1
|
Janas K, Gudowska A, Drobniak SM. Avian colouration in a polluted world: a meta-analysis. Biol Rev Camb Philos Soc 2024; 99:1261-1277. [PMID: 38494176 DOI: 10.1111/brv.13067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
Brilliant, diverse colour ornaments of birds were one of the crucial cues that led Darwin to the idea of sexual selection. Although avian colouration plays many functions, including concealment, thermoregulation, or advertisement as a distasteful prey, a quality-signalling role in sexual selection has attracted most research attention. Sexually selected ornaments are thought to be more susceptible to external stressors than naturally selected traits, and as such, they might be used as a test for environmental quality. For this reason, the last two decades have seen numerous studies on the impact of anthropogenic pollution on the expression of various avian colour traits. Herein, we provide the first meta-analytical summary of these results and examine whether there is an interaction between the mechanism of colour production (carotenoid-based, melanin-based and structural) and the type of anthropogenic factor (categorised as heavy metals, persistent organic pollutants, urbanisation, or other). Following the assumption of heightened condition dependence of ornaments under sexual selection, we also expected the magnitude of effect sizes to be higher in males. The overall effect size was close to significance and negative, supporting a general detrimental impact of anthropogenic pollutants on avian colouration. In contrast to expectations, there was no interaction between pollution types and colour-producing mechanisms. Yet there were significant differences in sensitivity between colour-producing mechanisms, with carotenoid-based colouration being the most affected by anthropogenic environmental disturbances. Moreover, we observed no significant tendency towards heightened sensitivity in males. We identified a publication gap on structural colouration, which, compared to pigment-based colouration, remains markedly understudied and should thus be prioritised in future research. Finally, we call for the unification of methods used in colour quantification in ecological research to ensure comparability of results among studies.
Collapse
Affiliation(s)
- Katarzyna Janas
- Ornithological Station, Museum and Institute of Zoology, Polish Academy of Sciences, Gdańsk, Poland
| | - Agnieszka Gudowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Environmental and Earth Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
2
|
Rattner BA, Bean TG, Beasley VR, Berny P, Eisenreich KM, Elliott JE, Eng ML, Fuchsman PC, King MD, Mateo R, Meyer CB, O'Brien JM, Salice CJ. Wildlife ecological risk assessment in the 21st century: Promising technologies to assess toxicological effects. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:725-748. [PMID: 37417421 DOI: 10.1002/ieam.4806] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Despite advances in toxicity testing and the development of new approach methodologies (NAMs) for hazard assessment, the ecological risk assessment (ERA) framework for terrestrial wildlife (i.e., air-breathing amphibians, reptiles, birds, and mammals) has remained unchanged for decades. While survival, growth, and reproductive endpoints derived from whole-animal toxicity tests are central to hazard assessment, nonstandard measures of biological effects at multiple levels of biological organization (e.g., molecular, cellular, tissue, organ, organism, population, community, ecosystem) have the potential to enhance the relevance of prospective and retrospective wildlife ERAs. Other factors (e.g., indirect effects of contaminants on food supplies and infectious disease processes) are influenced by toxicants at individual, population, and community levels, and need to be factored into chemically based risk assessments to enhance the "eco" component of ERAs. Regulatory and logistical challenges often relegate such nonstandard endpoints and indirect effects to postregistration evaluations of pesticides and industrial chemicals and contaminated site evaluations. While NAMs are being developed, to date, their applications in ERAs focused on wildlife have been limited. No single magic tool or model will address all uncertainties in hazard assessment. Modernizing wildlife ERAs will likely entail combinations of laboratory- and field-derived data at multiple levels of biological organization, knowledge collection solutions (e.g., systematic review, adverse outcome pathway frameworks), and inferential methods that facilitate integrations and risk estimations focused on species, populations, interspecific extrapolations, and ecosystem services modeling, with less dependence on whole-animal data and simple hazard ratios. Integr Environ Assess Manag 2024;20:725-748. © 2023 His Majesty the King in Right of Canada and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Barnett A Rattner
- US Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, USA
| | | | - Val R Beasley
- College of Veterinary Medicine, University of Illinois at Urbana, Champaign, Illinois, USA
| | | | - Karen M Eisenreich
- US Environmental Protection Agency, Washington, District of Columbia, USA
| | - John E Elliott
- Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Margaret L Eng
- Environment and Climate Change Canada, Dartmouth, Nova Scotia, Canada
| | | | - Mason D King
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | - Jason M O'Brien
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | | |
Collapse
|
3
|
The Impact of Pb from Ammunition on the Vegetation of a Bird Shooting Range. SUSTAINABILITY 2022. [DOI: 10.3390/su14053124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hunting with lead ammunition represents a source of heavy metal pollution to the environment that can be potentially high at the local scale. Intensive hunting of small game species can concentrate high levels of ammunition discharging in small areas. This type of hunting is a relevant economic resource for private landowners in some regions of Spain, and current legislation allows the use of lead ammunition in these scenarios. It becomes, therefore, highly relevant to study whether this activity may pose concerns to the conservation of the environment in the areas where it takes place. Using a red-legged partridge (Alectoris rufa) shooting range as a study area, we examined the effect of intensive hunting on this species on the vegetation present. We found significantly higher lead levels in the sprouts of plants of shooting areas related to control sites of the same property where partridge shooting does not occur. We found differences in the presence of lead between sprouts of different plant species. In addition, old sprouts of existing vegetation in shooting areas also showed higher lead levels than newly emerged sprouts of the same plants. These results demonstrate the impact of lead ammunition on vegetation in terms of persistence over time and differences between species. Further analyses using chemical and ecotoxicological data are necessary to evaluate the extent of environmental pollution risks. Our results provide new support in favor of the use of alternative ammunition, with particular emphasis on scenarios where hunting activity is intensive.
Collapse
|
4
|
Aendo P, Mingkhwan R, Senachai K, Santativongchai P, Thiendedsakul P, Tulayakul P. Health significant alarms of toxic carcinogenic risk consumption of blood meal metals contamination in poultry at a gold mining neighborhood, northern Thailand. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:783-797. [PMID: 34057663 DOI: 10.1007/s10653-021-00971-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The proposes of this study were to compare THg (total mercury), Pb(Lead), Cd(Cadmium), and Mn (Manganese) contamination in poultry blood between polluted areas (≤ 25 km) and unpolluted areas (> 25 km) adjacent to the largest gold mining in northern Thailand. The THg level in the free-grazing duck in polluted areas was significantly higher than unpolluted area. Both THg and Pb levels in free-grazing duck were also highest in polluted areas. In contrast, the level of (Mn) in chicken blood was the highest in polluted areas. Cadmium in farmed duck from polluted areas was significantly higher than unpolluted areas. The target hazard quotient (THQ) and hazard index (HI) of Hg, Pb, Cd, and Mn in all age groups in both areas did not exceed 1, meaning there is no possibility of the non-carcinogenic toxicity. Whereas, the incremental lifetime cancer risk (ILCR) of both Pb and Cd exceeded 1 × 10-4 in all age groups and these were particularly higher in the polluted area and considered to yield significant health effects of increasing the cancer risk. The ILCR in descending order for Pb and Cd was 13-18 years old = 18-35 years old > 6-13 years old = 35-65 years old > 3-6 years old > 65 up years old, respectively. The results revealed that the human cancer risk related to consuming poultry blood contaminated with both Pb and Cd in all age groups must be of concern, especially 13-18 and 18-35 years, it must be recommended to avoid raising animals in contaminated areas, especially free-grazing duck.
Collapse
Affiliation(s)
- Paweena Aendo
- Graduate Student, Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Rachaneekorn Mingkhwan
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | | | - Pitchaya Santativongchai
- Bio-Veterinary Sciences (International Program), Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Piriyaporn Thiendedsakul
- Faculty of Veterinary Medicine, Animal Health and Biomedical Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
5
|
Moreau J, Monceau K, Crépin M, Tochon FD, Mondet C, Fraikin M, Teixeira M, Bretagnolle V. Feeding partridges with organic or conventional grain triggers cascading effects in life-history traits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116851. [PMID: 33711629 DOI: 10.1016/j.envpol.2021.116851] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Farmland birds are declining across Europe and North America and the research of factors behind is the subject of extensive researches. Agricultural intensification is now recognized as a major factor governing the loss of biodiversity with strong evidence that pesticides induced direct bird mortality at a high dose. However, less attention has been given to the long-term effects of chronic exposure to low dose of pesticides. Here, we used an experimental procedure in which grey partridges were fed with untreated grains obtained from either organic (no pesticide) or conventional agriculture (with pesticide) for 26 weeks, thus strictly mimicking wild birds foraging on fields. We then examined a suite of life-history traits (ecophysiological and behavioural) that may ultimately, influence population dynamics. We show for the first time that ingesting low pesticide doses over a long period has long-term consequences on several major physiological pathways without inducing differential mortality. Compared to control partridges, birds exposed to chronic doses i) had less developed carotenoid-based ornaments due to lower concentrations of plasmatic carotenoids, ii) had higher activated immune system, iii) showed signs of physiological stress inducing a higher intestinal parasitic load, iv) had higher behavioural activity and body condition and v) showed lower breeding investment. Our results are consistent with a hormetic effect, in which exposure to a low dose of a chemical agent may induce a positive response, but our results also indicate that breeding adults may show impaired fitness traits bearing population consequences through reduced breeding investment or productivity. Given the current scale of use of pesticides in agrosystems, we suggest that such shifts in life-history traits may have a negative long-term impact on wild bird populations across agrosystems. We stress that long-term effects should no longer be ignored in pesticide risk assessment, where currently, only short-term effects are taken into account.
Collapse
Affiliation(s)
- Jérôme Moreau
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France; Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France.
| | - Karine Monceau
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Malaury Crépin
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Flavie Derouin Tochon
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Cécilia Mondet
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Marie Fraikin
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Maria Teixeira
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Vincent Bretagnolle
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France; LTSER "Zone Atelier Plaine & Val de Sèvre", Villiers-en-Bois, 79360, France
| |
Collapse
|
6
|
Goodchild CG, Beck ML, VanDiest I, Czesak FN, Lane SJ, Sewall KB. Male zebra finches exposed to lead (Pb) during development have reduced volume of song nuclei, altered sexual traits, and received less attention from females as adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111850. [PMID: 33421715 DOI: 10.1016/j.ecoenv.2020.111850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Lead (Pb) is a pervasive global contaminant that interferes with sensitive windows for neurological development and causes oxidative damage to tissues. The effects of moderate and high exposure to Pb have been well-studied in birds, but whether low-level early-life exposure to Pb influences adult phenotype remains unclear. Female songbirds use a male's song and coloration to discriminate between high- and low-quality males. Therefore, if early-life exposure to Pb disrupts song learning ability or shifts the allocation of antioxidant pigments away from colorful secondary sexual traits, male birds exposed to Pb may be less attractive to females. We exposed developing zebra finches (Taeniopygia guttata) to Pb-contaminated drinking water (100 or 1000 parts per billion [ppb]) after hatching (days 0-100). Once male finches reached adulthood (120-150 days post hatch), we measured song learning ability, coloration of bill and cheek patches, and volume of song nuclei in the brain. We also measured female preference for Pb-exposed males relative to control males. Finally, we measured motoric and spatial cognitive performance in male and female finches to assess whether cognitive traits differed in their sensitivity to Pb exposure. Male zebra finches exposed to 1000 ppb Pb had impaired song learning ability, reduced volume of song nuclei, bills with less redness and received less attention from females. Additionally, Pb exposure impaired motoric performance in both male and female finches but did not affect performance in a spatial cognitive task. Adult finches exposed to Pb-contaminated water had higher blood-Pb levels, though in all cases blood-Pb levels were below 7.0 µg dL-1. This study suggests that low-level exposure to Pb contributes to cognitive deficits that persist into adulthood and may indirectly influence fitness by altering secondary sexual traits and reducing male attractiveness.
Collapse
Affiliation(s)
- Christopher G Goodchild
- Virgina Tech, Dept. of Biology, Blacksburg, VA, USA; University of Central Oklahoma, Dept. of Biology, Edmond, OK, USA.
| | - Michelle L Beck
- Virgina Tech, Dept. of Biology, Blacksburg, VA, USA; Rivier University, Dept. of Biology, Nashua, NH, USA
| | | | | | | | | |
Collapse
|
7
|
Espín S, Sánchez-Virosta P. A review of metal-induced effects on vitamins A, E and D3 in birds. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1-16. [PMID: 33151447 DOI: 10.1007/s10646-020-02296-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Birds have been historically affected by metals and are considered powerful sentinels of environmental pollution. Some toxic elements (Pb, Cd, Hg, As) have been broadly studied in avian species and are well known for their accumulation capacity and deleterious effects, including alterations in vitamin levels. Vitamins A, E and D3 are fat-soluble nutrients involved in multiple physiological functions (e.g., immune function, vision, reproduction, growth and development). Publications reporting metal-induced effects on vitamins in birds are growing and, in some cases, results seem contradictory, making them difficult to interpret. Therefore, a clear view of the overall picture is needed. This mini-review article aims to compile relevant data and describe current knowledge on the effects of the most toxic elements (i.e., Pb, Cd, Hg, As) on vitamins A, E and D3 in birds. Although vitamins are diet dependent, they are strongly regulated and transformed in the organism, and metal-related disruption in their homeostasis may provoke alterations in different directions. Moreover, vitamin status and form in vivo is the result of complex interacting processes in the organism and metal exposure may produce cascade effects. Different factors that may contribute to the variable response of vitamins to metals in birds are discussed. Some final remarks and recommendations are provided for future studies. This mini-review shows an overview of the current knowledge in metal-induced alterations in vitamins of special concern for avian ecotoxicology, a research discipline facing important challenges in the coming years.
Collapse
Affiliation(s)
- Silvia Espín
- Area of Toxicology, Department of Socio-Sanitary Sciences, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - Pablo Sánchez-Virosta
- Area of Toxicology, Department of Socio-Sanitary Sciences, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
8
|
Descalzo E, Camarero PR, Sánchez-Barbudo IS, Martinez-Haro M, Ortiz-Santaliestra ME, Moreno-Opo R, Mateo R. Integrating active and passive monitoring to assess sublethal effects and mortality from lead poisoning in birds of prey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142260. [PMID: 33182217 DOI: 10.1016/j.scitotenv.2020.142260] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
The ingestion of lead (Pb) ammunition is the most important exposure pathway to this metal in birds and involve negative consequences to their health. We have performed a passive monitoring of Pb poisoning in birds of prey by measuring liver (n = 727) and blood (n = 32) Pb levels in individuals of 16 species found dead or sick in Spain between 2004 and 2020. We also performed an active monitoring by measuring blood Pb levels and biomarkers of haem biosynthesis, phosphorus (P) and calcium (Ca) metabolism, oxidative stress and immune function in individuals (n = 194) of 9 species trapped alive in the field between 2016 and 2017. Passive monitoring results revealed some species with liver Pb levels associated with severe clinical poisoning (>30 μg/g d.w. of Pb): Eurasian griffon vulture (27/257, 10.5%), red kite (1/132, 0.8%), golden eagle (4/38, 10.5%), and Northern goshawk (1/8, 12.5%). The active monitoring results showed that individuals of bearded vulture (1/3, 33.3%), Eurasian griffon vulture (87/118, 73.7%), Spanish imperial eagle (1/6, 16.7%) and red kite (1/18, 5.6%) had abnormal blood Pb levels (>20 μg/dL). Blood Pb levels increased with age, and both monitoring methods showed seasonality in Pb exposure associated with a delayed effect of the hunting season. In Eurasian griffon, blood Pb concentration was associated with lower δ-ALAD activity in blood and P levels in plasma, and with higher blood lipid peroxidation and plasma carotenoid levels in agreement with other experimental and field studies in Pb-exposed birds. The study reveals that Pb poisoning is a significant cause of death and sublethal effects on haem biosynthesis, P metabolism and oxidative stress in birds of prey in Spain.
Collapse
Affiliation(s)
- Esther Descalzo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Inés S Sánchez-Barbudo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Mónica Martinez-Haro
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain; Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), CIAG del Chaparrillo, 13071 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Rubén Moreno-Opo
- Subdirección General de Biodiversidad Terrestre y Marina, Ministerio para la Transición Ecológica y el Reto Demográfico Pza, San Juan de la Cruz s/n, 28071, Madrid, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| |
Collapse
|
9
|
Trigo S, Gomes ACR, Cardoso SC, Teixeira M, Cardoso GC, Soares MC. Cleaner blues: Condition-dependent colour and cleaner fish service quality. Behav Processes 2020; 181:104246. [DOI: 10.1016/j.beproc.2020.104246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/14/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
|
10
|
Arrondo E, Navarro J, Perez-García JM, Mateo R, Camarero PR, Martin-Doimeadios RCR, Jiménez-Moreno M, Cortés-Avizanda A, Navas I, García-Fernández AJ, Sánchez-Zapata JA, Donázar JA. Dust and bullets: Stable isotopes and GPS tracking disentangle lead sources for a large avian scavenger. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115022. [PMID: 32629306 DOI: 10.1016/j.envpol.2020.115022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Lead intoxication is an important threat to human health and a large number of wildlife species. Animals are exposed to several sources of lead highlighting hunting ammunition and lead that is bioavailable in topsoil. Disentangling the role of each in lead exposure is an important conservation issue, particularly for species potentially affected by lead poisoning, such as vultures. The identification of lead sources in vultures and other species has been classically addressed by means of stable-isotope comparisons, but the extremely varied isotope signatures found in ammunition hinders this identification when it overlaps with topsoil signatures. In addition, assumptions related to the exposure of individual vultures to lead sources have been made without knowledge of the actual feeding grounds exploited by the birds. Here, we combine lead concentration analysis in blood, novel stable isotope approaches to assign the origin of the lead and GPS tracking data to investigate the main foraging grounds of two Iberian griffon vulture populations (N = 58) whose foraging ranges differ in terms of topsoil lead concentration and intensity of big game hunting activity. We found that the lead signature in vultures was closer to topsoil than to ammunition, but this similarity decreased significantly in the area with higher big game hunting activity. In addition, attending to the individual home ranges of the tracked birds, models accounting for the intensity of hunting activity better explained the higher blood lead concentration in vultures than topsoil exposure. In spite of that, our finding also show that lead exposure from topsoil is more important than previously thought.
Collapse
Affiliation(s)
- Eneko Arrondo
- Department of Conservation Biology, Doñana Biological Station-CSIC, Avda. Américo Vespucio, 26, 41092, Seville, Spain; Department of Applied Biology, Miguel Hernández University, Avda. de la Universidad, s/n, 03202 Elche, Alicante, Spain.
| | - Joan Navarro
- Institut de Ciències del Mar-CSIC Passeig Marítim de la Barceloneta, 37-49, E-08003, Barcelona, Spain
| | - Juan Manuel Perez-García
- Department of Applied Biology, Miguel Hernández University, Avda. de la Universidad, s/n, 03202 Elche, Alicante, Spain; Department of Animal Science, Faculty of Life Sciences and Engineering, University of Lleida, Plaza de Victor Siurana, 1, 25198, Lleida, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos Ronda de Toledo, 12 13071, Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos Ronda de Toledo, 12 13071, Ciudad Real, Spain
| | - Rosa C Rodríguez Martin-Doimeadios
- Departamento De Química Analítica y Tecnología de Alimentos, Instituto de Ciencias Ambientales, Universidad de Castilla-LaMancha, Avda. Carlos III s/n, 45071, Toledo, Spain
| | - María Jiménez-Moreno
- Departamento De Química Analítica y Tecnología de Alimentos, Instituto de Ciencias Ambientales, Universidad de Castilla-LaMancha, Avda. Carlos III s/n, 45071, Toledo, Spain
| | - Ainara Cortés-Avizanda
- Animal Demography and Ecology Unit, IMEDEA CSIC-UIB, C. Miquel Marqués 21, 07190, Esporles, Mallorca, Spain
| | - Isabel Navas
- Area of Toxicology, Department of Health Sciences, IMIB-Arrixaca, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Antonio Juan García-Fernández
- Area of Toxicology, Department of Health Sciences, IMIB-Arrixaca, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - José Antonio Sánchez-Zapata
- Department of Applied Biology, Miguel Hernández University, Avda. de la Universidad, s/n, 03202 Elche, Alicante, Spain
| | - José Antonio Donázar
- Department of Conservation Biology, Doñana Biological Station-CSIC, Avda. Américo Vespucio, 26, 41092, Seville, Spain
| |
Collapse
|
11
|
Sánchez-Virosta P, León-Ortega M, Calvo JF, Camarero PR, Mateo R, Zumbado M, Luzardo OP, Eeva T, García-Fernández AJ, Espín S. Blood concentrations of 50 elements in Eagle owl (Bubo bubo) at different contamination scenarios and related effects on plasma vitamin levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115012. [PMID: 32593922 DOI: 10.1016/j.envpol.2020.115012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Some metals and metalloids (e.g. Pb, Hg, Cd and As) are well-known for their bioaccumulation capacity and their toxic effects on birds, but concerns on other minor elements and rare earth elements (ME and REE) are growing due to their intensive use in modern technology and potential toxicity. Vitamins and carotenoids play essential roles in nestling growth and proper development, and are known to be affected by the metals classically considered as toxic. However, we are unaware of any attempts to evaluate the exposure to 50 elements and related effects in plasma vitamins and carotenoids in raptor species. The main goals of this study are: (i) to assess the exposure to 50 elements (i.e. classic toxic elements, trace elements, REE and ME) in nestling Eagle owls (Bubo bubo) inhabiting three differently polluted environments (mining, industrial and control areas) in southeastern Spain, and (ii) to evaluate how element exposure affects plasma vitamin and carotenoid levels, hematocrit and body measurements (mass and wing length) of the individuals. Our results show that local contamination in the mining area contributes to increased blood concentrations of Pb, As and Tl in nestlings, while diet differences between control and mining/industrial areas may account for the different levels of Mn, Zn, and Sr in blood, and lutein in plasma. Plasma tocopherol levels were increased in the mining-impacted environment, which may be a mechanism of protection to prevent toxic element-related oxidative stress. Plasma α-tocopherol was enhanced by 20% at blood Pb concentrations ≥8 ng/ml, and nestlings exhibited up to 56% increase in α-tocopherol levels when blood Pb concentrations reached 170 ng/ml. Tocopherol seems to be a sensitive biomarker under an exposure to certain toxic elements (e.g. Pb, As, Tl).
Collapse
Affiliation(s)
- Pablo Sánchez-Virosta
- Area of Toxicology, Department of Socio-Sanitary Sciences, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - Mario León-Ortega
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - José F Calvo
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku, Finland
| | - Antonio J García-Fernández
- Area of Toxicology, Department of Socio-Sanitary Sciences, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - Silvia Espín
- Area of Toxicology, Department of Socio-Sanitary Sciences, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| |
Collapse
|
12
|
Han B, García‐Mendoza D, van den Berg H, van den Brink NW. Modulatory Effects of Pb 2+ on Virally Challenged Chicken Macrophage (HD-11) and B-Lymphocyte (DT40) Cell Lines In Vitro. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1060-1070. [PMID: 32124477 PMCID: PMC7277059 DOI: 10.1002/etc.4702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 02/25/2020] [Indexed: 05/08/2023]
Abstract
Elevated levels of lead have been found in waterfowl, due to human activities. Lead may cause immunomodulatory effects, but the mechanisms are largely unknown, especially after viral challenges. To characterize avian immunomodulatory hazards of lead (Pb)2+ , we used chicken macrophage (HD-11) and B-lymphocyte (DT40) cell lines, as in vitro models for the innate and adaptive immune systems, respectively. The cells were activated via toll-like receptor-3 by polyinosinic-polycytidylic acid sodium salt (poly I:C), mimicking viral infections. Our results indicate that Pb2+ is cytotoxic to both cell lines, macrophages being more sensitive. De novo synthesis of glutathione plays an important role in protecting macrophages from Pb2+ intoxication, which might also be closely involved in the induction of nitric oxide after Pb2+ exposure. Stimulatory effects on cell proliferation were noticed at noncytotoxic Pb2+ concentrations as well. Exposure to Pb2+ could also affect the inflammatory status by inhibiting the pro-inflammatory interferon (IFN)-γ while promoting the production of anti-inflammatory type I IFNs in both macrophages and B-cells, and increasing intracellular IgM levels in B-cells. These results suggest that the immunomodulatory effects of Pb2+ in birds are probably closely associated with disruption of immune cell proliferation and cytokine production, potentially causing disorders of the avian immune system. Environ Toxicol Chem 2020;39:1060-1070. © 2020 SETAC.
Collapse
Affiliation(s)
- Biyao Han
- Division of ToxicologyWageningen University and ResearchWageningenThe Netherlands
| | - Diego García‐Mendoza
- Division of ToxicologyWageningen University and ResearchWageningenThe Netherlands
| | - Hans van den Berg
- Division of ToxicologyWageningen University and ResearchWageningenThe Netherlands
| | | |
Collapse
|
13
|
Vallverdú-Coll N, Mateo R, Mougeot F, Ortiz-Santaliestra ME. Immunotoxic effects of lead on birds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:505-515. [PMID: 31279197 DOI: 10.1016/j.scitotenv.2019.06.251] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/04/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
The ingestion of lead (Pb) shot pellets is a well-known cause of avian mortality, but exposure of birds to Pb may have other sublethal effects that can affect population sustainability. One of these effects is the alteration of the immunological status. Pb can affect most components of the avian immune system and imbalance the relationship among them. Pb exposure typically alters the ratio between Th1- and Th2-type responses mounted by different classes of T-lymphocytes, causing the depression of the Th1 responses that are associated with cell-mediated immunity. Immunodepressing effects of Pb on birds are observed at blood levels above 50 μg dL-1, but developing birds show immunodepressing effects at much lower concentrations (> 10 μg dL-1). Impacts of Pb on the avian immune system also relate to reduced resistance to infection. We review immunotoxic effects of Pb on birds affected by shot ingestion as well as by other sources of exposure to this element.
Collapse
Affiliation(s)
- Núria Vallverdú-Coll
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| |
Collapse
|
14
|
Pain DJ, Mateo R, Green RE. Effects of lead from ammunition on birds and other wildlife: A review and update. AMBIO 2019; 48:935-953. [PMID: 30879267 PMCID: PMC6675766 DOI: 10.1007/s13280-019-01159-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/22/2019] [Accepted: 02/04/2019] [Indexed: 05/14/2023]
Abstract
Poisoning of wild birds following ingestion of lead from ammunition has long been recognised and considerable recent research has focused on terrestrial birds, including raptors and scavengers. This paper builds upon previous reviews and finds that both the number of taxa affected and geographical spread of cases has increased. Some lead may also be absorbed from embedded ammunition fragments in injured birds which risk sub-lethal and welfare effects. Some papers suggest inter-specific differences in sensitivity to lead, although it is difficult to disentangle these from other factors that influence effect severity. Sub-lethal effects have been found at lower blood lead concentrations than previously reported, suggesting that previous effect-level 'thresholds' should be abandoned or revised. Lead poisoning is estimated to kill a million wildfowl a year in Europe and cause sub-lethal poisoning in another ≥ 3 million. Modelling and correlative studies have supported the potential for population-level effects of lead poisoning in wildfowl, terrestrial birds, raptors and scavengers.
Collapse
Affiliation(s)
- Deborah J. Pain
- Department of Zoology, University of Cambridge, David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ UK
- Wildfowl & Wetlands Trust, Slimbridge, Gloucestershire GL2 7BT UK
| | - Rafael Mateo
- Toxicología de Fauna Silvestre, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Rhys E. Green
- Department of Zoology, University of Cambridge, David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ UK
| |
Collapse
|
15
|
Rodríguez-Estival J, Sánchez MI, Ramo C, Varo N, Amat JA, Garrido-Fernández J, Hornero-Méndez D, Ortiz-Santaliestra ME, Taggart MA, Martinez-Haro M, Green AJ, Mateo R. Exposure of black-necked grebes (Podiceps nigricollis) to metal pollution during the moulting period in the Odiel Marshes, Southwest Spain. CHEMOSPHERE 2019; 216:774-784. [PMID: 30391900 DOI: 10.1016/j.chemosphere.2018.10.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
European populations of black-necked grebes (Podiceps nigricollis) congregate every year to moult at the salt ponds of the Odiel Marshes (SW Spain). However, the Odiel Marshes are part of one of the most metal-polluted coastal estuaries in the world, which may pose risks to wildlife. We assessed the exposure of grebes to metal pollution during the critical moulting period in the Odiel Marshes and its potential to cause adverse health effects. Levels of metals in red blood pellet (as a biomarker of exposure), plasma carotenoids, eye redness, and body condition (as biomarkers of effects) were studied. Metal content was also analyzed in the brine shrimp Artemia parthenogenetica, the most important food for grebes in this hypersaline ecosystem during the moulting period. Results showed that, in comparison to toxicity thresholds, grebes had relatively high blood levels of arsenic (As), mercury (Hg) and zinc (Zn). The high loads found in Artemia and the way blood levels vary during the moulting period indicate that shrimp consumption may be the main route of metal exposure for grebes. Plasma carotenoids and body condition showed a positive association with exposure to As, while the relationship of lutein-like carotenoids with Hg accumulation was negative at the beginning of the moulting period to become positive afterwards. Moreover, eye redness was negatively affected by As accumulation. Factors including food resource availability, seasonal fluctuations in physiological status, and interannual variations in the degree of environmental contamination should be considered in monitoring efforts when using moult migrant waterbirds as sentinel species.
Collapse
Affiliation(s)
- Jaime Rodríguez-Estival
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Marta I Sánchez
- Estación Biológica de Doñana (EBD - CSIC), Calle Américo Vespucio 26, 41092 Seville, Spain; Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional/Global del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain.
| | - Cristina Ramo
- Estación Biológica de Doñana (EBD - CSIC), Calle Américo Vespucio 26, 41092 Seville, Spain.
| | - Nico Varo
- Estación Biológica de Doñana (EBD - CSIC), Calle Américo Vespucio 26, 41092 Seville, Spain.
| | - Juan A Amat
- Estación Biológica de Doñana (EBD - CSIC), Calle Américo Vespucio 26, 41092 Seville, Spain.
| | - Juan Garrido-Fernández
- Instituto de la Grasa (IG - CSIC), Campus Universitario Pablo Olavide, Edificio 46, 41013 Seville, Spain.
| | - Dámaso Hornero-Méndez
- Instituto de la Grasa (IG - CSIC), Campus Universitario Pablo Olavide, Edificio 46, 41013 Seville, Spain.
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Mark A Taggart
- Environmental Research Institute, University of the Highlands and Islands, Castle St, Thurso, Scotland, KW14 7JD, UK.
| | - Mónica Martinez-Haro
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Andy J Green
- Estación Biológica de Doñana (EBD - CSIC), Calle Américo Vespucio 26, 41092 Seville, Spain.
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| |
Collapse
|
16
|
Prüter H, Franz M, Auls S, Czirják GÁ, Greben O, Greenwood AD, Lisitsyna O, Syrota Y, Sitko J, Krone O. Chronic lead intoxication decreases intestinal helminth species richness and infection intensity in mallards (Anas platyrhynchos). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:151-160. [PMID: 29981515 DOI: 10.1016/j.scitotenv.2018.06.297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/23/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
Lead (Pb) pollution of aquatic habitats is a known threat to vertebrate health. Depending on Pb dosage, resulting symptoms can be chronic (sublethal) or acute (lethal). While acute exposure results in death of the animal, chronic sublethal exposure can also have consequences, reproduction, antioxidant defense and immunity being the most affected traits. While a great deal is known about Pb intoxication on avian health, relatively little is known about how intoxication impacts parasites dependent on their avian hosts. The effect of Pb on intestinal helminth species richness and infection intensity was investigated in mallards (Anas platyrhynchos, n = 100) from German waters. Coracoid bones were used to measure chronic Pb exposure. Intestinal helminths were characterized morphologically. Molecular approaches were also applied to identify poorly morphologically preserved parasites to obtain sequence data (cox1 gene) for species identification and future parasitological studies. Parasite species richness and infection intensity was found to be significantly lower in birds with higher chronic Pb levels suggesting both host and parasites respond to Pb exposure. Altered immune modulation in the avian host may be the underlying mechanisms of Pb triggered decrease of parasites. However, it also likely reflects differences in the susceptibility of different helminths to Pb. Cestode and acanthocephala species richness were particularly impacted by Pb exposure. We conclude that, Pb intoxication may both negatively impact avian host and parasite diversity in aquatic habitats.
Collapse
Affiliation(s)
- Hanna Prüter
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany.
| | - Mathias Franz
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Susanne Auls
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Gábor Á Czirják
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Oksana Greben
- National Academy of Sciences of Ukraine, I. I. Schmalhausen Institute of Zoology, Vul. B. Khmelnytskogo, 15, 01030 Kiev, Ukraine
| | - Alex D Greenwood
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany; Freie Universität Berlin, Department of Veterinary Medicine, Berlin, Germany
| | - Olga Lisitsyna
- National Academy of Sciences of Ukraine, I. I. Schmalhausen Institute of Zoology, Vul. B. Khmelnytskogo, 15, 01030 Kiev, Ukraine
| | - Yaroslav Syrota
- National Academy of Sciences of Ukraine, I. I. Schmalhausen Institute of Zoology, Vul. B. Khmelnytskogo, 15, 01030 Kiev, Ukraine; Kyiv Zoological Park of National Importance, prosp. Peremohy, 32, Kyiv 04116, Ukraine
| | - Jilji Sitko
- Komenský Museum, Horní nám. 7, 750 11 Přerov 2, Czech Republic
| | - Oliver Krone
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| |
Collapse
|
17
|
Kanstrup N, Swift J, Stroud DA, Lewis M. Hunting with lead ammunition is not sustainable: European perspectives. AMBIO 2018; 47:846-857. [PMID: 29532401 PMCID: PMC6230327 DOI: 10.1007/s13280-018-1042-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/02/2018] [Accepted: 02/28/2018] [Indexed: 05/18/2023]
Abstract
Much evidence demonstrates the adverse effects of lead ammunition on wildlife, their habitats and human health, and confirms that the use of such ammunition has no place within sustainable hunting. We identify the provisions that define sustainable hunting according to European law and international treaties, together with their guidance documents. We accept the substantial evidence for lead's actual and potential effects on wildlife, habitats and health as persuasive and assess how these effects relate to stated provisions for sustainability and hunting. We evaluate how continued use of lead ammunition negatively affects international efforts to halt loss of biodiversity, sustain wildlife populations and conserve their habitats. We highlight the indiscriminate and avoidable health and welfare impacts for large numbers of exposed wild animals as ethically unsustainable. In societal terms, continued use of lead ammunition undermines public perceptions of hunting. Given the existence of acceptable, non-toxic alternatives for lead ammunition, we conclude that hunting with lead ammunition cannot be justified under established principles of public/international policy and is not sustainable. Changing from lead ammunition to non-toxic alternatives will bring significant nature conservation and human health gains, and from the hunter's perspective will enhance societal acceptance of hunting. Change will create opportunities for improved constructive dialogue between hunting stakeholders and others engaged with enhancing biodiversity and nature conservation objectives.
Collapse
Affiliation(s)
- Niels Kanstrup
- Institute for Bioscience - Kalø, Aarhus University, Grenåvej 14, 8410, Rønde, Denmark.
| | - John Swift
- John Swift Consultancy - Higher Wych, Malpas, Cheshire, SY14 7JS, UK
| | - David A Stroud
- Joint Nature Conservation Committee, Monkstone House, Peterborough, PE1 1JY, UK
| | - Melissa Lewis
- Department of European and International Public Law, Tilburg University, Warandelaan 2, 5037AB, Tilburg, Netherlands
- School of Law, University of KwaZulu-Natal, King George V Ave, Durban, 4041, ZA, South Africa
| |
Collapse
|
18
|
Andreotti A, Guberti V, Nardelli R, Pirrello S, Serra L, Volponi S, Green RE. Economic assessment of wild bird mortality induced by the use of lead gunshot in European wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1505-1513. [PMID: 28648373 DOI: 10.1016/j.scitotenv.2017.06.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 05/18/2023]
Abstract
In European wetlands, at least 40 bird species are exposed to the risk of lead poisoning caused by ingestion of spent lead gunshot. Adopting a methodology developed in North America, we estimated that about 700,000 individuals of 16 waterbird species die annually in the European Union (EU) (6.1% of the wintering population) and one million in whole Europe (7.0%) due to acute effects of lead poisoning. Furthermore, threefold more birds suffer sub-lethal effects. We assessed the economic loss due to this lead-induced mortality of these 16 species by calculating the costs of replacing lethally poisoned wild birds by releasing captive-bred ones. We assessed the cost of buying captive-bred waterbirds for release from market surveys and calculated how many captive-bred birds would have to be released to compensate for the loss, taking into account the high mortality rate of captive birds (72.7%) in the months following release into the wild. Following this approach, the annual cost of waterbird mortality induced by lead shot ingestion is estimated at 105 million euros per year in the EU countries and 142 million euros in the whole of Europe. An alternative method, based upon lost opportunities for hunting caused by deaths due to lead poisoning, gave similar results of 129 million euros per year in the EU countries and 185 million euros per year in the whole of Europe. For several reasons these figures should be regarded as conservative. Inclusion of deaths of species for which there were insufficient data and delayed deaths caused indirectly by lead poisoning and effects on reproduction would probably increase the estimated losses substantially. Nevertheless, our results suggest that the benefits of a restriction on the use of lead gunshot over wetlands could exceed the cost of adapting to non-lead ammunition.
Collapse
Affiliation(s)
- Alessandro Andreotti
- ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Ca' Fornacetta 9, 40064 Ozzano Emilia, Italy.
| | - Vittorio Guberti
- ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Ca' Fornacetta 9, 40064 Ozzano Emilia, Italy
| | - Riccardo Nardelli
- ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Ca' Fornacetta 9, 40064 Ozzano Emilia, Italy
| | - Simone Pirrello
- ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Ca' Fornacetta 9, 40064 Ozzano Emilia, Italy
| | - Lorenzo Serra
- ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Ca' Fornacetta 9, 40064 Ozzano Emilia, Italy
| | - Stefano Volponi
- ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Ca' Fornacetta 9, 40064 Ozzano Emilia, Italy
| | - Rhys E Green
- Conservation Science Group, Department of Zoology, University of Cambridge, David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, UK; RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire, SG19 2DL, UK
| |
Collapse
|
19
|
Williams RJ, Tannenbaum LV, Williams SM, Holladay SD, Tuckfield RC, Sharma A, Humphrey DJ, Gogal RM. Ingestion of a Single 2.3 mm Lead Pellet by Laying Roller Pigeon Hens Reduces Egg Size and Adversely Affects F1 Generation Hatchlings. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:513-521. [PMID: 28488006 DOI: 10.1007/s00244-017-0406-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/12/2017] [Indexed: 05/27/2023]
Abstract
Many aquatic and terrestrial avian species inadvertently ingest lead (Pb) in the form of spent or fragmented ammunition, mistaking it for food or grit. Previous studies in our laboratory have shown that ingestion of even a single 45-mg pellet can significantly increase blood-Pb levels and significantly inhibit the enzyme delta aminolevulinic-acid dehydratase (δ-ALAD) for a period of greater than 4 weeks. In the current study, proven breeder pairs of domestic Roller pigeons were housed in individual cages. The hens were orally gavaged with dH2O vehicle, a single #9 Pb pellet (2.0 mm/45 mg) or a single #7.5 Pb pellet (2.3 mm/95 mg), placed back with the cock bird and allowed to mate for two consecutive clutches. The eggs were monitored for fertilization, shell damage, egg weight, and length during the 16- to 18-day incubation period. Hatchlings remained with the hen and cock through the weaning period (28-35 days post hatch) and were monitored for weight, development, and mortality. Weanling blood was collected for blood-Pb levels, δ-ALAD activity, red blood cell counts, total protein, and packed cell volume. Following euthanasia, weanling liver, spleen, kidney, sciatic nerve, thymus, and brain were collected for histopathology. Egg weight and length were significantly decreased in the #7.5 Pb pellet treatment group for the first clutch, and hatchling weight 7 days post hatch also was significantly less in the #7.5 Pb pellet treatment group during the first clutch. Histopathologic analysis showed increased lesions in liver, kidney, spleen, and thymus of the Pb-treated weanlings, during both the first and second clutch compared with the non-Pb-treated weanlings. These data suggest that maternal consumption of a single 95-mg Pb pellet can adversely impact egg size and hatchling organ development.
Collapse
Affiliation(s)
- Robert J Williams
- Department of Veterinary Biosciences and Diagnostic Imagining, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | | | - Susan M Williams
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Steven D Holladay
- Department of Veterinary Biosciences and Diagnostic Imagining, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | | | - Ajay Sharma
- Department of Veterinary Biosciences and Diagnostic Imagining, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | | | - Robert M Gogal
- Department of Veterinary Biosciences and Diagnostic Imagining, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
20
|
Sebastiano M, Eens M, Angelier F, Pineau K, Chastel O, Costantini D. Corticosterone, inflammation, immune status and telomere length in frigatebird nestlings facing a severe herpesvirus infection. CONSERVATION PHYSIOLOGY 2017; 5:cow073. [PMID: 28070333 PMCID: PMC5214968 DOI: 10.1093/conphys/cow073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/29/2016] [Accepted: 12/09/2016] [Indexed: 05/16/2023]
Abstract
Herpesvirus outbreaks are common in natural animal populations, but little is known about factors that favour the infection and its consequences for the organism. In this study, we examined the pathophysiological consequences of a disease probably attributable to herpesvirus infection for several markers of immune function, corticosterone, telomere length and inflammation. In addition, we assessed whether any markers used in this study might be associated with the occurrence of visible clinical signs of the disease and its impact on short-term survival perspectives. To address our questions, in spring 2015, we collected blood samples from nestlings of the magnificent frigatebird (Fregata magnificens) that were free of any clinical signs or showed visible signs of the disease. We found that the plasma concentration of haptoglobin was strongly associated with the infection status and could predict probabilities of survival. We also found that nestlings with clinical signs had lower baseline corticosterone concentrations and similar telomere length compared with healthy nestlings, whereas we did not find any association of the infection status with innate immune defenses or with nitric oxide concentration. Overall, our results suggest that the plasma concentration of haptoglobin might be a valuable tool to assess survival probabilities of frigatebird nestlings facing a herpesvirus outbreak.
Collapse
Affiliation(s)
- Manrico Sebastiano
- Behavioural Ecology and Ecophysiology group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Corresponding author:Behavioural Ecology and Ecophysiology group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium. Tel: +32484566385.
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR7372 – CNRS/Université La Rochelle, F-79360, France
| | - Kévin Pineau
- Groupe d'Etude et de Protection des Oiseaux en Guyane (GEPOG), 15 Avenue Pasteur 97300 Cayenne, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR7372 – CNRS/Université La Rochelle, F-79360, France
| | - David Costantini
- Behavioural Ecology and Ecophysiology group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
- UMR 7221, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75231 Paris cedex 05, France
| |
Collapse
|
21
|
Vallverdú-Coll N, Mougeot F, Ortiz-Santaliestra ME, Castaño C, Santiago-Moreno J, Mateo R. Effects of Lead Exposure on Sperm Quality and Reproductive Success in an Avian Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12484-12492. [PMID: 27753482 DOI: 10.1021/acs.est.6b04231] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Lead (Pb) poisoning via ingestion of shot pellets is a frequent cause of death in wild birds and also has a wide range of subclinical effects. Here we report on the sublethal effects Pb exposure has on the breeding performance of red-legged partridges (Alectoris rufa). We studied the effects of Pb exposure on sperm quality, reproductive success, egg properties, laying performance, antioxidant levels, and carotenoid-based coloration. Birds were exposed by oral gavage to one or three No. 6 Pb shot pellets (2.8 mm in diameter, mean mass ± SD: 109 ± 7.97 mg). We show that exposure to three pellets (330 mg) reduced the hatching rate of females and decreased the acrosome integrity and sperm motility of males. In addition, females exposed to 1 pellet (110 mg) produced heavier eggs and chicks, whereas males exposed to 1 pellet presented an increase in sperm vigor. Sperm viability, concentration, progressiveness or fecundation rate were not affected by Pb treatment. Pb exposure increased circulating antioxidant levels in males, whereas the percentage of carotenoid-pigmented eye-ring area decreased in exposed females. Several sperm parameters showed positive relationships with coloration and antioxidant levels, suggesting that males displaying redder ornaments may be more capable of protecting sperm from oxidative stress in the event of sublethal Pb exposure.
Collapse
Affiliation(s)
- Núria Vallverdú-Coll
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Cristina Castaño
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Dpto. Reproducción Animal, 28040 Madrid, Spain
| | - Julián Santiago-Moreno
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Dpto. Reproducción Animal, 28040 Madrid, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| |
Collapse
|
22
|
Provencher JF, Forbes MR, Hennin HL, Love OP, Braune BM, Mallory ML, Gilchrist HG. Implications of mercury and lead concentrations on breeding physiology and phenology in an Arctic bird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:1014-1022. [PMID: 27567168 DOI: 10.1016/j.envpol.2016.08.052] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/18/2016] [Accepted: 08/21/2016] [Indexed: 05/13/2023]
Abstract
Although physiological traits and phenology are thought to be evolved traits, they often show marked variation within populations, which may be related to extrinsic factors. For example, trace elements such as mercury (Hg) and lead (Pb) alter biochemical processes within wildlife that may affect migration and breeding. While there is a growing understanding of how contaminants may influence wildlife physiology, studies addressing these interactions in free-living species are still limited. We examined how four non-essential trace elements (cadmium, Hg, Pb and selenium) interacted with physiological and breeding measures known to influence breeding in a free-living population of common eider ducks (Somateria mollissima). We collected blood from female eiders as they arrived at a breeding colony in northern Canada. Blood was subsequently assessed for baseline corticosterone (CORT), immunoglobulin Y (IgY), and the four trace elements. We used model selection to identify which elements varied most with CORT, IgY, arrival condition, and arrival timing. We then used path analysis to assess how the top two elements from the model selection process (Hg and Pb) varied with metrics known to influence reproduction. We found that arrival date, blood Hg, CORT, and IgY showed significant inter-annual variation. While blood Pb concentrations were low, blood Pb levels significantly increased with later arrival date of the birds, and varied negatively with eider body condition, suggesting that even at low blood concentrations, Pb may be related to lower investment in reproduction in eiders. In contrast, blood Hg concentrations were positively correlated with eider body condition, indicating that fatter birds also had higher Hg burdens. Overall, our results suggest that although blood Hg and Pb concentrations were below no-effect levels, these low level concentrations of known toxic metals show significant relationships with breeding onset and condition in female eider ducks, factors that could influence reproductive success in this species.
Collapse
Affiliation(s)
- J F Provencher
- Department of Biology, Carleton University, Ottawa, ON, Canada.
| | - M R Forbes
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - H L Hennin
- Department of Biological Sciences and Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - O P Love
- Department of Biological Sciences and Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - B M Braune
- WLSD, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - M L Mallory
- Department of Biology, Acadia University, Wolfville, NS, Canada
| | - H G Gilchrist
- WLSD, Environment and Climate Change Canada, Ottawa, ON, Canada
| |
Collapse
|
23
|
Marasco V, Costantini D. Signaling in a Polluted World: Oxidative Stress as an Overlooked Mechanism Linking Contaminants to Animal Communication. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00095] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|