1
|
Zhang YT, Zeeshan M, Fan YY, Tan WH, Zhao K, Liang LX, Huang JW, Zhou JX, Guo LH, Lin LZ, Liu RQ, Zeng XW, Dong GH, Chu C. Isomer of per- and polyfluoroalkyl substances and red blood cell indices in adults: The Isomers of C8 Health Project in China. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2024; 79:153-165. [PMID: 39219509 DOI: 10.1080/19338244.2024.2396927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to explore the isomer-specific, sex-specific, and joint associations of PFAS and red blood cell indices. We used data of 1,238 adults from the Isomers of C8 Health Project in China. Associations of PFAS isomers and red blood cell indices were explored using multiple linear regression models, Bayesian Kernel Machine Regression models and subgroup analysis across sex. We found that serum concentration of linear (n-) and branched (Br-) isomers of perfluorooctane sulfonate (PFOS) and perfluorohexanesulfonic acid (PFHxS) were significantly associated with red blood cell indices in single-pollutant models, with stronger associations observed for n-PFHxS than Br-PFHxS, in women than in men. For instance, the estimated percentage change in hemoglobin concentration for n-PFHxS (3.65%; 95% CI: 2.95%, 4.34%) was larger than that for Br-PFHxS (0.96%; 95% CI: 0.52%, 1.40%). The estimated percentage change in red blood cell count for n-PFHxS in women (2.55%; 95% CI: 1.81%, 3.28%) was significantly higher than that in men (0.12%; 95% CI: -1.04%, 1.29%) (Pinter < 0.001). Similarly, sex-specific positive association of PFAS mixture and outcomes was observed. Therefore, the structure, susceptive population, and joint effect of PFAS isomers should be taken into consideration when evaluating the health risk of chemicals.
Collapse
Affiliation(s)
- Yun-Ting Zhang
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Mohammed Zeeshan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Yuan-Yuan Fan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Wei-Hong Tan
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Kun Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Li-Xia Liang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Jing-Wen Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Jia-Xin Zhou
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Li-Hao Guo
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Li-Zi Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Ru-Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Xiao-Wen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Guang-Hui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou, China
| | - Chu Chu
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
2
|
Ye MX, Luo XJ, Liu Y, Zhu CH, Feng QJ, Zeng YH, Mai BX. Sex-Specific Bioaccumulation, Maternal Transfer, and Tissue Distribution of Legacy and Emerging Per- and Polyfluoroalkyl Substances in Snakes ( Enhydris chinensis) and the Impact of Pregnancy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4481-4491. [PMID: 36881938 DOI: 10.1021/acs.est.2c09063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The effects of sex and pregnancy on the bioaccumulation and tissue distribution of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in Chinese water snakes were investigated. The bioaccumulation factor of PFASs showed a positive correlation with their protein-water partition coefficients (log KPW), and steric hindrance effects were observed when the molecular volume was > 357 Å3. PFAS levels in females were significantly lower than those in males. The chemical composition of pregnant females was significantly different from that of non-pregnant females and males. The maternal transfer efficiencies of perfluorooctane sulfonic acid were higher than those of other PFASs, and a positive correlation between the maternal transfer potential and log KPW was observed for other PFASs. Tissues with high phospholipid content exhibited higher concentrations of ∑PFASs. Numerous physiological changes occurred in maternal organ systems during pregnancy, leading to the re-distribution of chemicals among different tissues. The change in tissue distribution of PFASs that are easily and not-so-easily maternally transferred was in the opposite direction. The extent of compound transfer from the liver to the egg determined tissue re-distribution during pregnancy.
Collapse
Affiliation(s)
- Mei-Xia Ye
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Chu-Hong Zhu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qun-Jie Feng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
3
|
Gao Y, Song B, He A, Liu C, Lu Y, Li J, Fu J, Liang Y, Wang Y. Isomer-specific perfluoroalkyl acids accumulation, excretion and maternal transfer to eggs in chickens around a fluorochemical manufactory in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161125. [PMID: 36581275 DOI: 10.1016/j.scitotenv.2022.161125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The co-existing of multiple Per- and polyfluoroalkyl substances (PFASs) might pose more complicated situation for the exposure risk of environment and biota, especially for the surrounding area of the contaminated communities. In this study, tissues and organs of free-ranged chickens, paired eggs, corresponding feces, water, soil/dust, and feed samples around a fluorochemical manufactory were collected to investigate the tissue-isomer-specific accumulation, elimination and maternal transfer to eggs of PFASs. Free-ranged chickens had much higher ∑PFASs concentrations than farm chickens, and PFBA and PFOS were the predominant PFASs in tissues and organs, which is consistence with the electrochemical fluorination (ECF) production pattern of this manufactory. This result implied that PFASs released from manufactory production is a direct exposure source to the chickens. ∑PFASs concentrations in yolk samples were higher than other tissues and organs, while the concentrations in albumen were lowest. Isomer profiles analysis indicated that n-PFOS proportions in tissues, organs, yolk, and albumen ranged from 85.3 %-98.1 %, whereas in the feces with the percentage of 72.9 %, indicating that the branched PFOS isomers showed faster excretion rate than n-PFOS for chickens. Resident's estimated daily intakes (EDIs) of ∑PFASs via chicken were in the range of 6.41 to 107.18 ng/kg·bw/d. Notably, the EDIs of the sum of four PFASs were higher than the TDI of EFSA in 2020, indicating potential health risks.
Collapse
Affiliation(s)
- Yan Gao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Boyu Song
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment of the China, Beijing 100035, China
| | - Anen He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chao Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yao Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
4
|
Zhang Q, Hu S, Dai W, Gu S, Ying Z, Wang R, Lu C. The partitioning and distribution of neonicotinoid insecticides in human blood. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121082. [PMID: 36681375 DOI: 10.1016/j.envpol.2023.121082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The burden of neonicotinoid insecticides (neonics) in humans has attracted widespread attention in recent years due to the potential adverse effects. Nonetheless, information on the partitioning behavior and distribution in human blood is still limited. Herein, we obtained 115 adult whole blood and plasma specimens for analysis of eight neonics to better understand neonics' partitioning and distribution in human blood. At least one neonic was detected in 49.6% of the red blood cells and 55.7% of the plasma. In red blood cells, the highest detection rate and concentration was thiamethoxam (THI) with 19.1% and 3832 ng/L, respectively. Imidacloprid had the highest detection rate with 26.1% in the plasma. The mass fraction (Fp) of neonics detected indicates that thiacloprid, imidacloprid, and dinotefuran are mostly resided in plasma upon entering into human blood, while thiamethoxam is mostly present in red blood cells. The distribution of clothianidin and acetamiprid between plasma and red blood cells is similar. The mass fraction (Fp) values for THI were significantly different compared to other neonics, and the effect of age and gender on THI partitioning concluded that there may not be significant variability in the distribution of THI in the sampled population. Overall, this study was the first to investigate neonics residuals in red blood cells and provided fundamental information on the partitioning and distribution of neonics in human blood.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Shitao Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Wei Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Zeteng Ying
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Rui Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Chensheng Lu
- College of Resources and Environment, Southwest University, Chongqing, 400716, PR China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, WA 98195, USA.
| |
Collapse
|
5
|
Nilsson S, Thompson J, Mueller JF, Bräunig J. Apparent Half-Lives of Chlorinated-Perfluorooctane Sulfonate and Perfluorooctane Sulfonate Isomers in Aviation Firefighters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17052-17060. [PMID: 36367310 DOI: 10.1021/acs.est.2c04637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Elevated levels of perfluorooctane sulfonate (PFOS) and elevated detection frequency of chloro-substituted PFOS have been reported in Australian firefighters with historical exposure to aqueous-film forming foam (AFFF). The aim of this study is to estimate the apparent half-lives of Cl-PFOS and PFOS isomers in firefighters following the end of exposure to 3M-AFFF. Paired serum samples from 120 firefighters, collected approximately five years apart, were analyzed for 8-Cl-PFOS (8-chloroperfluoro-1-octanesulfonic acid) and PFOS isomers via targeted LC-MS/MS. Apparent half-life was estimated by assuming a first order-elimination model. Cl-PFOS was detected in 93% of all initial serum samples (<LOQ-1.09 ng/mL). The average half-life of Cl-PFOS among the firefighters was 5.0 years. Branched PFOS isomers made up 55% of the total isomer concentration at the initial sampling timepoint. Five years later, the proportion of branched PFOS isomers was greater (65%). The longest average half-life (11.5 years) was estimated for "1m-PFOS". Other isomers had average half-lives ranging from 4.0 to 7.5 years. Marked differences in half-lives between PFOS isomers suggest that the elimination rate of "total PFOS" (sum of all PFOS isomers) is non-linear. This is the first study to report the serum concentrations and apparent half-life of Cl-PFOS in humans.
Collapse
Affiliation(s)
- Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland4102, Australia
| | - Jack Thompson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland4102, Australia
- Organic Chemistry, Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, Queensland4108, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland4102, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland4102, Australia
| |
Collapse
|
6
|
Lai TT, Kuntz D, Wilson AK. Molecular Screening and Toxicity Estimation of 260,000 Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) through Machine Learning. J Chem Inf Model 2022; 62:4569-4578. [PMID: 36154169 DOI: 10.1021/acs.jcim.2c00374] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of chemicals widely used in industrial applications due to their exceptional properties and stability. However, they do not readily degrade in the environment and are linked to contamination and adverse health effects in humans and wildlife. To find alternatives for the most commonly used PFAS molecules that maintain their desirable chemical properties but are not adverse to biological lifeforms, a novel approach based upon machine learning is utilized. The machine learning model is trained on an existing set of PFAS molecules to generate over 260,000 novel PFAS molecules, which we dub PFAS-AI-Gen. Using molecular descriptors with known relationships to toxicity and industrial suitability followed by molecular docking and molecular dynamics simulations, this set of molecules is screened. In this manner, increasingly complex calculations are performed only for candidate molecules that are most likely to yield the desired properties of low binding affinity toward two selected protein receptors, the human pregnane x receptor (hPXR) and peroxisome proliferator-activated receptor γ (PPAR-γ), and high industrial suitability, defined by critical micelle concentration (CMC). The selection criteria of low binding affinity and high industrial suitability are relative to the popular PFAS alternative GenX. hPXR and PPAR-γ are selected as they are PFAS targets and facilitate a variety of functions, such as drug metabolism and glucose regulation, respectively. Through this approach, 22 promising new PFAS substitutes that may warrant experimental investigation are identified. This integrated approach of molecular screening and toxicity estimation may be applicable to other chemical classes.
Collapse
Affiliation(s)
- Thanh T Lai
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - David Kuntz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| |
Collapse
|
7
|
Zeeshan M, Zhang YT, Yu S, Huang WZ, Zhou Y, Vinothkumar R, Chu C, Li QQ, Wu QZ, Ye WL, Zhou P, Dong P, Zeng XW, Hu LW, Yang BY, Shen X, Zhou Y, Dong GH. Exposure to isomers of per- and polyfluoroalkyl substances increases the risk of diabetes and impairs glucose-homeostasis in Chinese adults: Isomers of C8 health project. CHEMOSPHERE 2021; 278:130486. [PMID: 34126693 DOI: 10.1016/j.chemosphere.2021.130486] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) exposure has been linked to diabetes, but evidence on the association of isomers of PFAS with type 2 diabetes (T2D) remains scant. This population based cross-sectional study aimed to investigate associations between serum PFAS isomers, glucose-homeostasis markers and T2D, adjusted for multiple potential confounders. We used data from "Isomers of C8 Health Project in China" from July 2015 to October 2016. A total of 10 PFAS including isomers of PFOS and PFOA were measured in serum of 1045 Chinese adults. Fasting blood glucose, fasting insulin, homeostasis model of insulin (HOMA-IR) and beta cell function (HOMA-β) were considered as markers of glucose-homeostasis. We found significant positive associations between serum PFAS isomers and glucose-homeostasis markers, namely, fasting blood glucose, fasting insulin and HOMA-IR. Per log-unit increase in branched (br)-PFOS concentration was associated with increased fasting blood glucose (β = 0.25, 95% CI: 0.18, 0.33), fasting insulin (β = 2.19, 95% CI: 1.44, 2.93) and HOMA-IR (β = 0.69, 95% CI: 0.50, 0.89). As compared to br-PFOS, linear (n)-PFOS and -PFOA showed lesser significant associations with glucose-homeostasis makers. Further, exposure to all PFAS including isomeric PFOS, PFOA and PFHxS increased the risk of T2D with br-PFOS exhibiting the highest risk (OR = 5.41, 95% CI: 3.68-7.96). The associations were stronger among women than men. In conclusion, chronic exposure to PFAS isomers was associated with impaired glucose-homeostasis and may increase the prevalence of T2D in Chinese adults. Given the ubiquity of PFAS in the environment and the public health burden of T2D, future studies are warranted to corroborate the findings.
Collapse
Affiliation(s)
- Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shu Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Zhong Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Rajamanickam Vinothkumar
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wan-Lin Ye
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peien Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Pengxin Dong
- Nursing College, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563060, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563060, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Custer CM. Linking field and laboratory studies: Reproductive effects of perfluorinated substances on avian populations. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:690-696. [PMID: 33475242 DOI: 10.1002/ieam.4394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Although both laboratory and field studies are needed to effectively assess effects and risk of contaminants to free-living organisms, the limitations of each must be understood. The objectives of this paper are to examine information on field studies of reproductive effects of perfluorinated substances (PFASs) on bird populations, discuss the differences among field studies, and then place those results in context with laboratory studies. Hypotheses to explain the divergences between field studies and between laboratory and field studies will be discussed. Those differences include mixture issues, misattribution of the mechanism or the specific PFAS causing impairments, as well as other possible reasons. Finally, suggestions to better link laboratory and field studies will be presented. Integr Environ Assess Manag 2021;17:690-696. Published 2021. This article is a US Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Christine M Custer
- United States Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin
| |
Collapse
|
9
|
Liu Y, Li A, Buchanan S, Liu W. Exposure characteristics for congeners, isomers, and enantiomers of perfluoroalkyl substances in mothers and infants. ENVIRONMENT INTERNATIONAL 2020; 144:106012. [PMID: 32771830 DOI: 10.1016/j.envint.2020.106012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 05/24/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in the environment, making it inevitable for humans to be exposed to these pollutants. The exposure begins while in utero and continues in infancy, during the potentially most sensitive early stages of life. This review summarizes the current knowledge on pre- and neo-natal exposures based on more than 200 articles published from 2000 to date. All relevant biological matrices used in the cited studies were included, such as maternal blood, umbilical cord blood, breast milk, placenta, amniotic fluid, fetal organs, newborns' dried blood spots, and infant serum. We show that such exposures are geographically global with significant discrepancies among countries and continents, and that while the levels of major legacy PFASs (PFOS and PFOA) have declined since 2000, those of others may have not. We also show that levels of PFOS and PFOA exceed those of some major environmental toxins, such as p,p'-DDE, BDE-47, PCB-153, PBB-153, and OH-PBDEs in maternal blood. Given that the behavior and potential effects have an origin in molecular structure, biomonitoring and research at the levels of isomers and enantiomers are critically important. Through critical analysis of these works, we summarize the major achievements, consensus, and the deficiencies of existing research. To our knowledge, this is the first review on the overall internal exposure status of mothers and infants to PFASs during pregnancy and lactation.
Collapse
Affiliation(s)
- Yingxue Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Susan Buchanan
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Schulz K, Silva MR, Klaper R. Distribution and effects of branched versus linear isomers of PFOA, PFOS, and PFHxS: A review of recent literature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139186. [PMID: 32474294 DOI: 10.1016/j.scitotenv.2020.139186] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 05/03/2023]
Abstract
Perfluorinated alkyl substances (PFAS) have come to attention recently due to their widespread presence in the environment, recalcitrance, and potential negative health associations. Because of the long-term production of PFAS using ECF, which created branched isomers as byproducts in addition to the intended linear product, branched isomers of PFAS account for a significant portion of PFAS load in the environment. The distribution of isomers is not consistent in the environment, however. Geographic location appears to be a major factor in determining the isomer makeup of PFAS in surface and groundwater as well as in humans and animals. This is largely to differences in production methods; a region that produced PFAS via ECF for many years would have a higher ratio of branched isomers than one that produces PFAS using telomerization. In addition, the different structures of branched PFAS isomers as compared to linear PFAS appear to affect transport in the environment. Research suggests that linear PFAS sorb preferentially to soil and sediments, whereas branched isomers are more likely to remain in water. The higher polarity of the branched structure explains this difference. Studies in humans and animals show that most animals preferentially accumulate the linear PFOS isomer, but humans appear to preferentially accumulate the branched isomers as they are often found in human serum at percentages higher than that of ECF product. In addition, some studies have indicated that linear and branched PFAS isomers have some unique negative health associations. Very few studies, however, account for linear and branched PFAS separately.
Collapse
Affiliation(s)
- Katarina Schulz
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA; Water Technology Accelerator (WaTA), University of Wisconsin-Milwaukee, 247 W. Freshwater Way, Milwaukee, WI 53204, USA
| | - Marcia R Silva
- Water Technology Accelerator (WaTA), University of Wisconsin-Milwaukee, 247 W. Freshwater Way, Milwaukee, WI 53204, USA
| | - Rebecca Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA.
| |
Collapse
|
11
|
Lin CY, Lee HL, Hwang YT, Su TC. The association between total serum isomers of per- and polyfluoroalkyl substances, lipid profiles, and the DNA oxidative/nitrative stress biomarkers in middle-aged Taiwanese adults. ENVIRONMENTAL RESEARCH 2020; 182:109064. [PMID: 31884197 DOI: 10.1016/j.envres.2019.109064] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been widely used in consumer products. In vitro and animal studies have demonstrated that exposure to perfluorooctanoic acid (PFOA) and/or perfluorooctane sulfonate (PFOS) increases oxidative/nitrative stress. Recent studies have also found that isomers of PFOA/PFOS may have unique biological effects on clinical parameters. However, the correlation between PFOA/PFOS isomers and markers of oxidative/nitrative stress has never been investigated in the general population. In the current study, 597 adult subjects (ages between 22 and 63 years old) were enrolled from a control group of a case-control study entitled "Work-related risk factors and coronary heart disease". We investigated the correlation between the serum isomers of PFOA/PFOS, lipid profiles, and the urine compounds 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-nitroguanine (8-NO2Gua) in these participants. There were 519 men and 78 women with a mean age of 45.8 years. Linear PFOA levels were positively correlated with serum low density lipoprotein cholesterol (LDL-C), small dense LDL, and triglyceride, and linear PFOS levels were positively correlated with LDL-C and HDL-C in multiple linear regression analyses. After controlling for potential confounders, the mean levels of 8-OHdG and 8-NO2Gua significantly increased across the quartiles of linear PFOS in multiple linear regression analyses. When both the 8-OHdG and 8-NO2Gua levels were above the 50th percentile, the odds ratio (OR) of higher levels of LDL-C (>75th percentile) with one unit increase in ln linear PFOS level was the highest (OR 3.15 (95% CI = 1.45-6.64), P = 0.003) in logistic regression models. In conclusion, serum linear PFOA/PFOS were correlated with lipid profiles, and linear PFOS was associated with urine oxidative/nitrative stress biomarkers. The positive correlation between linear PFOS and LDL-C was more marked when concentrations of urine oxidative/nitrative stress biomarkers were elevated. Further studies are needed to elucidate the causal relationships among PFAS isomers, lipid profiles, and oxidative/nitrative stress.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Yi-Ting Hwang
- Department of Statistics, National Taipei University, New Taipei City, 237, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan; Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
12
|
Shi Y, Song X, Jin Q, Li W, He S, Cai Y. Tissue distribution and bioaccumulation of a novel polyfluoroalkyl benzenesulfonate in crucian carp. ENVIRONMENT INTERNATIONAL 2020; 135:105418. [PMID: 31881427 DOI: 10.1016/j.envint.2019.105418] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
The emergence of novel per- and polyfluoroalkyl substances (PFASs) has enabled researchers to determine their bioaccumulation, which is important for understanding their internal doses and environmental risks. Here, for the first time, we report on the occurrence of a novel PFAS, p-perfluorous nonenoxybenzenesulfonate (OBS) in wild crucian carp and explore its tissue distribution and bioaccumulation. The highest levels of OBS were observed in blood (mean/median: 144/133 ng/ml) with the mean tissue/blood ratios (TBRs) consistently below 1, ranging from 0.090 (muscle) to 0.644 (liver). This followed the pattern of perfluorooctane sulfonate (PFOS), implying that their distributions were similar. The calculated tissue-specific LogBAF values, except for muscle, 3.78 (gill)-4.14 (blood) over the regulatory bioaccumulation criterion (Log value: 3.70) indicated its obvious bioaccumulative potency in crucian carp. Molecular docking with estimated binding energies at -8.5 and -9.0 kcal/mol corroborated the strong interactions of OBS with human serum albumin and liver fatty acid binding protein, even though the binding energies were lower than those of PFOS. This, to some extent, explained the lower bioaccumulation of OBS than PFOS. Considering its bioaccumulative potential, large production volume, and wide use, further investigation into the environmental risk and in vivo toxicology of OBS is required.
Collapse
Affiliation(s)
- Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; Civil and Environment Engineering School, University of Science and Technology Beijing, Beijing 100085, China
| | - Sisi He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; School of Chemical & Environment Engineering, China University of Mining and Technology, Beijing 10083, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
13
|
Nian M, Li QQ, Bloom M, Qian ZM, Syberg KM, Vaughn MG, Wang SQ, Wei Q, Zeeshan M, Gurram N, Chu C, Wang J, Tian YP, Hu LW, Liu KK, Yang BY, Liu RQ, Feng D, Zeng XW, Dong GH. Liver function biomarkers disorder is associated with exposure to perfluoroalkyl acids in adults: Isomers of C8 Health Project in China. ENVIRONMENTAL RESEARCH 2019; 172:81-88. [PMID: 30776734 DOI: 10.1016/j.envres.2019.02.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 05/23/2023]
Abstract
Exposure to chemicals may affect liver enzyme to increase the risk of liver diseases. Perfluoroalkyl acids (PFAAs) are one kind of persistent organic pollutants with hepatotoxic effect in organism. However, data is scarce to characterize the hepatotoxic effects of specific structural PFAA isomers in general population. To address this data gap, we evaluated the association between serum PFAAs concentration and liver function biomarkers in the Isomers of C8 Health Project in China. High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to measure 18 serum PFAAs, except for linear and branched isomers of PFOA/PFOS, nine perfluorinated carboxylic acids (PFCAs) and two perfluorinated sulfonic acids (PFSAs) were also included, in 1605 adult residents of Shenyang, China. Values for nine serum liver function biomarkers were determined by full-automatic blood biochemical analyzer. Linear regression was used to evaluate associations between PFAAs and continuous liver function biomarkers and logistic regression to assess markers dichotomized per clinical reference intervals. Results indicated that serum PFAAs concentrations were associated with liver biomarker levels suggestive of hepatotoxicity, especially for liver cell injury. For example, a 1 ln-unit increase in total- perfluorooctanoic acid (PFOA) exposure was associated with a 7.4% [95% confidence interval (CI): 3.9%, 11.0%] higher alanine aminotransferase (ALT) level in serum. Interestingly, we observed association between branched PFAA isomers and liver biomarkers. For example, one ln-unit increase in branched perfluorooctane sulfonate (PFOS) isomers exposure was associated with a 4.3% increase in ALT level (95% CI: 1.2%, 7.4%) and a 33.0% increased odds of having abnormal ALT (95% CI: 5.0%, 67.0%). Also, we found that PFNA had positive association with ALT [(6.2%, 95% CI: 3.1%, 9.4%) and AST levels (2.5%, 95% CI: 0.5%, 4.5%)]. Logistic regression results showed that PFPeA, PFHxA, PFNA, PFDoDA, PFTrDA and PFTeDA had statistically association with abnormal prealbumin. Conclusively, our results support previous studies showing association between PFAAs exposure and liver function biomarkers. We found new evidence that branched PFAAs isomer exposure is associated with the risk of clinically relevant hepatocellular dysfunction.
Collapse
Affiliation(s)
- Min Nian
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Michael Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China; Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Kevin M Syberg
- Department of Health Management and Policy, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Michael G Vaughn
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Si-Quan Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Qi Wei
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Namratha Gurram
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China; Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Jia Wang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Yan-Peng Tian
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Kang-Kang Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Dan Feng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China.
| |
Collapse
|
14
|
Briels N, Ciesielski TM, Herzke D, Jaspers VLB. Developmental Toxicity of Perfluorooctanesulfonate (PFOS) and Its Chlorinated Polyfluoroalkyl Ether Sulfonate Alternative F-53B in the Domestic Chicken. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12859-12867. [PMID: 30351028 DOI: 10.1021/acs.est.8b04749] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The chlorinated polyfluoroalkyl ether sulfonate F-53B is used as a mist suppressant in the Chinese electroplating industry. Because of the regulations on perfluorooctanesulfonate (PFOS), its use is expected to increase. Until now, F-53B toxicity data have been scarce and are, to our knowledge, lacking for birds. This study therefore investigated the effects of PFOS and F-53B, separately and as mixtures, on the development of the chicken ( Gallus gallus domesticus). Compounds were injected in ovo, before incubation, at 150 and 1500 ng/g egg. At embryonic day 20, a significantly lower heart rate was observed in all treated groups compared to the control group and hatchlings exposed to the high dose of F-53B had a significantly enlarged liver (8%). Embryonic survival was not affected and no significant effects on hatchling body mass or oxidative stress parameters were found. Our results suggest that these compounds likely have different toxicity thresholds for the investigated endpoints, and/or different modes of action. This study thereby underlines the potential developmental toxicity of PFOS and F-53B at environmentally relevant concentrations. Assessment of PFOS alternatives should therefore continue, preferably prior to their large scale use, as they should be ensured to be less harmful than PFOS itself.
Collapse
Affiliation(s)
- Nathalie Briels
- Norwegian University of Science and Technology (NTNU) , Department of Biology , 7491 Trondheim , Norway
| | - Tomasz M Ciesielski
- Norwegian University of Science and Technology (NTNU) , Department of Biology , 7491 Trondheim , Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), FRAM centre , 9007 Tromsø , Norway
| | - Veerle L B Jaspers
- Norwegian University of Science and Technology (NTNU) , Department of Biology , 7491 Trondheim , Norway
| |
Collapse
|
15
|
Liu HS, Wen LL, Chu PL, Lin CY. Association among total serum isomers of perfluorinated chemicals, glucose homeostasis, lipid profiles, serum protein and metabolic syndrome in adults: NHANES, 2013-2014. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:73-79. [PMID: 28923343 DOI: 10.1016/j.envpol.2017.09.019] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/21/2017] [Accepted: 09/07/2017] [Indexed: 05/22/2023]
Abstract
Perfluorinated chemicals (PFCs) have been used widely in consumer products manufacture. Recent in vitro as well as animal studies have found that there are different toxicity and pharmacokinetic profiles between isomers of perfluorooctanoic acid (PFOA) and/or perfluorooctane sulfonate (PFOS). However, the differential effects of linear or branched PFOA/PFOS isomers on human beings have never been reported. Herein, we examined 1871 adult subjects (age older than 18 years) from the National Health and Nutrition Examination Survey (NHANES) 2013-2014 to determine the association between the isomers of PFOA/PFOS and serum biochemistry profiles, including glucose, lipids, protein and components of metabolic syndrome (MS). The results showed that for PFOA, increased linear PFOA was associated with increases in total cholesterol, serum albumin and an enhancement of β cell function as well as a decrease in the serum globulin. Increased branched PFOA was significantly associated with increased fasting glucose. All isomers of PFOA were positively associated with high-density lipoprotein-cholesterol (HDL-C) and negatively associated with glycohemoglobin (HbA1C). The branched PFOS was positively associated with β cell function and inversely associated with serum globulin. Both linear and branched isomers of PFOS were positively associated with the total protein and albumin. The increased branched PFOA was associated with less HDL-C insufficiency defined by the National Cholesterol Education Program Third Adult Treatment Panel (NCEP-ATP III) MS criteria, whereas the increased concentrations of serum total and linear PFOS were associated with less hypertriglyceridemia by the NCEP-ATP III. In conclusion, serum isomers of PFOA and PFOS were associated with glucose homeostasis, serum protein as well as lipid profiles; they were also indicators of MS. This may suggest that there is a distinct difference in the toxicokinetics of the isomers of PFOA and PFOS. Further clinical and animal studies are warranted to clarify the putative causal relationships between isomers and biochemical alterations.
Collapse
Affiliation(s)
- Hui-Shan Liu
- Department of Obstetrics and Gynaecology, Hsinchu Cathay General Hospital, Hsinchu 300, Taiwan
| | - Li-Li Wen
- Department of Clinical Laboratory, En Chu Kong Hospital, New Taipei City 237, Taiwan
| | - Pei-Lun Chu
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chien-Yu Lin
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan.
| |
Collapse
|
16
|
Pellizzaro A, Zaggia A, Fant M, Conte L, Falletti L. Identification and quantification of linear and branched isomers of perfluorooctanoic and perfluorooctane sulfonic acids in contaminated groundwater in the veneto region. J Chromatogr A 2017; 1533:143-154. [PMID: 29269145 DOI: 10.1016/j.chroma.2017.12.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023]
Abstract
Perfluoroalkylated acids (PFAAs) are ubiquitous xenobiotic substances characterized by high persistency, bioaccumulation potential and toxicity. They have generated global concern because of their widespread presence both in water and biota compartments. In the past four years, alarming levels of these pollutants have been found in both surface and groundwater collected in an area covering more than 150 square kilometers in the south-western part of the province of Vicenza (Veneto region, Italy). One of the sources of the contamination recognized by local authorities is a fluorochemicals production plant that produced PFAAs since late sixties by electrochemical fluorination involving the obtainment of a complex mixture of linear and branched isomers. Branched isomers account for a significant part of total long chain homologues (22%-35%). Because of the potential threat to public health and the absence of specific limits set for these pollutants by Directive 98/83/EC, local authorities have established the following performance limits for drinking water: 90 ng L-1 for PFOA + PFOS, (reduced to 40 ng L-1 in the most contaminated municipalities), 30 ng L-1 for PFOS and 300 ng L-1 for the sum of all other PFAAs. Given the non-negligible incidence of branched isomers, it appears very important to correctly identify and quantify their contribution to total PFAAs. A liquid chromatography-electrospray ionization tandem spectrometry LC-MS/MS method, coupled with solid phase extraction, was developed to identify and quantify 25 PFAAs including six branched isomers of PFOS and four branched isomers of PFOA. Expanded uncertainty, recovery and precision were determined and found to agree with the reference EPA method 537:2009. The quantification limit is comprised in the 1-5 ng L-1 range.
Collapse
Affiliation(s)
- Alessandro Pellizzaro
- Acque del Chiampo S.p.A. - Servizio Idrico Integrato, Via Ferraretta 20, 36071 Vicenza, Italy.
| | - Alessandro Zaggia
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35030 Padua, Italy
| | - Massimo Fant
- Acque del Chiampo S.p.A. - Servizio Idrico Integrato, Via Ferraretta 20, 36071 Vicenza, Italy
| | - Lino Conte
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35030 Padua, Italy
| | - Luigi Falletti
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35030 Padua, Italy
| |
Collapse
|
17
|
Gómez-Ramírez P, Bustnes JO, Eulaers I, Herzke D, Johnsen TV, Lepoint G, Pérez-García JM, García-Fernández AJ, Jaspers VLB. Per- and polyfluoroalkyl substances in plasma and feathers of nestling birds of prey from northern Norway. ENVIRONMENTAL RESEARCH 2017; 158:277-285. [PMID: 28662453 DOI: 10.1016/j.envres.2017.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Plasma samples from nestlings of two top predators, White-tailed eagle (Haliaeetus albicilla) and Northern goshawk (Accipiter gentilis) from northern Norway were analysed for a wide range of per- and polyfluoroalkyl substances (PFASs). Body feathers from the White-tailed eagles were also analysed and significant associations between specific PFASs in blood plasma and body feathers were found (0.36 <R2 < 0.67; all p < 0.05). This result suggests that analysing body feathers of White-tailed eagle could potentially be a useful non-invasive strategy to monitor PFASs exposure in nestlings of this species. White-tailed eagles showed significantly higher levels of contaminants than Northern goshawks (plasma ∑PFASs Median = 45.83 vs 17.02ngmL-1, p <0.05). The different exposure between both species seemed to be related to different dietary input, as quantified by stable carbon and nitrogen isotope analysis of body feathers. A priori, the bird of prey populations studied are not at risk for PFASs, since the levels in plasma of both species were hundreds to thousand times lower than the toxic reference values reported for predatory birds. However, further studies on larger sample sizes are needed to confirm this hypothesis since toxic thresholds for nestling birds of prey are not established.
Collapse
Affiliation(s)
- P Gómez-Ramírez
- Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | - J O Bustnes
- Norwegian Institute for Nature Research, The Fram Centre, 9296 Tromsø, Norway
| | - I Eulaers
- Aarhus University, 4000 Roskilde, Denmark
| | - D Herzke
- Norwegian Institute for Air Research, 9010 Tromsø, Norway
| | - T V Johnsen
- Norwegian Institute for Nature Research, The Fram Centre, 9296 Tromsø, Norway
| | - G Lepoint
- Laboratory of Oceanology, University of Liège, B6c, 4000 Liège, Belgium
| | - J M Pérez-García
- Ecology Area, Department of Applied Biology, University Miguel Hernández, 03202 Elche, Spain; Department of Animal Sciences, Faculty of Life Sciences and Engineering, University of Lleida, 25198 Lleida, Spain
| | - A J García-Fernández
- Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - V L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| |
Collapse
|
18
|
Fang S, Zhang Y, Zhao S, Qiang L, Chen M, Zhu L. Bioaccumulation of perfluoroalkyl acids including the isomers of perfluorooctane sulfonate in carp (Cyprinus carpio) in a sediment/water microcosm. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:3005-3013. [PMID: 27163505 DOI: 10.1002/etc.3483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/11/2016] [Accepted: 05/08/2016] [Indexed: 06/05/2023]
Abstract
Carp (Cyprinus carpio) were exposed to perfluoroalkyl acids (PFAAs) including perfluorooctane sulfonate (PFOS) isomers in an artificially contaminated sediment/water microcosm. The uptake constant of PFAAs increased with increasing carbon chain length, whereas the elimination coefficient displayed the opposite trend, suggesting that carbon chain length plays an important role in the bioaccumulation of PFAAs. When the contribution of suspended particulate matter was taken into account, the bioaccumulation factors (BAFs) became lower (3.61-600 L/kg) compared with BAFs derived from only considering the absorption from free PFAAs in water (3.85-97000 L/kg). The results indicate that suspended particulate matter in water constitutes an important source of exposure for aquatic organisms to long-chain PFAAs. Linear (n-)PFOS was preferentially accumulated compared with branched isomers in carp. Among the branched isomers, 1m-PFOS displayed the greatest bioaccumulation, whereas m2 -PFOS had the lowest. Linear PFOS displayed greater partitioning ability from blood to other tissues over branched PFOS (br-PFOS) isomers, leading to a relatively lower n-PFOS proportion in blood. In summary, suspended particulate matter made a contribution to the accumulation of long-chain PFAAs in aquatic organisms, and n-PFOS was preferentially accumulated compared with br-PFOS isomers. Environ Toxicol Chem 2016;35:3005-3013. © 2016 SETAC.
Collapse
Affiliation(s)
- Shuhong Fang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, People's Republic of China
| | - Yifeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Shuyan Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Liwen Qiang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Meng Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yang Ling, People's Republic of China
| |
Collapse
|
19
|
Jin H, Zhang Y, Jiang W, Zhu L, Martin JW. Isomer-Specific Distribution of Perfluoroalkyl Substances in Blood. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7808-7815. [PMID: 27295125 DOI: 10.1021/acs.est.6b01698] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Perfluoroalkyl substances (PFASs) such as perfluorohexanesulfonate (PFHxS), perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS) and PFOS-precursors are routinely measured in human plasma and serum, but their relative abundance in the blood cell fraction has not been carefully examined, particularly at the isomer-specific level. Human plasma and whole blood were collected and partitioning behaviors of PFASs and their isomers between plasma and blood cells were investigated. In human samples, mass fraction in plasma (Fp) for PFASs increased among perfluoroalkyl carboxylates as the carbon chain length increased from C6 (mean 0.24) to C11 (0.87), indicating preference for the plasma fraction with increasing chain length. However, among perfluoroalkyl sulfonates, PFHxS (mean 0.87) had a slightly higher Fp than PFOS (0.85). In vitro assays with spiked Sprague-Dawley rat blood were also conducted, and the results showed that PFOS-precursors had lower Fp values than perfluoroalkyl acids, with perfluoroctanesulfonamide having the lowest Fp (mean 0.24). Consistently, linear isomers of PFOS and PFOS-precursors had lower mean Fp than their corresponding total branched isomers. Multiplying by a factor of 2 is not a reasonable method to convert from whole blood to plasma PFAS concentrations, and current ratios could be used as more accurate conversion factors.
Collapse
Affiliation(s)
- Hangbiao Jin
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin, P.R. China
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta , Edmonton, Alberta Canada T6G 2G3
| | - Yifeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin, P.R. China
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta , Edmonton, Alberta Canada T6G 2G3
| | - Weiwei Jiang
- South China Institute of Environmental Science , Ministry of Environmental Protection, Guangzhou, P.R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin, P.R. China
| | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta , Edmonton, Alberta Canada T6G 2G3
| |
Collapse
|
20
|
Shan G, Wang Z, Zhou L, Du P, Luo X, Wu Q, Zhu L. Impacts of daily intakes on the isomeric profiles of perfluoroalkyl substances (PFASs) in human serum. ENVIRONMENT INTERNATIONAL 2016; 89-90:62-70. [PMID: 26826363 DOI: 10.1016/j.envint.2016.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 05/03/2023]
Abstract
Perfluoroalkyl substances (PFASs) have been well studied in human daily intake for assessment of potential health risks. However, little is known about the isomeric compositions of PFASs in daily intake and their impacts on isomeric profiles in humans. In this study, we investigated the occurrence of PFASs with isomeric analysis in various human exposure matrices including foodstuffs, tap water and indoor dust. Perfluorooctanesulfonate (PFOS) and/or perfluorooctanoate (PFOA) were predominant in these exposure matrices collected in Tianjin, China. In fish and meat, linear (n-) PFOA was enriched with a percentage of 92.2% and 99.6%, respectively. Although n-PFOS was higher in fish (84.8%) than in technical PFOS (ca. 70%), it was much lower in meat (63.1%) and vegetables (58.5%). Dietary intake contributed >99% of the estimated daily intake (EDI) for the general population. The isomeric profiles of PFOA and PFOS in human serum were predicted based on the EDI and a one-compartment, first-order pharmacokinetic model. The isomeric percentage of n-PFOA in the EDI (98.6%) was similar to that in human serum (predicted: 98.2%, previously measured: 99.7%) of Tianjin residents. The results suggest direct PFOA intake plays an important role in its isomeric compositions in humans. For PFOS, the predicted n-PFOS (69.3%) was much higher than the previously measured values (59.2%) in human serum. This implies that other factors, such as indirect exposure to PFOS precursors and multiple excretion pathways, may contribute to the lower percentage of n-PFOS in humans than of technical PFOS.
Collapse
Affiliation(s)
- Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Zhi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lianqiu Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Pin Du
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Xiaoxiao Luo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Qiannian Wu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
21
|
Naile JE, Garrison AW, Avants JK, Washington JW. Isomers/enantiomers of perfluorocarboxylic acids: Method development and detection in environmental samples. CHEMOSPHERE 2016; 144:1722-1728. [PMID: 26519804 DOI: 10.1016/j.chemosphere.2015.10.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/01/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Perfluoroalkyl substances are globally distributed in both urban and remote settings, and routinely are detected in wildlife, humans, and the environment. One of the most prominent and routinely detected perfluoroalkyl substances is perfluorooctanoic acid (PFOA), which has been shown to be toxic to both humans and animals. PFOA exists as both linear and branched isomers; some of the branched isomers are chiral. A novel GC-NCI-MS method was developed to allow for isomer/enantiomer separation, which was achieved using two columns working in tandem; a 30-m DB-5MS column and a 30-m BGB-172 Analytik column. Samples were derivatized with diazomethane to form methyl esters of the PFOA isomers. In standards, at least eight PFOA isomers were detected, of which at least four were enantiomers of chiral isomers; one chiral isomer (P3) was sufficiently separated to allow for enantiomer-fraction calculations. Soil, sediment and plant samples from contaminated locations in Alabama and Georgia were analyzed. P3 was observed in most of these environmental samples, and was non-racemic in at least one sediment, suggesting the possibility of chirally selective generation from precursors or enantioselective sorption. In addition, the ratio of P3/linear PFOA was inversely related to distance from source, which we suggest might reflect a higher sorption affinity for the P3 over the linear isomer. This method focuses on PFOA, but preliminary results suggest that it should be broadly applicable to other chiral and achiral perfluorocarboxylic acids (PFCAs); e.g., we detected several other homologous PFCA isomers in our PFCA standards and some environmental samples.
Collapse
Affiliation(s)
- Jonathan E Naile
- United States Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA, 30605, USA
| | - A Wayne Garrison
- United States Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA, 30605, USA.
| | | | - John W Washington
- United States Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA, 30605, USA.
| |
Collapse
|
22
|
Chen M, Qiang L, Pan X, Fang S, Han Y, Zhu L. In Vivo and in Vitro Isomer-Specific Biotransformation of Perfluorooctane Sulfonamide in Common Carp (Cyprinus carpio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13817-24. [PMID: 26053759 DOI: 10.1021/acs.est.5b00488] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biotransformation of PFOS-precursors (PreFOS) may contribute significantly to the level of perfluorooctanesulfonate (PFOS) in the environment. Perfluorooctane sulfonamide (PFOSA) is one of the major intermediates of higher molecular weight PreFOS. Its further degradation to PFOS could be isomer specific and thereby explain unexpected high percentages of branched (Br-) PFOS isomers observed in wildlife. In this study, isomeric degradation of PFOSA was concomitantly investigated by in vivo and in vitro tests using common carp as an animal model. In the in vivo tests branched isomers of PFOSA and PFOS were eliminated faster than the corresponding linear (n-) isomers, leading to enrichment of n-PFOSA in the fish. In contrast, Br-PFOS was enriched in the fish, suggesting that Br-PFOSA isomers were preferentially metabolized to Br-PFOS over n-PFOSA. This was confirmed by the in vitro test. The exception was 1m-PFOSA, which could be the most difficult to be metabolized due to its α-branched structure, resulting in the deficiency of 1m-PFOS in the fish. The in vitro tests indicated that the metabolism mainly took place in the fish liver instead of its kidney, and it was mainly a Phase I reaction. The results may help to explain the special PFOS isomer profile observed in wildlife.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, P. R. China
| | - Liwen Qiang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, P. R. China
| | - Xiaoyu Pan
- College of Marine Science of Engineering, Tianjin University of Science and Technology , Tianjin 300457, P. R. China
| | - Shuhong Fang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, P. R. China
| | - Yuwei Han
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, P. R. China
| |
Collapse
|
23
|
Chen X, Zhu L, Pan X, Fang S, Zhang Y, Yang L. Isomeric specific partitioning behaviors of perfluoroalkyl substances in water dissolved phase, suspended particulate matters and sediments in Liao River Basin and Taihu Lake, China. WATER RESEARCH 2015; 80:235-244. [PMID: 26005784 DOI: 10.1016/j.watres.2015.04.032] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
The occurrence and distribution of eleven perfluoroalkyl substances (PFASs) and the isomers of perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) were investigated in water dissolved phase, sediment and suspended particulate matter (SPM) in two typical watersheds in China: Liao River Basin and Taihu Lake. The total concentrations of the PFASs in the dissolved phase were 44.4-781 ng/L in Liao River with high contribution of perfluorobutane sulfonate (PFBS) (75.7%) and PFOA (9.86%). The ∑PFASs in the dissolved phase in Taihu Lake was 17.2-94.4 ng/L with PFOA (39.8%), perfluorohexanoate (PFHxA) (30.1%) and PFOS (16.8%) as the dominant PFASs. The log Koc values of the PFASs in both SPM and sediment increased with increasing the perfluorinated carbon chain length. In Liao River Basin, the long chain perfluorocarboxylates (C10-12) bound with SPM contributed >30% to the total amount in water, suggesting that SPM could not be ignored when the environmental load of long chain PFASs in water was assessed. For the isomers of PFOA, PFOS and PFOSA, the linear isomers always displayed higher partition coefficients on particulate phases than the branched ones. An established isomer-profiling technique was applied to assess the relative contributions of various industrial origins for PFOA. In Liao River, when SPM was included in the water samples, there were contributions of PFOA from electrochemical fluorination (ECF) (∼55%), linear telomer (∼41%) and isopropyl telomer (∼4%) sources. While, the results based on the dissolved phase alone indicated more contribution of ECF (∼70%) source and lower contribution from linear telomer (∼26%) source. The discrepancy suggests that omitting SPM from water samples might lead to misunderstanding on the industrial origins of PFOA. In Taihu Lake, the isomer profile of PFOA was influenced mainly by ECF (∼88%) and partially by linear-telomer (∼12%) sources.
Collapse
Affiliation(s)
- Xinwei Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| | - Xiaoyu Pan
- College of Marine Science of Engineering, Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuhong Fang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yifeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
24
|
Yu N, Wang X, Zhang B, Yang J, Li M, Li J, Shi W, Wei S, Yu H. Distribution of perfluorooctane sulfonate isomers and predicted risk of thyroid hormonal perturbation in drinking water. WATER RESEARCH 2015; 76:171-80. [PMID: 25813491 DOI: 10.1016/j.watres.2015.02.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/20/2015] [Accepted: 02/19/2015] [Indexed: 05/03/2023]
Abstract
We documented the distribution of seven perfluorooctane sulfonate (PFOS) isomers in drinking water in Jiangsu Province, China. Compared to the 30% proportion of branched PFOS in technical PFOS, the levels of branched PFOS in drinking water increased to 31.8%-44.6% of total PFOS. Because of previous risk assessment without considering the PFOS isomer profile and the toxicity of individual PFOS isomers, here we performed a new health risk assessment of PFOS for thyroid hormonal perturbation in drinking water with the contribution from individual PFOS isomers. The risk quotients (RQs) of individual PFOS isomers indicated that linear PFOS contributed most to the risk among all the target PFOS isomers (83.0%-90.2% of the total PFOS RQ), and that risk from 6m-PFOS (5.2%-11.9% of the total PFOS RQ) was higher than that from other branched PFOS isomers. We found that the risks associated with PFOS in drinking water would be overestimated by 10.0%-91.7% if contributions from individual PFOS isomers were not considered. The results revealed that the PFOS isomer profile and the toxicity of individual PFOS isomers were important factors in health risk assessment of PFOS and should be considered in the future risk assessments.
Collapse
Affiliation(s)
- Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Xiaoxiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Beibei Zhang
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Provincial Environmental Monitoring Center, Nanjing, PR China
| | - Jingping Yang
- Laboratory of Immunology and Reproductive Biology, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Meiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China.
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
25
|
Beesoon S, Martin JW. Isomer-Specific Binding Affinity of Perfluorooctanesulfonate (PFOS) and Perfluorooctanoate (PFOA) to Serum Proteins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5722-31. [PMID: 25826685 DOI: 10.1021/es505399w] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are among the most prominent contaminants in human serum, and these were historically manufactured as technical mixtures of linear and branched isomers. The isomers display unique pharmacokinetics in humans and in animal models, but molecular mechanisms underlying isomer-specific PFOS and PFOA disposition have not previously been studied. Here, ultrafiltration devices were used to examine (i) the dissociation constants (Kd) of individual PFOS and PFOA isomers with human serum albumin (HSA) and (ii) relative binding affinity of isomers in technical mixtures spiked to whole calf serum and human serum. Measurement of HSA Kd's demonstrated that linear PFOS (Kd=8(±4)×10(-8) M) was much more tightly bound than branched PFOS isomers (Kd range from 8(±1)×10(-5) M to 4(±2)×10(-4) M). Similarly, linear PFOA (Kd=1(±0.9)×10(-4) M) was more strongly bound to HSA compared to branched PFOA isomers (Kd range from 4(±2)×10(-4) M to 3(±2)×10(-4) M). The higher binding affinities of linear PFOS and PFOA to total serum protein were confirmed when both calf serum and human serum were spiked with technical mixtures. Overall, these data provide a mechanistic explanation for the longer biological half-life of PFOS in humans, compared to PFOA, and for the higher transplacental transfer efficiencies and renal clearance of branched PFOS and PFOA isomers, compared to the respective linear isomer.
Collapse
|
26
|
Jiang W, Zhang Y, Yang L, Chu X, Zhu L. Perfluoroalkyl acids (PFAAs) with isomer analysis in the commercial PFOS and PFOA products in China. CHEMOSPHERE 2015; 127:180-187. [PMID: 25703780 DOI: 10.1016/j.chemosphere.2015.01.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 01/12/2015] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have been widely used in consumer and industrial products for decades and are widely detected in the environment and humans all over the world. The information on the isomeric profiles of commercial products is important to identify the manufacturing origins of PFAAs in the environment. For the first time, the PFAA compositions and isomeric profiles of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) were reported in three PFOS and five PFOA commercial products manufactured in China. The purity of the three PFOS products was 76.7-80.6%. The major impurity in the PFOS products is PFOA, which contributes more than 10%. Other impurities include perfluorohexanesulfonate (PFHxS), perfluorohexanoate (PFHxA) and perfluoroheptanoate acids (PFHpA). The percentage of linear PFOS (n-PFOS) in the three products was 66.2-71.9%, similar to that in the product manufactured by 3M (70.3%). The purity of the five PFOA products was relatively high (94.0-95.8%), and the major impurity was PFOS (2.06-3.09%). The percentage of n-PFOA in the five PFOA products was 76.4-77.9%, which was similar to that in the 3M PFOA (78%). Although it is widely accepted that telomerization is currently the predominant manufacturing method for PFOA, yielding an isomerically pure and linear product, the results in the present study suggest that electrochemical fluorination is still used by some manufacturers in China.
Collapse
Affiliation(s)
- Weiwei Jiang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China; South China Institute of Environmental Science, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Yifeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Xiaolong Chu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
27
|
Jiang W, Zhang Y, Zhu L, Deng J. Serum levels of perfluoroalkyl acids (PFAAs) with isomer analysis and their associations with medical parameters in Chinese pregnant women. ENVIRONMENT INTERNATIONAL 2014; 64:40-47. [PMID: 24361923 DOI: 10.1016/j.envint.2013.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/06/2013] [Accepted: 12/02/2013] [Indexed: 05/28/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are a group of chemicals used for many applications and widely present in the environment and humans. In this study, serum levels of PFAAs and isomers of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) were analyzed in 141 Chinese pregnant women. Among all the samples, total PFOS (∑PFOS, mean concentration 7.32ng/mL) was predominant, followed by ∑PFOA (mean 4.78ng/mL) and perfluorodecanoate (PFDA, mean 1.45ng/mL). On average, the proportion of linear PFOS (n-PFOS) was 66.7% of ∑PFOS, which was higher than the general population, implying that maternal women could excrete branched PFOS isomers to the fetus by transplacental transfer. Moreover, the proportion of n-PFOS decreased significantly with the increasing concentration of ∑PFOS in the serum samples (r=-0.342, p<0.001). The mean proportion of n-PFOA in the serum samples was 99.0%, which was much higher than the technical ECF (electrochemical fluorination) products (ca. 70%). The small proportion of branched isomers of PFOA suggests that there is still a source of ECF PFOA in China. Significant correlations (p<0.005) were observed between the concentrations of some PFAAs with certain medical parameters in the pregnant women. For example, the levels of most perfluorinated carboxylic acids (PFCAs) were found to correlate with albumin significantly, which might be a sign of immunotoxicity of these chemicals. The adverse effects of PFAA exposure to pregnant women may increase the health risk of the fetus. Interestingly, not only the PFAA concentrations but also the percentages of PFOS and PFOA isomers were correlated with certain medical parameters. This implies that the compositions of PFOS or PFOA should be considered in human health risk assessment in the future.
Collapse
Affiliation(s)
- Weiwei Jiang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yifeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| | - Jimin Deng
- Maternity and Child Care Center, Heping District, Tianjin 300071, PR China
| |
Collapse
|
28
|
Greaves AK, Letcher RJ. Linear and branched perfluorooctane sulfonate (PFOS) isomer patterns differ among several tissues and blood of polar bears. CHEMOSPHERE 2013; 93:574-80. [PMID: 23920361 DOI: 10.1016/j.chemosphere.2013.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 06/12/2013] [Accepted: 07/04/2013] [Indexed: 05/15/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a globally distributed persistent organic pollutant that has been found to bioaccumulate and biomagnify in aquatic food webs. Although principally in its linear isomeric configuration, 21-35% of the PFOS manufactured via electrochemical fluorination is produced as a branched structural isomer. PFOS isomer patterns were investigated in multiple tissues of polar bears (Ursus maritimus) from East Greenland. The liver (n = 9), blood (n = 19), brain (n = 16), muscle (n = 5), and adipose (n = 5) were analyzed for linear PFOS (n-PFOS), as well as multiple mono- and di-trifluoromethyl-substituted branched isomers. n-PFOS accounted for 93.0 ± 0.5% of Σ-PFOS isomer concentrations in the liver, whereas the proportion was significantly lower (p<0.05) in the blood (85.4 ± 0.5%). Branched isomers were quantifiable in the liver and blood, but not in the brain, muscle, or adipose. In both the liver and blood, 6-perfluoromethylheptane sulfonate (P6MHpS) was the dominant branched isomer (2.61 ± 0.10%, and 3.26 ± 0.13% of Σ-PFOS concentrations, respectively). No di-trifluoromethyl-substituted isomers were detectable in any of the tissues analyzed. These tissue-specific isomer patterns suggest isomer-specific pharmacokinetics, perhaps due to differences in protein affinities, and thus differences in protein interactions, as well transport, absorption, and/or metabolism in the body.
Collapse
Affiliation(s)
- Alana K Greaves
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Science and Technology Branch, National Wildlife Research Centre, Environment Canada, Carleton University, Ottawa, ON K1A 0H3, Canada
| | | |
Collapse
|
29
|
Zhang Y, Beesoon S, Zhu L, Martin JW. Isomers of perfluorooctanesulfonate and perfluorooctanoate and total perfluoroalkyl acids in human serum from two cities in North China. ENVIRONMENT INTERNATIONAL 2013; 53:9-17. [PMID: 23314039 DOI: 10.1016/j.envint.2012.12.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 06/01/2023]
Abstract
The sources and pathways of human exposure to perfluoroalkyl acids (PFAAs) are not well characterized, particularly in China where many perfluorinated substances are now manufactured. Here, isomer-specific PFAA analysis was used for the first time to evaluate exposure sources for Chinese people, by applying the method to 129 serum samples collected in two typical cities (Shijiazhuang and Handan) in North China. Among all samples, total perfluorooctanesulfonate (∑PFOS, mean 33.3 ng/ml) was the predominant PFAA followed by perfluorohexanesulfonate (2.95 ng/ml), total perfluorooctanoate (∑PFOA, 2.38 ng/ml), and perfluorononanoate (0.51 ng/ml). The level of ∑PFOS was higher than in people from North America in recent years. The mean concentrations of ΣPFAAs in the participants living in urban Shijiazhuang (59.0 ng/ml) and urban Handan (35.6 ng/ml) were significantly higher (p<0.001 and p=0.041, respectively) than those living in the rural district of Shijiazhuang (24.3 ng/ml). The young female sub-population had the lowest ΣPFAA concentrations compared with older females and all males. On average, the proportion of linear PFOS (n-PFOS) was only 48.1% of ∑PFOS, which is much lower than what was present in technical PFOS from the major historical manufacturer (ca. 70% linear), and which is also lower than data reported from any other countries. Moreover, the proportion of n-PFOS decreased significantly with increasing ∑PFOS concentration in the serum samples (r=-0.694, p<0.001). Taken together, the data lend weight to previous suggestions that i) high branched PFOS content in serum is a biomarker of exposure to PFOS-precursors, and ii) that people with the highest ∑PFOS concentrations are exposed disproportionately to high concentrations of PFOS-precursors. On average, linear PFOA (n-PFOA) contributed 96.1% of ∑PFOA, significantly higher than in technical PFOA (ca. 75-80% linear), but lower than in Americans, suggesting higher exposure to electrochemically fluorinated PFOA than in other countries, including the United States.
Collapse
Affiliation(s)
- Yifeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | | | | | | |
Collapse
|
30
|
Joensen UN, Veyrand B, Antignac JP, Blomberg Jensen M, Petersen JH, Marchand P, Skakkebæk NE, Andersson AM, Le Bizec B, Jørgensen N. PFOS (perfluorooctanesulfonate) in serum is negatively associated with testosterone levels, but not with semen quality, in healthy men. Hum Reprod 2012; 28:599-608. [DOI: 10.1093/humrep/des425] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
O'Brien JM, Austin AJ, Williams A, Yauk CL, Crump D, Kennedy SW. Technical-grade perfluorooctane sulfonate alters the expression of more transcripts in cultured chicken embryonic hepatocytes than linear perfluorooctane sulfonate. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2846-2859. [PMID: 21994020 DOI: 10.1002/etc.700] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recently it was discovered that the perfluorooctane sulfonate (PFOS) detected in wildlife, such as fish-eating birds, had a greater proportion of linear PFOS (L-PFOS) than the manufactured technical product (T-PFOS), which contains linear and branched isomers. This suggests toxicological studies based on T-PFOS data may inaccurately assess exposure risk to wildlife. To determine whether PFOS effects were influenced by isomer content, we compared the transcriptional profiles of cultured chicken embryonic hepatocytes (CEH) exposed to either L-PFOS or T-PFOS using Agilent microarrays. At equal concentrations (10 µM), T-PFOS altered the expression of more transcripts (340, >1.5-fold change, p < 0.05) compared with L-PFOS (130 transcripts). Higher concentrations of L-PFOS (40 µM) were also less transcriptionally disruptive (217 transcripts) than T-PFOS at 10 µM. Functional analysis showed that L-PFOS and T-PFOS affected genes involved in lipid metabolism, hepatic system development, and cellular growth and proliferation. Pathway and interactome analysis suggested that genes may be affected through the RXR receptor, oxidative stress response, TP53 signaling, MYC signaling, Wnt/β-catenin signaling, and PPARγ and SREBP receptors. In all functional categories and pathways examined, the response elicited by T-PFOS was greater than that of L-PFOS. These data show that T-PFOS elicits a greater transcriptional response in CEH than L-PFOS alone and demonstrates the importance of considering the isomer-specific toxicological properties of PFOS when assessing exposure risk.
Collapse
Affiliation(s)
- Jason M O'Brien
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
Arukwe A, Mortensen AS. Lipid peroxidation and oxidative stress responses of salmon fed a diet containing perfluorooctane sulfonic- or perfluorooctane carboxylic acids. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:288-95. [PMID: 21742055 DOI: 10.1016/j.cbpc.2011.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/01/2022]
Abstract
The present study was conducted to evaluate the effects of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on lipid β-oxidation and oxidative stress responses in Atlantic salmon liver and kidney tissues. We quantified changes in the expression levels of peroxisome proliferator-activated receptors (PPARs) and acyl-CoA oxidase (ACOX1) enzyme whose transcription is induced by PPARs. In addition, we analyzed gene expression patterns for enzymatic antioxidants (superoxide dismutase: SOD, catalase: CAT and glutathione peroxidase: GPx). Thiobarbituric acid reactive substances (TBARS) were analyzed as a measure for lipid peroxidation. Juvenile Atlantic salmon were repeatedly force-fed food spiked with PFOA or PFOS at 0.2mg/kg, and samples were collected after 0, 2, 5 and 8 days and after a 7 days recovery period. Our data showed that exposure of salmon to PFOS or PFOA produced changes (either increased or decreased) in mRNA expression for PPARs, ACOX1, oxidative stress responses and lipid peroxidation (TBARS) and these responses showed marked organ differences, associated with tissue bioaccumulation patterns and dependent on exposure time. Given that a classical reaction during reactive oxygen species (ROS)-induced damage involves the peroxidation of lipids, our study demonstrates that salmon continuously exposed to dietary PFOS or PFOA dose showed alteration in peroxisomal responses and oxidative stress responses, with higher severity in the kidney, compared to liver. Overall, our data suggest that ROS-mediated oxidative damage maybe a significant and putative toxic effect of PFOA and PFOS in fish as has been reported in mammals.
Collapse
Affiliation(s)
- Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| | | |
Collapse
|
33
|
Houde M, De Silva AO, Muir DCG, Letcher RJ. Monitoring of perfluorinated compounds in aquatic biota: an updated review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:7962-73. [PMID: 21542574 DOI: 10.1021/es104326w] [Citation(s) in RCA: 611] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The goal of this article is to summarize new biological monitoring information on perfluorinated compounds (PFCs) in aquatic ecosystems (post-2005) as a followup to our critical review published in 2006. A wider range of geographical locations (e.g., South America, Russia, Antarctica) and habitats (e.g., high-mountain lakes, deep-ocean, and offshore waters) have been investigated in recent years enabling a better understanding of the global distribution of PFCs in aquatic organisms. High concentrations of PFCs continue to be detected in invertebrates, fish, reptiles, and marine mammals worldwide. Perfluorooctane sulfonate (PFOS) is still the predominant PFC detected (mean concentrations up to 1900 ng/g ww) in addition to important concentrations of long-chain perfluoroalkyl carboxylates (PFCAs; sum PFCAs up to 400 ng/g ww). More studies have evaluated the bioaccumulation and biomagnification of these compounds in both freshwater and marine food webs. Several reports have indicated a decrease in PFOS levels over time in contrast to PFCA concentrations that have tended to increase in tissues of aquatic organisms at many locations. The detection of precursor metabolites and isomers has become more frequently reported in environmental assessments yielding important information on the sources and distribution of these contaminants. The integration of environmental/ecological characteristics (e.g., latitude/longitude, salinity, and/or trophic status at sampling locations) and biological variables (e.g., age, gender, life cycle, migration, diet composition, growth rate, food chain length, metabolism, and elimination) are essential elements in order to adequately study the environmental fate and distribution of PFCs and should be more frequently considered in study design.
Collapse
Affiliation(s)
- Magali Houde
- Environment Canada , Centre Saint-Laurent, 105 McGill Street, Montréal, Québec, Canada, H2Y 2E7.
| | | | | | | |
Collapse
|