1
|
Long C, Zhao ZX, Willing BP, Sheng XH, Wang XG, Xiao LF, Qi XL. Alpha-Linolenic Acid Supplementation Improves Testosterone Production in an Aged Breeder Rooster Model: Role of Mitochondrial Modulation and SIRT1 Activation. Mol Nutr Food Res 2024; 68:e2400522. [PMID: 39491816 DOI: 10.1002/mnfr.202400522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Indexed: 11/05/2024]
Abstract
SCOPE Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. METHODS AND RESULTS To investigate the effects of dietary supplementation with alpha-linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis-related enzymes. ALA supplementation exerts anti-apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro-apoptotic factors and a higher expression of the anti-apoptotic factor B-cell lymphoma 2 (Bcl-2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function-related genes. CONCLUSION These findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway.
Collapse
Affiliation(s)
- Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Zhi-Xian Zhao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Xi-Hui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiang-Guo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Long-Fei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing, 102206, China
| |
Collapse
|
2
|
Wang J, Zhang R, Wu C, Wang L, Liu P, Li P. Exploring potential targets for natural product therapy of DN: the role of SUMOylation. Front Pharmacol 2024; 15:1432724. [PMID: 39431155 PMCID: PMC11486755 DOI: 10.3389/fphar.2024.1432724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Diabetic nephropathy (DN) is a common and serious micro-vascular complication of diabetes and a leading cause of end-stage renal disease globally. This disease primarily affects middle-aged and elderly individuals, especially those with a diabetes history of over 10 years and poor long-term blood glucose control. Small ubiquitin-related modifiers (SUMOs) are a group of reversible post-translational modifications of proteins that are widely expressed in eukaryotes. SUMO proteins intervene in the progression of DN by modulating various signaling cascades, such as Nrf2-mediated oxidative stress, NF-κB, TGF-β, and MAPK pathways. Recent advancements indicate that natural products regulating SUMOylation hold promise as targets for intervening in DN. In a previous article published in 2022, we reviewed the mechanisms by which SUMOylation intervenes in renal fibrosis and presented a summary of some natural products with therapeutic potential. Therefore, this paper will focus on DN. The aim of this review is to elucidate the mechanism of action of SUMOylation in DN and related natural products with therapeutic potential, thereby summarising the targets and candidate natural products for the treatment of DN through the modulation of SUMOylation, such as ginkgolic acid, ginkgolide B, resveratrol, astragaloside IV, etc., and highlighting that natural product-mediated modulation of SUMOylation is a potential therapeutic strategy for the treatment of DN as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jingjing Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Gurbuz ES, Guney Z, Kurgan S, Balci N, Serdar MA, Gunhan M. Oxidative Stress and FOXO-1 Relationship in Stage III Periodontitis. Clin Oral Investig 2024; 28:270. [PMID: 38658396 PMCID: PMC11043194 DOI: 10.1007/s00784-024-05670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVES 8-Hydroxideoxyguanosine (8-OHdG) is a marker of oxidative stress, and Forkhead Box-O1 (FOXO1) is a transcription factor and signaling integrator in cell and tissue homeostasis. This study aims to determine FOXO1 and 8-OHdG levels in serum and saliva samples of periodontitis patients and to evaluate their relationship with clinical periodontal parameters. MATERIALS AND METHODS Twenty healthy individuals, twenty generalized Stage III Grade B periodontitis patients, and nineteen generalized Stage III Grade C periodontitis patients were included in the study. Clinical periodontal parameters (plaque index (PI), probing depth (PD), bleeding on probing (BOP), and clinical attachment level (CAL)) were recorded. Salivary and serum 8-OHdG and FOX-O1 levels were analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS Clinical periodontal parameters showed a statistically significant increase in periodontitis groups compared to the control group (p < 0.05). 8-OHdG salivary levels were significantly higher in both periodontitis groups compared to the control group. The salivary FOXO1 levels were significantly lower in both periodontitis groups compared to the control group. Salivary FOXO1 level had a low-grade negative correlation with BOP and salivary 8-OHdG level. CONCLUSIONS While reactive oxygen species increase in periodontal inflammation, low expression of FOXO1, an important transcription factor for antioxidant enzymes, supports that this molecule plays a vital role in tissue destruction, and FOXO1 can be seen as a potential immune modulator. CLINICAL RELEVANCE The role of FOXO1 in supporting antioxidant defense may suggest that FOXO1 is a candidate target for periodontitis treatment.
Collapse
Affiliation(s)
- Elif Selin Gurbuz
- Faculty of Dentistry Department of Periodontology, Ankara University, Ankara, Turkey
- Graduate School of Health Science, Ankara University, Ankara, Turkey
| | - Zeliha Guney
- Faculty of Dentistry Department of Periodontology, Ankara Medipol University, Ankara, Turkey.
| | - Sivge Kurgan
- Faculty of Dentistry Department of Periodontology, Ankara University, Ankara, Turkey
| | - Nur Balci
- Faculty of Dentistry Department of Periodontology, İstanbul Medipol University, Ankara, Turkey
| | | | - Meral Gunhan
- Faculty of Dentistry Department of Periodontology, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
HAN M, YI X, YOU S, WU X, WANG S, HE D. Gehua Jiejiu Dizhi decoction ameliorates alcoholic fatty liver in mice by regulating lipid and bile acid metabolism and with exertion of antioxidant stress based on 4DLabel-free quantitative proteomic study. J TRADIT CHIN MED 2024; 44:277-288. [PMID: 38504534 PMCID: PMC10927405 DOI: 10.19852/j.cnki.jtcm.20231018.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction (, GJDD) on alcoholic fatty live disease (AFLD) by using proteomic methods. METHODS The male C57BL/6J mouse were randomly divided into four groups: control group, model group, GJDD group and resveratrol group. After the AFLD model was successfully prepared by intragastric administration of alcohol once on the basis of the Lieber-DeCarli classical method, the GJDD group and resveratrol group were intragastrically administered with GJDD (4900 mg/kg) and resveratrol (400 mg/kg) respectively, once a day for 9 d. The fat deposition of liver tissue was observed and evaluated by oil red O (ORO) staining. 4DLabel-free quantitative proteome method was used to determine and quantify the protein expression in liver tissue of each experimental group. The differentially expressed proteins were screened according to protein expression differential multiples, and then analyzed by Gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Finally, expression validation of the differentially co-expressed proteins from control group, model group and GJDD group were verified by targeted proteomics quantification techniques. RESULTS In semiquantitative analyses of ORO, all kinds of steatosis (ToS, MaS, and MiS) were evaluated higher in AFLD mice compared to those in GJDD or resveratrol-treated mice. 4DLabel-free proteomics analysis results showed that a total of 4513 proteins were identified, of which 3763 proteins were quantified and 946 differentially expressed proteins were screened. Compared with the control group, 145 proteins were up-regulated and 148 proteins were down-regulated in the liver tissue of model group. In addition, compared with the model group, 92 proteins were up-regulated and 135 proteins were down-regulated in the liver tissue of the GJDD group. 15 differentially co-expressed proteins were found between every two groups (model group vs control group, GJDD group vs model group and GJDD group vs control group), which were involved in many biological processes. Among them, 11 differentially co-expressed key proteins (Aox3, H1-5, Fabp5, Ces3a, Nudt7, Serpinb1a, Fkbp11, Rpl22l1, Keg1, Acss2 and Slco1a1) were further identified by targeted proteomic quantitative technology and their expression patterns were consistent with the results of 4D label-free proteomic analysis. CONCLUSIONS Our study provided proteomics-based evidence that GJDD alleviated AFLD by modulating liver protein expression, likely through the modulation of lipid metabolism, bile acid metabolism and with exertion of antioxidant stress.
Collapse
Affiliation(s)
- Min HAN
- 1 Guizhou University of Traditional Chinese Medicine, Graduate School, Guiyang 550025, China
| | - Xu YI
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shaowei YOU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Xueli WU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shuoshi WANG
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Diancheng HE
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| |
Collapse
|
5
|
Cao W, Zhang J, Yu S, Gan X, An R. N-acetylcysteine regulates oxalate induced injury of renal tubular epithelial cells through CDKN2B/TGF-β/SMAD axis. Urolithiasis 2024; 52:46. [PMID: 38520518 DOI: 10.1007/s00240-023-01527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/26/2023] [Indexed: 03/25/2024]
Abstract
This study was aimed to investigate the preventive effects of N-acetyl-L-cysteine (NAC) against renal tubular cell injury induced by oxalate and stone formation and further explore the related mechanism. Transcriptome sequencing combined with bioinformatics analysis were performed to identify differentially expressed gene (DEG) and related pathways. HK-2 cells were pretreated with or without antioxidant NAC/with or silencing DEG before exposed to sodium oxalate. Then, the cell viability, oxidative biomarkers of superoxidase dismutase (SOD) and malondialdehyde (MDA), apoptosis and cell cycle were measured through CCK8, ELISA and flow cytometry assay, respectively. Male SD rats were separated into control group, hyperoxaluria (HOx) group, NAC intervention group, and TGF-β/SMAD pathway inhibitor group. After treatment, the structure changes and oxidative stress and CaOx crystals deposition were evaluated in renal tissues by H&E staining, immunohistochemical and Pizzolato method. The expression of TGF-β/SMAD pathway related proteins (TGF-β1, SMAD3 and SMAD7) were determined by Western blot in vivo and in vitro. CDKN2B is a DEG screened by transcriptome sequencing combined with bioinformatics analysis, and verified by qRT-PCR. Sodium oxalate induced declined HK-2 cell viability, in parallel with inhibited cellular oxidative stress and apoptosis. The changes induced by oxalate in HK-2 cells were significantly reversed by NAC treatment or the silencing of CDKN2B. The cell structure damage and CaOx crystals deposition were observed in kidney tissues of HOx group. Meanwhile, the expression levels of SOD and 8-OHdG were detected in kidney tissues of HOx group. The changes induced by oxalate in kidney tissues were significantly reversed by NAC treatment. Besides, expression of SMAD7 was significantly down-regulated, while TGF-β1 and SMAD3 were accumulated induced by oxalate in vitro and in vivo. The expression levels of TGF-β/SMAD pathway related proteins induced by oxalate were reversed by NAC. In conclusion, we found that NAC could play an anti-calculus role by mediating CDKN2B/TGF-β/SMAD axis.
Collapse
Affiliation(s)
- Wei Cao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jingbo Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shiliang Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China
| | - Xiuguo Gan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China
| | - Ruihua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China.
| |
Collapse
|
6
|
Salazar-Martín AG, Kalluri AS, Villanueva MA, Hughes TK, Wadsworth MH, Dao TT, Balcells M, Nezami FR, Shalek AK, Edelman ER. Single-Cell RNA Sequencing Reveals That Adaptation of Human Aortic Endothelial Cells to Antiproliferative Therapies Is Modulated by Flow-Induced Shear Stress. Arterioscler Thromb Vasc Biol 2023; 43:2265-2281. [PMID: 37732484 PMCID: PMC10659257 DOI: 10.1161/atvbaha.123.319283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Endothelial cells (ECs) are capable of quickly responding in a coordinated manner to a wide array of stresses to maintain vascular homeostasis. Loss of EC cellular adaptation may be a potential marker for cardiovascular disease and a predictor of poor response to endovascular pharmacological interventions such as drug-eluting stents. Here, we report single-cell transcriptional profiling of ECs exposed to multiple stimulus classes to evaluate EC adaptation. METHODS Human aortic ECs were costimulated with both pathophysiological flows mimicking shear stress levels found in the human aorta (laminar and turbulent, ranging from 2.5 to 30 dynes/cm2) and clinically relevant antiproliferative drugs, namely paclitaxel and rapamycin. EC state in response to these stimuli was defined using single-cell RNA sequencing. RESULTS We identified differentially expressed genes and inferred the TF (transcription factor) landscape modulated by flow shear stress using single-cell RNA sequencing. These flow-sensitive markers differentiated previously identified spatially distinct subpopulations of ECs in the murine aorta. Moreover, distinct transcriptional modules defined flow- and drug-responsive EC adaptation singly and in combination. Flow shear stress was the dominant driver of EC state, altering their response to pharmacological therapies. CONCLUSIONS We showed that flow shear stress modulates the cellular capacity of ECs to respond to paclitaxel and rapamycin administration, suggesting that while responding to different flow patterns, ECs experience an impairment in their transcriptional adaptation to other stimuli.
Collapse
Affiliation(s)
- Antonio G. Salazar-Martín
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA (A.G.S.-M., M.A.V., T.T.D., A.K.S.)
| | - Aditya S. Kalluri
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
| | - Martin A. Villanueva
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA (A.G.S.-M., M.A.V., T.T.D., A.K.S.)
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Departments of Biology (M.A.V.), Massachusetts Institute of Technology, Cambridge
| | - Travis K. Hughes
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Koch Institute for Integrative Cancer Research (T.K.H., M.H.W., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Department of Immunology, Harvard Medical School, Boston, MA (T.K.H., M.H.W., A.K.S.)
| | - Marc H. Wadsworth
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Koch Institute for Integrative Cancer Research (T.K.H., M.H.W., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Department of Immunology, Harvard Medical School, Boston, MA (T.K.H., M.H.W., A.K.S.)
| | - Tyler T. Dao
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA (A.G.S.-M., M.A.V., T.T.D., A.K.S.)
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Biological Engineering (T.T.D.), Massachusetts Institute of Technology, Cambridge
| | - Mercedes Balcells
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
| | - Farhad R. Nezami
- Division of Cardiac Surgery (F.R.N.), Brigham and Women’s Hospital, Boston, MA
| | - Alex K. Shalek
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Koch Institute for Integrative Cancer Research (T.K.H., M.H.W., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA (A.G.S.-M., M.A.V., T.T.D., A.K.S.)
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA (M.A.V., T.K.H., M.H.W., T.T.D., A.K.S.)
- Chemistry (A.K.S.), Massachusetts Institute of Technology, Cambridge
- Department of Immunology, Harvard Medical School, Boston, MA (T.K.H., M.H.W., A.K.S.)
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science (A.G.S.-M., A.S.K., M.A.V., T.K.H., M.H.W., T.T.D., M.B., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Koch Institute for Integrative Cancer Research (T.K.H., M.H.W., A.K.S., E.R.E.), Massachusetts Institute of Technology (MIT), Cambridge, MA
- Division of Cardiovascular Medicine, Department of Medicine (E.R.E.), Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
7
|
Zhu Y, Tang Y, Fan Y, Wu D. MiR-196a-5p facilitates progression of estrogen-dependent endometrial cancer by regulating FOXO1. Histol Histopathol 2023; 38:1157-1168. [PMID: 36573636 DOI: 10.14670/hh-18-572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
BACKGROUND AND PURPOSE Estrogen-dependent endometrial cancer mainly occurs in younger pre-menopausal and post-menopausal women and threatens their health. Recently, microRNAs (miRNAs) have been considered as novel targets in endometrial cancer treatment. Therefore, we aimed to explore the effect of miRNA (miR)-196a-5p in estrogen-dependent endometrial cancer. METHODS 17β-estradiol (E2; 2.5, 5, 10 and 20 nM) was used to treat RL95-2, HEC-1B and ECC-1 cells followed by cell viability assessment using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The level of miR-196a-5p was measured by reverse transcription-quantitative PCR (RT-qPCR). We then transfected miR-196a-5p mimic/inhibitor and Forkhead box protein O1 (FOXO1) small interfering RNA (siRNA) into E2-treated cells. Apoptotic cells were measured by flow cytometry. Wound healing and Transwell assays were implemented to assess migration and invasion. Bioinformatics and luciferase reporter assays were applied to confirm the interaction between miR-196a-5p and FOXO1. Immunoblotting determined the levels of FOXO1, Bcl-2, Bax, Caspase 3. RESULTS E2 promoted cell viability and miR-196a-5p expression in RL95-2 and ECC-1 cells. miR-196a-5p mimic enhanced cell viability, migration and invasion but suppressed apoptosis and FOXO1, whilst miR-196a-5p inhibitor blocked these processes. In addition, miR-196a-5p upregulated Bcl-2, but down regulated Bax and Caspase 3 expression, an effect that was reversed by miR-196a-5p inhibitor. We determined that miR-196a-5p targeted FOXO1, and that si-FOXO1 blocked the effects of miR-196a-5p inhibitor on viability, apoptosis, migration and invasion of E2-treated RL95-2 and ECC-1 cells. CONCLUSIONS Our findings suggested potential diagnostic and therapeutic applications for miR-196a-5p and its FOXO1 target in patients suffering from estrogen-dependent endometrial cancer.
Collapse
Affiliation(s)
- Yuzhang Zhu
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang, China
| | - Yanfei Tang
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang, China
| | - Yaohua Fan
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang, China
| | - Dongjuan Wu
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang, China.
| |
Collapse
|
8
|
Zhao X, Zhou S, Liu Y, Gong C, Xiang L, Li S, Wang P, Wang Y, Sun L, Zhang Q, Yang Y. Parishin alleviates vascular ageing in mice by upregulation of Klotho. J Cell Mol Med 2023; 27:1398-1409. [PMID: 37032511 PMCID: PMC10183705 DOI: 10.1111/jcmm.17740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
Senescence of vascular endothelial cells is the major risk of vascular dysfunction and disease among elderly people. Parishin, which is a phenolic glucoside derived from Gastrodia elata, significantly prolonged yeast lifespan. However, the action of parishin in vascular ageing remains poorly understood. Here, we treated human coronary artery endothelial cells (HCAEC) and naturally aged mice by parishin. Parishin alleviated HCAEC senescence and general age-related features in vascular tissue in naturally aged mice. Network pharmacology approach was applied to determine the compound-target networks of parishin. Our analysis indicated that parishin had a strong binding affinity for Klotho. Expression of Klotho, a protein of age-related declines, was upregulated by parishin in serum and vascular tissue in naturally aged mice. Furthermore, FoxO1, on Klotho/FoxO1 signalling pathway, was increased in the parishin-intervened group, accompanied by the downregulated phosphorylated FoxO1. Taken together, parishin can increase Klotho expression to alleviate vascular endothelial cell senescence and vascular ageing.
Collapse
Affiliation(s)
- Xinxiu Zhao
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Shixian Zhou
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Yang Liu
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Caixia Gong
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Lan Xiang
- College of Pharmaceutical SciencesZhejiang University866 Yu Hang Tang RoadHangzhouChina
| | - Shumin Li
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Peixia Wang
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Yuejun Wang
- Zhejiang Aged Care HospitalHangzhou Normal UniversityHangzhouZhejiangChina
| | - Linlin Sun
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
9
|
González-Herrera F, Anfossi R, Catalán M, Gutiérrez-Figueroa R, Maya JD, Díaz-Araya G, Vivar R. Lipoxin A4 prevents high glucose-induced inflammatory response in cardiac fibroblast through FOXO1 inhibition. Cell Signal 2023; 106:110657. [PMID: 36933776 DOI: 10.1016/j.cellsig.2023.110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Cardiac cells respond to various pathophysiological stimuli, synthesizing inflammatory molecules that allow tissue repair and proper functioning of the heart; however, perpetuation of the inflammatory response can lead to cardiac fibrosis and heart dysfunction. High concentration of glucose (HG) induces an inflammatory and fibrotic response in the heart. Cardiac fibroblasts (CFs) are resident cells of the heart that respond to deleterious stimuli, increasing the synthesis and secretion of both fibrotic and proinflammatory molecules. The molecular mechanisms that regulate inflammation in CFs are unknown, thus, it is important to find new targets that allow improving treatments for HG-induced cardiac dysfunction. NFκB is the master regulator of inflammation, while FoxO1 is a new participant in the inflammatory response, including inflammation induced by HG; however, its role in the inflammatory response of CFs is unknown. The inflammation resolution is essential for an effective tissue repair and recovery of the organ function. Lipoxin A4 (LXA4) is an anti-inflammatory agent with cytoprotective effects, while its cardioprotective effects have not been fully studied. Thus, in this study, we analyze the role of p65/NFκB, and FoxO1 in CFs inflammation induced by HG, evaluating the anti-inflammatory properties of LXA4. Our results demonstrated that HG induces the inflammatory response in CFs, using an in vitro and ex vivo model, while FoxO1 inhibition and silencing prevented HG effects. Additionally, LXA4 inhibited the activation of FoxO1 and p65/NFκB, and inflammation of CFs induced by HG. Therefore, our results suggest that FoxO1 and LXA4 could be novel drug targets for the treatment of HG-induced inflammatory and fibrotic disorders in the heart.
Collapse
Affiliation(s)
- Fabiola González-Herrera
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Renatto Anfossi
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mabel Catalán
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Renata Gutiérrez-Figueroa
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Diego Maya
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Guillermo Díaz-Araya
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Raúl Vivar
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
10
|
Chen J, Ou Z, Gao T, Yang Y, Shu A, Xu H, Chen Y, Lv Z. Ginkgolide B alleviates oxidative stress and ferroptosis by inhibiting GPX4 ubiquitination to improve diabetic nephropathy. Biomed Pharmacother 2022; 156:113953. [DOI: 10.1016/j.biopha.2022.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
11
|
Expression of Eosinophilic Subtype Markers in Patients with Kawasaki Disease. Int J Mol Sci 2022; 23:ijms231710093. [PMID: 36077487 PMCID: PMC9456171 DOI: 10.3390/ijms231710093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Eosinophils may rise to a higher level in the acute phase of Kawasaki disease (KD) both before and after intravenous immunoglobulin (IVIG) therapy. A substantial body of research was carried out on the association between KD and allergic diseases. Eosinophils play an important role in type 2 inflammation. Recent studies have shown that there are two distinct subtypes of eosinophils. In addition to their role in inflammation, lung-resident eosinophils (rEOS) also regulate homeostasis. Inflammatory eosinophils (iEOS) reflect type 2 inflammation in tissues. iEOS were considered the primary eosinophils in non-severe allergic asthma, while rEOS were thought to be the primary eosinophils in severe non-allergic eosinophilic asthma. This case-control study aimed to investigate the marker expression of eosinophilic subtypes in KD patients. MATERIALS AND METHODS The marker expressions of eosinophilic subtypes in the leukocytes of patients with KD were evaluated by the recently established KDmarkers online tool, a web server including gene expression data. Finally, the results were validated with a quantitative reverse transcriptase polymerase chain reaction (RT-PCR). We analyzed the mRNA expression levels of SELL and IL10RA in leukocytes from KD patients and febrile children. RESULTS Included in our screening tools were transcriptome arrays, which provided clues showing the importance of rEOS, whose role was identified by three genes (lower IL10RA, higher SELL, and SERPINB1 than controls). In contrast, the iEOS representative gene CD101 was not elevated in KD. It was found that the gene IL10RA, a marker of inflammatory eosinophilic leukocytes, was more highly expressed in the leukocytes of KD patients (n = 43) than febrile controls (n = 32), especially those without coronary artery lesions (CAL) (n = 26). Before treatment, SELL expression was higher in leukocytes of CAL patients (CAL, 1.33 ± 0.18, n = 39; non-CAL, 0.87 ± 0.12, n = 55; p = 0.012). SELL was significantly higher after half a year compared to febrile controls. CONCLUSIONS To our knowledge, this is the first study to demonstrate that KD patients have increased SELL than febrile controls after 6 months of treatment. We present evidence here that dynamically different eosinophilic involvement exists between KD patients with and without CAL. The role of eosinophilic subtypes in KD patients warrants further investigation.
Collapse
|
12
|
Luo H, Wu P, Chen X, Wang B, Chen G, Su X. Novel insights into the relationship between α-1 anti-trypsin with the pathological development of cardio-metabolic disorders. Int Immunopharmacol 2022; 111:109077. [PMID: 35907338 DOI: 10.1016/j.intimp.2022.109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022]
Abstract
According to the previous studies, chronic low-grade systemic inflammatory response has been shown to be significantly associated with the pathological development of cardio-metabolic disorder diseases, including atherosclerosis, type 2 diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD). On the other hand, auto-immunity process could also facilitate the pathogenesis of type 1 diabetes mellitus importantly. Concerning on this notion, the anti-inflammatory therapeutic strategy is demonstrated to embrace an essential function in those cardio-metabolic disorders in clinical practice. The α-1 anti-trypsin, also named Serpin-A1 and as an acute phase endogenous protein, has been verified to have several modulatory effects such as anti-inflammatory response, anti-apoptosis, and immunomodulatory functions. In addition, it is also used for therapeutic strategy of a rare genetic disease caused by the deficiency of α-1 anti-trypsin. Recent emerging evidence has indicated that the serum concentrations of α-1 anti-trypsin levels and its biological activity are significantly changed in those inflammatory and immune related cardio-metabolic disorder diseases. Nevertheless, the underlying mechanism is still not elucidated. In the current review, the basic experiments and clinical trials which provided the evidence revealing the potential therapeutic function of the α-1 anti-trypsin in cardio-metabolic disorder diseases were well-summarized. Furthermore, the results which indicated that the α-1 anti-trypsin presented the possibility as a novel serum biomarker in humans to predict those cardio-metabolic disorder diseases were also elucidated.
Collapse
Affiliation(s)
- Haizhen Luo
- Department of Cardiology, the Fuding Hospital of Fujian University of Traditional Chinese Medicine, Fuding, Fujian, China
| | - Penglong Wu
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiang Chen
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Bin Wang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Geng Chen
- Department of Cardiology, the Fuding Hospital of Fujian University of Traditional Chinese Medicine, Fuding, Fujian, China.
| | - Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
13
|
Wang H, Hua J, Chen S, Chen Y. SERPINB1 overexpression protects myocardial damage induced by acute myocardial infarction through AMPK/mTOR pathway. BMC Cardiovasc Disord 2022; 22:107. [PMID: 35291946 PMCID: PMC8925243 DOI: 10.1186/s12872-022-02454-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background SERPINB1 is involved in the development of a variety of diseases. The purpose of this study was to explore the effect of SERPINB1 on acute myocardial infarction (AMI). Methods Serum SERPINB1 level of AMI patients was measured for receiver operating characteristic curve analysis. The AMI rat model was constructed to observe myocardial damage, and the H9C2 cell oxygen glucose deprivation (OGD) model was constructed to detect cell viability. Transthoracic echocardiography was used to assess the cardiac function. TTC staining and HE staining were used to detect pathologic changes of myocardial tissues. The apoptosis of myocardial tissues and cells were measured by TUNLE staining and flow cytometry assay. CCK-8 assay to measure cell viability. SERPINB1 expression was measured by qRT-PCR. Protein expression was measured by western blot. Results The serum SERPINB1 level was down-regulated in AMI patients. AMI modeling reduced the SERPINB1 expression level, induced inflammatory cells infiltrated, and myocardial apoptosis. OGD treatment inhibited cell viability and promoted apoptosis. The AMPK/mTOR pathway was inhibited in AMI rats and OGD-treated H9C2 cells. Overexpression of SERPINB1 reduced infarct size and myocardial apoptosis of AMI rats, inhibited apoptosis of H9C2 cells, and activated AMPK/mTOR pathway. However, AMPK inhibitor Dorsomorphin reversed the protective effect of SERPINB1 on myocardial cells. Conclusion SERPINB1 overexpression relieved myocardial damage induced by AMI via AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Cardiovasology, First People's Hospital of Jinan, Jinan, 250000, Shandong, People's Republic of China
| | - Jun Hua
- Department of Clinical Laboratory, Gaotang County People's Hospital, Liaocheng, 252800, Shandong, People's Republic of China
| | - Shiyuan Chen
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, 257091, Shandong, People's Republic of China
| | - Ying Chen
- Department of Clinical Laboratory, Central Hospital of Shengli Oilfield, No. 31 Jinan Road, Dongying, 257000, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Wang Y, Li Y, Xu Y. Pyroptosis in Kidney Disease. J Mol Biol 2021; 434:167290. [PMID: 34626644 DOI: 10.1016/j.jmb.2021.167290] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/06/2023]
Abstract
In the last several decades, apoptosis interference has been considered clinically irrelevant in the context of renal injury. Recent discovery of programmed necrotic cell death, including necroptosis, ferroptosis, and pyroptosis refreshed our understanding of the role of cell death in kidney disease. Pyroptosis is characterized by a lytic pro- inflammatory type of cell death resulting from gasdermin-induced membrane permeabilization via activation of inflammatory caspases and inflammasomes. The danger-associated molecular patterns (DAMPs), alarmins and pro-inflammatory cytokines are released from pyroptotic cells in an uncontrolled manner, which provoke inflammation, resulting in secondary organ or tissue injuries. The caspases and inflammasome activation-related proteins and pore-forming effector proteins known as GSDMD and GSDME have been implicated in a variety of acute and chronic microbial and non-microbial kidney diseases. Here, we review the recent advances in pathological mechanisms of pyroptosis in kidney disease and highlight the potential therapeutic strategies in future.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yinshuang Li
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|