vast number of NPs entering the environment and human bodies, so the performance of toxicological studies are highly demanded. While traditional assays focus primarily on the effects, the comprehension of the underlying processes requires innovative analytical approaches that can detect, characterize, and quantify NPs in complex biological matrices. Among the available alternatives to achieve this information, mass spectrometry, and more concretely, inductively coupled plasma mass spectrometry (ICP-MS), has emerged as an appealing option. This work critically reviews the valuable contribution of ICP-MS-based techniques to investigate NP toxicity and their transformations during in vitro and in vivo toxicological assays. Various ICP-MS modalities, such as total elemental analysis, single particle or single-cell modes, and coupling with separation techniques, as well as the potential of laser ablation as a spatially resolved sample introduction approach, are explored and discussed. Moreover, this review addresses limitations, novel trends, and perspectives in the field of nanotoxicology, particularly concerning NP internalization and pathways. These processes encompass cellular uptake and quantification, localization, translocation to other cell compartments, and biological transformations. By leveraging the capabilities of ICP-MS, researchers can gain deeper insights into the behaviour and effects of NPs, which can pave the way for safer and more responsible use of these materials.
Collapse
Affiliation(s)
- Sergio Fernández-Trujillo
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - María Jiménez-Moreno
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Nuria Rodríguez-Fariñas
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Rosa Carmen Rodríguez Martín-Doimeadios
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain.
| |
Collapse
|
2
|
Clark N, Vassallo J, Silva PV, Silva ARR, Baccaro M, Medvešček N, Grgić M, Ferreira A, Busquets-Fité M, Jurkschat K, Papadiamantis AG, Puntes V, Lynch I, Svendsen C, van den Brink NW, van Gestel CAM, Loureiro S, Handy RD. Metal transfer to sediments, invertebrates and fish following waterborne exposure to silver nitrate or silver sulfide nanoparticles in an indoor stream mesocosm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157912. [PMID: 35952886 DOI: 10.1016/j.scitotenv.2022.157912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The fate of engineered nanomaterials in ecosystems is unclear. An aquatic stream mesocosm explored the fate and bioaccumulation of silver sulfide nanoparticles (Ag2S NPs) compared to silver nitrate (AgNO3). The aims were to determine the total Ag in water, sediment and biota, and to evaluate the bioavailable fractions of silver in the sediment using a serial extraction method. The total Ag in the water column from a nominal daily dose of 10 μg L-1 of Ag for the AgNO3 or Ag2S NP treatments reached a plateau of around 13 and 12 μg L-1, respectively, by the end of the study. Similarly, the sediment of both Ag-treatments reached ~380 μg Ag kg-1, and with most of it being acid-extractable/labile. The biota accumulated 4-59 μg Ag g-1 dw, depending on the type of Ag-treatment and organism. The oligochaete worm, Lumbriculus variegatus, accumulated Ag from the Ag2S exposure over time, which was similar to the AgNO3 treatment by the end of the experiment. The planarian, Girardia tigrina, and the chironomid larva, Chironomus riparius, showed much higher Ag concentrations than the oligochaete worms; and with a clearer time-dependent statistically significant Ag accumulation relative to the untreated controls. For the pulmonate snail, Physa acuta, bioaccumulation of Ag from AgNO3 and Ag2S NP exposures was observed, but was lower from the nano treatment. The AgNO3 exposure caused appreciable Ag accumulation in the water flea, Daphnia magna, but accumulation was higher in the Ag2S NP treatment (reaching 59 μg g-1 dw). In the rainbow trout, Oncorhynchus mykiss, AgNO3, but not Ag2S NPs, caused total Ag concentrations to increase in the tissues. Overall, the study showed transfer of total Ag from the water column to the sediment, and Ag bioaccumulation in the biota, with Ag from Ag2S NP exposure generally being less bioavailable than that from AgNO3.
Collapse
Affiliation(s)
- Nathaniel Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Joanne Vassallo
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Patrícia V Silva
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Rita R Silva
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Marta Baccaro
- Department of Toxicology, Wageningen University, Wageningen, the Netherlands
| | - Neja Medvešček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Magdalena Grgić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Abel Ferreira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | - Kerstin Jurkschat
- Department of Materials, Oxford University Begbroke Science Park, Begbroke, United Kingdom
| | - Anastasios G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK; NovaMechanics Ltd., 1065 Nicosia, Cyprus
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Claus Svendsen
- Centre of Ecology and Hydrology (CEH-NERC), Wallingford, UK
| | | | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Susana Loureiro
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK.
| |
Collapse
|
3
|
Xie H, Wei X, Zhao J, He L, Wang L, Wang M, Cui L, Yu YL, Li B, Li YF. Size characterization of nanomaterials in environmental and biological matrices through non-electron microscopic techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155399. [PMID: 35472343 DOI: 10.1016/j.scitotenv.2022.155399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Engineered nanomaterials (ENs) can enter the environment, and accumulate in food chains, thereby causing environmental and health problems. Size characterization of ENs is critical for further evaluating the interactions among ENs in biological and ecological systems. Although electron microscope is a powerful tool in obtaining the size information, it has limitations when studying nanomaterials in complex matrices. In this review, we summarized non-electron microscope-based techniques, including chromatography-based, mass spectrometry-based, synchrotron radiation- and neutron-based techniques for detecting the size of ENs in environmental and biological matrices. The advantages and disadvantages of these techniques were highlighted. The perspectives on size characterization of ENs in complex matrices were also presented.
Collapse
Affiliation(s)
- Hongxin Xie
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Yu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China.
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Antibacterial Effect of Colloidal Suspensions Varying in Silver Nanoparticles and Ions Concentrations. NANOMATERIALS 2021; 12:nano12010031. [PMID: 35009981 PMCID: PMC8746442 DOI: 10.3390/nano12010031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
Abstract
A lot of effort has been dedicated recently to provide a better insight into the mechanism of the antibacterial activity of silver nanoparticles (AgNPs) colloidal suspensions and their released silver ionic counterparts. However, there is no consistency regarding whether the antibacterial effect displayed at cellular level originates from the AgNPs or their ionic constitutes. To address this issue, three colloidal suspensions exhibiting different ratios of AgNPs/silver ions were synthesized by a wet chemistry method in conjunction with tangential flow filtration, and were characterized and evaluated for their antimicrobial properties against two gram-negative, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), and two gram-positive, Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis), bacterial strains. The produced samples contained 25% AgNPs and 75% Ag ions (AgNP_25), 50% AgNPs and 50% Ag ions (AgNP_50), and 100% AgNPs (AgNP_100). The sample AgNP_100 demonstrated the lowest minimum inhibitory concentration values ranging from 4.6 to 15.6 ppm for all four bacterial strains, while all three samples indicated minimum bactericidal concentration (MBC) values ranging from 16.6 ppm to 62.5 ppm against all strains. An increase in silver ions content results in higher bactericidal activity. All three samples were found to lead to a significant morphological damage by disruption of the bacterial cell membranes as analyzed by means of scanning electron microscopy (SEM). The growth kinetics demonstrated that all three samples were able to reduce the bacterial population at a concentration of 3.1 ppm. SEM and growth kinetic data underline that S. epidermidis is the most sensitive among all strains against the investigated samples. Our results showed that all three AgNPs colloidal suspensions exhibited strong antibacterial properties and, thus, they can be applied in medical devices and antimicrobial control systems.
Collapse
|
5
|
Fakhrullin R, Nigamatzyanova L, Fakhrullina G. Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145478. [PMID: 33571774 DOI: 10.1016/j.scitotenv.2021.145478] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Nanoscale contaminants (including engineered nanoparticles and nanoplastics) pose a significant threat to organisms and environment. Rapid and non-destructive detection and identification of nanosized materials in cells, tissues and organisms is still challenging, although a number of conventional methods exist. These approaches for nanoparticles imaging and characterisation both inside the cytoplasm and on the cell or tissue outer surfaces, such as electron or scanning probe microscopies, are unquestionably potent tools, having excellent resolution and supplemented with chemical analysis capabilities. However, imaging and detection of nanomaterials in situ, in wet unfixed and even live samples, such as living isolated cells, microorganisms, protozoans and miniature invertebrates using electron microscopy is practically impossible, because of the elaborate sample preparation requiring chemical fixation, contrast staining, matrix embedding and exposure into vacuum. Atomic force microscopy, in several cases, can be used for imaging and mechanical analysis of live cells and organisms under ambient conditions, however this technique allows for investigation of surfaces. Therefore, a different approach allowing for imaging and differentiation of nanoscale particles in wet samples is required. Dark-field microscopy as an optical microscopy technique has been popular among researchers, mostly for imaging relatively large specimens. In recent years, the so-called "enhanced dark field" microscopy based on using higher numerical aperture light condensers and variable numerical aperture objectives has emegred, which allows for imaging of nanoscale particles (starting from 5 nm nanospheres) using almost conventional optical microscopy methodology. Hyperspectral imaging can turn a dark-field optical microscope into a powerful chemical characterisation tool. As a result, this technique is becoming popular in environmental nanotoxicology studies. In this Review Article we introduce the reader into the methodology of enhanced dark-field and dark-field-based hyperspectral microscopy, covering the most important advances in this rapidly-expanding area of environmental nanotoxicology.
Collapse
Affiliation(s)
- Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation.
| | - Läysän Nigamatzyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Gölnur Fakhrullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| |
Collapse
|
6
|
Silver and gold nanoparticles characterization by SP-ICP-MS and AF4-FFF-MALS-UV-ICP-MS in human samples used for biomonitoring. Talanta 2020; 220:121404. [DOI: 10.1016/j.talanta.2020.121404] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/05/2023]
|
7
|
Taboada-López MV, Alonso-Seijo N, Herbello-Hermelo P, Bermejo-Barrera P, Moreda-Piñeiro A. Determination and characterization of silver nanoparticles in bivalve molluscs by ultrasound assisted enzymatic hydrolysis and sp-ICP-MS. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Abdolahpur Monikh F, Chupani L, Zusková E, Peters R, Vancová M, Vijver MG, Porcal P, Peijnenburg WJGM. Method for Extraction and Quantification of Metal-Based Nanoparticles in Biological Media: Number-Based Biodistribution and Bioconcentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:946-953. [PMID: 30532971 DOI: 10.1021/acs.est.8b03715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A multistep sample preparation method was developed to separate metal-based engineered nanoparticles (ENPs) from biological samples. The method was developed using spiked zebrafish tissues and standard titanium dioxide (TiO2) and cerium dioxide (CeO2) ENPs. Single-particle inductively coupled plasma mass spectrometry was used to quantify the separated particles in terms of number concentration. This method demonstrated mass recoveries of more than 90% and did not strikingly alter the median particles size. High number recoveries were calculated for CeO2 ENPs (>84%). Particle number recoveries were poor for TiO2 ENPs (<25%), which could be due to the interference of 48Ca with the measured isotope 48Ti. The method was verified using zebrafish exposed to CeO2 ENPs to test its applicability for nanotoxicokinetic investigations. Total mass of Ce and particle number concentration of CeO2 ENPs were measured in different tissues. Notably, the mass-based biodistribution of Ce in the tissues did not follow the number-based biodistribution of CeO2. Moreover, the calculated mass-based bioconcentration factors showed a different pattern in comparison to the number-based bioconcentration factors. Our findings suggest that considering mass as the sole dose-metric may not provide sufficient information to investigate toxicity and toxicokinetics of ENPs.
Collapse
Affiliation(s)
- Fazel Abdolahpur Monikh
- Institute of Environmental Sciences (CML) , Leiden University , P.O. Box 9518, 2300 RA Leiden , Netherlands
| | - Latifeh Chupani
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters , University of South Bohemia in České Budějovice , Vodňany , Czech Republic
| | - Eliska Zusková
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters , University of South Bohemia in České Budějovice , Vodňany , Czech Republic
| | - Ruud Peters
- RIKILT Wageningen UR , Akkermaalsbos 2 , 6708 WB Wageningen , Netherlands
| | - Marie Vancová
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Parasitology, Faculty of Science , University of South Bohemia , Branišovská 31 , 37005 České Budějovice , Czech Republic
| | - Martina G Vijver
- Institute of Environmental Sciences (CML) , Leiden University , P.O. Box 9518, 2300 RA Leiden , Netherlands
| | - Petr Porcal
- Biology Centre CAS , Institute of Hydrobiology and Soil & Water Research Infrastructure, Faculty of Science , Na Sádkách 7 , České Budějovice , Czech Republic
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML) , Leiden University , P.O. Box 9518, 2300 RA Leiden , Netherlands
- National Institute of Public Health and the Environment (RIVM) , Center for Safety of Substances and Products , Bilthoven , Netherlands
| |
Collapse
|
9
|
Degenkolb L, Metreveli G, Philippe A, Brandt A, Leopold K, Zehlike L, Vogel HJ, Schaumann GE, Baumann T, Kaupenjohann M, Lang F, Kumahor S, Klitzke S. Retention and remobilization mechanisms of environmentally aged silver nanoparticles in an artificial riverbank filtration system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:192-204. [PMID: 30021176 DOI: 10.1016/j.scitotenv.2018.07.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Riverbank filtration systems are important structures that ensure the cleaning of infiltrating surface water for drinking water production. In our study, we investigated the potential risk for a breakthrough of environmentally aged silver nanoparticles (Ag NP) through these systems. Additionally, we identified factors leading to the remobilization of Ag NP accumulated in surficial sediment layers in order to gain insights into remobilization mechanisms. We conducted column experiments with Ag NP in an outdoor pilot plant consisting of water-saturated sediment columns mimicking a riverbank filtration system. The NP had previously been aged in river water, soil extract, and ultrapure water, respectively. We investigated the depth-dependent breakthrough and retention of NP. In subsequent batch experiments, we studied the processes responsible for a remobilization of Ag NP retained in the upper 10 cm of the sediments, induced by ionic strength reduction, natural organic matter (NOM), and mechanical forces. We determined the amount of remobilized Ag by ICP-MS and differentiated between particulate and ionic Ag after remobilization using GFAAS. The presence of Ag-containing heteroaggregates was investigated by combining filtration with single-particle ICP-MS. Single and erratic Ag breakthrough events were mainly found in 30 cm depth and Ag NP were accumulated in the upper 20 cm of the columns. Soil-aged Ag NP showed the lowest retention of only 54%. Remobilization was induced by the reduction of ionic strength and the presence of NOM in combination with mechanical forces. The presence of calcium in the aging- as well as the remobilizing media reduced the remobilization potential. Silver NP were mainly remobilized as heteroaggregates with natural colloids, while dissolution played a minor role. Our study indicates that the breakthrough potential of Ag NP in riverbank filtration systems is generally low, but the aging in soil increases their mobility. Remobilization processes are associated to co-mobilization with natural colloids.
Collapse
Affiliation(s)
- Laura Degenkolb
- Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter Platz 1, 10587 Berlin, Germany; German Environment Agency, Section Drinking Water Treatment and Resource Protection, Schichauweg 58, 12307 Berlin, Germany.
| | - George Metreveli
- University of Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstraße 7, 76829 Landau, Germany.
| | - Allan Philippe
- University of Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstraße 7, 76829 Landau, Germany.
| | - Anja Brandt
- Ulm University, Institute of Analytical and Bioanalytical Chemistry, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Kerstin Leopold
- Ulm University, Institute of Analytical and Bioanalytical Chemistry, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Lisa Zehlike
- Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter Platz 1, 10587 Berlin, Germany; German Environment Agency, Section Drinking Water Treatment and Resource Protection, Schichauweg 58, 12307 Berlin, Germany.
| | - Hans-Jörg Vogel
- Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Physics, Theodor-Lieser-Strasse 4, 06120 Halle, Germany.
| | - Gabriele E Schaumann
- University of Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstraße 7, 76829 Landau, Germany.
| | - Thomas Baumann
- Technical University of Munich, Institute of Hydrochemistry, Marchioninistr. 17, 81377 München, Germany.
| | - Martin Kaupenjohann
- Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter Platz 1, 10587 Berlin, Germany.
| | - Friederike Lang
- Albert-Ludwigs-Universität Freiburg, Chair of Soil Ecology, Alte Universität, Bertoldstraße 17, 79098 Freiburg i. Br., Germany.
| | - Samuel Kumahor
- Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Soil Physics, Theodor-Lieser-Strasse 4, 06120 Halle, Germany.
| | - Sondra Klitzke
- Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter Platz 1, 10587 Berlin, Germany; German Environment Agency, Section Drinking Water Treatment and Resource Protection, Schichauweg 58, 12307 Berlin, Germany; Albert-Ludwigs-Universität Freiburg, Chair of Soil Ecology, Alte Universität, Bertoldstraße 17, 79098 Freiburg i. Br., Germany.
| |
Collapse
|
10
|
Rajala JE, Vehniäinen ER, Väisänen A, Kukkonen JVK. Partitioning of nanoparticle-originated dissolved silver in natural and artificial sediments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2593-2601. [PMID: 28304113 DOI: 10.1002/etc.3798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
Sediments are believed to be a major sink for silver nanoparticles (AgNPs) in the aquatic environment, but there is a lack of knowledge about the environmental effects and behavior of AgNPs in sediments. The release of highly toxic Ag+ through dissolution of AgNPs is one mechanism leading to toxic effects in sediments. We applied an ultrasound-assisted sequential extraction method to evaluate the dissolution of AgNPs and to study the partitioning of dissolved Ag in sediments. Silver was spiked into artificial and 2 natural sediments (Lake Höytiäinen sediment and Lake Kuorinka sediment) as silver nitrate (AgNO3 ), uncoated AgNPs, or polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs). In addition, the total body burdens of Ag in the sediment-dwelling oligochaete Lumbriculus variegatus were assessed over a 28-d exposure period. The dissolution rate was found to be similar between the uncoated AgNP and PVP-AgNP groups. In all sediments, dissolved Ag was mainly bound to the residual fraction of the sediment, followed by iron and manganese oxides or natural organic matter. In Lake Kuorinka sediment, dissolved Ag that originated from PVP-AgNPs was relatively more bioaccessible, also resulting in higher total body burden in L. variegatus than that from uncoated AgNPs or AgNO3 . In artificial sediment and Lake Höytiäinen sediment, AgNO3 was significantly more bioaccessible than AgNPs. Our results highlight the importance of sediment properties and AgNP surface chemistry when evaluating the environmental exposure of AgNPs. Environ Toxicol Chem 2017;36:2593-2601. © 2017 SETAC.
Collapse
Affiliation(s)
- Juho E Rajala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Ari Väisänen
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Jussi V K Kukkonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
11
|
Ivask A, Mitchell AJ, Malysheva A, Voelcker NH, Lombi E. Methodologies and approaches for the analysis of cell-nanoparticle interactions. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1486. [DOI: 10.1002/wnan.1486] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Angela Ivask
- Laboratory of Environmental Toxicology; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| | - Andrew J. Mitchell
- Materials Characterisation and Fabrication Platform; University of Melbourne; Melbourne Australia
| | - Anzhela Malysheva
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Australia
| | - Enzo Lombi
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| |
Collapse
|
12
|
Wu YM, Wang ZW, Hu CY, Nerín C. Influence of factors on release of antimicrobials from antimicrobial packaging materials. Crit Rev Food Sci Nutr 2017; 58:1108-1121. [DOI: 10.1080/10408398.2016.1241215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yu-Mei Wu
- Packaging Engineering Institute, Jinan University, Zhuhai, China
- Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, Jinan University, Zhuhai, China
- Zhuhai Key Laboratory of Product Packaging and Logistics, Jinan University, Zhuhai, China
| | - Zhi-Wei Wang
- Packaging Engineering Institute, Jinan University, Zhuhai, China
- Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, Jinan University, Zhuhai, China
- Zhuhai Key Laboratory of Product Packaging and Logistics, Jinan University, Zhuhai, China
| | - Chang-Ying Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Cristina Nerín
- I3A, Department of Analytical Chemistry, University of Zaragoza, Campus Rio Ebro, Zaragoza, Spain
| |
Collapse
|
13
|
Kennedy AJ, Coleman JG, Diamond SA, Melby NL, Bednar AJ, Harmon A, Collier ZA, Moser R. Assessing nanomaterial exposures in aquatic ecotoxicological testing: Framework and case studies based on dispersion and dissolution. Nanotoxicology 2017; 11:546-557. [DOI: 10.1080/17435390.2017.1317863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alan J. Kennedy
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Jessica G. Coleman
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | | | - Nicolas L. Melby
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Anthony J. Bednar
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Ashley Harmon
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Zachary A. Collier
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Robert Moser
- U.S. Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, Vicksburg, MS, USA
| |
Collapse
|
14
|
Callaghan NI, MacCormack TJ. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193:30-41. [PMID: 28017784 DOI: 10.1016/j.cbpc.2016.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/01/2016] [Accepted: 12/20/2016] [Indexed: 12/25/2022]
Abstract
Engineered nanomaterials (ENMs) are incorporated into numerous industrial, clinical, food, and consumer products and a significant body of evidence is now available on their toxicity to aquatic organisms. Environmental ENM concentrations are difficult to quantify, but production and release estimates suggest wastewater treatment plant effluent levels ranging from 10-4 to >101μgL-1 for the most common formulations by production volume. Bioavailability and ENM toxicity are heavily influenced by water quality parameters and the physicochemical properties and resulting colloidal behaviour of the particular ENM formulation. ENMs generally induce only mild acute toxicity to most adult fish and crustaceans under environmentally relevant exposure scenarios; however, sensitivity may be considerably higher for certain species and life stages. In adult animals, aquatic ENM exposure often irritates respiratory and digestive epithelia and causes oxidative stress, which can be associated with cardiovascular dysfunction and the activation of immune responses. Direct interactions between ENMs (or their dissolution products) and proteins can also lead to ionoregulatory stress and/or developmental toxicity. Chronic and developmental toxicity have been noted for several common ENMs (e.g. TiO2, Ag), however more data is necessary to accurately characterize long term ecological risks. The bioavailability of ENMs should be limited in saline waters but toxicity has been observed in marine animals, highlighting a need for more study on possible impacts in estuarine and coastal systems. Nano-enabled advancements in industrial processes like water treatment and remediation could provide significant net benefits to the environment and will likely temper the relatively modest impacts of incidental ENM release and exposure.
Collapse
Affiliation(s)
- Neal Ingraham Callaghan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Tyson James MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
15
|
Schwertfeger DM, Velicogna JR, Jesmer AH, Saatcioglu S, McShane H, Scroggins RP, Princz JI. Extracting Metallic Nanoparticles from Soils for Quantitative Analysis: Method Development Using Engineered Silver Nanoparticles and SP-ICP-MS. Anal Chem 2017; 89:2505-2513. [DOI: 10.1021/acs.analchem.6b04668] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D. M. Schwertfeger
- Biological
Assessment and Standardization, Environment Canada, Ottawa, Ontario, Canada
| | - Jessica R. Velicogna
- Biological
Assessment and Standardization, Environment Canada, Ottawa, Ontario, Canada
| | - Alexander H. Jesmer
- Biological
Assessment and Standardization, Environment Canada, Ottawa, Ontario, Canada
| | - Selin Saatcioglu
- Department
of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario, Canada
| | - Heather McShane
- Department
of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Richard P. Scroggins
- Biological
Assessment and Standardization, Environment Canada, Ottawa, Ontario, Canada
| | - Juliska I. Princz
- Biological
Assessment and Standardization, Environment Canada, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Field flow fractionation techniques to explore the “nano-world”. Anal Bioanal Chem 2017; 409:2501-2518. [DOI: 10.1007/s00216-017-0180-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/17/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
17
|
Rajala JE, Mäenpää K, Vehniäinen ER, Väisänen A, Scott-Fordsmand JJ, Akkanen J, Kukkonen JVK. Toxicity Testing of Silver Nanoparticles in Artificial and Natural Sediments Using the Benthic Organism Lumbriculus variegatus. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 71:405-414. [PMID: 27406409 DOI: 10.1007/s00244-016-0294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
The increased use of silver nanoparticles (AgNP) in industrial and consumer products worldwide has resulted in their release to aquatic environments. Previous studies have mainly focused on the effects of AgNP on pelagic species, whereas few studies have assessed the risks to benthic invertebrates despite the fact that the sediments act as a large potential sink for NPs. In this study, the toxicity of sediment-associated AgNP was evaluated using the standard sediment toxicity test for chemicals provided by the Organization of Economic Cooperation and Development. The freshwater benthic oligochaete worm Lumbriculus variegatus was exposed to sediment-associated AgNP in artificial and natural sediments at concentrations ranging from 91 to 1098 mg Ag/kg sediment dry weight. Silver nitrate (AgNO3) was used as a reference compound for Ag toxicity. The measured end points of toxicity were mortality, reproduction, and total biomass. In addition, the impact of sediment-associated AgNP on the feeding rate of L. variegatus was studied in a similar test set-up as mentioned previously. The addition of AgNP into the sediment significantly affected the feeding rate and reproduction of the test species only at the highest concentration (1098 mg/kg) of Ag in the natural sediment with the lowest pH. In comparison, the addition of AgNO3 resulted in reproductive toxicity in every tested sediment, and Ag was more toxic when spiked as AgNO3 than AgNP. In general, sediments were observed to have a high capacity to eliminate the AgNP-derived toxicity. However, the capacity of sediments to eliminate the toxicity of Ag follows a different pattern when spiked as AgNP than AgNO3. The results of this study emphasize the importance of sediment-toxicity testing and the role of sediment properties when evaluating the environmental effects and behavior of AgNP in sediments.
Collapse
Affiliation(s)
- Juho Elias Rajala
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| | - Kimmo Mäenpää
- Department of Biology, University of Eastern Finland, 80101, Joensuu, Finland
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Ari Väisänen
- Department of Chemistry, University of Jyväskylä, 40014, Jyväskylä, Finland
| | | | - Jarkko Akkanen
- Department of Biology, University of Eastern Finland, 80101, Joensuu, Finland
| | | |
Collapse
|
18
|
Montaño MD, Olesik JW, Barber AG, Challis K, Ranville JF. Single Particle ICP-MS: Advances toward routine analysis of nanomaterials. Anal Bioanal Chem 2016; 408:5053-74. [DOI: 10.1007/s00216-016-9676-8] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/22/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022]
|
19
|
Velicogna JR, Ritchie EE, Scroggins RP, Princz JI. A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils. Nanotoxicology 2016; 10:1144-51. [DOI: 10.1080/17435390.2016.1181807] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jessica R. Velicogna
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Ellyn E. Ritchie
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Richard P. Scroggins
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Juliska I. Princz
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, Ottawa, ON, Canada
| |
Collapse
|
20
|
Benešová I, Dlabková K, Zelenák F, Vaculovič T, Kanický V, Preisler J. Direct Analysis of Gold Nanoparticles from Dried Droplets Using Substrate-Assisted Laser Desorption Single Particle-ICPMS. Anal Chem 2016; 88:2576-82. [DOI: 10.1021/acs.analchem.5b02421] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Iva Benešová
- Department
of Chemistry, Faculty of Science, Masaryk University, Brno, 625 00 Czech Republic
- CEITEC
- Central European Institute of Technology, Masaryk University, Brno, 625 00 Czech Republic
| | - Kristýna Dlabková
- Department
of Chemistry, Faculty of Science, Masaryk University, Brno, 625 00 Czech Republic
| | - František Zelenák
- Department
of Chemistry, Faculty of Science, Masaryk University, Brno, 625 00 Czech Republic
| | - Tomáš Vaculovič
- Department
of Chemistry, Faculty of Science, Masaryk University, Brno, 625 00 Czech Republic
- CEITEC
- Central European Institute of Technology, Masaryk University, Brno, 625 00 Czech Republic
| | - Viktor Kanický
- Department
of Chemistry, Faculty of Science, Masaryk University, Brno, 625 00 Czech Republic
- CEITEC
- Central European Institute of Technology, Masaryk University, Brno, 625 00 Czech Republic
| | - Jan Preisler
- Department
of Chemistry, Faculty of Science, Masaryk University, Brno, 625 00 Czech Republic
- CEITEC
- Central European Institute of Technology, Masaryk University, Brno, 625 00 Czech Republic
| |
Collapse
|
21
|
Wasmuth C, Rüdel H, Düring RA, Klawonn T. Assessing the suitability of the OECD 29 guidance document to investigate the transformation and dissolution of silver nanoparticles in aqueous media. CHEMOSPHERE 2016; 144:2018-23. [PMID: 26580718 DOI: 10.1016/j.chemosphere.2015.10.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 05/14/2023]
Abstract
The OECD guidance document No. 29 was designed to determine the rate and extend to which metals can produce soluble available ionic metal species. This transformation/dissolution protocol was applied to silver nanomaterials. The results prove that concentrations of released Ag(+) at pH 8 were nearly similar at all three different loadings. At pH 6, the concentration of Ag(+) was almost the same at loadings of 10 and 100 mg L(-1) AgNPs. However, the study showed changes in concentrations of nanoparticles and aggregates (operationally defined as the fraction passing a 0.2 µm filter). At the higher pH both the concentrations in the test medium of Ag(+) and of AgNPs (fraction < 0.2 µm) decreased. After 7 days of test duration, 71 µg L(-1) of Ag(+) was found in pH 6 medium (initial loading of 100 mg L(-1)). In pH 8 medium a maximum concentration of 29 µg L(-1) Ag(+) was measured (initial loading of 10 mg L(-1)). The maximum transformation from AgNPs to Ag(+) was 2.7% (27 µg L(-1)) in pH 8 medium (loading of 1 mg L(-1)) after 7 days. At an initial loading of 100 mg L(-1) AgNPs in medium at pH 8, only 0.03% (30 µg L(-1)) were transformed to Ag(+) after 7 days. At the loading of 1 mg L(-1) AgNPs all silver concentrations remain relatively constant for the duration of the test after 7 until 28 days. The results reveal that only low concentrations of Ag(+) are released from AgNPs under the applied conditions.
Collapse
Affiliation(s)
- Claus Wasmuth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Rolf-Alexander Düring
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-Universität Giessen, Germany
| | - Thorsten Klawonn
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| |
Collapse
|
22
|
Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, Castillo JR. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta 2016; 904:10-32. [DOI: 10.1016/j.aca.2015.11.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/07/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
23
|
Moreno-Garrido I, Pérez S, Blasco J. Toxicity of silver and gold nanoparticles on marine microalgae. MARINE ENVIRONMENTAL RESEARCH 2015; 111:60-73. [PMID: 26002248 DOI: 10.1016/j.marenvres.2015.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
The increased use of nanomaterials in several novel industrial applications during the last decade has led to a rise in concerns about the potential toxic effects of released engineered nanoparticles (NPs) into the environment, as their potential toxicity to aquatic organisms is just beginning to be recognised. Toxicity of metallic nanoparticles to aquatic organisms, including microalgae, seems to be related to their physical and chemical properties, as well as their behaviour in the aquatic media where processes of dissolution, aggregation and agglomeration can occur. Although the production of these particles has increased considerably in recent years, data on their toxicity on microalgae, especially those belonging to marine or estuarine environments remain scarce and scattered. The literature shows a wide variation of results on toxicity, mainly due to the different methodology used in bioassays involving microalgae. These can range for up to EC50 data, in the case of AgNPs, representing five orders of magnitude. The importance of initial cellular density is also addressed in the text, as well as the need for keeping test conditions as close as possible to environmental conditions, in order to increase their environmental relevance. This review focuses on the fate and toxicity of silver, gold, and gold-silver alloy nanoparticles on microalgae, as key organisms in aquatic ecosystems. It is prompted by their increased production and use, and taking into account that oceans and estuaries are the final sink for those NPs. The design of bioassays and further research in the field of microalgae nanoecotoxicology is discussed, with a brief survey on newly developed technology of green (algae mediated) production of Ag, Au and Ag-Au bimetallic NPs, as well as some final considerations about future research on this field.
Collapse
Affiliation(s)
- Ignacio Moreno-Garrido
- Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Sara Pérez
- Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
24
|
Khan FR, Paul KB, Dybowska AD, Valsami-Jones E, Lead JR, Stone V, Fernandes TF. Accumulation dynamics and acute toxicity of silver nanoparticles to Daphnia magna and Lumbriculus variegatus: implications for metal modeling approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4389-4397. [PMID: 25756614 DOI: 10.1021/es506124x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Frameworks commonly used in trace metal ecotoxicology (e.g., biotic ligand model (BLM) and tissue residue approach (TRA)) are based on the established link between uptake, accumulation and toxicity, but similar relationships remain unverified for metal-containing nanoparticles (NPs). The present study aimed to (i) characterize the bioaccumulation dynamics of PVP-, PEG-, and citrate-AgNPs, in comparison to dissolved Ag, in Daphnia magna and Lumbriculus variegatus; and (ii) investigate whether parameters of bioavailability and accumulation predict acute toxicity. In both species, uptake rate constants for AgNPs were ∼ 2-10 times less than for dissolved Ag and showed significant rank order concordance with acute toxicity. Ag elimination by L. variegatus fitted a 1-compartment loss model, whereas elimination in D. magna was biphasic. The latter showed consistency with studies that reported daphnids ingesting NPs, whereas L. variegatus biodynamic parameters indicated that uptake and efflux were primarily determined by the bioavailability of dissolved Ag released by the AgNPs. Thus, principles of BLM and TRA frameworks are confounded by the feeding behavior of D. magna where the ingestion of AgNPs perturbs the relationship between tissue concentrations and acute toxicity, but such approaches are applicable when accumulation and acute toxicity are linked to dissolved concentrations. The uptake rate constant, as a parameter of bioavailability inclusive of all available pathways, could be a successful predictor of acute toxicity.
Collapse
Affiliation(s)
- Farhan R Khan
- †School of Life Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Kai B Paul
- †School of Life Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | | | - Eugenia Valsami-Jones
- §School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, England
| | - Jamie R Lead
- ∥SmartState Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29088, United States
| | - Vicki Stone
- †School of Life Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Teresa F Fernandes
- †School of Life Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| |
Collapse
|
25
|
Schultz C, Powell K, Crossley A, Jurkschat K, Kille P, Morgan AJ, Read D, Tyne W, Lahive E, Svendsen C, Spurgeon DJ. Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:239-261. [PMID: 25516483 DOI: 10.1007/s10646-014-1387-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Initiatives to support the sustainable development of the nanotechnology sector have led to rapid growth in research on the environmental fate, hazards and risk of engineered nanoparticles (ENP). As the field has matured over the last 10 years, a detailed picture of the best methods to track potential forms of exposure, their uptake routes and best methods to identify and track internal fate and distributions following assimilation into organisms has begun to emerge. Here we summarise the current state of the field, focussing particularly on metal and metal oxide ENPs. Studies to date have shown that ENPs undergo a range of physical and chemical transformations in the environment to the extent that exposures to pristine well dispersed materials will occur only rarely in nature. Methods to track assimilation and internal distributions must, therefore, be capable of detecting these modified forms. The uptake mechanisms involved in ENP assimilation may include a range of trans-cellular trafficking and distribution pathways, which can be followed by passage to intracellular compartments. To trace toxicokinetics and distributions, analytical and imaging approaches are available to determine rates, states and forms. When used hierarchically, these tools can map ENP distributions to specific target organs, cell types and organelles, such as endosomes, caveolae and lysosomes and assess speciation states. The first decade of ENP ecotoxicology research, thus, points to an emerging paradigm where exposure is to transformed materials transported into tissues and cells via passive and active pathways within which they can be assimilated and therein identified using a tiered analytical and imaging approach.
Collapse
Affiliation(s)
- Carolin Schultz
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hawkins AD, Bednar AJ, Cizdziel JV, Bu K, Steevens JA, Willett KL. Identification of silver nanoparticles in Pimephales promelas gastrointestinal tract and gill tissues using flow field flow fractionation ICP-MS. RSC Adv 2014. [DOI: 10.1039/c4ra08630a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To further understand potential nanoparticle toxicity, silver nanoparticles were identified in both the GI tract and gill of fathead minnows using field-flow-fractionation ICP-MS.
Collapse
Affiliation(s)
- A. D. Hawkins
- Department of BioMolecular Science – Environmental Toxicology Research Program
- School of Pharmacy
- University of Mississippi
- University
- , USA
| | - A. J. Bednar
- US Army Engineer Research and Development Center
- Environmental Laboratory
- Vicksburg, USA
| | - J. V. Cizdziel
- Department of Chemistry and Biochemistry
- University of Mississippi
- , USA
| | - K. Bu
- Department of Chemistry and Biochemistry
- University of Mississippi
- , USA
| | - J. A. Steevens
- US Army Engineer Research and Development Center
- Environmental Laboratory
- Vicksburg, USA
| | - K. L. Willett
- Department of BioMolecular Science – Environmental Toxicology Research Program
- School of Pharmacy
- University of Mississippi
- University
- , USA
| |
Collapse
|
27
|
Laborda F, Bolea E, Jiménez-Lamana J. Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Anal Chem 2013; 86:2270-8. [DOI: 10.1021/ac402980q] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Francisco Laborda
- Group of Analytical
Spectroscopy and Sensors, Institute of Environmental Sciences, University of Zaragoza, 50009 Zaragoza, Spain
| | - Eduardo Bolea
- Group of Analytical
Spectroscopy and Sensors, Institute of Environmental Sciences, University of Zaragoza, 50009 Zaragoza, Spain
| | - Javier Jiménez-Lamana
- Group of Analytical
Spectroscopy and Sensors, Institute of Environmental Sciences, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
28
|
Gray EP, Coleman JG, Bednar AJ, Kennedy AJ, Ranville JF, Higgins CP. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:14315-23. [PMID: 24218983 DOI: 10.1021/es403558c] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Expanded use of engineered nanoparticles (ENPs) in consumer products increases the potential for environmental release and unintended biological exposures. As a result, measurement techniques are needed to accurately quantify ENP size, mass, and particle number distributions in biological matrices. This work combines single particle inductively coupled plasma mass spectrometry (spICPMS) with tissue extraction to quantify and characterize metallic ENPs in environmentally relevant biological tissues for the first time. ENPs were extracted from tissues via alkaline digestion using tetramethylammonium hydroxide (TMAH). Method development was performed using ground beef and was verified in Daphnia magna and Lumbriculus variegatus . ENPs investigated include 100 and 60 nm Au and Ag stabilized by polyvynylpyrrolidone (PVP). Mass- and number-based recovery of spiked Au and Ag ENPs was high (83-121%) from all tissues tested. Additional experiments suggested ENP mixtures (60 and 100 nm Ag ENPs) could be extracted and quantitatively analyzed. Biological exposures were also conducted to verify the applicability of the method for aquatic organisms. Size distributions and particle number concentrations were determined for ENPs extracted from D. magna exposed to 98 μg/L 100 nm Au and 4.8 μg/L 100 nm Ag ENPs. The D. magna nanoparticulate body burden for Au ENP uptake was 613 ± 230 μg/kgww, while the measured nanoparticulate body burden for D. magna exposed to Ag ENPs was 59 ± 52 μg/kgww. Notably, the particle size distributions determined from D. magna tissues suggested minimal shifts in the size distributions of ENPs accumulated, as compared to the exposure media.
Collapse
Affiliation(s)
- Evan P Gray
- Colorado School of Mines , Department of Civil and Environmental Engineering, 1500 Illinois St., Golden, Colorado 80401, United States
| | | | | | | | | | | |
Collapse
|
29
|
Kennedy AJ, Melby NL, Moser RD, Bednar AJ, Son SF, Lounds CD, Laird JG, Nellums RR, Johnson DR, Steevens JA. Fate and toxicity of CuO nanospheres and nanorods used in Al/CuO nanothermites before and after combustion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11258-11267. [PMID: 23971725 DOI: 10.1021/es401837f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although nanotechnology advancements should be fostered, the environmental health and safety (EHS) of nanoparticles used in technologies must be quantified simultaneously. However, most EHS studies assess the potential implications of the free nanoparticles which may not be directly applicable to the EHS of particles incorporated into in-use technologies. This investigation assessed the aquatic toxicological implications of copper oxide (CuO) nanospheres relative to CuO nanorods used in nanoenergetic applications to improve combustion. Particles were tested in both the as-received form and following combustion of a CuO/aluminum nanothermite. Results indicated nanospheres were more stable in water and slowly released ions, while higher surface area nanorods initially released more ions and were more toxic but generally less stable. After combustion, particles sintered into larger, micrometer-scale aggregates, which may lower toxicity potential to pelagic organisms due to deposition from water to sediment and reduced bioavailability after complexation with sediment organic matter. Whereas the larger nanothermite residues settled rapidly, implying lower persistence in water, their potential to release dissolved Cu was higher which led to greater toxicity to Ceriodaphnia dubia relative to parent CuO material (nanosphere or rod). This study illustrates the importance of considering the fate and toxicology of nanoparticles in context with their relevant in-use applications.
Collapse
Affiliation(s)
- Alan J Kennedy
- U.S. Army Engineer Research and Development Center, Environmental Laboratory , Building 3270, EP-R, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|