1
|
Razghandi E, Elhami-Rad AH, Jafari SM, Saiedi-Asl MR, Bakhshabadi H. Combined pulsed electric field-ultrasound assisted extraction of yarrow phenolic-rich ingredients and their nanoliposomal encapsulation for improving the oxidative stability of sesame oil. ULTRASONICS SONOCHEMISTRY 2024; 110:107042. [PMID: 39182341 PMCID: PMC11384935 DOI: 10.1016/j.ultsonch.2024.107042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
In this research, yarrow phenolic-rich extract was produced using pulsed electric field (PEF)-ultrasound assisted technology. The highest extraction efficiency (5.99 %) was obtained at 6.25 kV/cm of PEF and the sonication time of 60 min. As the PEF intensity and sonication time rose, the total phenolic content (TPC) and ferric-reducing power (RP) of the extracts increased. The PEF intensity of 2.70 kV/cm and sonication time of 45.83 min were the optimum extraction conditions resulting in the highest extraction efficiency, TPC, and RP. Then, this optimum extract was loaded into nanoliposomes. At higher extract levels, the encapsulation efficiency lowered, while the particle size, polydispersity index (PDI), and zeta potential of the nanoliposomal samples elevated. The results of Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) confirmed the successful encapsulation of yarrow extract into nanoliposomal carriers; the sample containing the extract had the highest enthalpy (3600 J/g) and nanoliposomes loaded with yarrow antioxidant extract (0.11 mL/mg) was the optimum sample. Finally, the sesame oil containing 500 ppm free and nanoliposome extract, as well as the sample with 200 ppm BHT were evaluated for oxidative stability. The highest oxidation stability (14.21 h) belonged to the oil containing nanoliposomal yarrow phenolic extract.
Collapse
Affiliation(s)
- Elaheh Razghandi
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Amir-Hossein Elhami-Rad
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Mohammad-Reza Saiedi-Asl
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Hamid Bakhshabadi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
2
|
Saddiqa A, Faisal Z, Akram N, Afzaal M, Saeed F, Ahmed A, Almudaihim A, Touqeer M, Ahmed F, Asghar A, Saeed M, Hailu GG. Algal pigments: Therapeutic potential and food applications. Food Sci Nutr 2024; 12:6956-6969. [PMID: 39479711 PMCID: PMC11521690 DOI: 10.1002/fsn3.4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Algae-derived natural compounds have shown significant potential in treating various health conditions, including cancer, obesity, diabetes, and inflammation. Recent advancements in nanotechnology have enabled the development of precise drug delivery systems and diagnostic tools utilizing these compounds. Central to this innovation are the vibrant pigments found in algae chlorophylls, carotenoids, and phycobiliproteins which not only impart color but also possess notable nutritional, medicinal, and antioxidant properties. These pigments are extensively used in supplements and the food industry for their health benefits. Emerging research highlights the role of algal pigments in promoting gut health by modulating gut microbiota. This review comprehensively examines the therapeutic benefits of algae, recent progress in algal-derived nanoparticle technology, and the synergistic effects of algae and their pigments on gut health. Novel insights and recent data underscore the transformative potential of algal compounds in modern medicine and nutrition.
Collapse
Affiliation(s)
- Ayesha Saddiqa
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Zargham Faisal
- Department of Human Nutrition and DieteticsIqra UniversityKarachiPakistan
| | - Noor Akram
- Food Safety & Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Abeer Almudaihim
- Department of Clinical NutritionKing Saud Bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
| | - Muhammad Touqeer
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Faiyaz Ahmed
- Department of Basic Health Sciences, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Aasma Asghar
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Mubarra Saeed
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | | |
Collapse
|
3
|
Birla D, Khandale N, Bashir B, ShahbazAlam M, Vishwas S, Gupta G, Dureja H, Kumbhar PS, Disouza J, Patravale V, Veiga F, Paiva-Santos AC, Pillappan R, Paudel KR, Goh BH, Singh M, Dua K, Singh SK. Application of quality by design in optimization of nanoformulations: Principle, perspectives and practices. Drug Deliv Transl Res 2024:10.1007/s13346-024-01681-z. [PMID: 39126576 DOI: 10.1007/s13346-024-01681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Nanoparticulate drug delivery systems (NDDS) based nanoformulations have emerged as promising drug delivery systems. Various NDDS-based formulations have been reported such as polymeric nanoparticles (NPs), nanoliposomes, solid lipid NPs, nanocapsules, liposomes, self-nano emulsifying drug delivery systems, pro liposomes, nanospheres, microemulsion, nanoemulsion, gold NPs, silver NPs and nanostructured lipid carrier. They have shown numerous advantages such as enhanced bioavailability, aqueous solubility, permeability, controlled release profile, and blood-brain barrier (BBB) permeability. This advantage of NDDS can help to deliver pure drugs to the target site. However, the formulation of nanoparticles is a complex process that requires optimization to ensure product quality and efficacy. Quality by Design (QbD) is a systemic approach that has been implemented in the pharmaceutical industry to improve the quality and reliability of drug products. QbD involves the optimization of different parameters like zeta potential (ZP), particle size (PS), entrapment efficiency (EE), polydispersity index (PDI), and drug release using statistical experimental design. The present article discussed the detailed role of QbD in optimizing nanoformulations and their advantages, advancement, and applications from the industrial perspective. Various case studies of QbD in the optimization of nanoformulations are also discussed.
Collapse
Affiliation(s)
- Devendra Birla
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nikhil Khandale
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Md ShahbazAlam
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal. Panhala, Dist., Kolhapur, Maharashtra, India, 416 113
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal. Panhala, Dist., Kolhapur, Maharashtra, India, 416 113
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India, 400019
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ramkumar Pillappan
- NITTE (Deemed to Be University), NGSM Institute of Pharmaceutical Sciences [NGSMIPS], Mangaluru, Karnataka, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bey Hing Goh
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
- Biofunctional Molecule Exploratory Research (BMEX) Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Manisha Singh
- Faculty of Health, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, Uttar Pradesh, India
| | - Kamal Dua
- Faculty of Health, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia.
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia.
| |
Collapse
|
4
|
Ashrafi A, Ahari H, Asadi G, Nafchi AM. Improving fried burger quality and modulating acrylamide formation by active coating containing Rosa canina L. extract nanoemulsions. J Food Sci 2024; 89:2158-2173. [PMID: 38488727 DOI: 10.1111/1750-3841.17019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 04/12/2024]
Abstract
During the frying of foods, undesirable reactions such as protein denaturation, acrylamide formation, and so on occur in the product, which has confirmed carcinogenic effects. The use of antioxidants has been proposed as an effective solution to reduce the formation of these compounds during the process. The current study aimed to assess the impact of an edible coating holding within chia seed gum (CSG) and Rosa canina L. extract (RCE) nanoemulsions on the physicochemical properties, oil uptake, acrylamide formation, 5-hydroxymethyl-2-furfural (HMF) content, and sensory characteristics of beef-turkey burgers. The RCE-loaded nanoemulsions were prepared using the ultrasonic homogenization method, and different concentrations (i.e., 10%, 20%, and 40% w/w) were added to the CSG solutions; these active coatings were used to cover the burgers. CSG-based coatings, especially coatings containing the highest concentration of nanoemulsions (40%), caused a significant decrease in the oil uptake and moisture retention, acrylamide content, and HMF content of fried burgers. The texture of coated burgers was softer than that of uncoated samples; they also had a higher color brightness and a lower browning index. Field emission scanning electron microscopy analysis showed that RCE concentration less than 40% should be used in CSG coatings because it will cause minor cracks, which is an obvious possibility of failure of coating performance. Coating significantly (4-10 times) increased the antioxidant activity of burgers compared to the control. In conclusion, it is suggested to use the active coating produced in this study to improve fried burger quality and modulate acrylamide formation.
Collapse
Affiliation(s)
- Azam Ashrafi
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gholamhassan Asadi
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
5
|
Sajjadi SE, Ghobeishavi S, Yegdaneh A. Cytotoxic Sulfoquinovosyl Glycerols from the Seaweed Sargassum Angustifolium from Persian Gulf. Adv Biomed Res 2024; 13:22. [PMID: 38808322 PMCID: PMC11132194 DOI: 10.4103/abr.abr_103_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 05/30/2024] Open
Abstract
Backgrounds Seaweeds are an important source of marine organisms that produce a lot of bioactive compounds. Materials and Methods In this research, the seaweed Sargassum angustifolium was collected from Bushehr province of Persian Gulf of Iran. The seaweed was extracted by methanol:ethyl acetate (1:1) using maceration method. The compounds were isolated with different column chromatography and HPLC(High Performance Liquid Chromatography) by silica gel and hexane:ethyl acetate as mobile phase. Results The isolated compounds were elucidated structurally by various 1 and 2 D-NMR and MS spectra. Besides the cytotoxicity test was done against HeLa using standard MTT assay and normal cells. Conclusion It afforded four known sulfoquinovosyl diacylglycerides and fucosterol. Compounds 1-5 showed cytotoxic effects against HeLa and HUVEC cell lines, with IC50 values of 12.2 ± 2.3, 25.8 ± 3.7, 14.9 ± 2.6, 9.8 ± 1.2 μM, and 5.6 ± 1.2, respectively.
Collapse
Affiliation(s)
- Seyed Ebrahim Sajjadi
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Ghobeishavi
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afsaneh Yegdaneh
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Babich O, Ivanova S, Michaud P, Budenkova E, Kashirskikh E, Anokhova V, Sukhikh S. Fermentation of micro- and macroalgae as a way to produce value-added products. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00827. [PMID: 38234329 PMCID: PMC10793092 DOI: 10.1016/j.btre.2023.e00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
Fermentation of both microalgae and macroalgae is one of the most efficient methods of obtaining valuable value-added products due to the minimal environmental pollution and the availability of economic benefits, as algae do not require arable land and drift algae and algal bloom biomass are considered waste and must be recycled and their fermentation waste utilized. The compounds found in algae can be effectively used in the fuel, food, cosmetic, and pharmaceutical industries, depending on the type of fermentation used. Products such as methane and hydrogen can be produced by anaerobic digestion and dark fermentation of algae, and lactic acid and its polymers can be produced by lactic acid fermentation of algae. Article aims to provide an overview of the different types potential of micro- and macroalgae fermentation, the advantages and disadvantages of each type considered, and the economic feasibility of algal fermentation for the production of various value-added products.
Collapse
Affiliation(s)
- Olga Babich
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
- Department of TNSMD Theory and Methods, Kemerovo State University, Krasnaya Street, 6, Kemerovo 650043, Russia
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | | | - Egor Kashirskikh
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Veronika Anokhova
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Stanislav Sukhikh
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| |
Collapse
|
7
|
Namdar NZ, Roufegarinejad L, Alizadeh A, Asefi N, Jafari SM, Sarabandi K. Protection of navy-bean bioactive peptides within nanoliposomes: morphological, structural and biological changes. BIORESOUR BIOPROCESS 2023; 10:87. [PMID: 38647940 PMCID: PMC10992752 DOI: 10.1186/s40643-023-00709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 04/25/2024] Open
Abstract
This study aimed to produce bioactive peptides from navy-bean protein with alcalase and pepsin enzymes (30-300 min) and to load them into a nanoliposome system to stabilize and improve their bioavailability. The degree of hydrolysis and biological activities (scavenging of DPPH, OH, and ABTS free radicals, reducing power, and chelating metal ions) of navy-bean protein were affected by the type of enzyme and hydrolysis time. The average particle size (83-116 nm), PDI (0.23-0.39), zeta potential (- 13 to - 20 mV), and encapsulation efficiency (80-91%) of nanoliposomes were influenced by the type and charge of peptides. The storage temperature and the type of loaded peptide greatly affected the physical stability of nanocarriers and maintaining EE during storage. The FTIR results suggested the effect of enzymatic hydrolysis on the secondary structures of protein and the effective placement of peptides inside polar-regions and the phospholipid monolayer membrane. SEM images showed relatively uniform-sized particles with irregular structures, which confirmed the results of DLS. The antioxidant activity of primary peptides affected the free radical scavenging of loaded nanoliposomes. Liposomes loaded with navy-bean peptides can be used as a health-giving formula in enriching all kinds of drinks, desserts, confectionery products, etc.
Collapse
Affiliation(s)
- Nazila Zeynali Namdar
- Department of Food Science and Technology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Leila Roufegarinejad
- Department of Food Science and Technology, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
| | - Ainaz Alizadeh
- Department of Food Science and Technology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Narmela Asefi
- Department of Food Science and Technology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Khashayar Sarabandi
- Research Institute of Food Science and Technology (RIFST), Km 12 Mashhad-Quchan Highway, PO Box: 91895-157-356, Mashhad, Iran.
| |
Collapse
|
8
|
Mohammadi F, Yousefi M. Characterizations and effects of pectin-coated nanoliposome loaded with Gijavash ( Froriepia subpinnata) extract on the physicochemical properties of cheese. Heliyon 2023; 9:e21564. [PMID: 38027869 PMCID: PMC10660039 DOI: 10.1016/j.heliyon.2023.e21564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, pectin-coated nanoliposomes containing Gijavash extract were used to formulate cheese and evaluate its shelf life, physicochemical, and sensory aspects. The study used a central composite design with three independent variables to prepare the cheese. The results showed that the optimal particle size, zeta potential, encapsulation efficiency, and DPPH radical antioxidant activity were 201.22 nm, -29.33 mV, 61.87%, and 57.54%, respectively. Adding nanoliposomes with varying extract amounts improved pH and lowered acidity in fortified cheeses. Moisture and lipolysis indices also improved after applying nanoliposomes. Sensory evaluation revealed that sensory acceptance was highest in the cheese with 15% extract. The study suggests that adding pectin-coated nanoliposomes containing Gijavash extract to cheese formulations may create novel products and improve their physicochemical properties.
Collapse
Affiliation(s)
| | - Mahsa Yousefi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), Penang, 11800, Malaysia
| |
Collapse
|
9
|
Biernacki M, Conde T, Stasiewicz A, Surażyński A, Domingues MR, Domingues P, Skrzydlewska E. Restorative Effect of Microalgae Nannochloropsis oceanica Lipid Extract on Phospholipid Metabolism in Keratinocytes Exposed to UVB Radiation. Int J Mol Sci 2023; 24:14323. [PMID: 37762626 PMCID: PMC10532178 DOI: 10.3390/ijms241814323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Ultraviolet B (UVB) radiation induces oxidative stress in skin cells, generating reactive oxygen species (ROS) and perturbing enzyme-mediated metabolism. This disruption is evidenced with elevated concentrations of metabolites that play important roles in the modulation of redox homeostasis and inflammatory responses. Thus, this research sought to determine the impacts of the lipid extract derived from the Nannochloropsis oceanica microalgae on phospholipid metabolic processes in keratinocytes subjected to UVB exposure. UVB-irradiated keratinocytes were treated with the microalgae extract. Subsequently, analyses were performed on cell lysates to ascertain the levels of phospholipid/free fatty acids (GC-FID), lipid peroxidation byproducts (GC-MS), and endocannabinoids/eicosanoids (LC-MS), as well as to measure the enzymatic activities linked with phospholipid metabolism, receptor expression, and total antioxidant status (spectrophotometric methods). The extract from N. oceanica microalgae, by diminishing the activities of enzymes involved in the synthesis of endocannabinoids and eicosanoids (PLA2/COX1/2/LOX), augmented the concentrations of anti-inflammatory and antioxidant polyunsaturated fatty acids (PUFAs), namely DHA and EPA. These concentrations are typically diminished due to UVB irradiation. As a consequence, there was a marked reduction in the levels of pro-inflammatory arachidonic acid (AA) and associated pro-inflammatory eicosanoids and endocannabinoids, as well as the expression of CB1/TRPV1 receptors. The microalgal extract also mitigated the increase in lipid peroxidation byproducts, specifically MDA in non-irradiated samples and 10-F4t-NeuroP in both control and post-UVB exposure. These findings indicate that the lipid extract derived from N. oceanica, by mitigating the deleterious impacts of UVB radiation on keratinocyte phospholipids, assumed a pivotal role in reinstating intracellular metabolic equilibrium.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Anna Stasiewicz
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland;
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| |
Collapse
|
10
|
Simón L, Arazo-Rusindo M, Quest AFG, Mariotti-Celis MS. Phlorotannins: Novel Orally Administrated Bioactive Compounds That Induce Mitochondrial Dysfunction and Oxidative Stress in Cancer. Antioxidants (Basel) 2023; 12:1734. [PMID: 37760037 PMCID: PMC10525198 DOI: 10.3390/antiox12091734] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is an interesting therapeutic target to help reduce cancer deaths, and the use of bioactive compounds has emerged as a novel and safe approach to solve this problem. Here, we discuss the information available related to phlorotannins, a type of polyphenol present in brown seaweeds that reportedly functions as antioxidants/pro-oxidants and anti-inflammatory and anti-tumorigenic agents. Specifically, available evidence indicates that dieckol and phloroglucinol promote mitochondrial membrane depolarization and mitochondria-dependent apoptosis. Phlorotannins also reduce pro-tumorigenic, -inflammatory, and -angiogenic signaling mechanisms involving RAS/MAPK/ERK, PI3K/Akt/mTOR, NF-κB, and VEGF. In doing so, they inhibit pathways that favor cancer development and progression. Unfortunately, these compounds are rather labile and, therefore, this review also summarizes approaches permitting the encapsulation of bioactive compounds, like phlorotannins, and their subsequent oral administration as novel and non-invasive therapeutic alternatives for cancer treatment.
Collapse
Affiliation(s)
- Layla Simón
- Nutrition and Dietetic School, Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
| | - Migdalia Arazo-Rusindo
- Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Andrew F. G. Quest
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | | |
Collapse
|
11
|
Wickramasinghe ASD, Attanayake AP, Kalansuriya P. Herbal Extracts Encapsulated Nanoliposomes as Potential Glucose-lowering Agents: An in Vitro and in Vivo Approach Using Three Herbal Extracts. J Pharm Sci 2023; 112:2538-2551. [PMID: 37399889 DOI: 10.1016/j.xphs.2023.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Encapsulation of polyphenol-rich herbal extracts into nanoliposomes is a promising strategy for the development of novel therapeutic agents against type 2 diabetes mellitus. An attempt was made to encapsulate aqueous, ethanol, and aqueous ethanol (70% v/v) extracts of Senna auriculata (L.) Roxb., Murraya koenigii (L.) Spreng,. and Coccinia grandis (L.) Voigt into nanoliposomes and to screen acute bioactivities in vitro and in vivo. A wide spectrum of bioactivity was observed of which aqueous extracts encapsulated nanoliposomes of all three plants showed high bioactivity in terms of in vivo glucose-lowering activity in high-fat diet-fed streptozotocin induced Wistar rats, compared to respective free extracts. The particle size, polydispersity index, and zeta potential of the aforementioned nanoliposomes ranged from 179-494 nm, 0.362-0.483, and (-22) to (-17) mV, respectively. The atomic force microscopy (AFM) imaging reflected that the nanoparticles have desired morphological characteristics and Fourier-transform infrared (FTIR) spectroscopy analysis revealed successful encapsulation of plant extracts into nanoparticles. However, only the S. auriculata aqueous extract encapsulated nanoliposome, despite the slow release (9% by 30 hours), showed significant (p < 0.05) in vitro α-glucosidase inhibitory activity and in vivo glucose-lowering activity compared to free extract, proving worthy for future investigations.
Collapse
Affiliation(s)
| | | | - Pabasara Kalansuriya
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Sri Lanka
| |
Collapse
|
12
|
Farouk AE, Fahmy SR, Soliman AM, Ibrahim SA, Sadek SA. A nano-Liposomal formulation potentiates antioxidant, anti-inflammatory, and fibrinolytic activities of Allolobophora caliginosa coelomic fluid: formulation and characterization. BMC Biotechnol 2023; 23:28. [PMID: 37537554 PMCID: PMC10401763 DOI: 10.1186/s12896-023-00795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Coelomic fluid, a pharmacologically active compound in earthworms, exhibits a range of biological activities, including antioxidant, anti-inflammatory, and anticancer. However, the biological activities exerted by the coelomic fluid can be restrained by its low bioavailability and stability. Liposomes are progressively utilized as an entrapment system for natural bioactive compounds with poor bioavailability and stability, which could be appropriate for coelomic fluid. Thus, the present study was designed to fabricate, characterize, and evaluate the stability of liposomal formulation for Allolobophora caliginosa coelomic fluid (ACCF) as a natural antioxidant compound. METHODS The ACCF-liposomes were developed with a subsequent characterization of their physicochemical attributes. The physical stability, ACCF release behavior, and gastrointestinal stability were evaluated in vitro. The biological activities of ACCF and its liposomal formulation were also determined. RESULTS The liposomal formulation of ACCF had a steady characteristic absorption band at 201 nm and a transmittance of 99.20 ± 0.10%. Its average hydrodynamic particle size was 98 nm, with a PDI of 0.29 ± 0.04 and a negative zeta potential (-38.66 ± 0.33mV). TEM further confirmed the formation of vesicular, spherical nano-liposomes with unilamellar configuration. Additionally, a remarkable entrapment efficiency percent (77.58 ± 0.82%) with a permeability rate equal to 3.20 ± 0.31% and a high retention rate (54.16 ± 2.20%) for ACCF-liposomes were observed. The Fourier transform infrared spectroscopy (FTIR) result demonstrated that ACCF successfully entrapped inside liposomes. The ACCF-liposomes exhibited a slow and controlled ACCF release in vitro. Regarding stability studies, the liposomal formulation enhanced the stability of ACCF during storage and at different pH. Furthermore, ACCF-liposomes are highly stable in intestinal digestion conditions comparable to gastric digestion. The current study disclosed that liposomal formulation potentiates the biological activities of ACCF, especially antioxidant, anti-inflammatory, and thrombolytic activities. CONCLUSION These promising results offer a novel approach to increasing the bioaccessibility of ACCF, which may be crucial for the development of pharmaceuticals and nutraceutical-enriched functional foods.
Collapse
Affiliation(s)
- Asmaa E Farouk
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Sohair R Fahmy
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amel M Soliman
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Shimaa A Sadek
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
13
|
Catarino MD, Silva-Reis R, Chouh A, Silva S, Braga SS, Silva AMS, Cardoso SM. Applications of Antioxidant Secondary Metabolites of Sargassum spp. Mar Drugs 2023; 21:172. [PMID: 36976221 PMCID: PMC10052768 DOI: 10.3390/md21030172] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Sargassum is one of the largest and most diverse genus of brown seaweeds, comprising of around 400 taxonomically accepted species. Many species of this genus have long been a part of human culture with applications as food, feed, and remedies in folk medicine. Apart from their high nutritional value, these seaweeds are also a well-known reservoir of natural antioxidant compounds of great interest, including polyphenols, carotenoids, meroterpenoids, phytosterols, and several others. Such compounds provide a valuable contribution to innovation that can translate, for instance, into the development of new ingredients for preventing product deterioration, particularly in food products, cosmetics or biostimulants to boost crops production and tolerance to abiotic stress. This manuscript revises the chemical composition of Sargassum seaweeds, highlighting their antioxidant secondary metabolites, their mechanism of action, and multiple applications in fields, including agriculture, food, and health.
Collapse
Affiliation(s)
- Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amina Chouh
- Laboratory of Microbiological Engineering and Application, Department of Biochemistry and Molecular and Cellular Biology, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
- Biotechnology Research Center CRBT, Constantine 25016, Algeria
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana S. Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Hosseini F, Motamedzadegan A, Raeisi SN, Rahaiee S. Antioxidant activity of nanoencapsulated chia ( Salvia hispanica L.) seed extract and its application to manufacture a functional cheese. Food Sci Nutr 2023; 11:1328-1341. [PMID: 36911828 PMCID: PMC10002955 DOI: 10.1002/fsn3.3169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
The study aimed to produce a functional ricotta cheese with chia seed extract (CSE) nanocapsules. First, the CSE was encapsulated using lecithin and basil seed gum, and its characteristics and antioxidant activity (AA) were evaluated. The free CSE (F-CSE) and encapsulated CSE (E-CSE) were then added to ricotta cheese formulation (1.5 and 3.0% w/w). The samples were kept for 15 days in a refrigerator and their physicochemical, sensory properties, AA, and oxidative stability were examined. The particle size, polydispersity index, zeta potential, and encapsulation efficiency of CSE nanocapsules were 59.23 nm, 0.328, -44.47 mV, and 80.06%, respectively. The CSE showed remarkable AA in vitro. The AA of F-CSE was higher than E-CSE. The moisture, dry matter, fat, and protein content of cheese samples were in the range of 52.64%-53.31%, 46.69%-47.36%, 19.02%-19.28%, and 16.88%-17.02%, respectively. The color of F-CSE cheeses was slightly yellower than control; however, they did not have clear color differences. During storage, the acidity, hardness, chewiness, and peroxide value of cheeses increased, while the pH, total phenol content, and AA decreased (p < .05). The addition of CSE reduced the rate of pH and acidity changes during storage and significantly increase the AA and oxidative stability. Initially, F-CSE cheeses had higher functional activity, but on other storage days, due to the protective effect of coating materials, the functional activity of E-CSE samples was higher. The CSE, especially E-CSE, did not have an adverse effect on the sensory properties of cheese. Based on the results of this study, it can be concluded that it is possible to manufacture a functional cheese using E-CSE.
Collapse
Affiliation(s)
- Farinaz Hosseini
- Department of Food Science and Technology, Ayatollah Amoli BranchIslamic Azad UniversityAmolIran
| | - Ali Motamedzadegan
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resource UniversitySariIran
| | | | - Somayeh Rahaiee
- Department of Microbial Biotechnology, Faculty of BiotechnologyAmol University of Special Modern TechnologiesAmolIran
| |
Collapse
|
15
|
Structuring and De-Structuring of Nanovectors from Algal Lipids: Simulated Digestion, Preliminary Antioxidant Capacity and In Vitro Tests. Pharmaceutics 2022; 14:pharmaceutics14091847. [PMID: 36145594 PMCID: PMC9500752 DOI: 10.3390/pharmaceutics14091847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Biocompatible nanocarriers can be obtained by lipid extraction from natural sources such as algal biomasses, which accumulate different lipid classes depending on the employed culture media. Lipid aggregates can be distinguished according to supramolecular architecture into lamellar and nonlamellar structures. This distinction is mainly influenced by the lipid class and molecular packing parameter, which determine the possible values of interfacial curvature and thus the supramolecular symmetries that can be obtained. The nanosystems prepared from bio-sources are able to self-assemble into different compartmentalized structures due to their complex composition. They also present the advantage of increased carrier-target biocompatibility and are suitable to encapsulate and vehiculate poorly water-soluble compounds, e.g., natural antioxidants. Their functional properties stem from the interplay of several parameters. Following previous work, here the functionality of two series of structurally distinct lipid nanocarriers, namely liposomes and cubosomes deriving from algal biomasses with different lipid composition, is characterized. In the view of their possible use as pharmaceutical or nutraceutical formulations, both types of nanovectors were loaded with three well-known antioxidants, i.e., curcumin, α-tocopherol and piperine, and their carrier efficacy was compared considering their different structures. Firstly, carrier stability in biorelevant conditions was assessed by simulating a gastrointestinal tract model. Then, by using an integrated chemical and pharmacological approach, the functionality in terms of encapsulation efficiency, cargo bioaccessibility and kinetics of antioxidant capacity by UV-Visible spectroscopy was evaluated. Subsequently, in vitro cytotoxicity and viability tests after administration to model cell lines were performed. As a consequence of this investigation, it is possible to conclude that nanovectors from algal lipids, i.e., cubosomes and liposomes, can be efficient delivery agents for lipophilic antioxidants, being able to preserve and enhance their activity toward different targets while promoting sustained release.
Collapse
|
16
|
Silva A, Cassani L, Grosso C, Garcia-Oliveira P, Morais SL, Echave J, Carpena M, Xiao J, Barroso MF, Simal-Gandara J, Prieto MA. Recent advances in biological properties of brown algae-derived compounds for nutraceutical applications. Crit Rev Food Sci Nutr 2022; 64:1283-1311. [PMID: 36037006 DOI: 10.1080/10408398.2022.2115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increasing demand for nutraceuticals in the circular economy era has driven the research toward studying bioactive compounds from renewable underexploited resources. In this regard, the exploration of brown algae has shown significant growth and maintains a great promise for the future. One possible explanation could be that brown algae are rich sources of nutritional compounds (polyunsaturated fatty acids, fiber, proteins, minerals, and vitamins) and unique metabolic compounds (phlorotannins, fucoxanthin, fucoidan) with promising biological activities that make them good candidates for nutraceutical applications with increased value-added. In this review, a deep description of bioactive compounds from brown algae is presented. In addition, recent advances in biological activities ascribed to these compounds through in vitro and in vivo assays are pointed out. Delivery strategies to overcome some drawbacks related to the direct application of algae-derived compounds (low solubility, thermal instability, bioavailability, unpleasant organoleptic properties) are also reviewed. Finally, current commercial and legal statuses of ingredients from brown algae are presented, considering future therapeutical and market perspectives as nutraceuticals.
Collapse
Affiliation(s)
- Aurora Silva
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Lucia Cassani
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Stephanie L Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Javier Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - M Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
17
|
Sainaga Jyothi VGS, Bulusu R, Venkata Krishna Rao B, Pranothi M, Banda S, Kumar Bolla P, Kommineni N. Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: An update. Int J Pharm 2022; 624:122022. [PMID: 35843364 DOI: 10.1016/j.ijpharm.2022.122022] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/25/2022]
Abstract
Liposomes have several advantages, such as the ability to be employed as a carrier/vehicle for a variety of drug molecules and at the same time they are safe and biodegradable. In the recent times, compared to other delivery systems, liposomes have been one of the most well-established and commercializing drug products of new drug delivery methods for majority of therapeutic applications. On the other hand, it has several limitations, particularly in terms of stability, which impedes product development and performance. In this review, we reviewed all the potential instabilities (physical, chemical, and biological) that a formulation development scientist confronts throughout the development of liposomal formulations as along with the ways to overcome these challenges. We have also discussed the effect of microbiological contamination on liposomal formulations with a focus on the use of sterilization methods used to improve the stability. Finally, we have reviewed quality control techniques and regulatory considerations recommended by the agencies (USFDA and MHLW) for liposome drug product development.
Collapse
Affiliation(s)
- Vaskuri G S Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Raviteja Bulusu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Balaga Venkata Krishna Rao
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Mulinti Pranothi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58105, ND, USA
| | - Srikanth Banda
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA.
| | | |
Collapse
|
18
|
Rigi M, Ojagh SM, Alishahi A, Hasani S. Characterizing and Developing the Antioxidant and Antimicrobial Properties of the Nano-Encapsulated Bioactive Compounds of Spirulina platensis in Liposome. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2081951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mahin Rigi
- Department of Fisheries, Faculty of Fisheries and the Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Mahdi Ojagh
- Department of Fisheries, Faculty of Fisheries and the Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Alireza Alishahi
- Department of Fisheries, Faculty of Fisheries and the Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Shirin Hasani
- Department of Fisheries, Faculty of Fisheries and the Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
19
|
Khuntia A, Kumar R, Premjit Y, Mitra J. Release behavior of vitamin C nanoliposomes from starch–vitamin C active packaging films. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anjali Khuntia
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Rahul Kumar
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Yashaswini Premjit
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Jayeeta Mitra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| |
Collapse
|
20
|
Ahmadi E, Elhamirad AH, Mollania N, Saeidi Asl MR, Pedramnia A. Incorporation of white tea extract in nano-liposomes: optimization, characterization, and stability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2050-2060. [PMID: 34562028 DOI: 10.1002/jsfa.11544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/20/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In the present study, an extraction method affected by sonication intensity (40%, 70% and 100%), sonication time (5, 10 and 15 min) and different solvents (ethanol, methanol and a combination of ethanol/methanol) was optimized to extract the white tea with the greatest polyphenolic compounds using a response surface methodology. To prepare the nano-liposomal vesicles, phospholipids and cholesterol in various proportions (60:0, 40:20, 30:30 and 20:40) were applied based on thin-film hydration and ultrasound method. The nano-capsules enriched in bioactive compounds were examined through particle characteristics, encapsulation efficiency, morphological analysis, thermal properties and Fourier transform infrared spectroscopy. RESULTS The observations showed that the extraction yield highly depended on the type of solvent with varying permeability, sonication time and power. The highest total phenolic content (68.38 mg GA g-1 ) and free radical scavenging activity (77.65%) were observed for the following optimal conditions: 70% for sonication intensity, 15 min for sonication time and methanol as solvent. Characteristics of nanoliposomes within a compositional ratio of lecithin/cholesterol (40:20) and with a zeta potential of -56 ± 0.01 mV, as well as white tea extract (WTE) samples with an average particle diameter of 82.20 ± 0.08, microencapsulation efficiency of 76.5% ± 0.081, polydispersity index of 0.06 ± 0.02 and span value of 0.69 ± 0.03. are used as the optimal formulation for microencapsulation of antioxidant WTE. The results demonstrated an increment in thermal stability of liposomal WTE samples compared to other samples. CONCLUSION The findings of the present study indicated that nano-liposomes comprise an effective technology for coating the WTE, as well as to increasing its stability and thermal properties. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elham Ahmadi
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Amir Hossein Elhamirad
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Nasrin Mollania
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Mohammad Reza Saeidi Asl
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Ahmad Pedramnia
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| |
Collapse
|
21
|
Ekrami A, Ghadermazi M, Ekrami M, Hosseini MA, Emam-Djomeh Z, Hamidi-Moghadam R. Development and evaluation of Zhumeria majdae essential oil-loaded nanoliposome against multidrug-resistant clinical pathogens causing nosocomial infection. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Gorjian H, Raftani Amiri Z, Mohammadzadeh Milani J, Ghaffari Khaligh N. Influence of Nanovesicle Type, Nanoliposome and Nanoniosome, on Antioxidant and Antimicrobial Activities of Encapsulated Myrtle Extract: A Comparative Study. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02747-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Zanghaneh E, Mirzaei H, Jafari SM, Javadi A, Afshar Mogaddam MR. Spirulina platensis extract nanoliposomes: preparation, characterization and application to white cheese. J AOAC Int 2021; 105:827-834. [PMID: 34904627 DOI: 10.1093/jaoacint/qsab162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Ultrafiltration cheese is produced in large scale from treated and pasteurized treated and pasteurized milk with mesophilic starter and to expand its shelf life preservatives addition is needed. OBJECTIVE The purpose of the present study was preparation of encapsulate Spirulina platensis algae nanoliposomes to evaluate the characteristics of the nanoliposomes loaded with Spirulina extract (SE-NLs). In addition, the chemical and microbiological properties of white cheese produced with SE-NLs were studied. METHODS Nanoliposomes are composed of lecithin and cholesterol, used for the encapsulation of SE. The SE-NLs were prepared using the thin layer hydration method. The characteristics of produced SE-NLs including particle size, zeta potential, morphology and the encapsulation efficiency (EE) was studied during 4 weeks in different storage conditions (4 °C and 25 °C). In addition, the effect of SE and SE-NLs on the chemical and microbiological properties of white cheese was evaluated during 60 days of ripening. RESULTS The results showed that the nanoliposomes loaded with 3 mg/g of SE had the optimum formulation due to the higher EE, smaller particle size, and higher negatively charged zeta potential. The quality of the produced nanoliposomes decreased by increasing the time of storage but the SE-NLs stored at 4 °C were more stable and possessed higher EE and smaller particle sizes. While the chemical composition of the cheeses manufactured by the nanoliposome loaded with 3 mg/g SE- NLs were comparable to that of control cheese at 60 days of ripening, it showed a significant inhibitory effect on Staphylococcus aureus and Listeria monocytogenes after 30 days. CONCLUSION The utilization of SE-NLs can be considered as a natural antimicrobial and an alternative to the use of synthetic preservatives in the production of white cheese. HIGHLIGHTS Nanoliposomes of Spirulina platensis extracts was prepared.UF white cheese prepared by nanoliposomes and then were evaluated.
Collapse
Affiliation(s)
- Esmaiel Zanghaneh
- Department of Food hygiene, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamid Mirzaei
- Department of Food hygiene, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Seid Mahdi Jafari
- Department of Clinical Biochemistry, School of medicine, Golestan University of Medical Sciences, Golestan
| | - Afshin Javadi
- Department of Food hygiene, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
24
|
HOU L, SUN X, PAN L, WANG H, GU K. Studies on phytosterol acetate esters and phytosterols liposomes. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.19221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Lifen HOU
- Henan University of Technology, China
| | - Xiangyang SUN
- Henan University of Animal Husbandry and Economy, China
| | - Li PAN
- Henan University of Technology, China
| | | | - Keren GU
- Henan University of Technology, China
| |
Collapse
|
25
|
Drvenica I, Blažević I, Bošković P, Bratanić A, Bugarski B, Bilusic T. Sinigrin Encapsulation in Liposomes: Influence on In Vitro Digestion and Antioxidant Potential. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/143574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Gupta MK, Sansare V, Shrivastava B, Jadhav S, Gurav P. Comprehensive review on use of phospholipid based vesicles for phytoactive delivery. J Liposome Res 2021; 32:211-223. [PMID: 34727833 DOI: 10.1080/08982104.2021.1968430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Plant-derived phytoconstituents are well known for their therapeutic potential. It has been experimentally demonstrated that whole-plant extract or isolated phytoconstituents reveal various therapeutic potentials like hepatoprotective, antimicrobial, neuroprotective, antitumor, antioxidant, skin protectives, etc. Although these phytoconstituents have potential therapeutic benefits, their use is limited due to their poor bioavailability, stability in biological fluids, and authentication issues. These continue to be an open problem that affects the application of these valuable ancient herbal herbs in the effective treatment and management of various disease conditions. A potential solution to these difficult problems could be the loading of phytoactives in phospholipid-based vesicular systems. Phospholipid-based vesicles like liposomes, phytosomes, ethosomes as well as transfersomes were effectively utilized recently to solve drawbacks and for effective delivery of phytoactives. Several landmark studies observed better therapeutic efficacy of phytoactive loaded vesicles compared to conventional drug delivery. Thus phospholipid-based vesicles mediated phytoactive delivery is a recently developed promising and attractive strategy for better therapeutic control on disease conditions. The present short review highlights recent advances in herbal bioactive loaded phospholipid-based vesicles.
Collapse
Affiliation(s)
- Manish Kumar Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Vipul Sansare
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | | | - Santosh Jadhav
- Department of Pharmaceutical Chemistry, SVPM'S College of Pharmacy, Malegaon, India
| | - Prashant Gurav
- Department of Pharmaceutics, Indira Institute of Pharmacy, Sadavali, India
| |
Collapse
|
27
|
Post-Processing Techniques for the Improvement of Liposome Stability. Pharmaceutics 2021; 13:pharmaceutics13071023. [PMID: 34371715 PMCID: PMC8309137 DOI: 10.3390/pharmaceutics13071023] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Liposomes have been utilized as a drug delivery system to increase the bioavailability of drugs and to control the rate of drug release at the target site of action. However, the occurrence of self-aggregation, coalescence, flocculation and the precipitation of aqueous liposomes during formulation or storage can cause degradation of the vesicle structure, leading to the decomposition of liposomes. To increase the stability of liposomes, post-processing techniques have been applied as an additional process to liposomes after formulation to remove water and generate dry liposome particles with a higher stability and greater accessibility for drug administration in comparison with aqueous liposomes. This review covers the effect of these techniques including freeze drying, spray drying and spray freeze drying on the stability, physicochemical properties and drug encapsulation efficiency of dry liposomes. The parameters affecting the properties of liposomes during the drying process are also highlighted in this review. In addition, the impact of using a protective agent to overcome such limitations of each process is thoroughly discussed through various studies.
Collapse
|
28
|
Oliyaei N, Moosavi‐Nasab M, Tamaddon AM, Tanideh N. Antidiabetic effect of fucoxanthin extracted from Sargassum angustifolium on streptozotocin-nicotinamide-induced type 2 diabetic mice. Food Sci Nutr 2021; 9:3521-3529. [PMID: 34262712 PMCID: PMC8269564 DOI: 10.1002/fsn3.2301] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 11/30/2022] Open
Abstract
This work aimed to study the antidiabetic effect of encapsulated fucoxanthin with porous starch (PS) in streptozotocin and nicotinamide-induced type 2 diabetic mice. Fucoxanthin was extracted and purified from Sargassum angustifolium and encapsulated in porous starch (PS). Diabetic mice groups were gavaged daily with fucoxanthin (400 mg/kg), either free or encapsulated into PS, and metformin (50 mg/kg) for three weeks. The results exhibited that the fucoxanthin and fucoxanthin-loaded PS markedly prevented the weight gain in treated groups (p < .05). Moreover, both free and encapsulated fucoxanthin could decrease the fasting blood glucose and increase the plasma insulin level similar to metformin (p < .05). In addition, total cholesterol, triglyceride, and low-density lipoprotein were lower in the treated groups. These results confirm antiobesity effect of fucoxanthin by regulating lipid profile parameters. Moreover, the histopathology evaluation of pancreatic tissue in diabetic mice exhibited that oral administration of metformin and fucoxanthin caused regeneration of pancreatic beta cells. This study revealed the healthy effect of seaweed pigment as a suitable bioactive compound which can be used in functional foods for natural diabetes therapy.
Collapse
Affiliation(s)
- Najme Oliyaei
- Seafood Processing Research GroupSchool of AgricultureShiraz UniversityShirazIran
- Department of Food Science and TechnologySchool of AgricultureShiraz UniversityShirazIran
| | - Marzieh Moosavi‐Nasab
- Seafood Processing Research GroupSchool of AgricultureShiraz UniversityShirazIran
- Department of Food Science and TechnologySchool of AgricultureShiraz UniversityShirazIran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug DeliverySchool of PharmacyShiraz University of Medical ScienceShirazIran
| | - Nader Tanideh
- Stem Cells Technology Research CenterDepartment of PharmacologySchool of MedicinShiraz University of Medical SciencesShirazIran
| |
Collapse
|
29
|
Yuliani Y, Riyadi PH, Dewi EN, Jaswir I, Agustini TW. Ocimum basilicum (kemangi) intervention on powder and microencapsulated Spirulina platensis and its bioactive molecules. F1000Res 2021; 10:485. [PMID: 35083034 PMCID: PMC8758973 DOI: 10.12688/f1000research.52394.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 08/26/2024] Open
Abstract
Background: Spirulina platensis contains several bioactive molecules such as phenol, flavonoid and phycocyanin pigments. This study unveils total phenol, flavonoid, antioxidant activity, phycocyanin content and evaluated encapsulation efficiency from Ocimum basilicum intervention on S. platensis. O. basilicum intervention aims to reduce unpleasant odors from S. platensis that will increase consumption and increase bioactive compounds. Methods: The intervention was carried out by soaking a S. platensis control sample (SP) in O. basilicum with a ratio of 1:4 (w/v) and it was then dried (DSB) and microencapsulated by freeze drying methods (MSB) using a combination of maltodextrin and gelatin. Total flavonoid and phenolic analysis with curve fitting analysis used a linear regression approach. Antioxidant activity of samples was analysed with the 2,2'-azino-bis-3-3thylbenzthiazoline-6-sulphonic acid (ABTS) method. Data were analysed using ANOVA at significance level (p < 0.05) followed by Tukey test models using SPSS v.22. Results: The result of this study indicated that O. basilicum intervention treatment (DSB) has the potential to increase bioactive compounds such as total phenol, antioxidant activity and phycocyanin, and flavonoid content. Intervention of O. basilicum on S. platensis (DSB) significantly increases total phenol by 48.7% and phycocyanin by 40.7%. This is due to the phenol and azulene compounds in O. basilicum which have a synergistic effect on phenol and phycocyanin in S. platensis. Microencapsulation using a maltodexrin and gelatin coating is effective in phycocyanin protection with an encapsulation efficiency value of 71.58%. Conclusion: The intervention of O. basilicum on S. platensis improved the total phenol and phycocyanin content and there is potential for a pharmaceutical product.
Collapse
Affiliation(s)
- Y Yuliani
- Master's student of Department of Aquatic Resources, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Putut Har Riyadi
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Eko Nurcahya Dewi
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Irwandi Jaswir
- International Institute for Halal Research and Training, International Islamic University Malaysia (IIUM), Selangor, 50728, Malaysia
| | - Tri Winarni Agustini
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| |
Collapse
|
30
|
Yuliani Y, Riyadi PH, Dewi EN, Jaswir I, Agustini TW. Ocimum basilicum (kemangi) intervention on powder and microencapsulated Spirulina platensis and its bioactive molecules. F1000Res 2021; 10:485. [PMID: 35083034 PMCID: PMC8758973 DOI: 10.12688/f1000research.52394.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Spirulina platensis contains several bioactive molecules such as phenol, flavonoid and phycocyanin pigments. This study unveils total phenol, flavonoid, antioxidant activity, phycocyanin content and evaluated encapsulation efficiency from Ocimum basilicum intervention on S. platensis. O. basilicum intervention aims to reduce unpleasant odors from S. platensis that will increase consumption and increase bioactive compounds. Methods: The intervention was carried out by soaking a S. platensis control sample (SP) in O. basilicum with a ratio of 1:4 (w/v) and it was then dried (DSB) and microencapsulated by freeze drying methods (MSB) using a combination of maltodextrin and gelatin. Total flavonoid and phenolic analysis with curve fitting analysis used a linear regression approach. Antioxidant activity of samples was analysed with the 2,2'-azino-bis-3-3thylbenzthiazoline-6-sulphonic acid (ABTS) method. Data were analysed using ANOVA at significance level (p < 0.05) followed by Tukey test models using SPSS v.22. Results: The result of this study indicated that O. basilicum intervention treatment (DSB) has the potential to increase bioactive compounds such as total phenol, antioxidant activity and phycocyanin, and flavonoid content. Intervention of O. basilicum on S. platensis (DSB) significantly increases total phenol by 49.5% and phycocyanin by 40.7%. This is due to the phenol and azulene compounds in O. basilicum which have a synergistic effect on phenol and phycocyanin in S. platensis. Microencapsulation using a maltodexrin and gelatin coating is effective in phycocyanin protection and antioxidant activity with an encapsulation efficiency value of 71.58% and 80.5%. Conclusion: The intervention of O. basilicum on S. platensis improved the total phenol and phycocyanin content and there is potential for a pharmaceutical product for a functional food and pharmaceutical product.
Collapse
Affiliation(s)
- Y Yuliani
- Master's student of Department of Aquatic Resources, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Putut Har Riyadi
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Eko Nurcahya Dewi
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Irwandi Jaswir
- International Institute for Halal Research and Training, International Islamic University Malaysia (IIUM), Selangor, 50728, Malaysia
| | - Tri Winarni Agustini
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| |
Collapse
|
31
|
Yuliani Y, Riyadi PH, Dewi EN, Jaswir I, Agustini TW. Ocimum basilicum (kemangi) intervention on powder and microencapsulated Spirulina platensis and its bioactive molecules. F1000Res 2021; 10:485. [PMID: 35083034 PMCID: PMC8758973 DOI: 10.12688/f1000research.52394.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 08/26/2024] Open
Abstract
Background: Spirulina platensis contains several bioactive molecules such as phenol, flavonoid and phycocyanin pigments. This study unveils total phenol, flavonoid, antioxidant activity, phycocyanin content and evaluated encapsulation efficiency from Ocimum basilicum intervention on S. platensis. O. basilicum intervention aims to reduce unpleasant odors from S. platensis that will increase consumption and increase bioactive compounds. Methods: The intervention was carried out by soaking a S. platensis control sample (SP) in O. basilicum with a ratio of 1:4 (w/v) and it was then dried (DSB) and microencapsulated by freeze drying methods (MSB) using a combination of maltodextrin and gelatin. Total flavonoid and phenolic analysis with curve fitting analysis used a linear regression approach. Antioxidant activity of samples was analysed with the 2,2'-azino-bis-3-3thylbenzthiazoline-6-sulphonic acid (ABTS) method. Data were analysed using ANOVA at significance level (p < 0.05) followed by Tukey test models using SPSS v.22. Results: The result of this study indicated that O. basilicum intervention treatment (DSB) has the potential to increase bioactive compounds such as total phenol, antioxidant activity and phycocyanin, and flavonoid content. Intervention of O. basilicum on S. platensis (DSB) significantly increases total phenol by 49.5% and phycocyanin by 40.7%. This is due to the phenol and azulene compounds in O. basilicum which have a synergistic effect on phenol and phycocyanin in S. platensis. Microencapsulation using a maltodexrin and gelatin coating is effective in phycocyanin protection and antioxidant activity with an encapsulation efficiency value of 71.58% and 80.5%. Conclusion: The intervention of O. basilicum on S. platensis improved the total phenol and phycocyanin content and there is potential for a pharmaceutical product for a functional food and pharmaceutical product.
Collapse
Affiliation(s)
- Y Yuliani
- Master's student of Department of Aquatic Resources, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Putut Har Riyadi
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Eko Nurcahya Dewi
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| | - Irwandi Jaswir
- International Institute for Halal Research and Training, International Islamic University Malaysia (IIUM), Selangor, 50728, Malaysia
| | - Tri Winarni Agustini
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Central Java, 50275, Indonesia
| |
Collapse
|
32
|
Raoufi E, Bahramimeimandi B, Salehi-Shadkami M, Chaosri P, Mozafari MR. Methodical Design of Viral Vaccines Based on Avant-Garde Nanocarriers: A Multi-Domain Narrative Review. Biomedicines 2021; 9:520. [PMID: 34066608 PMCID: PMC8148582 DOI: 10.3390/biomedicines9050520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
The current health crisis caused by coronavirus 2019 (COVID-19) and associated pathogens emphasize the urgent need for vaccine systems that can generate protective and long-lasting immune responses. Vaccination, employing peptides, nucleic acids, and other molecules, or using pathogen-based strategies, in fact, is one of the most potent approaches in the management of viral diseases. However, the vaccine candidate requires protection from degradation and precise delivery to the target cells. This can be achieved by employing different types of drug and vaccine delivery strategies, among which, nanotechnology-based systems seem to be more promising. This entry aims to provide insight into major aspects of vaccine design and formulation to address different diseases, including the recent outbreak of SARS-CoV-2. Special emphasis of this review is on the technical and practical aspects of vaccine construction and theranostic approaches to precisely target and localize the active compounds.
Collapse
Affiliation(s)
- Ehsan Raoufi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (E.R.); (B.B.)
| | - Bahar Bahramimeimandi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (E.R.); (B.B.)
| | - M. Salehi-Shadkami
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Patcharida Chaosri
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand;
| | - M. R. Mozafari
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand;
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
33
|
Sabaghi M, Hoseyni SZ, Tavasoli S, Mozafari MR, Katouzian I. Strategies of confining green tea catechin compounds in nano-biopolymeric matrices: A review. Colloids Surf B Biointerfaces 2021; 204:111781. [PMID: 33930733 DOI: 10.1016/j.colsurfb.2021.111781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023]
Abstract
Catechins are polyphenolic compounds which abundantly occur in the plants, especially tea leaves. They are widely used in nutraceutical and pharmaceutical formulations due to their capability of lowering the risk of developing various diseases. Nevertheless, low stability, loss of antioxidant and antimicrobial activities hinder the direct application of catechins in food formulations. To surmount this pervasive challenge, bioactive ingredients should be entrapped in a biopolymeric matrix. Thus, nanoencapsulation technology would be an appropriate strategy to improve the stability of these bioactive compounds and to protect them against degradation. Among different types of nanocarriers, biopolymer-based nanovehicles has captured a lot of attention in both industry and academia due to their safety and biocompatibility. This revision enlarges upon the various types of biopolymeric nanostructures used for accommodation of catechins, namely nanogels, nanotubes, nanofibers, nanoemulsions and nanoparticles. Last but not least, the applications of the entrapped catechins in the food industry are highlighted.
Collapse
Affiliation(s)
- Moslem Sabaghi
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran; Nano-encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zahra Hoseyni
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | - Sedighe Tavasoli
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, 3168, Australia
| | - Iman Katouzian
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran; Nano-encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
34
|
Savaghebi D, Ghaderi-Ghahfarokhi M, Barzegar M. Encapsulation of Sargassum boveanum Algae Extract in Nano-liposomes: Application in Functional Mayonnaise Production. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02638-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Available technologies on improving the stability of polyphenols in food processing. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.65] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
36
|
Ajeeshkumar KK, Aneesh PA, Raju N, Suseela M, Ravishankar CN, Benjakul S. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Compr Rev Food Sci Food Saf 2021; 20:1280-1306. [PMID: 33665991 DOI: 10.1111/1541-4337.12725] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/28/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Liposomes play a significant role in encapsulation of various bioactive compounds (BACs), including functional food ingredients to improve the stability of core. This technology can be used for promoting an effective application in functional food and nutraceuticals. Incorporation of traditional and emerging methods for the developments of liposome for loading BACs resulted in viable and stable liposome formulations for industrial applications. Thus, the advance technologies such as supercritical fluidic methods, microfluidization, ultrasonication with traditional methods are revisited. Liposomes loaded with plant and animal BACs have been introduced for functional food and nutraceutical applications. In general, application of liposome systems improves stability, delivery, and bioavailability of BACs in functional food systems and nutraceuticals. This review covers the current techniques and methodologies developed and practiced in liposomal preparation and application in functional foods.
Collapse
Affiliation(s)
| | | | - Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mathew Suseela
- ICAR - Central Institute of Fisheries Technology, Cochin, Kerala, 682029, India
| | | | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
37
|
Yousefi M, Khanniri E, Shadnoush M, Khorshidian N, Mortazavian AM. Development, characterization and in vitro antioxidant activity of chitosan-coated alginate microcapsules entrapping Viola odorata Linn. extract. Int J Biol Macromol 2020; 163:44-54. [DOI: 10.1016/j.ijbiomac.2020.06.250] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/10/2023]
|