1
|
Verhille M, Hausler R. Evaluation of the impact of L-Tryptophan on the toxicology of Perfluorooctanoic acid in Daphnia magna: Characterization and perspectives. CHEMOSPHERE 2024; 367:143665. [PMID: 39489306 DOI: 10.1016/j.chemosphere.2024.143665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/13/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a pervasive environmental contaminant with well-documented toxic effects on both humans and animals, attracting significant scientific concern. Due to its affinity for proteins, research has predominantly focused on PFOA's interactions with biological macromolecules. However, the specific role of smaller molecules, such as amino acids, remains underexplored. This study uniquely evaluates the potential of l-tryptophan (L-Trp) to mitigate PFOA toxicity and investigates the interaction mechanisms involved. Results indicate that the presence of L-Trp in PFOA-contaminated water reduces acute toxicity in Daphnia magna, with an optimal molar ratio of approximately 1:2 (Trp:PFOA). The findings reveal that non-covalent interactions, particularly van der Waals forces and hydrogen bonds, are central to the Trp-PFOA complex formation. Additional contributions from hydrophobic interactions at the indole group and electrostatic forces between carbonyl and amine groups further stabilize the complex. These interactions likely reduce PFOA's toxicity by altering its bioavailability and distribution. While this study offers valuable insights into the binding mechanisms between L-Trp and PFOA, it raises important questions about the reversibility of this interaction and its applicability to other per- and polyfluoroalkyl substances (PFASs).
Collapse
Affiliation(s)
- Mathieu Verhille
- Department of Civil and Environmnetal Engineering, École de Technologie Supérieure University of Québec, Montréal, Québec, H3C 1K3, Canada; Station Expérimentale des Procédés Pilotes en Environnement (STEPPE-ÉTS, École de Technologie Supérieure), Montréal, Québec, H3C 1K3, Canada.
| | - Robert Hausler
- Department of Civil and Environmnetal Engineering, École de Technologie Supérieure University of Québec, Montréal, Québec, H3C 1K3, Canada; Station Expérimentale des Procédés Pilotes en Environnement (STEPPE-ÉTS, École de Technologie Supérieure), Montréal, Québec, H3C 1K3, Canada
| |
Collapse
|
2
|
Menzie CA, Guiney PD, Belanger SE, Lee KC, Arts G, Opeolu BO, Silva de Assis HC. Incorporating a weight-of-evidence approach into a tiered assessment for chemicals management, with emphasis on program development and applications in developing countries and emerging economies. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2312-2325. [PMID: 39150204 DOI: 10.1002/ieam.4986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
A flexible approach is described for incorporating a weight-of-evidence (WoE) methodology into a tiered ecological risk assessment (ERA)/management framework for chemicals. The approach is oriented toward informing decisions about chemicals. Communication is regarded as a critical component of the risk assessment process. The paper resulted from insights gained from seven ERA workshops held by SETAC (Society of Environmental Toxicology and Chemistry, www.setac.org) in the Asia-Pacific, African, and Latin American regions. Formal ERA methods are not fully developed or applied in many of these countries and assessments often begin with tables of risk values and test methods from countries where ERA is already implemented. While appropriate and sometimes necessary, workshop participants had questions about the reliability and relevance of using this information for regionally specific ecosystems with different receptors, fate processes, and exposure characteristics. The idea that an assessment of reliability and relevance of available information and the need for additional information was necessary at an early stage of the assessment process was considered. The judgment of reliability and relevance is central to WoE approaches along with the identification of information needs and the integration of such information. The need to engage in WoE considerations early and throughout the assessment process indicates that a tiered approach is appropriate for unifying the evaluation process in a consistent way from early screening-level steps to later more involved evaluations. The approach outlined in this article is complementary to WoE guidance developed by the Organization for Economic Co-operation and Development and many national guidance documents. To link assessments of risk to management decisions, emphasis is given to communications at each tier between the risk assessor (technical side) and the decision-makers (policy and regulatory side). Tools and information sources are suggested for each tier and suggestions are meant to be illustrative and not prescriptive. Integr Environ Assess Manag 2024;20:2312-2325. © 2024 SETAC.
Collapse
Affiliation(s)
- Charles A Menzie
- Principal, EcoSciences, Exponent Inc., Alexandria, Virginia, USA
| | | | - Scott E Belanger
- Global Product Stewardship, Procter & Gamble (retired), West Chester, Ohio, USA
| | - Kuan-Chun Lee
- Procter & Gamble International Operations (SA) Singapore Branch, Singapore, Singapore
| | - Gertie Arts
- Wageningen University and Research, Wageningen Environmental Research, The Netherlands
| | | | | |
Collapse
|
3
|
Petali JM, Pulster EL, McCarthy C, Pickard HM, Sunderland EM, Bangma J, Carignan CC, Robuck A, Crawford KA, Romano ME, Lohmann R, von Stackelburg K. Considerations and challenges in support of science and communication of fish consumption advisories for per- and polyfluoroalkyl substances. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1839-1858. [PMID: 38752651 PMCID: PMC11486601 DOI: 10.1002/ieam.4947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 06/12/2024]
Abstract
Federal, state, tribal, or local entities in the United States issue fish consumption advisories (FCAs) as guidance for safer consumption of locally caught fish containing contaminants. Fish consumption advisories have been developed for commonly detected compounds such as mercury and polychlorinated biphenyls. The existing national guidance does not specifically address the unique challenges associated with bioaccumulation and consumption risk related to per- and polyfluoroalkyl substances (PFAS). As a result, several states have derived their own PFAS-related consumption guidelines, many of which focus on one frequently detected PFAS, known as perfluorooctane sulfonic acid (PFOS). However, there can be significant variation between tissue concentrations or trigger concentrations (TCs) of PFOS that support the individual state-issued FCAs. This variation in TCs can create challenges for risk assessors and risk communicators in their efforts to protect public health. The objective of this article is to review existing challenges, knowledge gaps, and needs related to issuing PFAS-related FCAs and to provide key considerations for the development of protective fish consumption guidance. The current state of the science and variability in FCA derivation, considerations for sampling and analytical methodologies, risk management, risk communication, and policy challenges are discussed. How to best address PFAS mixtures in the development of FCAs, in risk assessment, and establishment of effect thresholds remains a major challenge, as well as a source of uncertainty and scrutiny. This includes developments better elucidating toxicity factors, exposures to PFAS mixtures, community fish consumption behaviors, and evolving technology and analytical instrumentation, methods, and the associated detection limits. Given the evolving science and public interests informing PFAS-related FCAs, continued review and revision of FCA approaches and best practices are vital. Nonetheless, consistent, widely applicable, PFAS-specific approaches informing methods, critical concentration thresholds, and priority compounds may assist practitioners in PFAS-related FCA development and possibly reduce variability between states and jurisdictions. Integr Environ Assess Manag 2024;20:1839-1858. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Jonathan Michael Petali
- Environmental Health Program, New Hampshire Department of Environmental Services, Concord, New Hampshire, USA
| | - Erin L Pulster
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | | | - Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jacqueline Bangma
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Courtney C Carignan
- Department Food Science and Human Nutrition, Department of Pharmacology and Toxicology Michigan State University, East Lansing, Michigan, USA
| | - Anna Robuck
- Environmental Effects Research Laboratory, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Kathryn A Crawford
- Environmental Studies Programs, Middlebury College, Middlebury, Vermont, USA
| | - Megan E Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Katherine von Stackelburg
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Fuller N, Suski JG, Lanasa S, Chanov MK, Jones DK, Haskins DL, Quinlin KA, Wigren MA, Hoverman JT, Choi YJ, Sepulveda MS, Lee LS, Lotufo GR, Kennedy A, May L, Harmon A, Biber T, Melby N, Moore DW, Key PB, Chung KW, Wirth EF, Anderson TA. Chronic Toxicity of Per- and Polyfluoroalkyl Substance-Free Firefighting Foams to Aquatic Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2436-2454. [PMID: 39189750 DOI: 10.1002/etc.5979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
Amid global concern regarding the health and environmental impacts of per- and polyfluoroalkyl substances (PFAS), there is an urgent need to develop and implement alternative products without PFAS. Consequently, PFAS-free firefighting foams used for fire suppression have been developed for use in military and residential settings. To facilitate the selection of lower-risk PFAS-free foams, the present study focused on the chronic toxicity of seven PFAS-free and one PFAS-containing foam to six aquatic species. Target species included two cladocerans, Daphnia magna and Ceriodaphnia dubia; the chironomid Chironomus dilutus; the mysid Americamysis bahia; and two fish species, Pimephales promelas and Cyprinodon variegatus, with endpoints including growth, development, reproduction, and survival. To facilitate comparison and product toxicity rankings, effective concentrations (20%, 50%) and no- and lowest-observed-effect concentrations (NOECs and LOECs, respectively) were calculated. Effective concentrations, NOECs, and LOECs varied by over an order of magnitude among foams and species, with several of the PFAS-free formulations ranked as highly toxic based on US Environmental Protection Agency alternatives assessment hazard criteria. Overall, the PFAS-free foams were found to exhibit either similar or greater toxicity compared to the PFAS-containing reference foam across several species and endpoints. Nonmonotonic and hormetic dose responses were observed in D. magna for several of the tested foams, with increased reproduction and growth at intermediate exposures. Generally, tested foam toxicity rankings were consistent with a related acute toxicity study using the same species and formulations, and other research using soil invertebrates. Combined with related efforts for other taxa including mammals, birds, and plants, the present research will facilitate the selection of appropriate PFAS-free firefighting foams that minimize harm to the environment. Environ Toxicol Chem 2024;43:2436-2454. © 2024 SETAC.
Collapse
Affiliation(s)
- Neil Fuller
- EA Engineering, Science and Technology Inc., PBC, Hunt Valley, Maryland, USA
| | - Jamie G Suski
- EA Engineering, Science and Technology Inc., PBC, Hunt Valley, Maryland, USA
| | - Sarah Lanasa
- EA Engineering, Science and Technology Inc., PBC, Hunt Valley, Maryland, USA
| | - Michael K Chanov
- EA Engineering, Science and Technology Inc., PBC, Hunt Valley, Maryland, USA
| | - Devin K Jones
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - David L Haskins
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Kathryn A Quinlin
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Maggie A Wigren
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Youn J Choi
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Maria S Sepulveda
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Guilherme R Lotufo
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Alan Kennedy
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Lauren May
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Ashley Harmon
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Thomas Biber
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Nicolas Melby
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - David W Moore
- US Army Engineer Research and Development Center, Vicksburg, Mississippi
| | - Peter B Key
- NOAA, National Centers for Coastal Ocean Sciences, Hollings Marine Laboratory, Charleston, South Carolina, USA
| | - Katy W Chung
- NOAA, National Centers for Coastal Ocean Sciences, Hollings Marine Laboratory, Charleston, South Carolina, USA
| | - Edward F Wirth
- NOAA, National Centers for Coastal Ocean Sciences, Hollings Marine Laboratory, Charleston, South Carolina, USA
| | - Todd A Anderson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
5
|
Chen S, Fan T, Ren T, Zhang N, Zhao L, Zhong R, Sun G. High-throughput prediction of oral acute toxicity in Rat and Mouse of over 100,000 polychlorinated persistent organic pollutants (PC-POPs) by interpretable data fusion-driven machine learning global models. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136295. [PMID: 39471609 DOI: 10.1016/j.jhazmat.2024.136295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
This study utilized available oral acute toxicity data in Rat and Mouse for polychlorinated persistent organic pollutants (PC-POPs) to construct data fusion-driven machine learning (ML) global models. Based on atom-centered fragments (ACFs), the collected high-throughput data overcame the applicability limitations, enabling accurate toxicity prediction for a wide range of PC-POPs series compounds using only single models. The data variances in the Rat training and test sets were 1.52 and 1.34, respectively, while for the Mouse, the values were 1.48 and 1.36, respectively. Genetic algorithm (GA) was used to build multiple linear regression (MLR) models and pre-screen descriptors, addressing the "black-box" problem prevalent in ML and enhancing model interpretability. The best ML models for Rat and Mouse achieved approximately 90 % prediction reliability for over 100,000 true untested compounds. Ultimately, a warning list of highly toxic compounds for eight categories of polychlorinated atom-centered fragments (PCACFs) was generated based on the prediction results. The analysis of descriptors revealed that dioxin analogs generally exhibited higher toxicity, because the heteroatoms and ring systems increased structural complexity and formed larger conjugated systems, contributing to greater oral acute toxicity. The present study provides valuable insights for guiding the subsequent in vivo tests, environmental risk assessment and the improvement of global governance system of pollutants.
Collapse
Affiliation(s)
- Shuo Chen
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
6
|
Tokranov AK, Ransom KM, Bexfield LM, Lindsey BD, Watson E, Dupuy DI, Stackelberg PE, Fram MS, Voss SA, Kingsbury JA, Jurgens BC, Smalling KL, Bradley PM. Predictions of groundwater PFAS occurrence at drinking water supply depths in the United States. Science 2024:eado6638. [PMID: 39446898 DOI: 10.1126/science.ado6638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), known colloquially as "forever chemicals", have been associated with adverse human health effects and have contaminated drinking water supplies across the United States owing to their long-term and widespread use. People in the United States may unknowingly be drinking water that contains PFAS because of a lack of systematic analysis, particularly in domestic water supplies. We present an extreme gradient boosting model for predicting the occurrence of PFAS in groundwater at the depths of drinking water supply for the conterminous United States. Our model results indicate that 71 to 95 million people in the conterminous United States potentially rely on groundwater with detectable concentrations of PFAS for their drinking-water supplies prior to any treatment.
Collapse
|
7
|
Mahoney H, Ankley P, Roberts C, Lamb A, Schultz M, Zhou Y, Giesy JP, Brinkmann M. Unveiling the Molecular Effects of Replacement and Legacy PFASs: Transcriptomic Analysis of Zebrafish Embryos Reveals Surprising Similarities and Potencies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18554-18565. [PMID: 39392652 DOI: 10.1021/acs.est.4c04246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The prevalence of per- and poly fluoroalkyl substances (PFASs) in the environment has prompted restrictions on legacy PFASs due to their recognized toxic effects. Consequently, alternative "replacement" PFASs have been introduced and are prevalent in environmental matrices. Few studies have investigated the molecular effects of both legacy and replacement PFASs under short-term exposures. This study aimed to address this by utilizing transcriptomic sequencing to compare the molecular impacts of exposure to concentrations 0.001-5 mg/L of the legacy PFOS and two of its replacements, PFECHS and FBSA. Using zebrafish embryos, the research assessed apical effects (mortality, morphology, and growth), identified differentially expressed genes (DEGs) and enriched pathways, and determined transcriptomic points of departure (tPoDs) for each compound. Results indicated that PFOS exhibited the highest relative potency, followed by PFECHS and then FBSA. While similarities were observed among the ranked DEGs across all compounds, over-representation analysis revealed slight differences. Notably, PFOS demonstrated the lowest tPoD identified to date. These findings raise concerns regarding the safety of emerging replacement PFASs and challenge assumptions about PFAS toxicity solely resulting from their accumulative potential. As replacement PFASs proliferate in the environment, this study underscores the need for heightened scrutiny of their effects and questions current regulatory thresholds.
Collapse
Affiliation(s)
- Hannah Mahoney
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Phillip Ankley
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Catherine Roberts
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Alicia Lamb
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Matthew Schultz
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Yutong Zhou
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - John P Giesy
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, Texas 76798-7266, United States
| | - Markus Brinkmann
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Pl, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, 11 Innovation Blvd, Saskatoon, Saskatchewan S7N 3H5, Canada
- Centre for Hydrology, University of Saskatchewan, 121 Research Dr, Saskatoon, Saskatchewan S7N 1K2, Canada
| |
Collapse
|
8
|
V M Starling MC, Rodrigues DAS, Miranda GA, Jo S, Amorim CC, Ankley GT, Simcik M. Occurrence and potential ecological risks of PFAS in Pampulha Lake, Brazil, a UNESCO world heritage site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174586. [PMID: 38997014 DOI: 10.1016/j.scitotenv.2024.174586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) comprise >4000 synthetic substances used in industrial applications and consumer products. PFAS used daily in households and manufacturing plants end up in domestic sewage, and industrial effluents can be discharged to surface water. Urban watersheds located in low and middle-income countries (LMIC), which lack sanitation infrastructure, are potential recipients of waste containing PFAS. Yet, only a few studies report PFAS occurrence in urban reservoirs and lakes, especially those located in the Global South due to resource limitations. This is the first study aimed to assess PFAS occurrence and ecological risks in Pampulha Lake, Brazil, a site which represents the reality of many other urban watersheds in LMIC as it is surrounded by densely populated areas and manufacturing plants. Surface water samples were collected monthly for 1 year from four sampling points at Pampulha Lake. Sample analysis was based on US Environmental Protection Agency Method 1633, which employs solid phase extraction followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Species sensitivity distribution (SSD) curves were built to identify potentially susceptible species based on detected water concentrations. Bioaccumulation was estimated for fish tissue. Short-chain (perfluorobutanesulfonic acid, PFBS and perfluorohexanoic acid, PFHxA) and long-chain PFAS (perfluorodecanoic acid, PFDA; perfluorooctanoic acid, PFOA; perfluorododecanoic acid, PFDoA; and perfluorooctanesulfonic acid, PFOS) were detected at the μg L-1 range. Total PFAS concentrations in the wet season were generally higher than in the dry season, likely due to limited capacity of the treatment plant processing water from tributaries which receive raw sewage. More than 5 % of aquatic species are potentially susceptible to chronic effects of PFOS at detected concentrations (0.2-2.2 μg L-1). Predicted bioaccumulation of PFOS in fish was above advisory diet intake levels for humans. Results emphasize the need for studies related to PFAS occurrence in watersheds located in LMIC.
Collapse
Affiliation(s)
- Maria Clara V M Starling
- Universidade Federal de Minas Gerais, Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Presidente Antônio Carlos 6627, Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil.
| | - Daniel A S Rodrigues
- Universidade Federal de Minas Gerais, Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Presidente Antônio Carlos 6627, Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Gisele A Miranda
- Universidade Federal de Minas Gerais, Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Presidente Antônio Carlos 6627, Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Suna Jo
- University of Minnesota, School of Public Health, 420 Delaware St SE, MMC 807, Minneapolis, MN 55455, USA
| | - Camila C Amorim
- Universidade Federal de Minas Gerais, Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Presidente Antônio Carlos 6627, Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Gerald T Ankley
- US Environmental Protection Agency, Office of Research and Development, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Matt Simcik
- University of Minnesota, School of Public Health, 420 Delaware St SE, MMC 807, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Miiro A, Odume ON, Nyakairu GW, Odongo S, Matovu H, Drago Kato C, Špánik I, Sillanpaä M, Mubiru E, Ssebugere P. Per- and poly-fluoroalkyl substances in aquatic ecosystems and wastewater treatment works in Africa: Occurrence, ecological implications, and future perspectives. CHEMOSPHERE 2024; 367:143590. [PMID: 39433094 DOI: 10.1016/j.chemosphere.2024.143590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
The increasing levels of industrialization and urbanization have led to the generation of significant amounts of wastewater and waste products, often containing chemicals like per- and poly-fluoroalkyl substances (PFASs) commonly found in consumer products. PFASs are known for their persistence, ubiquity, and ecotoxicological impacts, raising concerns about potential harm to ecosystems. This paper reports the occurrence and evaluates the ecological risks of PFASs in aquatic ecosystems and wastewater treatment works (WWTWs) across Africa. We reviewed 32 papers published in the period 2009-2024 and identified a total of 35 PFAS compounds in surface waters, wastewater, sediments, fish, crocodiles, and invertebrates. Much of the reported studies came from South Africa, followed by Kenya and Nigeria. PFAS concentrations in Africa were <0.7-390.0 ng L-1 in surface waters, 0.05-772 ng g-1 dw in sediments, and <0.2-832 ng L-1 in wastewater, while the highest levels in fish and invertebrates were 460.7 and 35.5 ng g-1 ww, respectively. The PFAS levels were in the same range of data as those reported globally. However, the high concentrations of PFASs in sediments and wastewater suggest areas of point contamination and a growing risk to aquatic ecosystems from effluent discharges. Calculated risk quotients suggested that, in Africa, organisms in river systems face greater risks due to exposure to PFASs compared to those in lakes, while marine organisms might face higher risks compared to freshwater organisms. Future studies should focus on PFAS contamination sources, especially WWTWs, as emerging sources of PFASs in aquatic systems.
Collapse
Affiliation(s)
- Ashirafu Miiro
- Institute for Water Research, Rhodes University, P.O Box 94, Makhanda, South Africa; Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | | | | | - Silver Odongo
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Henry Matovu
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Charles Drago Kato
- School of Biosecurity, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Ivan Špánik
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37, Bratislava, Slovakia
| | - Mika Sillanpaä
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O Box 17011, Doornfontein, 2028, South Africa; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Uni-versity, Chennai, Tamil Nadu, 602105, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India; Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093, Kuwait, Kuwait
| | - Edward Mubiru
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Patrick Ssebugere
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda.
| |
Collapse
|
10
|
Niu Q, Lin X, Zheng X, Wu Y, Long M, Chen Y. Aerobic or anaerobic? Microbial degradation of per- and polyfluoroalkyl substances: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136173. [PMID: 39467433 DOI: 10.1016/j.jhazmat.2024.136173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
The widespread utilization of per- and polyfluoroalkyl substances (PFASs) as "forever chemicals" is posing significant environmental risks and adverse effects on human health. Microbial degradation (e.g., bacteria and fungi) has been identified as a cost-effective and environmentally friendly method for PFAS degradation. However, its degradation efficiency, biotransformation pathway, and microbial mechanism vary significantly under aerobic and anaerobic conditions. This review provides a comprehensive overview of the similarities and differences in PFAS microbial degradation by bacteria and fungi under different oxygen conditions. Initially, the efficiencies and metabolites of PFAS microbial degradation were compared under aerobic and anaerobic conditions, including perfluorinated and polyfluorinated compounds. Additionally, the microbial mechanisms of PFAS microbial degradation were obtained by summarizing key degrading microbes and enzymes. Finally, the comparisons between aerobic and anaerobic conditions in PFAS microbial degradation were provided, addressing the main challenges and proposing future research directions focused on seeking combined biodegradation techniques, exploring novel microbial species capable of degrading PFAS, and confirming complete biodegradation pathways. The understanding of PFAS microbial degradation in aerobic and anaerobic environments is crucial for providing potential solutions and future research efforts in dealing with these "forever chemicals".
Collapse
Affiliation(s)
- Qiuqi Niu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinrong Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
11
|
Ortega-Vallbona R, Palomino-Schätzlein M, Tolosa L, Benfenati E, Ecker GF, Gozalbes R, Serrano-Candelas E. Computational Strategies for Assessing Adverse Outcome Pathways: Hepatic Steatosis as a Case Study. Int J Mol Sci 2024; 25:11154. [PMID: 39456937 PMCID: PMC11508863 DOI: 10.3390/ijms252011154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The evolving landscape of chemical risk assessment is increasingly focused on developing tiered, mechanistically driven approaches that avoid the use of animal experiments. In this context, adverse outcome pathways have gained importance for evaluating various types of chemical-induced toxicity. Using hepatic steatosis as a case study, this review explores the use of diverse computational techniques, such as structure-activity relationship models, quantitative structure-activity relationship models, read-across methods, omics data analysis, and structure-based approaches to fill data gaps within adverse outcome pathway networks. Emphasizing the regulatory acceptance of each technique, we examine how these methodologies can be integrated to provide a comprehensive understanding of chemical toxicity. This review highlights the transformative impact of in silico techniques in toxicology, proposing guidelines for their application in evidence gathering for developing and filling data gaps in adverse outcome pathway networks. These guidelines can be applied to other cases, advancing the field of toxicological risk assessment.
Collapse
Affiliation(s)
- Rita Ortega-Vallbona
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| | - Martina Palomino-Schätzlein
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026 Valencia, Spain;
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos, 28029 Madrid, Spain
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | - Gerhard F. Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Wien, Austria;
| | - Rafael Gozalbes
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
- MolDrug AI Systems S.L., Olimpia Arozena Torres 45, 46108 Valencia, Spain
| | - Eva Serrano-Candelas
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| |
Collapse
|
12
|
Zou J, Zhao M, Chan SA, Song Y, Yan S, Song W. Rapid and simultaneous determination of ultrashort-, short- and long- chain perfluoroalkyl substances by a novel liquid chromatography mass spectrometry method. J Chromatogr A 2024; 1734:465324. [PMID: 39217736 DOI: 10.1016/j.chroma.2024.465324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) are a group of persistent organic pollutants that have received considerable attention from public and regulatory groups. Due to regulations of long-chain PFAS, the use of short-chain and ultrashort-chain PFAS is rapidly growing. Thus, there is an urgent need to develop quantitative methods for determining PFAS with different chain lengths in various environmental matrices. This study introduces an innovative liquid chromatography-mass spectrometry (LC-MS) system combining large volume injection (LVI) and online solid phase extraction (SPE). This system incorporates three columns: a reverse-phase (RP) column, a weak anion exchange (WAX) trap column, and a hybrid HILIC/ion-exchange (HILIC/IE) column, controlled by two valves. With valve switching, ultrashort-chain PFAS that are not retained by the RP column are enriched by the trap column, while other PFAS are separated by the RP column. The trapped ultrashort PFAS are then transferred to the HILIC/IE column for further separation. The LVI significantly enhances the method's sensitivity, allowing for rapid and simultaneous determination of ultrashort-, short- and long- chain PFAS in aqueous samples. The matrix effects from various environmental samples were evaluated, and the results indicate that this unique LC-MS method is suitable for analyzing all chain-length PFAS in various matrices, including surface water, sewage effluent, and seawater. Finally, this novel LC-MS method was applied to quantify PFAS in various water samples.
Collapse
Affiliation(s)
- Jianmin Zou
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Mengzhe Zhao
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Shen-An Chan
- Agilent Technologies, Inc., 1350 North Sichuan Road, Shanghai 200080, PR China
| | - Yue Song
- Agilent Technologies, Inc., 1350 North Sichuan Road, Shanghai 200080, PR China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
13
|
Bushong A, Sepúlveda M, Scherer M, Valachovic AC, Neill CM, Horn S, Choi Y, Lee LS, Baloni P, Hoskins T. Effects of Perfluorinated Alkyl Substances (PFAS) on Amphibian Body and Liver Conditions: Is Lipid Metabolism Being Perturbed throughout Metamorphosis? TOXICS 2024; 12:732. [PMID: 39453152 PMCID: PMC11510839 DOI: 10.3390/toxics12100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) may interact with peroxisome proliferator activated receptors (PPARs) and alter lipid homeostasis. Using Xenopus laevis, we investigated the effect of PFAS on (a) lipid homeostasis and whether this correlated to changes in body and hepatic condition; (b) the expression of hepatic genes regulated by PPAR; and (c) the hepatic lipidome. We chronically exposed tadpoles to 0.5 µg/L of either PFOS, PFHxS, PFOA, PFHxA, a binary mixture of PFOS and PFHxS (0.5 µg/L of each), or a control, from NF stage 52 through metamorphic climax. Growth, development, and survival were not affected, but we detected a sex-specific decrease in body condition at NF 66 (6.8%) and in hepatic condition (16.6%) across metamorphic climax for male tadpoles exposed to PFOS. We observed weak evidence for the transient downregulation of apolipoprotein-V (apoa5) at NF 62 in tadpoles exposed to PFHxA. Acyl-CoA oxidase 1 (acox1) was downregulated only in males exposed to PFHxS (Ln(Fold Change) = -0.54). We detected PFAS-specific downregulation of structural glycerophospholipids, while semi-quantitative profiling detected the upregulation in numerous glycerophospholipids, sphingomyelins, and diglycerides. Overall, our findings indicate that PFAS can induce sex-specific effects that change across larval development and metamorphosis. We demonstrate that PFAS alter lipid metabolism at environmentally relevant concentrations through divergent mechanisms that may not be related to PPARs, with an absence of effects on body condition, demonstrating the need for more molecular studies to elucidate mechanisms of PFAS-induced lipid dysregulation in amphibians and in other taxa.
Collapse
Affiliation(s)
- Anna Bushong
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Maria Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
- Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Meredith Scherer
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Abigail C. Valachovic
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - C. Melman Neill
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Sophia Horn
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Youn Choi
- Department of Agronomy and Environmental & Ecological Engineering, Interdisciplinary Ecological Sciences and Engineering, Purdue University, West Lafayette, IN 47907, USA; (Y.C.); (L.S.L.)
| | - Linda S. Lee
- Department of Agronomy and Environmental & Ecological Engineering, Interdisciplinary Ecological Sciences and Engineering, Purdue University, West Lafayette, IN 47907, USA; (Y.C.); (L.S.L.)
| | - Priyanka Baloni
- College of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Tyler Hoskins
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| |
Collapse
|
14
|
Meng L, Zhou B, Liu H, Chen Y, Yuan R, Chen Z, Luo S, Chen H. Advancing toxicity studies of per- and poly-fluoroalkyl substances (pfass) through machine learning: Models, mechanisms, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174201. [PMID: 38936709 DOI: 10.1016/j.scitotenv.2024.174201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Perfluorinated and perfluoroalkyl substances (PFASs), encompassing a vast array of isomeric chemicals, are recognized as typical emerging contaminants with direct or potential impacts on human health and the ecological environment. With the complex and elusive toxicological profiles of PFASs, machine learning (ML) has been increasingly employed in their toxicity studies due to its proficiency in prediction and data analytics. This integration is poised to become a predominant trend in environmental toxicology, propelled by the swift advancements in computational technology. This review diligently examines the literature to encapsulate the varied objectives of employing ML in the toxicity studies of PFASs: (1) Utilizing ML to establish Quantitative Structure-Activity Relationship (QSAR) models for PFASs with diverse toxicity endpoints, facilitating the targeted toxicity prediction of unidentified PFASs; (2) Investigating and substantiating the Adverse Outcome Pathway (AOP) through the synergy of ML and traditional toxicological methods, with this refining the toxicity assessment framework for PFASs; (3) Dissecting and elucidating the features of established ML models to advance Open Research into the toxicity of PFASs, with a primary focus on determinants and mechanisms. The discourse extends to an in-depth examination of ML studies, segregating findings based on their distinct application trajectories. Given that ML represents a nascent paradigm within PFASs research, this review delineates the collective challenges encountered in the ML-mediated study of PFAS toxicity and proffers strategic guidance for ensuing investigations.
Collapse
Affiliation(s)
- Lingxuan Meng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, Anqing, China.
| | - Yuefang Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic.
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
15
|
Li X, Niu Z, Jing M, Ma Y, Zhang Y, Yang Y. Evanescent hormesis effect induced by environmentally relevant PFOS to marine Chlorella sp. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136115. [PMID: 39437475 DOI: 10.1016/j.jhazmat.2024.136115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is widely detected in the aquatic environment. More attentions were paid to its acute biotoxicity at high-dose concentrations, whereas the actual long-term effect (hormesis or inhibition of growth) of PFOS with environmental concentrations on marine phytoplankton remains unclear. In this study, marine Chlorella sp. was exposed to PFOS at low concentrations (100 ng/L, 10 μg/L, and 1 mg/L) for 26 days. The hormesis effect disappeared at the population level on Day 18, but persisted at the molecular and cellular levels on Day 24, suggesting that the stimulatory hormetic effect induced by low-level PFOS (approximating environmental concentrations) does not persist throughout algal life cycle at population level. The 100 ng/L and 1 mg/L PFOS treatments caused algal cell to swell and shrink, respectively. The low-level PFOS treatments could accelerate cells apoptosis and induce cell necrosis at 100 ng/L. Specifically, the energy metabolism associated with carbohydrate metabolism and amino acid metabolism was significantly up-regulated as well as the reduced chlorophyll content (related to the down-regulation of porphyrin metabolism) to combat the 100 ng/L PFOS rather than be engaged in divide and growth. Additionally, the decreased biomass in the 100 ng/L treatment was also attributed to certain proteins associated with down-regulations of carotenoid biosynthesis, thiamine metabolism, non-homologous end-joining, and nitrogen metabolism along with the increased oxidative stress. Our findings provide a new insight into the long-term ecological effect of PFOS at environmental concentrations.
Collapse
Affiliation(s)
- Xiaofeng Li
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiguang Niu
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Meiqi Jing
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yongzheng Ma
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Yang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Wang L, Yang T, Liu X, Liu J, Liu W. Critical Evaluation and Meta-Analysis of Ecotoxicological Data on Per- and Polyfluoroalkyl Substances (PFAS) in Freshwater Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17555-17566. [PMID: 39316471 DOI: 10.1021/acs.est.4c04818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Despite the increasing concern regarding the ecological risks posed by per- and polyfluoroalkyl substances (PFAS), a lack of comprehensive understanding of their actual ecotoxicity remains. Through a meticulous examination of 91 peer-reviewed studies investigating effects at a population level and constructing probabilistic species sensitivity distributions (PSSDs), we present a state-of-the-science hazard assessment of PFAS in freshwater species. Using data subsets containing suboptimal data led to an overestimation of the predicted no-effect concentrations (PNECs) of PFAS. We report PNECs of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonates (PFSAs) in freshwater to be 4.8-2000 μg/L and 0.4-8.9 μg/L, respectively, derived from high-quality data. Statistical analyses revealed that both functional groups and carbon chain length significantly influenced (p < 0.05) the variations in toxicity observed among different PFAS. This study underscores the importance of obtaining high-quality PFAS ecotoxicity data to comprehend associated hazards. The PNECs of PFAS derived in this study are higher compared to those of micro/nanoplastics and persistent organic pollutants. Our research offers valuable insights into prioritizing the regulation of more toxic PFAS.
Collapse
Affiliation(s)
- Lixi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, P. R. China
| | - Tong Yang
- Civil Engineering Department, McGill University, Montréal, Quebec Canada, H3A 0C5
| | - Xinglu Liu
- Civil Engineering Department, McGill University, Montréal, Quebec Canada, H3A 0C5
| | - Jinxia Liu
- Civil Engineering Department, McGill University, Montréal, Quebec Canada, H3A 0C5
| | - Wenxin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
17
|
Chen S, Fan T, Zhang N, Zhao L, Zhong R, Sun G. The oral acute toxicity of per- and polyfluoroalkyl compounds (PFASs) to Rat and Mouse: A mechanistic interpretation and prioritization analysis of untested PFASs by QSAR, q-RASAR and interspecies modelling methods. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136071. [PMID: 39383696 DOI: 10.1016/j.jhazmat.2024.136071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/07/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widely used in modern industry, causing many adverse effects on both the environment and human health. In this study, for the first time, we followed OECD guidelines to systematically investigate the quantitative structure-activity relationship (QSAR) of the oral acute toxicity of PFASs to Rat and Mouse using simple 2D descriptors. The Read-Across similarity descriptors and 2D descriptors were also combined to develop the quantitative read-across structure-activity relationship (q-RASAR) models. Interspecies toxicity (iST) correlation was also explored between the two rodent species. All developed QSAR, q-RASAR and iST models met the state-of-the-art validation criteria and were applied for toxicity predictions of hundreds of untested PFASs in true external sets. Subsequently, we performed the priority ranking of the untested PFASs based on the model predictions, with the mechanistic interpretation of the top 20 most toxic PFASs predicted by both QSAR and q-RASAR models. The two univariate iST models were also used for filling the interspecies toxicity data gap. Overall, the developed QSAR, q-RASAR and iST models can be used as effective tools for predicting the oral acute toxicity of untested PFASs to Rat and Mouse, thus being important for risk assessment of PFASs in ecological environment.
Collapse
Affiliation(s)
- Shuo Chen
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers (CPC Party School of Beijing Tong Ren Tang (Group) co., Ltd.), Beijing 100079, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
18
|
Miao Z, Li S, Song X, Ren F, Jin H. Discovery of perfluoroalkyl sulfonyl quaternary ammonium substances in the environment and their environmental behaviors. WATER RESEARCH 2024; 263:122189. [PMID: 39096813 DOI: 10.1016/j.watres.2024.122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
A variety of per- and polyfluoroalkyl substances (PFASs) have been released into the environment via wastewater treatment plant (WWTP) effluent, with current target and nontarget analytical methods typically focusing on negatively ionized PFASs while largely overlooking positively ionized ones. In this study, five cationic PFASs, perfluoroalkyl sulfonyl quaternary ammonium substances (PFAQASs), were first identified in surface water impacted by the WWTP effluent, applying a metabolomics-based nontarget analysis method. Environmental behaviors of identified novel PFAQASs were further investigated. In surface water, sediment, and fish (Coilia mystus) samples collected from the Yangtze River, 8:3 PFAQA was consistently the predominant PFAQASs, with the mean concentrations of 90 ng/L (< LOD-558 ng/L), 92 ng/g dw (< LOD-421 ng/g dw), and 2.3 ng/g ww (< LOD-4.6 ng/g ww), respectively. This study highlights the necessity to discover other cationic PFASs in the environment. Among PFAQASs, 8:4 PFAQA (4.2, range 3.4 - 4.6) had the highest mean sediment-water partitioning coefficient (log Koc), followed by 8:3 PFAQA (3.9, 2.8 - 4.5) and 6:3 PFAQA (3.7, 3.3 - 4.1). The log Koc of PFAQASs showed a general increase trend with the increasing carbon chain length. Mean bioaccumulation factor (BAF) values of PFAQASs calculated in the collected fish from the Yangtze River ranged from 1.9 ± 0.32 (4:3 PFAQA) to 2.9 ± 0.34 (8:4 PFAQA). The mean BAF values of PFAQASs generally increased with the carbon chain length. Further studies are warranted to elucidate the environmental fate, potential toxicity, and human exposure implications for these identified novel PFASs.
Collapse
Affiliation(s)
- Zhijia Miao
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, 050031, PR China; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, PR China
| | - Shuoyang Li
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, 050031, PR China; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, PR China
| | - Xueqiang Song
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, 050031, PR China; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, PR China
| | - Fangfang Ren
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China.
| |
Collapse
|
19
|
Rohonczy J, Forbes MR, Gilroy ÈAM, Carpenter DJ, Young SD, Morrill A, Brinovcar C, De Silva AO, Bartlett AJ, Robinson SA. Effects of perfluoroalkyl sulfonic acids on developmental, physiological, and immunological measures in northern leopard frog tadpoles. CHEMOSPHERE 2024; 365:143333. [PMID: 39271078 DOI: 10.1016/j.chemosphere.2024.143333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
The chronic toxicity of short chain perfluoroalkyl sulfonic acids (PFSAs), such as perfluorobutanesulfonic acid (PFBS) and perfluorohexanesulfonic acid (PFHxS), are relatively understudied despite the increasing detection of these compounds in the environment. We investigated the chronic toxicity and bioconcentration of PFBS and PFHxS using northern leopard frog (Rana [Lithobates] pipiens) tadpoles. We exposed Gosner stage (GS) 25 tadpoles to either PFBS or PFHxS at nominal concentrations of 0.1, 1, 10, 100, and 1000 μg/L until metamorphosis (GS42). We then assessed tadpole growth, development, stress, and immune metrics, and measured fatty acid (FA) composition and PFSA concentrations in liver and whole-body tissues. Tadpole growth and development measures were relatively unaffected by PFSA exposure. However, tadpoles exposed to 1000 μg/L PFBS or PFHxS had significantly increased hepatosomatic indexes (HSI) relative to controls. Further, tadpoles from the 1000 μg/L PFHxS treatment had altered FA profiles relative to controls, with increased total FAs, saturated FAs, monounsaturated FAs, and omega-6 polyunsaturated FAs. In addition, tadpoles from the 1000 μg/L PFHxS treatment had a higher probability of waterborne corticosterone detection. These results suggest that PFBS and PFHxS influence the hepatic health of tadpoles, and that PFHxS may alter lipid metabolism in tadpoles. We also observed a higher probability of tadpoles being phenotypically female after exposure to an environmentally relevant concentration (0.1 μg/L) of PFHxS, suggesting that PFHxS may exert endocrine disrupting effects on tadpoles during early development. The measured bioconcentration factors (BCFs) for both compounds were ≤10 L kg-1 wet weight, suggesting low bioconcentration potential for PFBS and PFHxS in tadpoles. Many of the significant effects observed in this study occurred at concentrations several orders of magnitude above those measured in the environment; however, our work shows effects of PFSAs exposure on amphibians and provides essential information for ecological risk assessments of these compounds.
Collapse
Affiliation(s)
- Jillian Rohonczy
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Mark R Forbes
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Ève A M Gilroy
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - David J Carpenter
- Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Sarah D Young
- Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - André Morrill
- Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Cassandra Brinovcar
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Amila O De Silva
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Adrienne J Bartlett
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Stacey A Robinson
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada; Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada.
| |
Collapse
|
20
|
Blazer VS, Walsh HL, Smith CR, Gordon SE, Keplinger BJ, Wertz TA. Tissue distribution and temporal and spatial assessment of per- and polyfluoroalkyl substances (PFAS) in smallmouth bass (Micropterus dolomieu) in the mid-Atlantic United States. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59302-59319. [PMID: 39348015 PMCID: PMC11513725 DOI: 10.1007/s11356-024-35097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become an environmental issue worldwide. A first step to assessing potential adverse effects on fish populations is to determine if concentrations of concern are present in a region and if so, in which watersheds. Hence, plasma from adult smallmouth bass Micropterus dolomieu collected at 10 sites within 4 river systems in the mid-Atlantic region of the United States, from 2014 to 2019, was analyzed for 13 PFAS. These analyses were directed at better understanding the presence and associations with land use attributes in an important sportfish. Four substances, PFOS, PFDA, PFUnA, and PFDoA, were detected in every plasma sample, with PFOS having the highest concentrations. Sites with mean plasma concentrations of PFOS below 100 ng/ml had the lowest percentage of developed landcover in the upstream catchments. Sites with moderate plasma concentrations (mean PFOS concentrations between 220 and 240 ng/ml) had low (< 7.0) percentages of developed land use but high (> 30) percentages of agricultural land use. Sites with mean plasma concentrations of PFOS > 350 ng/ml had the highest percentage of developed land use and the highest number PFAS facilities that included military installations and airports. Four of the sites were part of a long-term monitoring project, and PFAS concentrations of samples collected in spring 2017, 2018, and 2019 were compared. Significant annual differences in plasma concentrations were noted that may relate to sources and climatic factors. Samples were also collected at two sites for tissue (plasma, whole blood, liver, gonad, muscle) distribution analyses with an expanded analyte list of 28 PFAS. Relative tissue distributions were not consistent even within one species of similar ages. Although the long-chained legacy PFAS were generally detected more frequently and at higher concentrations, emerging compounds such as 6:2 FTS and GEN X were detected in a variety of tissues.
Collapse
Affiliation(s)
- Vicki S Blazer
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA.
| | - Heather L Walsh
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | - Cheyenne R Smith
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | - Stephanie E Gordon
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | | | - Timothy A Wertz
- Pennsylvania Department of Environmental Protection, Harrisburg, PA, 17101, USA
| |
Collapse
|
21
|
Cáceres T, Jones R, Kastury F, Juhasz AL. Soil amendments reduce PFAS bioaccumulation in Eisenia fetida following exposure to AFFF-impacted soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124489. [PMID: 38960119 DOI: 10.1016/j.envpol.2024.124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The efficacy of RemBind® 300 to immobilize per- and polyfluoroalkyl substances (PFAS) in aqueous film forming foam (AFFF)-impacted soil (∑28 PFAS 1280-8130 ng g-1; n = 8) was assessed using leachability (ASLP) and bioaccumulation (Eisenia fetida) endpoints as the measure of efficacy. In unamended soil, ∑28 PFAS leachability ranged from 26.0 to 235 μg l-1, however, following the addition of 5% w/w RemBind® 300, ∑28 PFAS leachability was reduced by > 99%. Following exposure of E. fetida to unamended soil, ∑28 PFAS bioaccumulation ranged from 18,660-241,910 ng g-1 DW with PFOS accumulating to the greatest extent (15,150-212,120 ng g-1 DW). Biota soil accumulation factors (BSAF) were significantly (p < 0.05) higher for perfluoroalkyl sulfonic acids (PFSA; 13.2-50.9) compared to perfluoroalkyl carboxylic acids (PFCA; 1.2-12.7) while for individual PFSA, mean BSAF increased for C4 to C6 compounds (PFBS: 42.6; PFPeS: 52.7; PFHxS: 62.4). In contrast, when E. fetida were exposed to soil amended with 5% w/w RemBind® 300, significantly lower PFAS bioaccumulation occurred (∑28 PFAS: 339-3397 ng g-1 DW) with PFOS accumulation 23-246 fold lower compared to unamended soil. These results highlight the potential of soil amendments for reducing PFAS mobility and bioavailability, offering an immobilization-based risk management approach for AFFF-impacted soil.
Collapse
Affiliation(s)
- Tanya Cáceres
- Future Industries Institute, UniSA, STEM, University of South Australia, Building X, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Ruby Jones
- Future Industries Institute, UniSA, STEM, University of South Australia, Building X, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Farzana Kastury
- Future Industries Institute, UniSA, STEM, University of South Australia, Building X, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Albert L Juhasz
- Future Industries Institute, UniSA, STEM, University of South Australia, Building X, Mawson Lakes Campus, Adelaide, SA, 5095, Australia.
| |
Collapse
|
22
|
Simon JT, Šedajová V, Tripathy D, Smith HE, Clarke SM, Grey CP, Menkin S. The effect of interface heterogeneity on zinc metal anode cyclability. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:24916-24933. [PMID: 39184305 PMCID: PMC11342068 DOI: 10.1039/d4ta03165b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/09/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Zinc metal batteries (ZMBs) are promising candidates for low-cost, intrinsically safe, and environmentally friendly energy storage systems. However, the anode is plagued with problems such as the parasitic hydrogen evolution reaction, surface passivation, corrosion, and a rough metal electrode morphology that is prone to short circuits. One strategy to overcome these issues is understanding surface processes to facilitate more homogeneous electrodeposition of zinc by guiding the alignment of electrodeposited zinc. Using Scanning Electrochemical Microscopy (SECM), the charge transport rate on zinc metal anodes was mapped, demonstrating that manipulating electrolyte concentration can influence zinc electrodeposition and solid electrolyte interphase (SEI) formation in ZMBs. Using XPS and Raman spectroscopy, it is demonstrated that an SEI is formed on zinc electrodes at neutral pH, composed primarily of a Zn4(OH)6SO4·xH2O species, its formation being attributed to local pH increases at the interface. This work shows that more extended high-rate cycling can be achieved using a 1 M ZnSO4 electrolyte and that these systems have a reduced tendency for soft shorts. The improved cyclability in 1 M ZnSO4 was attributed to a more homogeneous and conductive interface formed, rather than the bulk electrolyte properties. This experimental methodology for studying metal battery electrodes is transferable to lithium metal and anode-free batteries, and other sustainable battery chemistries such as sodium, magnesium, and calcium.
Collapse
Affiliation(s)
- J T Simon
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- The Faraday Institution, Quad One Harwell Science and Innovation Campus, Didcot OX11 0RA UK
| | - V Šedajová
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - D Tripathy
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - H E Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - S M Clarke
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Institute for Energy and Environmental Flows, University of Cambridge Madingley Road Cambridge CB3 0EZ UK
| | - C P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- The Faraday Institution, Quad One Harwell Science and Innovation Campus, Didcot OX11 0RA UK
| | - S Menkin
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- The Faraday Institution, Quad One Harwell Science and Innovation Campus, Didcot OX11 0RA UK
| |
Collapse
|
23
|
Custer CM, Dummer PM, Etterson MA, Haselman JT, Schultz S, Karouna-Renier N, Matson C. Per- and Polyfluoroalkyl Substances in the Duluth, Minnesota Area: Exposure to and Biomarker Responses in Tree Swallows Relative to Known Fire-Fighting Foam Sources. TOXICS 2024; 12:660. [PMID: 39330588 PMCID: PMC11435444 DOI: 10.3390/toxics12090660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Tree swallow nest boxes were deployed at sites proximal to two putative aqueous film forming foam (AFFF) sources in the Duluth, MN area, as well as along the St. Louis River and a reference lake for comparative purposes in 2019, 2020 and 2021. The two AFFF sites were the current Duluth Air National Guard Base (ANG) and the Lake Superior College Emergency Response Training Center. Between 13 and 40 per- and polyfluoroalkyl substances (PFAS), depending on year, were detected and quantified in tree swallow egg, nestling carcasses, and stomach contents. Assessments were made of oxidative stress and ethoxyresorufin-O-dealkylase activity in liver tissue, thyroid hormone levels in plasma and thyroid glands, DNA damage in red blood cells, and two measures of immune response (haptoglobin-like activity and immunoglobulin) in plasma of the nestlings. Additionally, other contaminants, such as polychlorinated biphenyls, legacy organochlorine pesticides, and trace elements, were assessed at sites with no previous data. Total egg PFAS concentrations at the ANG site and north of that site were 30-40 times higher than at the reference lake, while nestling PFAS concentrations were 10-15 times higher. In contrast, the St. Louis River sites had slightly, but non-statistically significant, elevated egg and nestling PFAS concentrations relative to the reference lake (2-5 times higher). One PFAS, perfluorohexane sulfonate (PFHxS), was higher, as a proportion of total PFAS, at sites with a known AFFF source compared to the reference lake, as well as compared to sites along the St. Louis River with mainly urban and industrial sources of PFAS. The ratio of total carboxylates to total sulfonates also distinguished between PFAS sources. There were few to no differences in biomarker responses among sites, and no association with PFAS exposure.
Collapse
Affiliation(s)
- Christine M Custer
- Upper Midwest Environmental Sciences Center, U.S. Geological Survey, 2630 Fanta Reed Road, La Crosse, WI 54603, USA
| | - Paul M Dummer
- Upper Midwest Environmental Sciences Center, U.S. Geological Survey, 2630 Fanta Reed Road, La Crosse, WI 54603, USA
| | - Matthew A Etterson
- U.S. EPA, Office of Research and Development, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Jonathan T Haselman
- U.S. EPA, Office of Research and Development, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Sandra Schultz
- Eastern Ecological Science Center at Patuxent, U.S. Geological Survey, 12100 Beech Forest Rd., Laurel, MD 20708, USA
| | - Natalie Karouna-Renier
- Eastern Ecological Science Center at Patuxent, U.S. Geological Survey, 12100 Beech Forest Rd., Laurel, MD 20708, USA
| | - Cole Matson
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
24
|
Lemos LS, Manfrin da Silva E, Steinman KJ, Robeck TR, Quinete N. Assessment of per- and poly-fluoroalkyl substances and physiological biomarkers in aquarium-based bottlenose dolphins and killer whales. CHEMOSPHERE 2024; 364:143038. [PMID: 39117081 DOI: 10.1016/j.chemosphere.2024.143038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Environmental concerns about per- and polyfluoroalkyl substances (PFAS) are considerably increasing due to their extensive use in commercial and consumer products. PFAS bioaccumulate and biomagnify throughout the food chain, and their toxicity and potential adverse health effects can potentially represent a threat to living organisms. In this study, we described PFAS profiles in the serum of two species of zoo-based bottlenose dolphins (Tursiops truncatus, n = 14 individuals) and killer whales (Orcinus orca, n = 14 individuals) from three locations (California, Florida, and Texas, USA), from 1994 to 2020. Potential physiological effects of PFAS were also explored by measuring different biomarkers (cortisol, corticosterone, aldosterone, TBARS, and hydrogen peroxide) while accounting for individual age, sex, and reproductive stage. All PFAS were detected in at least one of the individuals, considering both species. ΣPFAS reached 496 ng mL-1 in bottlenose dolphins and 230 ng mL-1 in killer whales. In both species, the PFAS with higher mean concentrations were PFOS (108.0-183.0 ng ml-1) and PFNA (14.40-85.50 ng ml-1), which are long-chain compounds. Newborn individuals of both species were also exposed to PFAS, indicating transference via placenta and lactation. Linear mixed model analyses indicated significant correlations between aldosterone, month, year, location, and status; and between hydrogen peroxide, month, year, age, status, ΣPFAS, and Σ short-chain PFAS in killer whales suggesting seasonal variations related to the animal's physiological state (e.g., reproductive cycles, stress responses, weaning events) and increased reactive oxygen species formation due to PFAS exposure. Given our results, other contaminant classes should be investigated in cetaceans as they might have additive and synergistic detrimental effects on these individuals. This study lays the foundation to guide future researchers and highlights the importance of such assessments for animal welfare, and species conservation. Our results may inform management decisions regarding regulations of contaminant thresholds in delphinids.
Collapse
Affiliation(s)
- Leila S Lemos
- Institute of Environment, Florida International University, North Miami, FL, 33181, USA; Emerging Contaminants of Concern Research Laboratory, Department of Chemistry & Biochemistry, College of Arts, Sciences, and Education, Florida International University, North Miami, FL, 33181, USA.
| | - Estela Manfrin da Silva
- Emerging Contaminants of Concern Research Laboratory, Department of Chemistry & Biochemistry, College of Arts, Sciences, and Education, Florida International University, North Miami, FL, 33181, USA
| | - Karen J Steinman
- Species Preservation Laboratory, SeaWorld Parks and Entertainment, San Diego, CA, 92109, USA
| | - Todd R Robeck
- Species Preservation Laboratory, SeaWorld Parks and Entertainment, San Diego, CA, 92109, USA; SeaWorld Parks and Entertainment, 7007 Sea Harbor Drive, Orlando, FL, 32821, USA
| | - Natalia Quinete
- Institute of Environment, Florida International University, North Miami, FL, 33181, USA; Emerging Contaminants of Concern Research Laboratory, Department of Chemistry & Biochemistry, College of Arts, Sciences, and Education, Florida International University, North Miami, FL, 33181, USA.
| |
Collapse
|
25
|
Groffen T, Buytaert J, Prinsen E, Bervoets L, Eens M. Per- and Polyfluoroalkyl Substances (PFAS) Accumulation, Reproductive Impairment, and Associations with Nestling Body Condition in Great ( Parus major)- and Blue Tits ( Cyanistes caeruleus) Living near a Hotspot in Belgium. TOXICS 2024; 12:636. [PMID: 39330564 PMCID: PMC11435652 DOI: 10.3390/toxics12090636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
Due to the limited number of field studies investigating associations between environmentally relevant per- and polyfluoroalkyl substances (PFAS) mixtures and reproductive impairment, there is uncertainty as to whether birds are affected by PFAS pollution, whether species differ in sensitivity to PFAS, and whether the observed reproductive impairment is caused by PFAS or rather due to other potential confounding variables. Therefore, we investigated PFAS concentrations in eggs and blood plasma of great tit (Parus major) and blue tit (Cyanistes caeruleus) nestlings near a PFAS hotspot in Belgium, reproductive impairment, and associations between the accumulated levels and nestling body condition. In total, 29 eggs and 22 blood plasma samples of great tit clutches, and 10 egg and 10 blood plasma samples of blue tit clutches, were collected. Despite more types of PFAS being detected in eggs compared to plasma, only minor differences in profiles were observed between species. On the other hand, tissue-specific differences were more pronounced and likely reflect a combination of maternal transfer and dietary exposure post-hatching. Despite the high concentrations detected in both species, limited reproductive impairment was observed. Our results support previous findings that great tits and blue tits may not be very susceptible to PFAS pollution and provide evidence that other factors, including ecological stoichiometry, may be more important in explaining inter-species variation in PFAS accumulation and reproductive impairment.
Collapse
Affiliation(s)
- Thimo Groffen
- ECOSPHERE, Department of Biology, Faculty of Science, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; (J.B.); (L.B.)
- Behavioural Ecology and Ecophysiology Group, Department of Biology, Faculty of Science, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium;
| | - Jodie Buytaert
- ECOSPHERE, Department of Biology, Faculty of Science, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; (J.B.); (L.B.)
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research, Department of Biology, Faculty of Science, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, Faculty of Science, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; (J.B.); (L.B.)
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, Faculty of Science, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium;
| |
Collapse
|
26
|
Xing Z, Wang G, Liu S, Chen H, Dong X, Wang H, Liu Y. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in agricultural soils affected by fluorochemical manufacturing facilities, North China: Occurrence, region-specific distribution, substitution trend and source appointment. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134770. [PMID: 38838522 DOI: 10.1016/j.jhazmat.2024.134770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Accompanied with restriction of legacy per- and polyfluoroalkyl substances (PFASs), numbers of emerging PFASs are widely detected in the environment. However, information on environmental occurrences and behaviors of emerging PFASs were scarce in agricultural soils. In this study, the spatial distributions, sources, substitution trends and ecological risk assessment of 31 legacy and emerging PFASs were investigated in 69 agricultural soils from Fuxin, North China. The 26 out of 31 PFASs were detected with concentrations of 57.36 - 1271.06 pg/g dry weight. Perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide dimer acid (HFPO-DA) were predominant in legacy and emerging PFASs, respectively. Based on principal component and dual carbon-nitrogen stable isotope analysis, atmosphere, fluorochemical activities and river irrigation were main sources of PFASs. Substitution trends indicated HFPO-DA and short chain perfluoroalkyl carboxylic acids (C4 - C7) as main alternatives of PFOA, and 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) as major substitutes to perfluorooctanesulfonic acid (PFOS). The calculated risk quotient values (< 0.006) only indicated potential low ecological risk of 7 target PFASs in agricultural soils. The results of this study broadened out the information of PFAS contamination in agricultural soils, which were significant for PFAS supervision in China.
Collapse
Affiliation(s)
- Ziao Xing
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China
| | - Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China.
| | - Shuaihao Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China
| | - Haiyue Chen
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China
| | - Xu Dong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, PR China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China
| |
Collapse
|
27
|
Sinclair GM, Jones OAH, Singh N, Long SM. Exposure to PFAS contaminated urban wetland water causes similar metabolic alterations to laboratory-based exposures in the freshwater amphipod Austrochiltonia subtenuis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104494. [PMID: 38925282 DOI: 10.1016/j.etap.2024.104494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Assessing the harm caused by pollutants in urban ecosystems remains a significant challenge. Traditional ecotoxicological endpoints are often not sensitive enough to detect the effects of toxicants at environmentally relevant concentrations (≤ng/L). A potential solution is using molecular biology methods to look at small biochemical changes caused by exposure to ng/L concentrations of contaminants. This has been tested in the lab but not conclusively demonstrated in the field. We exposed the freshwater amphipod (Austrochiltonia subtenuis) to water from an urban wetland containing known concentrations of per-and polyfluoroalkyl substances (as well as very low concentrations of pesticides) for 14 days and analyzed their metabolite profiles. Mannose, Myo-inositol, and Isopropyl propionate were found to change in PFAS exposed amphipods, a similar response to that previously observed in laboratory exposures to the same PFAS, but not pesticides. The results give a better understanding of PFAS toxicity at environmentally relevant concentrations and conditions.
Collapse
Affiliation(s)
- Georgia M Sinclair
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria 3083, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria 3083, Australia.
| | - Navneet Singh
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria 3083, Australia; ADE Consulting Group, Williamstown North, Victoria 3016, Australia
| | - Sara M Long
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria 3083, Australia
| |
Collapse
|
28
|
Mahoney H, da Silva F, Brinkmann M, Giesy JP. Mixtures of legacy and replacement perfluorosulphonic acids (PFSAs) demonstrate ratio-, concentration- and endpoint-dependent synergistic interactions in vitro. CHEMOSPHERE 2024; 361:142446. [PMID: 38801907 DOI: 10.1016/j.chemosphere.2024.142446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The extensive use of poly- and per-fluoroalkyl substances (PFASs) has les to their widespread presence in the environment, raising concerns about potential toxicity. While certain PFASs of concern have been phased-out or banned, new PFASs continue to be produced. Two such substances are perfluoroethylcyclohexane sulphonate (PFECHS) and perfluorobutane sulphamide (FBSA), replacements of perfluoroctanesulphonic acid (PFOS) that have recently been detected in multiple environmental media around the globe. Despite PFASs generally occurring in the environment as mixtures, few data are available outlining the effects of PFAS mixtures. Therefore, this research investigated the interaction potential of binary and ternary mixtures of emerging and legacy PFASs. The immortalized rainbow trout gill cell line (RTgill-W1) was chosen as the experimental model to investigate two apical endpoints: cytotoxicity and phospholipidosis. RTgill-W1 cells were exposed for 24 h to each compound to obtain endpoint-specific effect concentrations (LCx; ECx). These values were then applied to formulate mixture predictions following the Loewes Additivity and Steel and Peckham methods. Based on cytotoxicity, relative potencies of individual compounds were: PFOS > PFECHS > FSBA. PFOS and PFECHS had nearly identical effects on phospholipidosis, while FSBA did not have any effects. Most mixtures had a synergistic effect on cytotoxicity, but the effect was both dose- and ratio-dependent. PFOS and PFECHS were additive at lower concentrations (LC10) and synergistic at higher concentrations (LC50; 3:1, 1:1, and 1:3). PFECHS and FSBA mixtures were synergistic at all doses and ratios (3:1, 1:1, 1:3), while FBSA and PFOS were mainly synergistic at higher concentrations and at ratios favouring PFOS (1:1, 1:3). Tertiary combinations were mainly synergistic. For phospholipidosis, mixtures were strictly additive. These results are strongly suggestive of synergism between emerging PFAS replacements and highlight that independent apical mechanisms of different PFASs could combine to induce unexpected toxicity. Considering that emerging replacements are continuing to increase in concentration in the environment, such mixture scenarios are also likely to continue to increase in probability.
Collapse
Affiliation(s)
- Hannah Mahoney
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan, Canada
| | - Francisco da Silva
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan, Canada
| | - Markus Brinkmann
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Pl, Saskatoon, Saskatchewan, Canada; Global Institute for Water Security, University of Saskatchewan, 11 Innovation Blvd, Saskatoon, Saskatchewan, Canada; Centre for Hydrology, University of Saskatchewan, 121 Research Dr, Saskatoon, Saskatchewan, Canada.
| | - John P Giesy
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, MI, USA; Department of Environmental Science, Baylor University, One Bear Place #97266, TX, USA
| |
Collapse
|
29
|
Léandri-Breton DJ, Jouanneau W, Legagneux P, Tarroux A, Moe BR, Angelier F, Blévin P, Bråthen VS, Fauchald P, Gabrielsen GW, Herzke D, Nikiforov VA, Elliott KH, Chastel O. Winter Tracking Data Suggest that Migratory Seabirds Transport Per- and Polyfluoroalkyl Substances to Their Arctic Nesting Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12909-12920. [PMID: 38991194 DOI: 10.1021/acs.est.4c02661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Seabirds are often considered sentinel species of marine ecosystems, and their blood and eggs utilized to monitor local environmental contaminations. Most seabirds breeding in the Arctic are migratory and thus are exposed to geographically distinct sources of contamination throughout the year, including per- and polyfluoroalkyl substances (PFAS). Despite the abundance and high toxicity of PFAS, little is known about whether blood concentrations at breeding sites reliably reflect local contamination or exposure in distant wintering areas. We tested this by combining movement tracking data and PFAS analysis (nine compounds) from the blood of prelaying black-legged kittiwakes (Rissa tridactyla) nesting in Arctic Norway (Svalbard). PFAS burden before egg laying varied with the latitude of the wintering area and was negatively associated with time upon return of individuals at the Arctic nesting site. Kittiwakes (n = 64) wintering farther south carried lighter burdens of shorter-chain perfluoroalkyl carboxylates (PFCAs, C9-C12) and heavier burdens of longer chain PFCAs (C13-C14) and perfluorooctanesulfonic acid compared to those wintering farther north. Thus, blood concentrations prior to egg laying still reflected the uptake during the previous wintering stage, suggesting that migratory seabirds can act as biovectors of PFAS to Arctic nesting sites.
Collapse
Affiliation(s)
- Don-Jean Léandri-Breton
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9X 3 V9, Canada
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
| | - William Jouanneau
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
- Norwegian Polar Institute, Fram Centre, 9296 Tromso̷, Norway
| | - Pierre Legagneux
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
- Département de Biologie, Université Laval, Québec, QC G1 V0A6, Canada
| | - Arnaud Tarroux
- Norwegian Institute for Nature Research, Fram Centre, 9296 Tromso̷, Norway
| | - Bo Rge Moe
- Norwegian Institute for Nature Research, 7485, Trondheim, Norway
| | - Frédéric Angelier
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
| | | | - Vegard S Bråthen
- Norwegian Institute for Nature Research, 7485, Trondheim, Norway
| | - Per Fauchald
- Norwegian Institute for Nature Research, Fram Centre, 9296 Tromso̷, Norway
| | | | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), Fram Centre, 9296 Tromso̷, Norway
| | | | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9X 3 V9, Canada
| | - Olivier Chastel
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
| |
Collapse
|
30
|
Britton KN, Judson RS, Hill BN, Jarema KA, Olin JK, Knapp BR, Lowery M, Feshuk M, Brown J, Padilla S. Using Zebrafish to Screen Developmental Toxicity of Per- and Polyfluoroalkyl Substances (PFAS). TOXICS 2024; 12:501. [PMID: 39058153 PMCID: PMC11281043 DOI: 10.3390/toxics12070501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are found in many consumer and industrial products. While some PFAS, notably perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are developmentally toxic in mammals, the vast majority of PFAS have not been evaluated for developmental toxicity potential. A concentration-response study of 182 unique PFAS chemicals using the zebrafish medium-throughput, developmental vertebrate toxicity assay was conducted to investigate chemical structural identifiers for toxicity. Embryos were exposed to each PFAS compound (≤100 μM) beginning on the day of fertilization. At 6 days post-fertilization (dpf), two independent observers graded developmental landmarks for each larva (e.g., mortality, hatching, swim bladder inflation, edema, abnormal spine/tail, or craniofacial structure). Thirty percent of the PFAS were developmentally toxic, but there was no enrichment of any OECD structural category. PFOS was developmentally toxic (benchmark concentration [BMC] = 7.48 μM); however, other chemicals were more potent: perfluorooctanesulfonamide (PFOSA), N-methylperfluorooctane sulfonamide (N-MeFOSA), ((perfluorooctyl)ethyl)phosphonic acid, perfluoro-3,6,9-trioxatridecanoic acid, and perfluorohexane sulfonamide. The developmental toxicity profile for these more potent PFAS is largely unexplored in mammals and other species. Based on these zebrafish developmental toxicity results, additional screening may be warranted to understand the toxicity profile of these chemicals in other species.
Collapse
Affiliation(s)
- Katy N. Britton
- Oak Ridge Associated Universities Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Richard S. Judson
- Center for Computational Toxicology and Exposure, Computational Toxicology and Bioinformatics Branch, Research Triangle Park, NC 27711, USA;
| | - Bridgett N. Hill
- Oak Ridge Institute for Science and Education Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (B.N.H.); (B.R.K.)
| | - Kimberly A. Jarema
- Center for Public Health and Environmental Assessment, Immediate Office, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Jeanene K. Olin
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| | - Bridget R. Knapp
- Oak Ridge Institute for Science and Education Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (B.N.H.); (B.R.K.)
| | - Morgan Lowery
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| | - Madison Feshuk
- Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, Data Extraction and Quality Evaluation Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Jason Brown
- Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, Application Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| |
Collapse
|
31
|
Degitz SJ, Degoey PP, Haselman JT, Olker JH, Stacy EH, Blanksma C, Meyer S, Mattingly KZ, Blackwell B, Opseth AS, Hornung MW. Evaluating potential developmental toxicity of perfluoroalkyl and polyfluoroalkyl substances in Xenopus laevis embryos and larvae. J Appl Toxicol 2024; 44:1040-1049. [PMID: 38531109 PMCID: PMC11402019 DOI: 10.1002/jat.4599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
As part of the US Environmental Protection Agency's perfluoroalkyl and polyfluoroalkyl substances (PFAS) Action Plan, the agency is committed to increasing our understanding of the potential ecological effects of PFAS. The objective of these studies was to examine the developmental toxicity of PFAS using the laboratory model amphibian species Xenopus laevis. We had two primary aims: (1) to understand the developmental toxicity of a structurally diverse set of PFAS compounds in developing embryos and (2) to characterize the potential impacts of perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide-dimer acid (HFPO-DA a.k.a. GenX), on growth and thyroid hormone-controlled metamorphosis. We employed a combination of static renewal and flow-through exposure designs. Embryos were exposed to 17 structurally diverse PFAS starting at the midblastula stage through the completion of organogenesis (96 h). To investigate impacts on PFOS, PFOA, PFHxS, and HFPO-DA on development and metamorphosis, larvae were exposed from premetamorphosis (Nieuwkoop Faber stage 51 or 54) through pro metamorphosis. Of the PFAS tested in embryos, only 1H,1H,10H,10H-perfluorodecane-1,10-diol (FC10-diol) and perfluorohexanesulfonamide (FHxSA) exposure resulted in clear concentration-dependent developmental toxicity. For both of these PFAS, a significant increase in mortality was observed at 2.5 and 5 mg/L. For FC10-diol, 100% of the surviving embryos were malformed at 1.25 and 2.5 mg/L, while for FHxSA, a significant increase in malformations (100%) was observed at 2.5 and 5 mg/L. Developmental stage achieved was the most sensitive endpoint with significant effects observed at 1.25 and 0.625 mg/L for FC10-diol and FHxSA, respectively. In larval studies, we observed impacts on growth following exposure to PFHxS and PFOS at concentrations of 100 and 2.5 mg/L, respectively, while no impacts were observed in larvae when exposed to PFOA and HFPO-DA at concentration of 100 mg/L. Further, we did not observe impacts on thyroid endpoints in exposed larvae. These experiments have broadened our understanding of the impact of PFAS on anuran development.
Collapse
Affiliation(s)
- Sigmund J Degitz
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, USA
| | - Philip P Degoey
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, USA
| | - Jonathan T Haselman
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, USA
| | - Jennifer H Olker
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, USA
| | - Emma H Stacy
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, USA
| | - Chad Blanksma
- SpecPro Professional Services, c/o US EPA, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Scott Meyer
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, USA
- California Department of Water Resources, West Sacramento, California, USA
| | - Kali Z Mattingly
- SpecPro Professional Services, c/o US EPA, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Brett Blackwell
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, USA
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Anne S Opseth
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, USA
| | - Michael W Hornung
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, Minnesota, USA
| |
Collapse
|
32
|
Lorah MM, He K, Blaney L, Akob DM, Harris C, Tokranov A, Hopkins Z, Shedd BP. Anaerobic biodegradation of perfluorooctane sulfonate (PFOS) and microbial community composition in soil amended with a dechlorinating culture and chlorinated solvents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172996. [PMID: 38719042 DOI: 10.1016/j.scitotenv.2024.172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Perfluorooctane sulfonate (PFOS), one of the most frequently detected per- and polyfluoroalkyl substances (PFAS) occurring in soil, surface water, and groundwater near sites contaminated with aqueous film-forming foam (AFFF), has proven to be recalcitrant to many destructive remedies, including chemical oxidation. We investigated the potential to utilize microbially mediated reduction (bioreduction) to degrade PFOS and other PFAS through addition of a known dehalogenating culture, WBC-2, to soil obtained from an AFFF-contaminated site. A substantial decrease in total mass of PFOS (soil and water) was observed in microcosms amended with WBC-2 and chlorinated volatile organic compound (cVOC) co-contaminants - 46.4 ± 11.0 % removal of PFOS over the 45-day experiment. In contrast, perfluorooctanoate (PFOA) and 6:2 fluorotelomer sulfonate (6:2 FTS) concentrations did not decrease in the same microcosms. The low or non-detectable concentrations of potential metabolites in full PFAS analyses, including after application of the total oxidizable precursor assay, indicated that defluorination occurred to non-fluorinated compounds or ultrashort-chain PFAS. Nevertheless, additional research on the metabolites and degradation pathways is needed. Population abundances of known dehalorespirers did not change with PFOS removal during the experiment, making their association with PFOS removal unclear. An increased abundance of sulfate reducers in the genus Desulfosporosinus (Firmicutes) and Sulfurospirillum (Campilobacterota) was observed with PFOS removal, most likely linked to initiation of biodegradation by desulfonation. These results have important implications for development of in situ bioremediation methods for PFAS and advancing knowledge of natural attenuation processes.
Collapse
Affiliation(s)
- Michelle M Lorah
- U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, Baltimore, MD 21228, USA.
| | - Ke He
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore, MD 21250, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore, MD 21250, USA
| | - Denise M Akob
- U.S. Geological Survey, Geology, Energy, & Minerals Science Center, Reston, VA 20192, USA
| | - Cassandra Harris
- U.S. Geological Survey, Geology, Energy, & Minerals Science Center, Reston, VA 20192, USA
| | - Andrea Tokranov
- U.S. Geological Survey, New England Water Science Center, Pembroke, NH 03275, USA
| | - Zachary Hopkins
- U.S. Geological Survey, Eastern Ecological Science Center, Kearneysville, WV 25430, USA
| | - Brian P Shedd
- U.S. Army Corps of Engineers, U.S. DOD Environmental Programs Branch, Environmental Division, Headquarters, Washington, D.C. 20314, USA
| |
Collapse
|
33
|
Lech ME, Choi YJ, Lee LS, Sepúlveda MS, Hoverman JT. Assessing the Combined Effects of Host and Parasite Exposure to Forever Chemicals in an Amphibian-Echinostome System. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1537-1546. [PMID: 38629586 DOI: 10.1002/etc.5877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/05/2023] [Accepted: 03/23/2024] [Indexed: 06/27/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental contaminants of growing concern due to their potential negative effects on wildlife and human health. Per- and polyfluoroalkyl substances have been shown to alter immune function in various taxa, which could influence the outcomes of host-parasite interactions. To date, studies have focused on the effects of PFAS on host susceptibility to parasites, but no studies have addressed the effects of PFAS on parasites. To address this knowledge gap, we independently manipulated exposure of larval northern leopard frogs (Rana pipiens) and parasites (flatworms) via their snail intermediate host to environmentally relevant PFAS concentrations and then conducted trials to assess host susceptibility to infection, parasite infectivity, and parasite longevity after emergence from the host. We found that PFAS exposure to only the host led to no significant change in parasite load, whereas exposure of parasites to a 10-µg/L mixture of PFAS led to a significant reduction in parasite load in hosts that were not exposed to PFAS. We found that when both host and parasite were exposed to PFAS there was no difference in parasite load. In addition, we found significant differences in parasite longevity post emergence following exposure to PFAS. Although some PFAS-exposed parasites had greater longevity, this did not necessarily translate into increased infection success, possibly because of impaired movement of the parasite. Our results indicate that exposure to PFAS can potentially impact host-parasite interactions. Environ Toxicol Chem 2024;43:1537-1546. © 2024 SETAC.
Collapse
Affiliation(s)
- Melissa E Lech
- Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Youn J Choi
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Maria S Sepúlveda
- Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Jason T Hoverman
- Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
34
|
Samuel IBH, Pollin K, Tschida S, Prisco MK, Lu C, Powell A, Mefford J, Lee J, Dupriest T, Forsten R, Ortiz J, Barrett J, Reinhard M, Costanzo M. Linked Exposures Across Databases: an exposure common data elements aggregation framework to facilitate clinical exposure review. Front Public Health 2024; 12:1408222. [PMID: 39005996 PMCID: PMC11243485 DOI: 10.3389/fpubh.2024.1408222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 07/16/2024] Open
Abstract
Understanding the health outcomes of military exposures is of critical importance for Veterans, their health care team, and national leaders. Approximately 43% of Veterans report military exposure concerns to their VA providers. Understanding the causal influences of environmental exposures on health is a complex exposure science task and often requires interpreting multiple data sources; particularly when exposure pathways and multi-exposure interactions are ill-defined, as is the case for complex and emerging military service exposures. Thus, there is a need to standardize clinically meaningful exposure metrics from different data sources to guide clinicians and researchers with a consistent model for investigating and communicating exposure risk profiles. The Linked Exposures Across Databases (LEAD) framework provides a unifying model for characterizing exposures from different exposure databases with a focus on providing clinically relevant exposure metrics. Application of LEAD is demonstrated through comparison of different military exposure data sources: Veteran Military Occupational and Environmental Exposure Assessment Tool (VMOAT), Individual Longitudinal Exposure Record (ILER) database, and a military incident report database, the Explosive Ordnance Disposal Information Management System (EODIMS). This cohesive method for evaluating military exposures leverages established information with new sources of data and has the potential to influence how military exposure data is integrated into exposure health care and investigational models.
Collapse
Affiliation(s)
- Immanuel B H Samuel
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, United States
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
| | - Kamila Pollin
- The War Related Illness and Injury Study Center, Washington, DC, United States
| | - Sherri Tschida
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
| | | | - Calvin Lu
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, United States
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
| | - Alan Powell
- Explosive Ordnance Disposal Information Management System (EODIMS), Air Force Civil Engineer Center, Functional Management Office (FMO) (AFCEC/CBS), Joint Base San Antonio, San Antonio, TX, United States
| | - Jessica Mefford
- Explosive Ordnance Disposal Information Management System (EODIMS), Air Force Civil Engineer Center, Functional Management Office (FMO) (AFCEC/CBS), Joint Base San Antonio, San Antonio, TX, United States
| | - Jamie Lee
- Explosive Ordnance Disposal Information Management System (EODIMS), Air Force Civil Engineer Center, Functional Management Office (FMO) (AFCEC/CBS), Joint Base San Antonio, San Antonio, TX, United States
| | - Teresa Dupriest
- Explosive Ordnance Disposal Information Management System (EODIMS), Air Force Civil Engineer Center, Functional Management Office (FMO) (AFCEC/CBS), Joint Base San Antonio, San Antonio, TX, United States
| | - Robert Forsten
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, United States
| | - Jose Ortiz
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
| | - John Barrett
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
- Department of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Matthew Reinhard
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
- Georgetown University Medical School, Washington, DC, United States
| | - Michelle Costanzo
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
- Department of Medicine, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
35
|
O’Rourke E, Losada S, Barber JL, Scholey G, Bain I, Pereira MG, Hailer F, Chadwick EA. Persistence of PFOA Pollution at a PTFE Production Site and Occurrence of Replacement PFASs in English Freshwaters Revealed by Sentinel Species, the Eurasian Otter ( Lutra lutra). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10195-10206. [PMID: 38800846 PMCID: PMC11171452 DOI: 10.1021/acs.est.3c09405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Concentrations of 33 PFASs were determined in 20 Eurasian otters, sampled 2015-2019, along a transect away from a factory, which used PFOA in PTFE manufacture. Despite cessation of usage in 2012, PFOA concentrations remained high near the factory (>298 μg/kg ww <20 km from factory) and declined with increasing distance (<57 μg/kg ww >150 km away). Long-chain legacy PFASs dominated the Σ33PFAS profile, particularly PFOS, PFOA, PFDA, and PFNA. Replacement compounds, PFECHS, F-53B, PFBSA, PFBS, PFHpA, and 8:2 FTS, were detected in ≥19 otters, this being the first report of PFBSA and PFECHS in the species. Concentrations of replacement PFASs were generally lower than legacy compounds (max: 70.3 μg/kg ww and 4,640 μg/kg ww, respectively). Our study underscores the utility of otters as sentinels for evaluating mitigation success and highlights the value of continued monitoring to provide insights into the longevity of spatial associations with historic sources. Lower concentrations of replacement, than legacy, PFASs likely reflect their lower bioaccumulation potential, and more recent introduction. Continued PFAS use will inevitably lead to increased environmental and human exposure if not controlled. Further research is needed on fate, toxicity, and bioaccumulation of replacement compounds.
Collapse
Affiliation(s)
- Emily O’Rourke
- School
of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, U.K.
| | - Sara Losada
- Centre
for Environment, Fisheries and Aquaculture Science (Cefas), Suffolk, Lowestoft NR33
0HT, U.K.
| | - Jonathan L. Barber
- Centre
for Environment, Fisheries and Aquaculture Science (Cefas), Suffolk, Lowestoft NR33
0HT, U.K.
| | - Graham Scholey
- Environment
Agency, Red Kite House, Howbery Park, Wallingford, Oxfordshire OX10 8BD, U.K.
| | - Isobel Bain
- Environment
Agency, Red Kite House, Howbery Park, Wallingford, Oxfordshire OX10 8BD, U.K.
| | - M. Glória Pereira
- Lancaster
Environment Centre, UK Centre for Ecology
and Hydrology, Library
Avenue, Bailrigg, Lancaster LA1 4AP, U.K.
| | - Frank Hailer
- School
of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, U.K.
| | | |
Collapse
|
36
|
Rekik H, Arab H, Pichon L, El Khakani MA, Drogui P. Per-and polyfluoroalkyl (PFAS) eternal pollutants: Sources, environmental impacts and treatment processes. CHEMOSPHERE 2024; 358:142044. [PMID: 38648982 DOI: 10.1016/j.chemosphere.2024.142044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become a growing environmental concern due to their tangible impacts on human health. However, due to the large number of PFAS compounds and the analytical difficulty to identify all of them, there are still some knowledge gaps not only on their impact on human health, but also on how to manage them and achieve their effective degradation. PFAS compounds originate from man-made chemicals that are resistant to degradation because of the presence of the strong carbon-fluorine bonds in their chemical structure. This review consists of two parts. In the first part, the environmental effects of fluorinated compound contamination in water are covered with the objective to highlight how their presence in the environment adversely impacts the human health. In the second part, the focus is put on the different techniques available for the degradation and/or separation of PFAS compounds in different types of waters. Examples of removal/treatment of PFAS present in either surface or ground water are presented.
Collapse
Affiliation(s)
- Hela Rekik
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada
| | - Hamed Arab
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada
| | - Loick Pichon
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada
| | - My Ali El Khakani
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada
| | - Patrick Drogui
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada.
| |
Collapse
|
37
|
Burcham LE, Hoskins TD, Allmon EB, Scherer MN, Bushong AG, Hamilton MT, Macheri S, Coogan GS, Choi YJ, Lee LS, Sepúlveda MS. Does salinity mediate the toxicity of perfluorooctanesulfonic acid (PFOS) in an estuarine fish? MARINE POLLUTION BULLETIN 2024; 203:116446. [PMID: 38703627 DOI: 10.1016/j.marpolbul.2024.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is detected in estuarine environments, where salinity levels fluctuate regularly. We investigated the effects of salinity on the toxicity of PFOS in embryos and larvae of Cyprinodon variegatus. We crossed six PFOS treatments (0, 1-10,000 μg/L) with two salinities (10, 30 ppt). Larvae exposed to the highest concentration of PFOS under high salinity accumulated over twice the amount of PFOS compared to larvae maintained under low salinity. Embryonic survival was unaffected by PFOS, salinity, or their interaction. PFOS delayed time to hatch and increased salinity reduced time to hatch regardless of PFOS treatment; however, no salinity by PFOS interactions were observed. Conversely, PFOS and salinity interacted in the larval stage, with decreased survival at 30 ppt salinity. This is one of the first studies evaluating interactive effects of PFOS and high salinity and highlights the importance of assessing PFAS toxicity across life stages.
Collapse
Affiliation(s)
- Lucy E Burcham
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Tyler D Hoskins
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Elizabeth B Allmon
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Meredith N Scherer
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Anna G Bushong
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Matthew T Hamilton
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Sini Macheri
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Grace S Coogan
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Youn J Choi
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Maria S Sepúlveda
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA; Sustainability Research Center and PhD in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
38
|
Khan K, Younas M, Ali J, Shah NS, Kavil YN, Assiri MA, Cao X, Sher H, Maryam A, Zhou Y, Yaseen M, Xu L. Population exposure to emerging perfluoroalkyl acids (PFAAs) via drinking water resources: Application of multivariate statistics and risk assessment models. MARINE POLLUTION BULLETIN 2024; 203:116415. [PMID: 38723552 DOI: 10.1016/j.marpolbul.2024.116415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 06/06/2024]
Abstract
This study assessed the occurrence, origins, and potential risks of emerging perfluoroalkyl acids (PFAAs) for the first time in drinking water resources of Khyber Pakhtunkhwa, Pakistan. In total, 13 perfluoroalkyl carboxylic acids (PFCAs) with carbon (C) chains C4-C18 and 4 perfluoroalkyl sulfonates (PFSAs) with C chains C4-C10 were tested in both surface and ground drinking water samples using a high-performance liquid chromatography system (HPLC) equipped with an Agilent 6460 Triple Quadrupole liquid chromatography-mass spectrometry (LC-MS) system. The concentrations of ∑PFCAs, ∑PFSAs, and ∑PFAAs in drinking water ranged from 1.46 to 72.85, 0.30-8.03, and 1.76-80.88 ng/L, respectively. Perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), and perfluoropentanoic acid (PFPeA) were the dominant analytes in surface water followed by ground water, while the concentration of perfluorobutane sulfonate (PFBS), perfluorooctanoic acid (PFOA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), and perfluorododecanoic acid (PFDoDA) were greater than long-chain PFOA and PFOS. The correlation statistics, which showed a strong correlation (p < 0.05) between the PFAA analytes, potentially indicated the fate of PFAAs in the area's drinking water sources, whereas the hierarchical cluster analysis (HCA) and principal component analysis (PCA) statistics identified industrial, domestic, agricultural, and commercial applications as potential point and non-point sources of PFAA contamination in the area. From risk perspectives, the overall PFAA toxicity in water resources was within the ecological health risk thresholds, where for the human population the hazard quotient (HQ) values of individual PFAAs were < 1, indicating no risk from the drinking water sources; however, the hazard index (HI) from the ∑PFAAs should not be underestimated, as it may significantly result in potential chronic toxicity to exposed adults, followed by children.
Collapse
Affiliation(s)
- Kifayatullah Khan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan.
| | - Muhammad Younas
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Jafar Ali
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Noor Samad Shah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Yasar N Kavil
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; Stockholm Convention Regional Center for Capacity-Building and the Transfer of Technology for West Asia (SCRC-Kuwait), P.O. Box: 24885, Safat 13109, Kuwait
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Xianghui Cao
- China Institute of Geo-Environment Monitoring, Beijing 100081, China
| | - Hassan Sher
- Center for Plant Sciences and Biodiversity, University of Swat, Swat 19120, Pakistan
| | - Afsheen Maryam
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan; Department of Environmental Science -ACES-b (Institutionen för miljövetenskap), Stockholm University, Stockholm 106 91, Sweden
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100095, China
| |
Collapse
|
39
|
Sun T, Ji C, Li F, Wu H. Time Is Ripe for Targeting Per- and Polyfluoroalkyl Substances-Induced Hormesis: Global Aquatic Hotspots and Implications for Ecological Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9314-9327. [PMID: 38709515 DOI: 10.1021/acs.est.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| |
Collapse
|
40
|
Bennett BJ, Aung MT, Boonstra R, Delehanty B, Houde M, Muir DCG, Fair PA, Gribble MO. Investigation of the Link between Per- and Polyfluoroalkyl Substances and Stress Biomarkers in Bottlenose Dolphins ( Tursiops truncatus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9061-9070. [PMID: 38743562 PMCID: PMC11137861 DOI: 10.1021/acs.est.3c06979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Bottlenose dolphins (Tursiops truncatus) are keystone and sentinel species in the world's oceans. We studied correlations between per- and polyfluoroalkyl substances (PFAS) and their stress axis. We investigated associations between plasma biomarkers of 12 different PFAS variants and three cortisol pools (total, bound, and free) in wild T. truncatus from estuarine waters of Charleston, South Carolina (n = 115) and Indian River Lagoon, Florida (n = 178) from 2003 to 2006, 2010-2013, and 2015. All PFAS and total cortisol levels for these dolphins were previously reported; bound cortisol levels and free cortisol calculations have not been previously reported. We tested null hypotheses that levels of each PFAS were not correlated with those of each cortisol pool. Free cortisol levels were lower when PFOS, PFOA, and PFHxS biomarker levels were higher, but free cortisol levels were higher when PFTriA was higher. Bound cortisol levels were higher when there were higher PFDA, PFDoDA, PFDS, PFTeA, and PFUnDA biomarkers. Total cortisol was higher when PFOA was lower, but total cortisol was higher when PFDA, PFDoDA, PFTeA, and PFTriA were higher. Additional analyses indicated sex and age trends, as well as heterogeneity of effects from the covariates carbon chain length and PFAS class. Although this is a cross-sectional observational study and, therefore, could reflect cortisol impacts on PFAS toxicokinetics, these correlations are suggestive that PFAS impacts the stress axis in T. truncatus. However, if PFAS do impact the stress axis of dolphins, it is specific to the chemical structure, and could affect the individual pools of cortisol differently. It is critical to conduct long-term studies on these dolphins and to compare them to populations that have no or little expose to PFAS.
Collapse
Affiliation(s)
- Baylin J. Bennett
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
- Department
of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Max T. Aung
- Department
of Population and Public Health Sciences, University of Southern California, Los Angeles, California 90032, United States
| | - Rudy Boonstra
- Centre
for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Brendan Delehanty
- Centre
for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Magali Houde
- Aquatic
Contaminants Research Division, Environment
and Climate Change Canada, Montreal, Quebec G1J 0C3, Canada
| | - Derek C. G. Muir
- Aquatic
Contaminants Research Division, Environment
and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Patricia A. Fair
- Department
of Public Health Sciences, Medical University
of South Carolina, Charleston, South Carolina 29425, United States
| | - Matthew O. Gribble
- Department
of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
41
|
Beale DJ, Nguyen TV, Bose U, Shah R, Nelis JLD, Stockwell S, Broadbent JA, Nilsson S, Rane R, Court L, Lettoof DC, Pandey G, Walsh TK, Shaw S, Llinas J, Limpus D, Limpus C, Braun C, Baddiley B, Vardy S. Metabolic disruptions and impaired reproductive fitness in wild-caught freshwater turtles (Emydura macquarii macquarii) exposed to elevated per- and polyfluoroalkyl substances (PFAS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171743. [PMID: 38494020 DOI: 10.1016/j.scitotenv.2024.171743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) pose a threat to organisms and ecosystems due to their persistent nature. Ecotoxicology endpoints used in regulatory guidelines may not reflect multiple, low-level but persistent stressors. This study examines the biological effects of PFAS on Eastern short-necked turtles in Queensland, Australia. In this study, blood samples were collected and analysed for PFAS, hormone levels, and functional omics endpoints. High levels of PFAS were found in turtles at the impacted site, with PFOS being the dominant constituent. The PFAS profiles of males and females differed, with males having higher PFAS concentrations. Hormone concentrations differed between impacted and reference sites in male turtles, with elevated testosterone and corticosterone indicative of stress. Further, energy utilisation, nucleotide synthesis, nitrogen metabolism, and amino acid synthesis were altered in both male and female turtles from PFAS-impacted sites. Both sexes show similar metabolic responses to environmental stressors from the PFAS-contaminated site, which may adversely affect their reproductive fitness. Purine metabolism, caffeine metabolism, and ferroptosis pathway changes in turtles can cause gout, cell death, and overall health problems. Further, the study showed that prolonged exposure to elevated PFAS levels in the wild could compromise turtle reproductive fitness by disrupting reproductive steroids and metabolic pathways.
Collapse
Affiliation(s)
- David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Qld 4102, Australia.
| | - Thao V Nguyen
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Qld 4102, Australia
| | - Utpal Bose
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Rohan Shah
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Qld 4102, Australia; School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, Vic 3083, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn Vic 3122, Australia
| | - Joost Laurus Dinant Nelis
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Sally Stockwell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - James A Broadbent
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Qld 4102, Australia
| | - Rahul Rane
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Parkville, Vic 3052, Australia
| | - Leon Court
- Environment, Commonwealth Scientific and Industrial Research Organisation, CSIRO Black Mountain Laboratories, Acton, ACT 2602, Australia
| | - Damian C Lettoof
- Environment, Commonwealth Scientific and Industrial Research Organisation, CSIRO Centre for Environment and Life Sciences, Floreat, WA 6014, Australia
| | - Gunjan Pandey
- Environment, Commonwealth Scientific and Industrial Research Organisation, CSIRO Black Mountain Laboratories, Acton, ACT 2602, Australia
| | - Thomas K Walsh
- Environment, Commonwealth Scientific and Industrial Research Organisation, CSIRO Black Mountain Laboratories, Acton, ACT 2602, Australia
| | - Stephanie Shaw
- Wildlife and Threatened Species Operations, Department of Environment and Science, Queensland Government, Moggill, Qld 4070, Australia
| | - Josh Llinas
- The Unusual Pet Vets Jindalee, Veterinarian, Jindalee, Qld 4074, Australia
| | - Duncan Limpus
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Colin Limpus
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Christoph Braun
- Water Quality and Investigations, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Brenda Baddiley
- Water Quality and Investigations, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| | - Suzanne Vardy
- Water Quality and Investigations, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia
| |
Collapse
|
42
|
Marciano J, Crawford L, Mukhopadhyay L, Scott W, McElroy A, McDonough C. Per/Polyfluoroalkyl Substances (PFASs) in a Marine Apex Predator (White Shark, Carcharodon carcharias) in the Northwest Atlantic Ocean. ACS ENVIRONMENTAL AU 2024; 4:152-161. [PMID: 38765060 PMCID: PMC11100321 DOI: 10.1021/acsenvironau.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 05/21/2024]
Abstract
Per/polyfluoroalkyl substances (PFASs) are ubiquitous, highly persistent anthropogenic chemicals that bioaccumulate and biomagnify in aquatic food webs and are associated with adverse health effects, including liver and kidney diseases, cancers, and immunosuppression. We investigated the accumulation of PFASs in a marine apex predator, the white shark (Carcharodon carcharias). Muscle (N = 12) and blood plasma (N = 27) samples were collected from 27 sharks during 2018-2021 OCEARCH expeditions along the eastern coast of North America from Nova Scotia to Florida. Samples were analyzed for 47 (plasma) and 43 (muscle) targeted PFASs and screened for >2600 known and novel PFASs using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Perfluoroalkyl carboxylates with carbon chain-length C11 to C14 were frequently detected above the method reporting limits in plasma samples, along with perfluorooctanesulfonate and perfluorodecanesulfonate. Perfluoropentadecanoate was also detected in 100% of plasma samples and concentrations were estimated semiquantitatively as no analytical standard was available. Total concentrations of frequently detected PFASs in plasma ranged from 0.56 to 2.9 ng mL-1 (median of 1.4 ng mL-1). In muscle tissue, nine targeted PFASs were frequently detected, with total concentration ranging from 0.20 to 0.84 ng g-1 ww. For all frequently detected PFASs, concentrations were greater in plasma than in muscle collected from the same organism. In both matrices, perfluorotridecanoic acid was the most abundant PFAS, consistent with several other studies. PFASs with similar chain-lengths correlated significantly among the plasma samples, suggesting similar sources. Total concentrations of PFASs in plasma were significantly greater in sharks sampled off of Nova Scotia than all sharks from other locations, potentially due to differences in diet. HRMS suspect screening tentatively identified 13 additional PFASs in plasma, though identification confidence was low, as no MS/MS fragmentation was collected due to low intensities. The widespread detection of long-chain PFASs in plasma and muscle of white sharks highlights the prevalence and potential biomagnification of these compounds in marine apex predators.
Collapse
Affiliation(s)
- Jennifer Marciano
- Department
of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Lisa Crawford
- School
of Marine and Atmospheric Sciences, Stony
Brook University, Stony Brook, New York 11794, United States
| | - Leenia Mukhopadhyay
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wesley Scott
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Anne McElroy
- School
of Marine and Atmospheric Sciences, Stony
Brook University, Stony Brook, New York 11794, United States
| | - Carrie McDonough
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
43
|
Hamed M, Vats A, Lim IE, Sapkota B, Abdelmoneim A. Effects of developmental exposure to individual and combined PFAS on development and behavioral stress responses in larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123912. [PMID: 38570156 DOI: 10.1016/j.envpol.2024.123912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals known for their widespread use and persistence in the environment. Laboratory and epidemiological studies investigating these compounds have signaled their neurotoxic and endocrine-disrupting propensities, prompting further research into their effects on behavioral stress responses and their potential role as risk factors for stress-related disorders such as anxiety and depression. This study elucidates the ramifications of early developmental exposures to individual and combined PFAS on the development and behavioral stress responses of larval zebrafish (Danio rerio), an established model in toxicological research. Wild-type zebrafish embryos were enzymatically dechorionated and exposed to PFOS, PFOA, PFHxS, and PFHxA between 6 and 120 h post-fertilization (hpf). We targeted environmentally relevant concentrations stemming from the USEPA 2016 Hazard Advisory Limit (HAL, 0.07 μg/L) and folds higher (0.35, 0.7, 1.75, and 3.5 μg/L). Evaluations at 120 hpf encompassed mortality, overall development, developmental defects, and larval activity both at baseline stress levels and following exposure to acute stressors (acoustic and visual). Larval exposure to PFOA, PFOS, or PFHxS (0.07 μg/L or higher) elicited significant increases in mortality rates, which capped at 23.1%. Exposure to individual chemicals resulted in limited effects on overall development but increased the prevalence of developmental defects in the body axis, swim bladder, pigmentation, and eyes, as well as the prevalence of yolk sac and pericardial edemas. Larval activity at baseline stress levels and following exposure to acute stimuli was significantly altered. Combined exposure to all four chemicals intensified the breadth of developmental and behavioral alterations, suggesting possible additive or synergistic effects. Our findings shed light on the developmental and neurobehavioral disturbances associated with developmental exposure to PFAS at environmentally relevant concentrations, the added risks of combined exposures to these chemicals, and their possible role as environmental risk factors for stress-related disorders.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ajn Vats
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ignitius Ezekiel Lim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Biplov Sapkota
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
44
|
Witt CC, Gadek CR, Cartron JLE, Andersen MJ, Campbell ML, Castro-Farías M, Gyllenhaal EF, Johnson AB, Malaney JL, Montoya KN, Patterson A, Vinciguerra NT, Williamson JL, Cook JA, Dunnum JL. Extraordinary levels of per- and polyfluoroalkyl substances (PFAS) in vertebrate animals at a New Mexico desert oasis: Multiple pathways for wildlife and human exposure. ENVIRONMENTAL RESEARCH 2024; 249:118229. [PMID: 38325785 DOI: 10.1016/j.envres.2024.118229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) in the environment pose persistent and complex threats to human and wildlife health. Around the world, PFAS point sources such as military bases expose thousands of populations of wildlife and game species, with potentially far-reaching implications for population and ecosystem health. But few studies shed light on the extent to which PFAS permeate food webs, particularly ecologically and taxonomically diverse communities of primary and secondary consumers. Here we conducted >2000 assays to measure tissue-concentrations of 17 PFAS in 23 species of mammals and migratory birds at Holloman Air Force Base (AFB), New Mexico, USA, where wastewater catchment lakes form biodiverse oases. PFAS concentrations were among the highest reported in animal tissues, and high levels have persisted for at least three decades. Twenty of 23 species sampled at Holloman AFB were heavily contaminated, representing middle trophic levels and wetland to desert microhabitats, implicating pathways for PFAS uptake: ingestion of surface water, sediments, and soil; foraging on aquatic invertebrates and plants; and preying upon birds or mammals. The hazardous long carbon-chain form, perfluorooctanosulfonic acid (PFOS), was most abundant, with liver concentrations averaging >10,000 ng/g wet weight (ww) in birds and mammals, respectively, and reaching as high 97,000 ng/g ww in a 1994 specimen. Perfluorohexanesulfonic acid (PFHxS) averaged thousands of ng/g ww in the livers of aquatic birds and littoral-zone house mice, but one order of magnitude lower in the livers of upland desert rodent species. Piscivores and upland desert songbirds were relatively uncontaminated. At control sites, PFAS levels were strikingly lower on average and different in composition. In sum, legacy PFAS at this desert oasis have permeated local aquatic and terrestrial food webs across decades, severely contaminating populations of resident and migrant animals, and exposing people via game meat consumption and outdoor recreation.
Collapse
Affiliation(s)
- Christopher C Witt
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Chauncey R Gadek
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Environmental Stewardship, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jean-Luc E Cartron
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Daniel B. Stephens & Associates, Inc., 6020 Academy Road NE, Suite 100, Albuquerque, NM, 87109, USA
| | - Michael J Andersen
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mariel L Campbell
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Marialejandra Castro-Farías
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ethan F Gyllenhaal
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrew B Johnson
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jason L Malaney
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; New Mexico Museum of Natural History and Science, Albuquerque, NM, 87104, USA
| | - Kyana N Montoya
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrew Patterson
- Eurofins Environment Testing America, West Sacramento, CA, 95605, USA
| | - Nicholas T Vinciguerra
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jessie L Williamson
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Joseph A Cook
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jonathan L Dunnum
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
45
|
Sun X, Yang R, Ji J, Zhu Z, White JC, Shen Y. An evaluation of microplastic contamination in the marine waters and species in the coastal region of the South Yellow Sea, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134018. [PMID: 38492402 DOI: 10.1016/j.jhazmat.2024.134018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Microplastics (MPs) contamination of marine environments poses a significant ecological risk, although impacts on species' realized niche spaces remain unclear. The current study investigates MPs distribution across pelagic habitats, benthic sediments, and key biota in the South Yellow Sea, China. Samples were collected via trawling across estuarine transects, and tissues were digested to extract MPs. Density gradient separations and vacuum-filtrations prepared particle extracts for ATR-FTIR and Micro-Raman spectroscopic characterization. Sampling along industrialized river transects reveals ubiquitous plastic particle presence, with concentrations ranging from 0 to 51.68 item/L seawater. Contamination levels reach their peak at station estuaries before dispersing offshore, indicating significant waste stream inputs. Importantly, MPs detected in demersal and pelagic fish species, as well as in bivalves, confirm exposure across trophic niches. Gastrointestinal tract and gill concentrations reached 0.6 items/g fresh tissue, reflecting significant biological uptake and in vivo retention. The greatest population of organisms occurred adjacent to polluted areas. Overall, distribution of MPs from polluted rivers to coastal food webs was evident, suggesting potential negative impacts on key ecological functions in this system. These findings underscore the need to develop upstream mitigation efforts so as to minimize MPs contamination in areas where nearshore and offshore niches intersect.
Collapse
Affiliation(s)
- Xiaoping Sun
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng 224001, China; Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Ruiping Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng 224001, China
| | - Jing Ji
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng 224001, China
| | - Zebin Zhu
- Jiangsu Yancheng Environmental Monitoring Center, Yancheng 224001, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Yu Shen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
46
|
Herlory O, Briand MJ, Munaron D, Boissery P, Giraud A, Marchand P, Bouchoucha M. Perfluoroalkyl substances (PFAS) occurrence, concentrations and spatial distribution along the French Mediterranean coast and lagoons, based on active biomonitoring. MARINE POLLUTION BULLETIN 2024; 202:116419. [PMID: 38677107 DOI: 10.1016/j.marpolbul.2024.116419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Tracking PFAS in ecosystems is challenging. In this context, monitoring programs are crucial to fill data gaps, especially in marine environments, which are the ultimate outlets for these forever chemicals. The 2021 chemical contamination monitoring campaign along the French Mediterranean coast established a baseline for PFAS concentrations in mussels, with 90 % of measurements below quantification limits. When detected, long-chain PFCA's were predominant. Spatial distribution patterns suggested continuous PFAS inputs and complex dynamics, shaped by the influence of large watersheds and rivers (Rhône, Aude, Huveaune). Lapeyrade shallow lagoon stood out as the most contaminated site. Similar PFAS profiles in connected sites implied shared sources but raised questions about accumulation processes in mussels. While certain sites had evident sources (e.g., military airbase for Palo lagoon), others remained uncertain (e.g., Toulon bay). Coastal stations (Banyuls, Cap Agde, Brégançon, Pampelonne) showed PFAS contamination without clear onshore sources, possibly due to insufficient transportation process understanding.
Collapse
Affiliation(s)
- Olivier Herlory
- Ifremer, Laboratoire Environnement Ressources Provence Azur Corse, CS 20330, 83507 La Seyne Sur Mer, France.
| | - Marine J Briand
- Ifremer, Laboratoire Environnement Ressources Provence Azur Corse, CS 20330, 83507 La Seyne Sur Mer, France
| | - Dominique Munaron
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, CS 30171, 34203 Sète, France
| | - Pierre Boissery
- Agence de l'Eau Rhône Méditerranée Corse - Délégation Paca Corse, 13001 Marseille, France
| | - Anaïs Giraud
- Agence de l'Eau Rhône Méditerranée Corse - Délégation de Montpellier, 34961 Montpellier, France
| | | | - Marc Bouchoucha
- Ifremer, Laboratoire Environnement Ressources Provence Azur Corse, CS 20330, 83507 La Seyne Sur Mer, France
| |
Collapse
|
47
|
Morrissey C, Fritsch C, Fremlin K, Adams W, Borgå K, Brinkmann M, Eulaers I, Gobas F, Moore DRJ, van den Brink N, Wickwire T. Advancing exposure assessment approaches to improve wildlife risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:674-698. [PMID: 36688277 DOI: 10.1002/ieam.4743] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The exposure assessment component of a Wildlife Ecological Risk Assessment aims to estimate the magnitude, frequency, and duration of exposure to a chemical or environmental contaminant, along with characteristics of the exposed population. This can be challenging in wildlife as there is often high uncertainty and error caused by broad-based, interspecific extrapolation and assumptions often because of a lack of data. Both the US Environmental Protection Agency (USEPA) and European Food Safety Authority (EFSA) have broadly directed exposure assessments to include estimates of the quantity (dose or concentration), frequency, and duration of exposure to a contaminant of interest while considering "all relevant factors." This ambiguity in the inclusion or exclusion of specific factors (e.g., individual and species-specific biology, diet, or proportion time in treated or contaminated area) can significantly influence the overall risk characterization. In this review, we identify four discrete categories of complexity that should be considered in an exposure assessment-chemical, environmental, organismal, and ecological. These may require more data, but a degree of inclusion at all stages of the risk assessment is critical to moving beyond screening-level methods that have a high degree of uncertainty and suffer from conservatism and a lack of realism. We demonstrate that there are many existing and emerging scientific tools and cross-cutting solutions for tackling exposure complexity. To foster greater application of these methods in wildlife exposure assessments, we present a new framework for risk assessors to construct an "exposure matrix." Using three case studies, we illustrate how the matrix can better inform, integrate, and more transparently communicate the important elements of complexity and realism in exposure assessments for wildlife. Modernizing wildlife exposure assessments is long overdue and will require improved collaboration, data sharing, application of standardized exposure scenarios, better communication of assumptions and uncertainty, and postregulatory tracking. Integr Environ Assess Manag 2024;20:674-698. © 2023 SETAC.
Collapse
Affiliation(s)
- Christy Morrissey
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Katharine Fremlin
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Markus Brinkmann
- School of Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Igor Eulaers
- FRAM Centre, Norwegian Polar Institute, Tromsø, Norway
| | - Frank Gobas
- School of Resource & Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | | | - Nico van den Brink
- Division of Toxicology, University of Wageningen, Wageningen, The Netherlands
| | - Ted Wickwire
- Woods Hole Group Inc., Bourne, Massachusetts, USA
| |
Collapse
|
48
|
Heimstad ES, Nygård T, Moe B, Herzke D. New insights from an eight-year study on per- and polyfluoroalkyl substances in an urban terrestrial ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123735. [PMID: 38458514 DOI: 10.1016/j.envpol.2024.123735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) were analysed in a high number of terrestrial samples of soil, earthworm, bird eggs and liver from red fox and brown rat in an urban area in Norway from 2013 to 2020. PFOS and the long chain PFCAs were the most dominating compounds in all samples, proving their ubiquitous distribution. Other less studied compounds such as 6:2 FTS were first and foremost detected in earthworm. 8:2 FTS was found in many samples of fieldfare egg, sparrowhawk egg and earthworm, where the eggs had highest concentrations. Highest concentrations for both 6:2 FTS and 8:2 FTS were detected at present and former industry areas. FOSA was detected in many samples of the species with highest concentrations in red fox liver and brown rat liver of 3.3 and 5.5 ng/g ww. PFAS concentrations from the urban area were significantly higher than from background areas indicating that some of the species can be suitable as markers for PFAS emissions in an urban environment. Fieldfare eggs had surprisingly high concentrations of PFOS and PFCA concentrations from areas known to be or have been influenced by industry. Biota-soil-accumulation factor and magnification calculations indicate accumulation and magnification potential for several PFAS. Earthworm and fieldfare egg had average concentrations above the Canadian and European thresholds in diet for avian wildlife and predators. For earthworms, 18 % of the samples exceeded the European threshold (33 ng/g ww) of PFOS in prey for predators, and for fieldfare eggs, 35 % of the samples were above the same threshold. None of the soil samples exceeded a proposed PNEC of PFOS for soil living organisms of 373 ng/g dw.
Collapse
Affiliation(s)
| | - Torgeir Nygård
- NINA-Norwegian Institute for Nature Research, Trondheim, Norway
| | - Børge Moe
- NINA-Norwegian Institute for Nature Research, Trondheim, Norway
| | - Dorte Herzke
- NILU, The Fram Centre, P. box 6606 Stakkevollan, NO-9296, Tromsø, Norway; NIPH-Norwegian Institute for Public Health, Oslo, Norway
| |
Collapse
|
49
|
Liu JJ, Zhang YH, Li F, Sun J, Yuan SJ, Zhang PD. Contamination status, partitioning behavior, ecological risks assessment of legacy and emerging per- and polyfluoroalkyl substances in a typical heavily polluted semi-enclosed bay, China. ENVIRONMENTAL RESEARCH 2024; 247:118214. [PMID: 38246302 DOI: 10.1016/j.envres.2024.118214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
The contaminant status, spatial distribution, partitioning behavior, and ecological risks of 26 legacy and emerging perfluoroalkyl and polyfluoroalkyl substances (PFASs) in Laizhou Bay, China were investigated. The concentrations of ∑PFASs in surface and bottom seawater ranged from 37.2 to 222 ng/L and from 34.2 to 305 ng/L with an average of 116 ± 62.7 and 138 ± 93.8 ng/L, respectively. There were no significant differences in the average concentrations between the surface and bottom seawater (P > 0.05). Perfluorooctanoic acid (PFOA) and short-chain PFASs dominated the composition of PFASs in seawater. The concentrations of ∑PFASs in sediments ranged from 0.997 to 7.21 ng/g dry weight (dw), dominated by perfluorobutane sulfonate (PFBS), perfluorobutanoic acid (PFBA), and long-chain PFASs. The emerging alternatives of perfluoro-1-butane-sulfonamide (FBSA) and 6:2 fluorotelomer sulfonic acid (6:2 FTSA) were detected for the first time in Laizhou Bay. The ∑PFASs in seawater in the southwest of the bay were higher than those in the northeast of the bay. The ∑PFASs in sediments in the northeast sea area were higher than those in the inner area of the bay. Log Kd and log Koc values increased with increasing carbon chain length for PFASs compounds. Ecological risk assessments indicated a low ecological risk associated with HFPO-DA but a moderate risk associated with PFOA contamination in Laizhou Bay. Positive matrix factorization (PMF) analysis revealed that fluoropolymer manufacturing, metal plating plants, and textile treatments were identified as major sources contributing to PFASs contamination.
Collapse
Affiliation(s)
- Jin-Ji Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Yan-Hao Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Fan Li
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai, 264006, People's Republic of China
| | - Jie Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Shun-Jie Yuan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Pei-Dong Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China.
| |
Collapse
|
50
|
Reinikainen J, Bouhoulle E, Sorvari J. Inconsistencies in the EU regulatory risk assessment of PFAS call for readjustment. ENVIRONMENT INTERNATIONAL 2024; 186:108614. [PMID: 38583295 DOI: 10.1016/j.envint.2024.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Recognition of per- and polyfluoroalkyl substances (PFAS) as widespread environmental pollutants and a consequent risk to human health, has recently made the European Union (EU) adopt several regulatory measures for their management. The coherence of these measures is challenged by the diversity and the ubiquitous occurrence of PFAS, which also complicates the EU's endeavor to advance justified, harmonized, and transparent approaches in the regulatory assessment of chemical risks. Our study critically reviews the European approach for the risk assessment of PFAS, by applying a comparative analysis of the current and pending regulatory thresholds issued for these chemicals in water bodies, drinking water, and certain foodstuffs. Our study shows that the level of health protection embedded in the studied thresholds may differ by three orders of magnitude, even in similar exposure settings. This is likely to confuse the common understanding of the toxicity and health risks of PFAS and undermine reasonable decision-making and the equal treatment of different stakeholders. We also indicate that currently, no consensus exists on the appropriate level of required health protection regarding PFAS and that the recently adopted tolerable intake value in the EU is too cautious. Based on our analysis, we propose some simple solutions on how the studied regulations and their implicit PFAS thresholds or their application could be improved. We further conclude that instead of setting EU-wide PFAS thresholds for all the environmental compartments, providing the member states with the flexibility to consider case-specific factors, such as regional background concentrations or food consumption rates, in their national regulatory procedures would likely result in more sustainable management of environmental PFAS without compromising the scientific foundation of risk assessment, the legitimacy of the EU policy framework and public health.
Collapse
Affiliation(s)
- Jussi Reinikainen
- Finnish Environment Institute, Latokartanonkaari 11 FI-00790, Helsinki, Finland.
| | - Elodie Bouhoulle
- Scientific Institute of Public Service, Rue du Chéra 200 B-4000, Liège, Belgium.
| | - Jaana Sorvari
- Finnish Environment Institute, Latokartanonkaari 11 FI-00790, Helsinki, Finland.
| |
Collapse
|