1
|
Hu Z, Chen M, Zhu K, Liu Y, Wen H, Kong J, Chen M, Cao L, Ye J, Zhang H, Deng X, Chen J, Xu J. Multiomics integrated with sensory evaluations to identify characteristic aromas and key genes in a novel brown navel orange (Citrus sinensis). Food Chem 2024; 444:138613. [PMID: 38325085 DOI: 10.1016/j.foodchem.2024.138613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
'Zong Cheng' navel orange (ZC) is a brown mutant of Lane Late navel orange (LL) and emits a more pleasant odor than that of LL. However, the key volatile compound of this aroma and underlying mechanism remains unclear. In this study, sensory evaluations and volatile profiling were performed throughout fruit development to identify significant differences in sensory perception and metabolites between LL and ZC. It revealed that the sesquiterpene content varied significantly between ZC and LL. Based on aroma extract dilution and gas chromatography-olfactometry analyses, the volatile compound leading to the background aroma of LL and ZC is d-limonene, the orange note in LL was mainly attributed to octanal, whilst valencene, β-myrcene, and (E)-β-ocimene presented balsamic, sweet, and herb notes in ZC. Furthermore, Cs5g12900 and six potential transcription factors were identified as responsible for valencene accumulation in ZC, which is important for enhancing the aroma of ZC.
Collapse
Affiliation(s)
- Zhehui Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Mengjun Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Kaijie Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Huan Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jiatao Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Minghua Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Lixin Cao
- Citrus Variety Propagation Centre in Zigui County, Yichang 443600, PR China.
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Hongyan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jiajing Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China; Sensory Evaluation and Quality Analysis Centre of Horticultural Products, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
2
|
Brescia FF, Koch M, Wende RC, Schreiner PR, Zorn H, Fraatz MA. Structure Elucidation of Aroma-Active Bicyclic Benzofuran Derivatives Formed by Cystostereum murrayi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7744-7751. [PMID: 37172111 DOI: 10.1021/acs.jafc.3c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Among the monoterpenoid aroma compounds formed by the basidiomycete Cystostereum murrayi are highly potent bicyclic benzofuran derivatives. In addition to the dill ethers previously described in a few fungi, two stereoisomers of the rare 3,6-dimethyl-3a,4,5,6,7,7a-hexahydro-3H-1-benzofuran-2-one (1a and 2c), also known as dihydromenthofurolactones, and a C3-unsaturated analogue (3a) are formed by C. murrayi. The analysis of synthesized reference standards of the lactones allowed an unambiguous assignment of the stereoisomers formed by the fungus. Despite a similar structure, two key differences in the stereochemistry of the lactones and dill ethers emerged. The analysis of submerged cultures further revealed the formation of additional, so far unknown, fungal terpenoids, including limonen-10-ol (7) and the corresponding aldehyde limonen-10-al (8). Analysis of chiral terpenoids as well as supplementation studies, including stable isotope-labeled compounds, indicated independent biogenesis pathways for dill ethers and lactones.
Collapse
Affiliation(s)
- Fabio F Brescia
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Maximilian Koch
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Raffael C Wende
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Marco A Fraatz
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
3
|
Sun S, Wang X, Yuan A, Liu J, Li Z, Xie D, Zhang H, Luo W, Xu H, Liu J, Nie C, Zhang H. Chemical constituents and bioactivities of hops (
Humulus lupulus L
.) and their effects on beer‐related microorganisms. Food Energy Secur 2022. [DOI: 10.1002/fes3.367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Shaokang Sun
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Xiaochen Wang
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Ai Yuan
- State Key Laboratory of Biobased Material and Green Papermaking School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Jianlin Liu
- College of Chemical Engineering China University of Petroleum (East China) Qingdao China
| | - Zebin Li
- State Key Laboratory of Biobased Material and Green Papermaking School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Dongxiao Xie
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Huimin Zhang
- College of Life Sciences Shandong Normal University Jinan China
| | - Wenqing Luo
- Global Leaders College Yonsei University Seoul Korea
| | - Hengyuan Xu
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Jinshang Liu
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Cong Nie
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Haojun Zhang
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| |
Collapse
|
4
|
Bureš MS, Maslov Bandić L, Vlahoviček-Kahlina K. Determination of Bioactive Components in Mandarin Fruits: A Review. Crit Rev Anal Chem 2022; 53:1489-1514. [PMID: 35157545 DOI: 10.1080/10408347.2022.2035209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
During the last decade, there has been a continuous rise in the consumption of fresh easy-to-peel mandarins. However, the majority of the knowledge comes from other citrus fruit, like orange, while there are relatively few studies about mandarins and no comprehensive research on literature data about them. One of the most important steps in the analytical process is sample preparation. Its value is evident in analyzing the samples with complex matrices, such as in mandarin fruit. In addition, mandarin contains hundreds to thousands of various compounds and metabolites, some of them present in extremely low concentrations, that interfere with the detection of one another. Hence, mandarin samples are commonly pretreated by extraction to facilitate analysis of bioactive compounds, improve accuracy and quantification levels. There is an abundance of extraction techniques available, depending on the group of compounds of interest. Finally, modern analytical techniques, have been applied to cope with numerous bioactive compounds in mandarins. Considering all the above, this review aims to (i) list the most valuable procedures of sample preparation, (ii) highlight the most important techniques for extraction of bioactive compounds from mandarin fruit, and (iii) summarize current trends in the identification and determination of bioactive compounds in mandarin.
Collapse
Affiliation(s)
| | - Luna Maslov Bandić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
5
|
Byun S, Chen C, Yin H, Patel J. Antimicrobial Effect of Natural Fruit Extracts against
Salmonella
on Whole and Fresh‐cut Cucumbers. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Suyeun Byun
- U.S. Department of Agriculture, Agricultural Research Service Environmental and Food Safety Microbiology Laboratory Beltsville MD USA
| | - Chi‐Hung Chen
- U.S. Department of Agriculture, Agricultural Research Service Environmental and Food Safety Microbiology Laboratory Beltsville MD USA
| | - Hsin‐Bai Yin
- U.S. Department of Agriculture, Agricultural Research Service Environmental and Food Safety Microbiology Laboratory Beltsville MD USA
| | - Jitendra Patel
- U.S. Department of Agriculture, Agricultural Research Service Environmental and Food Safety Microbiology Laboratory Beltsville MD USA
| |
Collapse
|
6
|
Hayasaki M, Iwakiri M, Shikata A, Oyama M, Souda N, Akakabe Y. Aroma Components of Absolute Oil from Natsudaidai (Citrus natsudaidai Hayata) Flowers. J Oleo Sci 2022; 71:1663-1668. [PMID: 36310053 DOI: 10.5650/jos.ess22226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
The aim of this study was to identify and characterize the aroma components of absolute oil from natsudaidai (Citrus natsudaidai Hayata) flowers. A total of 43 aroma components were detected in the absolute oil of natsudaidai flowers using a headspace solid phase microextraction (SPME)-gas chromatography-mass spectrometry (GC-MS). The most abundant components from the absolute oil was linalool (31.14%), followed by methyl anthranilate, γ-terpinene, p-cymene, (E)-β-ocimene, limonene, indole and α-terpineol. The configuration of linalool from the absolute oil was assigned as (S)-form and its optical purities were determined as 89.36±0.36% enantiomeric excess using a SPME-chiral GC. These results indicated that the composition of aroma components in the absolute oil would influence the overall aroma qualities of natsudaidai flowers and the physiological effects on human.
Collapse
Affiliation(s)
- Mami Hayasaki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University
| | - Minami Iwakiri
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University
| | - Akane Shikata
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University
| | - Machi Oyama
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University
| | - Noe Souda
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University
| | - Yoshihiko Akakabe
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University
| |
Collapse
|
7
|
Ohata M, Zhou L, Ando S, Kaneko S, Osada K, Yada Y. Application of integrative physiological approach to evaluate human physiological responses to the inhalation of essential oils of Japanese citrus fruits iyokan (Citrus iyo) and yuzu (Citrus junos). Biosci Biotechnol Biochem 2021; 86:109-116. [PMID: 34747971 DOI: 10.1093/bbb/zbab193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022]
Abstract
This study investigated the effects of essential oil odors from Japanese citrus fruits, iyokan (Citrus iyo) and yuzu (Citrus junos), on human psychology and both the autonomic and central nervous systems. The inhalation of both essential oils significantly increased miosis rate and fingertip temperature and could induce parasympathetic dominance by suppressing sympathetic nerve activity. Oxyhemoglobin concentration in the prefrontal cortex increased after the inhalation of yuzu essential oil and decreased after the inhalation of iyokan essential oil. Subjectively, the inhalation of both essential oils reduced the feelings of fatigue and improved the feelings of refreshment, suggesting that the effect of autonomic nervous activity might involve in these psychological changes directly. Moreover, we observed that task performance improved after inhaling yuzu essential oil, which may be due to the increase in oxyhemoglobin concentration in the prefrontal cortex.
Collapse
Affiliation(s)
- Motoko Ohata
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Lanxi Zhou
- Material Research and Development Division, Ogawa & Co., Ltd., Amimachi, Inashiki-gun, Ibaraki, Japan
| | - Shiori Ando
- Material Research and Development Division, Ogawa & Co., Ltd., Amimachi, Inashiki-gun, Ibaraki, Japan
| | - Shu Kaneko
- Material Research and Development Division, Ogawa & Co., Ltd., Amimachi, Inashiki-gun, Ibaraki, Japan
| | - Kazumi Osada
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Yukihiro Yada
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Sakurai K, Tamai E, Masuda Y, Urakami K, Kusuhara M. Volatile Components of the Kuromoji Essential Oil (Lindera umbellata Thunb.) and the Utilization for Touch Care Treatment. J Oleo Sci 2021; 70:1661-1668. [PMID: 34732636 DOI: 10.5650/jos.ess20236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The volatile components of kuromoji oil (Lindera umbellata Thunb.) obtained in Shizuoka Pref. were analyzed by GC/MS. Linalool, α-pinene, limonene, camphene, cis- and trans-dihydrocarvone, 1,8-cineol, 4-terpinenol, α-terpineol, piperitone, geranyl acetate, geraniol, and trans-nerolidol were identified as major components. Using enantio-MDGC-MS, the enantiomeric ratio ((R)-(-) vs (S)-(+)) of linalool in this oil was determined to be 67.8/32.2. Touch care treatment while sniffing this oil was done on cancer patients. We found that the relaxation effect persisted longer after the treatment compared to treatment without aroma.
Collapse
Affiliation(s)
- Kazutoshi Sakurai
- Region Resources Division, Shizuoka Cancer Center Research Institute
| | - Eiko Tamai
- Region Resources Division, Shizuoka Cancer Center Research Institute
| | - Yoko Masuda
- Region Resources Division, Shizuoka Cancer Center Research Institute
| | - Kenichi Urakami
- Region Resources Division, Shizuoka Cancer Center Research Institute
| | | |
Collapse
|
9
|
Vitalini S, Iriti M, Vinciguerra V, Garzoli S. A Comparative Study of the Chemical Composition by SPME-GC/MS and Antiradical Activity of Less Common Citrus Species. Molecules 2021; 26:molecules26175378. [PMID: 34500811 PMCID: PMC8434063 DOI: 10.3390/molecules26175378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Citrus secondary metabolites, such as terpene compounds, are very important for human health due to their bioactivity including anti-inflammatory, anti-cancer, and antioxidant effects. In this work, for the first time, the volatile chemical composition of peels and juices from four different Citrus species (C. junos, Citrus × aurantium, C. aurantium 'Bizzarria' and C. medica 'Florentina', commonly known as Yuzu jeune, Oni Yuzu, Bizzarria orange and Florence cedar, respectively) was investigated by Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS) technique and the antiradical activity was also examined. The results showed that limonene and γ-terpinene were the main volatile substances detected both in the juices and in the peels, followed by other minority compounds responsible for the phyto-complex of the unique aromas which characterize each individual analyzed Citrus species. Principal component analysis (PCA), performed on volatile compounds, showed both some correlation as well as a clear separation between the juice and the peel of each species. Among them, Oni Yuzu juice was found to be the richest in total polyphenols and flavonoids while its capacity to scavenge ABTS•+ and DPPH• radicals was similar to that of Yuzu Jeune and Bizzarria orange.
Collapse
Affiliation(s)
- Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Phytochem Lab, Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Phytochem Lab, Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
- Center for Studies on Bioispired Agro-Environmental Technology (BAT Center), Università degli Studi di Napoli ‘Federico II’, 80055 Portici, Italy
- Correspondence: (M.I.); (S.G.)
| | - Vittorio Vinciguerra
- Department for Innovation in Biological Systems, Food and Forestry, University of Tuscia, 01100 Viterbo, Italy;
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Rome, Italy
- Correspondence: (M.I.); (S.G.)
| |
Collapse
|
10
|
Demarcq B, Cavailles M, Lambert L, Schippa C, Ollitrault P, Luro F. Characterization of Odor-Active Compounds of Ichang Lemon ( Citrus wilsonii Tan.) and Identification of Its Genetic Interspecific Origin by DNA Genotyping. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3175-3188. [PMID: 33667086 DOI: 10.1021/acs.jafc.0c07894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ichang lemon is a citrus fruit whose rind gives off a delicious and much appreciated fragrance and flavor. The volatile components of the fruit peel of Ichang lemon were investigated by GC-MS and GC-O (AEDA method). Simultaneously, its genetic origin was identified by using diagnostic SNP markers specific to ancestral species and multiallelic SSR and InDel markers. Ichang lemon combines three ancestral genomes (Citrus maxima, Citrus ichangensis, and Citrus reticulata) and may be a pummelo × Yuzu hybrid. Although the major compounds of the Ichang lemon aromatic profile were present in Citrus junos, a few pummelo-specific compounds were also detected, such as indole and nootkatone, in agreement with its maternal lineage. 3-Methyl-3-sulfanylbutyl acetate, reported to occur in passion fruit and brewed coffee, was identified by GC-MS, GC-QTOF-MS, and GC-FTIR for the first time in citrus. This odor-active compound has a sulfurous, tropical fruity, green note.
Collapse
Affiliation(s)
- Benoit Demarcq
- V Mane Fils SA, 620 Route de Grasse, 06620 Le Bar-sur-Loup, France
| | | | - Laetitia Lambert
- V Mane Fils SA, 620 Route de Grasse, 06620 Le Bar-sur-Loup, France
| | | | - Patrick Ollitrault
- CIRAD, UMR AGAP, F-20230 San Giuliano, France
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France
| | - Francois Luro
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France
| |
Collapse
|
11
|
Uehara A, Baldovini N. Volatile constituents of yuzu (
Citrus junos
Sieb.
ex
Tanaka) peel oil: A review. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ayaka Uehara
- Institut de Chimie de Nice Université Côte d’Azur Nice France
| | | |
Collapse
|
12
|
Uehara A, Baldovini N. Stereoselective synthesis of (6Z,8E)-undeca-6,8,10-trien-3-one (yuzunone) for its characterization in yuzu and various citrus essential oils. Food Chem 2020; 338:128130. [PMID: 33091992 DOI: 10.1016/j.foodchem.2020.128130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
(6Z,8E)-Undeca-6,8,10-trien-3-one (yuzunone) is reported to be one of the main olfactory contributors of the specific fruity-green-balsamic odor of yuzu peel oil. Using an original stereoselective synthesis, we prepared a pure sample of yuzunone, which was used as a reference compound to check its presence by GC-MS and GC-O in 5 commercial samples of yuzu and citrus essential oils. Surprisingly, we could not detect yuzunone by GC-MS in any of our samples. However, it could be detected by a small part of the panelists involved in GC-O/AEDA experiments in a yuzu commercial oil, but its olfactory contribution proved to be very limited.
Collapse
Affiliation(s)
- Ayaka Uehara
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Parc Valrose, F-06108 Nice, France.
| | - Nicolas Baldovini
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Parc Valrose, F-06108 Nice, France.
| |
Collapse
|
13
|
Zhang W, Chen T, Tang J, Sundararajan B, Zhou Z. Tracing the production area of citrus fruits using aroma-active compounds and their quality evaluation models. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:517-526. [PMID: 31512252 DOI: 10.1002/jsfa.10026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aroma is one of the most important aspects of fruit quality and can reflect the characteristics of different fruits. Aroma-active compounds can usefully be employed to trace the production areas of two citrus cultivars ('Eureka' lemon and 'Huapi' kumquat) and to evaluate their aroma quality. RESULTS 'Huapi' kumquat peel displayed higher monoterpene and sesquiterpene compound content, whereas 'Eureka' lemon peel exhibited higher monoterpene and monoterpene aldehyde compound content. 'Eureka' lemon peel ('Wanzhou' cultivar) had higher nerol acetate and geraniol acetate compound content. Kumquat peel ('Suichuan' and 'Rongan' cultivars) had higher sesquiterpene content. In addition, 30 and 31 aroma-active compounds were observed in kumquat and lemon, respectively, based on their odor activity values. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) results indicated that classification for production areas based on aroma-active compounds was useful. The selected aroma-active compounds have been checked as aroma quality parameters that could be used with multivariate analysis to establish a model of aroma quality evaluation. Higher aroma quality values from kumquat and lemon were collected from Rongan and Wanzhou cultivars, respectively. CONCLUSION Aroma-active compounds can be used to discriminate production areas using multivariate statistics. An objective method was established to evaluate the aroma quality of citrus fruits. 'Huapi' kumquat and 'Eureka' lemon, which had the highest aroma quality, was harvested from the Rongan and Wanzhou production areas. This was the first time that the aroma quality of citrus fruits was evaluated using multivariate analysis. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenlin Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Tingting Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jianmin Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | | | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- The Southwest Institute of Fruits Nutrition, Chongqing, China
| |
Collapse
|
14
|
Xiang Z, Chen X, Qian C, He K, Xiao X. Determination of volatile flavors in fresh navel orange by multidimensional gas chromatography quadrupole time-of-flight mass spectrometry. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1662429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhangmin Xiang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, Guangzhou, China
| | - Xiaotian Chen
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, Guangzhou, China
| | - Chenyu Qian
- Guizhou Provincial Key Laboratory of Mountainous Environmental Protection/School of Life Science, Guizhou Normal University, Guiyang, China
| | - Kaili He
- School of Science, Shenyang University of Technology, Liaoning, China
| | - Xue Xiao
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis, Guangzhou, China
| |
Collapse
|
15
|
Holt S, Miks MH, de Carvalho BT, Foulquié-Moreno MR, Thevelein JM. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol Rev 2019; 43:193-222. [PMID: 30445501 PMCID: PMC6524682 DOI: 10.1093/femsre/fuy041] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/13/2018] [Indexed: 12/03/2022] Open
Abstract
Aroma compounds provide attractiveness and variety to alcoholic beverages. We discuss the molecular biology of a major subset of beer aroma volatiles, fruity and floral compounds, originating from raw materials (malt and hops), or formed by yeast during fermentation. We introduce aroma perception, describe the most aroma-active, fruity and floral compounds in fruits and their presence and origin in beer. They are classified into categories based on their functional groups and biosynthesis pathways: (1) higher alcohols and esters, (2) polyfunctional thiols, (3) lactones and furanones, and (4) terpenoids. Yeast and hops are the main sources of fruity and flowery aroma compounds in beer. For yeast, the focus is on higher alcohols and esters, and particularly the complex regulation of the alcohol acetyl transferase ATF1 gene. We discuss the release of polyfunctional thiols and monoterpenoids from cysteine- and glutathione-S-conjugated compounds and glucosides, respectively, the primary biological functions of the yeast enzymes involved, their mode of action and mechanisms of regulation that control aroma compound production. Furthermore, we discuss biochemistry and genetics of terpenoid production and formation of non-volatile precursors in Humulus lupulus (hops). Insight in these pathways provides a toolbox for creating innovative products with a diversity of pleasant aromas.
Collapse
Affiliation(s)
- Sylvester Holt
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Marta H Miks
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
- Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10–726 Olsztyn, Poland
| | - Bruna Trindade de Carvalho
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
16
|
González-Mas MC, Rambla JL, López-Gresa MP, Blázquez MA, Granell A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2019; 10:12. [PMID: 30804951 PMCID: PMC6370709 DOI: 10.3389/fpls.2019.00012] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 05/09/2023]
Abstract
The essential oil fraction obtained from the rind of Citrus spp. is rich in chemical compounds of interest for the food and perfume industries, and therefore has been extensively studied during the last decades. In this manuscript, we provide a comprehensive review of the volatile composition of this oil fraction and rind extracts for the 10 most studied Citrus species: C. sinensis (sweet orange), C. reticulata (mandarin), C. paradisi (grapefruit), C. grandis (pummelo), C. limon (lemon), C. medica (citron), C. aurantifolia (lime), C. aurantium (bitter orange), C. bergamia (bergamot orange), and C. junos (yuzu). Forty-nine volatile organic compounds have been reported in all 10 species, most of them terpenoid (90%), although about half of the volatile compounds identified in Citrus peel are non-terpenoid. Over 400 volatiles of different chemical nature have been exclusively described in only one of these species and some of them could be useful as species biomarkers. A hierarchical cluster analysis based on volatile composition arranges these Citrus species in three clusters which essentially mirrors those obtained with genetic information. The first cluster is comprised by C. reticulata, C. grandis, C. sinensis, C. paradisi and C. aurantium, and is mainly characterized by the presence of a larger abundance of non-terpenoid ester and aldehyde compounds than in the other species reviewed. The second cluster is comprised by C. junos, C. medica, C. aurantifolia, and C. bergamia, and is characterized by the prevalence of mono- and sesquiterpene hydrocarbons. Finally, C. limon shows a particular volatile profile with some sulfur monoterpenoids and non-terpenoid esters and aldehydes as part of its main differential peculiarities. A systematic description of the rind volatile composition in each of the species is provided together with a general comparison with those in leaves and blossoms. Additionally, the most widely used techniques for the extraction and analysis of volatile Citrus compounds are also described.
Collapse
Affiliation(s)
- M. Carmen González-Mas
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - José L. Rambla
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| | - M. Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| | - M. Amparo Blázquez
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| |
Collapse
|
17
|
Vivian Goh RM, Lau H, Liu SQ, Lassabliere B, Guervilly R, Sun J, Bian Y, Yu B. Comparative analysis of pomelo volatiles using headspace-solid phase micro-extraction and solvent assisted flavour evaporation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Le Minh T, Fülöp F, Szakonyi Z. Stereoselective Synthesis of Limonene-Based Chiral 1,3-Amino Alcohols and Aminodiols. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tam Le Minh
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
- Stereochemistry Research Group of the Hungarian Academy of Sciences; Eötvös u. 6 6720 Szeged Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
| |
Collapse
|
19
|
Hong JH, Khan N, Jamila N, Hong YS, Nho EY, Choi JY, Lee CM, Kim KS. Determination of Volatile Flavour Profiles of Citrus spp. Fruits by SDE-GC-MS and Enantiomeric Composition of Chiral Compounds by MDGC-MS. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:392-403. [PMID: 28444796 DOI: 10.1002/pca.2686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Citrus fruits are known to have characteristic enantiomeric key compounds biosynthesised by highly stereoselective enzymatic mechanisms. In the past, evaluation of the enantiomeric ratios of chiral compounds in fruits has been applied as an effective indicator of adulteration by the addition of synthetic compounds or natural components of different botanical origin. OBJECTIVE To analyse the volatile flavour compounds of Citrus junos Sieb. ex Tanaka (yuzu), Citrus limon BURM. f. (lemon) and Citrus aurantifolia Christm. Swingle (lime), and determine the enantiomeric ratios of their chiral compounds for discrimination and authentication of extracted oils. METHODOLOGY Volatile flavour compounds of the fruits of the three Citrus species were extracted by simultaneous distillation extraction and analysed by gas chromatography-mass spectrometry. The enantiomeric composition (ee%) of chiral camphene, sabinene, limonene and β-phellandrene was analysed by heart-cutting multidimensional gas chromatography-mass spectrometry. RESULTS Sixty-seven (C. junos), 77 (C. limon) and 110 (C. aurantifolia) volatile compounds were identified with limonene, γ-terpinene and linalool as the major compounds. Stereochemical analysis (ee%) revealed 1S,4R-(-) camphene (94.74, 98.67, 98.82), R-(+)-limonene (90.53, 92.97, 99.85) and S-(+)-β-phellandrene (98.69, 97.15, 92.13) in oil samples from all three species; R-(+)-sabinene (88.08) in C. junos; and S-(-)-sabinene (81.99, 79.74) in C. limon and C. aurantifolia, respectively. CONCLUSION The enantiomeric composition and excess ratios of the chiral compounds could be used as reliable indicators of genuineness and quality assurance of the oils derived from the Citrus fruit species. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Joon Ho Hong
- Department of Food and Nutrition, Chosun University, Gwangju, 61452, Republic of Korea
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhuwa, Pakistan
| | - Nargis Jamila
- Department of Food and Nutrition, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Chemistry, Women University Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Young Shin Hong
- Department of Food and Nutrition, Chosun University, Gwangju, 61452, Republic of Korea
| | - Eun Yeong Nho
- Department of Food and Nutrition, Chosun University, Gwangju, 61452, Republic of Korea
| | - Ji Yeon Choi
- Department of Food and Nutrition, Chosun University, Gwangju, 61452, Republic of Korea
| | - Cheong Mi Lee
- Department of Food and Nutrition, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kyong Su Kim
- Department of Food and Nutrition, Chosun University, Gwangju, 61452, Republic of Korea
| |
Collapse
|
20
|
Zhang H, Xie Y, Liu C, Chen S, Hu S, Xie Z, Deng X, Xu J. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species. Food Chem 2017; 230:316-326. [PMID: 28407917 DOI: 10.1016/j.foodchem.2017.03.040] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/02/2023]
Abstract
The volatile profiles of fruit peels and juice sacs from 108 citrus accessions representing seven species were analyzed. Using GC-MS 162 and 107 compounds were determined in the peels and juice sacs, respectively. In the peels, monoterpene alcohols were accumulated in loose-skin mandarins; clementine tangerines and papedas were rich in sesquiterpene alcohols, sesquiterpenes, monoterpene alcohols and monoterpene aldehydes. β-pinene and sabinene were specifically accumulated in 4 of 5 lemon germplasms. Furthermore, concentrations of 34 distinctive compounds were selected to best represent the volatile profiles of seven species for HCA analysis, and the clustering results were in agreement with classic citrus taxonomy. Comparison of profiles from different growing seasons and production areas indicated that environmental factors play important roles in volatile metabolism. In addition, a few citrus germplasms that accumulated certain compounds were determined as promising breeding materials. Notably, volatile biosynthesis via MVA pathway in C. ichangensis 'Huaihua' was enhanced.
Collapse
Affiliation(s)
- Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yunxia Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Shilin Chen
- Agricultural Bureau of Yichang District, Yiling 443310, PR China.
| | - Shuangshuang Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
21
|
Shah SWA, Qaisar M, Jahangir M, Abbasi KS, Khan SU, Ali N, Liaquat M. Influence of CMC- and guar gum-based silver nanoparticle coatings combined with low temperature on major aroma volatile components and the sensory quality of kinnow (Citrus reticulata
). Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Syed Wasim Ahmad Shah
- Department of Agricultural Sciences; University of Haripur; Haripur KPK 22620 Pakistan
| | - Muhammad Qaisar
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex; Peshawar KPK 22620 Pakistan
| | - Muhammad Jahangir
- Department of Agricultural Sciences; University of Haripur; Haripur KPK 22620 Pakistan
| | - Kashif Sarfraz Abbasi
- Department of Food Science and Technology; University of Arid Agriculture; Rawalpindi Punjab 22620 Pakistan
| | - Sami Ullah Khan
- Department of Agricultural Sciences; University of Haripur; Haripur KPK 22620 Pakistan
| | - Naushad Ali
- Department of Agricultural Sciences; University of Haripur; Haripur KPK 22620 Pakistan
| | - Muhammad Liaquat
- Department of Agricultural Sciences; University of Haripur; Haripur KPK 22620 Pakistan
| |
Collapse
|
22
|
Tomiyama K, Sakurai K, Yaguchi Y, Kawakami Y, Asakawa Y. Characteristic Volatile Components of Trifoliate Orange Peel ( Poncirus trifoliata). Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The volatile components of the peel of trifoliate orange { Poncirus trifoliata (L.) Raf.}, family Rutaceae, were investigated using SAFE technique after solvent extraction. Limonene was the most abundant component in the peel aroma extract, followed by myrcene, trans-β-ocimene, indole, β-caryophyllene, (3 E,6 E)-α-farnesene, germacrene D, and β-phellandrene. In this study, the single sulfur- and nitrogen-containing compound, 4-methyl-5-vinylthiazole, and two macrocyclic lactones, cyclododecanolide and (7 Z,10 Z,13 Z)-hexadecatrien-16-olide, were identified as citrus aroma components for the first time. As a result of AEDA for the polar fraction of the aroma extract, indole, ethyl octanoate and those macrocyclic lactones with musky notes were found to be responsible for the characteristic aroma profile of the peel of trifoliate orange. The enantiomeric distributions of the four odor-active components, linalool, β-citronellol, ethyl 2-methylbutanoate, and 2-methylbutanoic acid, were also determined by means of multidimensional chiral GC/MS.
Collapse
Affiliation(s)
- Kenichi Tomiyama
- Corporate Research & Development Division, Takasago International Corporation, 1-4-11, Nishi-yawata, Hiratsuka City, Kanagawa Prefecture 254-0073, Japan
| | - Kazutoshi Sakurai
- Corporate Research & Development Division, Takasago International Corporation, 1-4-11, Nishi-yawata, Hiratsuka City, Kanagawa Prefecture 254-0073, Japan
| | - Yoshihiro Yaguchi
- Corporate Research & Development Division, Takasago International Corporation, 1-4-11, Nishi-yawata, Hiratsuka City, Kanagawa Prefecture 254-0073, Japan
| | - Yukihiro Kawakami
- Corporate Research & Development Division, Takasago International Corporation, 1-4-11, Nishi-yawata, Hiratsuka City, Kanagawa Prefecture 254-0073, Japan
| | - Yoshinori Asakawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahouji, Yamashiro-cho, Tokushima City, Tokushima 770-8514, Japan
| |
Collapse
|
23
|
Yasumoto S, Quitain AT, Sasaki M, Iwai H, Tanaka M, Hoshino M. Supercritical CO2-mediated countercurrent separation of essential oil and seed oil. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Electronic-nose applications for fruit identification, ripeness and quality grading. SENSORS 2015; 15:899-931. [PMID: 25569761 PMCID: PMC4327056 DOI: 10.3390/s150100899] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/25/2014] [Indexed: 11/17/2022]
Abstract
Fruits produce a wide range of volatile organic compounds that impart their characteristically distinct aromas and contribute to unique flavor characteristics. Fruit aroma and flavor characteristics are of key importance in determining consumer acceptance in commercial fruit markets based on individual preference. Fruit producers, suppliers and retailers traditionally utilize and rely on human testers or panels to evaluate fruit quality and aroma characters for assessing fruit salability in fresh markets. We explore the current and potential utilization of electronic-nose devices (with specialized sensor arrays), instruments that are very effective in discriminating complex mixtures of fruit volatiles, as new effective tools for more efficient fruit aroma analyses to replace conventional expensive methods used in fruit aroma assessments. We review the chemical nature of fruit volatiles during all stages of the agro-fruit production process, describe some of the more important applications that electronic nose (e-nose) technologies have provided for fruit aroma characterizations, and summarize recent research providing e-nose data on the effectiveness of these specialized gas-sensing instruments for fruit identifications, cultivar discriminations, ripeness assessments and fruit grading for assuring fruit quality in commercial markets.
Collapse
|
25
|
Shimotori Y, Hoshi M, Miyakoshi T. Combination of Novozym 435-catalyzed Enantioselective Hydrolysis and Amidation for the Preparation of Optically Active δ-Hexadecalactone. J Oleo Sci 2015; 64:561-75. [DOI: 10.5650/jos.ess14232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yasutaka Shimotori
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology
| | - Masayuki Hoshi
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology
| | - Tetsuo Miyakoshi
- Department of Applied Chemistry, School of Science and Technology, Meiji University
| |
Collapse
|
26
|
Ueki S, Niinomi K, Takashima Y, Kimura R, Komai K, Murakami K, Fujiwara C. Effectiveness of aromatherapy in decreasing maternal anxiety for a sick child undergoing infusion in a paediatric clinic. Complement Ther Med 2014; 22:1019-26. [DOI: 10.1016/j.ctim.2014.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 06/25/2014] [Accepted: 09/21/2014] [Indexed: 01/08/2023] Open
|
27
|
Rambla JL, González-Mas MC, Pons C, Bernet GP, Asins MJ, Granell A. Fruit volatile profiles of two citrus hybrids are dramatically different from those of their parents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11312-22. [PMID: 25335473 DOI: 10.1021/jf5043079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Volatile compounds released from the fruit of two hybrid Citrus genotypes (FxCh90 and FxCh77) were compared to those from their parental varieties, Fortune mandarin and Chandler pummelo. A series of 113 compounds were identified, including 31 esters, 23 aldehydes, 20 alcohols, 17 monoterpenoids, and other compounds. The differences in the volatile profile among these four genotypes were essentially quantitative. The most striking result was that the volatile profile of the hybrids was not intermediate between their parents and completely differed from that of Chandler, but came closer to Fortune. This was because 56 of the 113 volatile compounds in the hybrids showed significantly higher or lower levels than in any of the parents. Such transgressive behavior in these hybrids was not observed for other fruit quality traits, such as acidity or soluble solid content. The combination of volatile profiling and chemometrics can be used to select new Citrus genotypes with a distinct volatile profile.
Collapse
Affiliation(s)
- José Luis Rambla
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación , Edificio 8 E, Ingeniero Fausto Elio, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Nile SH, Park SW. Bioactive Components and Health-Promoting Properties of Yuzu (Citrus ichangensis × C. reticulate). FOOD REVIEWS INTERNATIONAL 2014. [DOI: 10.1080/87559129.2014.902958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
|
30
|
Miyazato H, Hashimoto S, Hayashi S. Enantiomeric distribution of odour-active epoxyaldehydes in yuzu (Citrus junos Sieb. ex Tanaka). Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2058-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
El Hadi MAM, Zhang FJ, Wu FF, Zhou CH, Tao J. Advances in fruit aroma volatile research. Molecules 2013; 18:8200-29. [PMID: 23852166 PMCID: PMC6270112 DOI: 10.3390/molecules18078200] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 11/16/2022] Open
Abstract
Fruits produce a range of volatile compounds that make up their characteristic aromas and contribute to their flavor. Fruit volatile compounds are mainly comprised of esters, alcohols, aldehydes, ketones, lactones, terpenoids and apocarotenoids. Many factors affect volatile composition, including the genetic makeup, degree of maturity, environmental conditions, postharvest handling and storage. There are several pathways involved in volatile biosynthesis starting from lipids, amino acids, terpenoids and carotenoids. Once the basic skeletons are produced via these pathways, the diversity of volatiles is achieved via additional modification reactions such as acylation, methylation, oxidation/reduction and cyclic ring closure. In this paper, we review the composition of fruit aroma, the characteristic aroma compounds of several representative fruits, the factors affecting aroma volatile, and the biosynthetic pathways of volatile aroma compounds. We anticipate that this review would provide some critical information for profound research on fruit aroma components and their manipulation during development and storage.
Collapse
Affiliation(s)
- Muna Ahmed Mohamed El Hadi
- College of Horticulture and Plant Protection, Yangzhou University, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou 225009, China.
| | | | | | | | | |
Collapse
|