1
|
Wen L, Liu Z, Zhou L, Liu Z, Li Q, Geng B, Xia Y. Bone and Extracellular Signal-Related Kinase 5 (ERK5). Biomolecules 2024; 14:556. [PMID: 38785963 PMCID: PMC11117709 DOI: 10.3390/biom14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bones are vital for anchoring muscles, tendons, and ligaments, serving as a fundamental element of the human skeletal structure. However, our understanding of bone development mechanisms and the maintenance of bone homeostasis is still limited. Extracellular signal-related kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, plays a critical role in the pathogenesis and progression of various diseases, especially neoplasms. Recent studies have highlighted ERK5's significant role in both bone development and bone-associated pathologies. This review offers a detailed examination of the latest research on ERK5 in different tissues and diseases, with a particular focus on its implications for bone health. It also examines therapeutic strategies and future research avenues targeting ERK5.
Collapse
Affiliation(s)
- Lei Wen
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Zirui Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Libo Zhou
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Zhongcheng Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Qingda Li
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
2
|
Ippolito F, Consalvi V, Noce V, Battistelli C, Cicchini C, Tripodi M, Amicone L, Marchetti A. Extracellular signal-Regulated Kinase 5 (ERK5) is required for the Yes-associated protein (YAP) co-transcriptional activity. Cell Death Dis 2023; 14:32. [PMID: 36650140 PMCID: PMC9845357 DOI: 10.1038/s41419-023-05569-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
YES-associated protein (YAP) is a transcriptional cofactor with a key role in the regulation of several physio-pathological cellular processes, by integrating multiple cell autonomous and microenvironmental cues. YAP is the main downstream effector of the Hippo pathway, a tumor-suppressive signaling able to transduce several extracellular signals. The Hippo pathway acts restraining YAP activity, since its activation induces YAP phosphorylation and cytoplasmic sequestration. However, recent observations indicate that YAP activity can be also modulated by Hippo independent/integrating pathways, still largely unexplored. In this study, we demonstrated the role of the extracellular signal-regulated kinase 5 (ERK5)/mitogen-activated protein kinase in the regulation of YAP activity. By means of ERK5 inhibition/silencing and overexpression experiments, and by using as model liver stem cells, hepatocytes, and hepatocellular carcinoma (HCC) cell lines, we provided evidence that ERK5 is required for YAP-dependent gene expression. Mechanistically, ERK5 controls the recruitment of YAP on promoters of target genes and its physical interaction with the transcriptional partner TEAD; moreover, it mediates the YAP activation occurring in cell adhesion, migration, and TGFβ-induced EMT of liver cells. Furthermore, we demonstrated that ERK5 signaling modulates YAP activity in a LATS1/2-independent manner. Therefore, our observations identify ERK5 as a novel upstream Hippo-independent regulator of YAP activity, thus unveiling a new target for therapeutic approaches aimed at interfering with its function.
Collapse
Affiliation(s)
- Francesca Ippolito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Veronica Consalvi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Noce
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Carla Cicchini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | - Laura Amicone
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| | | |
Collapse
|
3
|
How to kill an ERKsome target: PROTACs deliver the deathblow. Cell Chem Biol 2022; 29:1569-1571. [PMID: 36400000 DOI: 10.1016/j.chembiol.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this issue of Cell Chemical Biology, You et al. demonstrate that selective degradation of ERK5 exhibits neither anti-proliferative nor anti-inflammatory activities previously attributed to ERK5 inactivation. This settles a longstanding debate in the field and highlights the power of PROTACs to investigate non-enzymatic activities of target proteins.
Collapse
|
4
|
You I, Donovan KA, Krupnick NM, Boghossian AS, Rees MG, Ronan MM, Roth JA, Fischer ES, Wang ES, Gray NS. Acute pharmacological degradation of ERK5 does not inhibit cellular immune response or proliferation. Cell Chem Biol 2022; 29:1630-1638.e7. [PMID: 36220104 PMCID: PMC9675722 DOI: 10.1016/j.chembiol.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/26/2022] [Accepted: 09/17/2022] [Indexed: 01/31/2023]
Abstract
Recent interest in the role that extracellular signal-regulated kinase 5 (ERK5) plays in various diseases, particularly cancer and inflammation, has grown. Phenotypes observed from genetic knockdown or deletion of ERK5 suggested that targeting ERK5 could have therapeutic potential in various disease settings, motivating the development ATP-competitive ERK5 inhibitors. However, these inhibitors were unable to recapitulate the effects of genetic loss of ERK5, suggesting that ERK5 may have key kinase-independent roles. To investigate potential non-catalytic functions of ERK5, we report the development of INY-06-061, a potent and selective heterobifunctional degrader of ERK5. In contrast to results reported through genetic knockdown of ERK5, INY-06-061-induced ERK5 degradation did not induce anti-proliferative effects in multiple cancer cell lines or suppress inflammatory responses in primary endothelial cells. Thus, we developed and characterized a chemical tool useful for validating phenotypes reported to be associated with genetic ERK5 ablation and for guiding future ERK5-directed drug discovery efforts.
Collapse
Affiliation(s)
- Inchul You
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Noah M Krupnick
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Eric S Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Effect of Extracellular Signal-Regulated Protein Kinase 5 Inhibition in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23158448. [PMID: 35955582 PMCID: PMC9369143 DOI: 10.3390/ijms23158448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Extracellular signal-regulating kinase 5 (ERK5) has been implicated in many cellular functions, including survival, proliferation, and vascularization. Our objectives were to examine the expression and effect of ERK5 in clear cell renal cell carcinoma (ccRCC). (2) Methods: The expressions of ERK5 and its regulating micro-RNA miR-143 were investigated using immunohistochemistry and quantitative reverse transcriptase PCR in surgical specimens of ccRCC patients. With invitro and in vivo studies, we used pharmacologic ERK5 inhibitor XMD8-92, RNA interference, pre-miR-143 transduction, Western blotting, MTS assay, apoptosis assay, and subcutaneous xenograft model. (3) Results: A strong ERK5 expression in surgical specimen was associated with high-grade (p = 0.01), high-recurrence free rate (p = 0.02), and high cancer-specific survival (p = 0.03). Expression levels of ERK5 and miR-143 expression level were correlated (p = 0.049). Pre-miR-143 transduction into ccRCC cell A498 suppressed ERK5 expression. ERK5 inhibition enhanced cyclin-dependent kinase inhibitor p21 expression and decreased anti-apoptotic molecules BCL2, resulting in decreased cell proliferation and survival both in ccRCC and endothelial cells. In the xenograft model, ERK5 inhibitor XMD8-92 suppressed tumor growth. (4) Conclusions: ERK5 is regulated by miR-143, and ERK5 inhibition is a promising target for ccRCC treatment.
Collapse
|
6
|
Li F, Peng X, Zhou J, Chen Q, Chen Y. Aberrant MEK5 signalling promotes clear cell renal cell carcinoma development via mTOR activation. J Cancer Res Clin Oncol 2022; 148:3257-3266. [PMID: 35713705 DOI: 10.1007/s00432-022-04058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE This study was designed to evaluate the role and expression of MEK5 signalling in clear cell renal cell carcinoma (ccRCC) and to determine the relevance of MEK5 and mTOR signalling in ccRCC. METHODS The expression of MEK5 was compared between ccRCC and normal tissues using the ONCOMINE and TCGA databases. MEK5 expression was evaluated in 14 human ccRCC samples. CCK8, wound-healing, and clone formation assays were performed to examine the cell proliferation, migration, and clone formation abilities of ccRCC cells treated with MEK5 and the inhibitor BIX02189. Furthermore, Western blotting was performed to verify the regulation and influence of MEK5 on the mTOR signalling pathway. Finally, a murine subcutaneous tumour model was constructed, and the effect and safety of BIX02189 were evaluated in vivo. RESULTS The ONCOMINE and TCGA databases indicated that MEK5 expression in ccRCC was significantly higher than that in normal tissues, which was further confirmed in clinical specimens. MEK5 knockdown markedly inhibited ccRCC cell proliferation, colony formation, and migration, whereas MEK5 overexpression resulted in the opposite results. Western blotting revealed that overexpression of MEK5 could further activate the mTOR signalling pathway. Moreover, the MEK5 inhibitor BIX02189 significantly inhibited cell proliferation, arrested the cell cycle in the G0/G1 phase, induced apoptosis, and effectively inhibited cell migration and clone formation. BIX02189 also showed an excellent antitumor effect and a favourable safety profile in murine models. CONCLUSIONS MEK5 expression was aberrantly increased in ccRCC, which activated the mTOR signalling pathway and regulated cell proliferation, cell cycle progression, migration, and clone formation in ccRCC. Targeted inhibition of MEK5 represents a promising new strategy in patients with ccRCC.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China
| | - Xufeng Peng
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China
| | - Jiale Zhou
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China
| | - Qi Chen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China.
| | - Yonghui Chen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China.
| |
Collapse
|
7
|
Miller D, Reuillon T, Molyneux L, Blackburn T, Cook SJ, Edwards N, Endicott JA, Golding BT, Griffin RJ, Hardcastle I, Harnor SJ, Heptinstall A, Lochhead P, Martin MP, Martin NC, Myers S, Newell DR, Noble RA, Phillips N, Rigoreau L, Thomas H, Tucker JA, Wang LZ, Waring MJ, Wong AC, Wedge SR, Noble MEM, Cano C. Parallel Optimization of Potency and Pharmacokinetics Leading to the Discovery of a Pyrrole Carboxamide ERK5 Kinase Domain Inhibitor. J Med Chem 2022; 65:6513-6540. [PMID: 35468293 PMCID: PMC9109144 DOI: 10.1021/acs.jmedchem.1c01756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 11/29/2022]
Abstract
The nonclassical extracellular signal-related kinase 5 (ERK5) mitogen-activated protein kinase pathway has been implicated in increased cellular proliferation, migration, survival, and angiogenesis; hence, ERK5 inhibition may be an attractive approach for cancer treatment. However, the development of selective ERK5 inhibitors has been challenging. Previously, we described the development of a pyrrole carboxamide high-throughput screening hit into a selective, submicromolar inhibitor of ERK5 kinase activity. Improvement in the ERK5 potency was necessary for the identification of a tool ERK5 inhibitor for target validation studies. Herein, we describe the optimization of this series to identify nanomolar pyrrole carboxamide inhibitors of ERK5 incorporating a basic center, which suffered from poor oral bioavailability. Parallel optimization of potency and in vitro pharmacokinetic parameters led to the identification of a nonbasic pyrazole analogue with an optimal balance of ERK5 inhibition and oral exposure.
Collapse
Affiliation(s)
- Duncan
C. Miller
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Tristan Reuillon
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Lauren Molyneux
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Timothy Blackburn
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Simon J. Cook
- Signalling
Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K.
| | - Noel Edwards
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Jane A. Endicott
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Bernard T. Golding
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Roger J. Griffin
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Ian Hardcastle
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Suzannah J. Harnor
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Amy Heptinstall
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Pamela Lochhead
- Signalling
Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K.
| | - Mathew P. Martin
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Nick C. Martin
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Stephanie Myers
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - David R. Newell
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Richard A. Noble
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Nicole Phillips
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Laurent Rigoreau
- Cancer
Research UK Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Campus, Babraham, Cambridgeshire CB22 3AT, U.K.
| | - Huw Thomas
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Julie A. Tucker
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Lan-Zhen Wang
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Michael J. Waring
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Ai-Ching Wong
- Cancer
Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, U.K.
| | - Stephen R. Wedge
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Martin E. M. Noble
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O’Gorman Building, Medical School,
Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Celine Cano
- Cancer
Research UK Newcastle Drug Discovery Unit, Newcastle University Centre
for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| |
Collapse
|
8
|
Loss of KAP3 decreases intercellular adhesion and impairs intracellular transport of laminin in signet ring cell carcinoma of the stomach. Sci Rep 2022; 12:5050. [PMID: 35322078 PMCID: PMC8943207 DOI: 10.1038/s41598-022-08904-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Signet-ring cell carcinoma (SRCC) is a unique subtype of gastric cancer that is impaired for cell-cell adhesion. The pathogenesis of SRCC remains unclear. Here, we show that expression of kinesin-associated protein 3 (KAP3), a cargo adaptor subunit of the kinesin superfamily protein 3 (KIF3), a motor protein, is specifically decreased in SRCC of the stomach. CRISPR/Cas9-mediated gene knockout experiments indicated that loss of KAP3 impairs the formation of circumferential actomyosin cables by inactivating RhoA, leading to the weakening of cell-cell adhesion. Furthermore, in KAP3 knockout cells, post-Golgi transport of laminin, a key component of the basement membrane, was inhibited, resulting in impaired basement membrane formation. Together, these findings uncover a potential role for KAP3 in the pathogenesis of SRCC of the stomach.
Collapse
|
9
|
Clinical Significance and Regulation of ERK5 Expression and Function in Cancer. Cancers (Basel) 2022; 14:cancers14020348. [PMID: 35053510 PMCID: PMC8773716 DOI: 10.3390/cancers14020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is a unique kinase among MAPKs family members, given its large structure characterized by the presence of a unique C-terminal domain. Despite increasing data demonstrating the relevance of the ERK5 pathway in the growth, survival, and differentiation of normal cells, ERK5 has recently attracted the attention of several research groups given its relevance in inflammatory disorders and cancer. Accumulating evidence reported its role in tumor initiation and progression. In this review, we explore the gene expression profile of ERK5 among cancers correlated with its clinical impact, as well as the prognostic value of ERK5 and pERK5 expression levels in tumors. We also summarize the importance of ERK5 in the maintenance of a cancer stem-like phenotype and explore the major known contributions of ERK5 in the tumor-associated microenvironment. Moreover, although several questions are still open concerning ERK5 molecular regulation, different ERK5 isoforms derived from the alternative splicing process are also described, highlighting the potential clinical relevance of targeting ERK5 pathways.
Collapse
|
10
|
Gentilini A, Lori G, Caligiuri A, Raggi C, Di Maira G, Pastore M, Piombanti B, Lottini T, Arcangeli A, Madiai S, Navari N, Banales JM, Di Matteo S, Alvaro D, Duwe L, Andersen JB, Tubita A, Tusa I, Di Tommaso L, Campani C, Rovida E, Marra F. Extracellular Signal-Regulated Kinase 5 Regulates the Malignant Phenotype of Cholangiocarcinoma Cells. Hepatology 2021; 74:2007-2020. [PMID: 33959996 PMCID: PMC8518067 DOI: 10.1002/hep.31888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is characterized by high resistance to chemotherapy and poor prognosis. Several oncogenic pathways converge on activation of extracellular signal-regulated kinase 5 (ERK5), whose role in CCA has not been explored. The aim of this study was to investigate the role of ERK5 in the biology of CCA. APPROACH AND RESULTS ERK5 expression was detected in two established (HuCCT-1 and CCLP-1) and two primary human intrahepatic CCA cell lines (iCCA58 and iCCA60). ERK5 phosphorylation was increased in CCA cells exposed to soluble mediators. In both HuCCT-1 and CCLP-1 cells, ERK5 was localized in the nucleus, and exposure to fetal bovine serum (FBS) further increased the amount of nuclear ERK5. In human CCA specimens, ERK5 mRNA expression was increased in tumor cells and positively correlated with portal invasion. ERK5 protein levels were significantly associated with tumor grade. Growth, migration, and invasion of CCA cells were decreased when ERK5 was silenced using specific short hairpin RNA (shRNA). The inhibitory effects on CCA cell proliferation, migration and invasion were recapitulated by treatment with small molecule inhibitors targeting ERK5. In addition, expression of the angiogenic factors VEGF and angiopoietin 1 was reduced after ERK5 silencing. Conditioned medium from ERK5-silenced cells had a lower ability to induce tube formation by human umbilical vein endothelial cells and to induce migration of myofibroblasts and monocytes/macrophages. In mice, subcutaneous injection of CCLP-1 cells silenced for ERK5 resulted in less frequent tumor development and smaller size of xenografts compared with cells transfected with nontargeting shRNA. CONCLUSIONS ERK5 is a key mediator of growth and migration of CCA cells and supports a protumorigenic crosstalk between the tumor and the microenvironment.
Collapse
Affiliation(s)
- Alessandra Gentilini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Giulia Lori
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Alessandra Caligiuri
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Chiara Raggi
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Giovanni Di Maira
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Mirella Pastore
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Benedetta Piombanti
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Tiziano Lottini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Annarosa Arcangeli
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Stefania Madiai
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Nadia Navari
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteCIBERehdIkerbasqueSan SebastianSpain
| | - Sabina Di Matteo
- Department of ImmunologyBambino Gesù Children’s HospitalIRCCSRomeItaly
| | - Domenico Alvaro
- Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeRomeItaly
| | - Lea Duwe
- Biotech Research and Innovation Centre (BRIC)Dept. of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jesper B. Andersen
- Biotech Research and Innovation Centre (BRIC)Dept. of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceItaly
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceItaly
| | - Luca Di Tommaso
- Pathology UnitHumanitas Clinical and Research Center IRCCSRozzanoItaly
| | - Claudia Campani
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceItaly
| | - Fabio Marra
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| |
Collapse
|
11
|
Sánchez-Fdez A, Re-Louhau MF, Rodríguez-Núñez P, Ludeña D, Matilla-Almazán S, Pandiella A, Esparís-Ogando A. Clinical, genetic and pharmacological data support targeting the MEK5/ERK5 module in lung cancer. NPJ Precis Oncol 2021; 5:78. [PMID: 34404896 PMCID: PMC8371118 DOI: 10.1038/s41698-021-00218-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
Despite advances in its treatment, lung cancer still represents the most common and lethal tumor. Because of that, efforts to decipher the pathophysiological actors that may promote lung tumor generation/progression are being made, with the final aim of establishing new therapeutic options. Using a transgenic mouse model, we formerly demonstrated that the sole activation of the MEK5/ERK5 MAPK route had a pathophysiological role in the onset of lung adenocarcinomas. Given the prevalence of that disease and its frequent dismal prognosis, our findings opened the possibility of targeting the MEK5/ERK5 route with therapeutic purposes. Here we have explored such possibility. We found that increased levels of MEK5/ERK5 correlated with poor patient prognosis in lung cancer. Moreover, using genetic as well as pharmacological tools, we show that targeting the MEK5/ERK5 route is therapeutically effective in lung cancer. Not only genetic disruption of ERK5 by CRISPR/Cas9 caused a relevant inhibition of tumor growth in vitro and in vivo; such ERK5 deficit augmented the antitumoral effect of agents normally used in the lung cancer clinic. The clinical correlation studies together with the pharmacological and genetic results establish the basis for considering the targeting of the MEK5/ERK5 route in the therapy for lung cancer.
Collapse
Affiliation(s)
- Adrián Sánchez-Fdez
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Network Research (CIBERONC), Salamanca, Spain
| | - María Florencia Re-Louhau
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Pablo Rodríguez-Núñez
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Dolores Ludeña
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Pathology Service, University Hospital, Salamanca, Spain
| | - Sofía Matilla-Almazán
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Network Research (CIBERONC), Salamanca, Spain
| | - Atanasio Pandiella
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Network Research (CIBERONC), Salamanca, Spain
| | - Azucena Esparís-Ogando
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain. .,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. .,Cancer Network Research (CIBERONC), Salamanca, Spain.
| |
Collapse
|
12
|
Small molecule ERK5 kinase inhibitors paradoxically activate ERK5 signalling: be careful what you wish for…. Biochem Soc Trans 2021; 48:1859-1875. [PMID: 32915196 PMCID: PMC7609025 DOI: 10.1042/bst20190338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
ERK5 is a protein kinase that also contains a nuclear localisation signal and a transcriptional transactivation domain. Inhibition of ERK5 has therapeutic potential in cancer and inflammation and this has prompted the development of ERK5 kinase inhibitors (ERK5i). However, few ERK5i programmes have taken account of the ERK5 transactivation domain. We have recently shown that the binding of small molecule ERK5i to the ERK5 kinase domain stimulates nuclear localisation and paradoxical activation of its transactivation domain. Other kinase inhibitors paradoxically activate their intended kinase target, in some cases leading to severe physiological consequences highlighting the importance of mitigating these effects. Here, we review the assays used to monitor ERK5 activities (kinase and transcriptional) in cells, the challenges faced in development of small molecule inhibitors to the ERK5 pathway, and classify the molecular mechanisms of paradoxical activation of protein kinases by kinase inhibitors.
Collapse
|
13
|
Terasaki K, Gen Y, Iwai N, Soda T, Kitaichi T, Dohi O, Taketani H, Seko Y, Umemura A, Nishikawa T, Yamaguchi K, Moriguchi M, Konishi H, Naito Y, Itoh Y, Yasui K. SOX2 enhances cell survival and induces resistance to apoptosis under serum starvation conditions through the AKT/GSK-3β signaling pathway in esophageal squamous cell carcinoma. Oncol Lett 2021; 21:269. [PMID: 33717266 DOI: 10.3892/ol.2021.12530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
The human SOX2 gene was recently identified as a novel major oncogene, recurrently amplified and overexpressed in esophageal squamous cell carcinoma (ESCC). However, the role and molecular mechanism of SOX2 in the carcinogenesis of ESCC remain to be elucidated. The present study investigated the effect of SOX2 on ESCC cell survival and resistance to apoptosis under serum starvation conditions. An adenoviral vector-mediated expression system and RNA interference were used to study the effect of SOX2. The present results revealed that SOX2 promoted ESCC cell survival and enhanced resistance to apoptosis under serum starvation conditions, but not in culture conditions with serum. Mechanistically, SOX2 increased the expression levels of phosphorylated AKT and glycogen synthase kinase-3β (GSK-3β), a downstream factor of AKT, under serum starvation conditions, leading to the promotion of ESCC cell survival. Additionally, SOX2 activated AKT through the PTEN/PI3K/phosphoinositide-dependent protein kinase 1 and mammalian target of rapamycin complex 2 signaling pathways. Therefore, SOX2 may facilitate the survival of ESCC cells under poor nutrient conditions by activating the AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Kei Terasaki
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Yasuyuki Gen
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Naoto Iwai
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Tomohiro Soda
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Tomoko Kitaichi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Hiroyoshi Taketani
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Yuya Seko
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Atsushi Umemura
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Taichiro Nishikawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto 602-8566, Japan
| | - Kohichiroh Yasui
- School of Health Sciences, Bukkyo University, Nakagyo, Kyoto 604-8418, Japan
| |
Collapse
|
14
|
Zhou T, Cai Z, Ma N, Xie W, Gao C, Huang M, Bai Y, Ni Y, Tang Y. A Novel Ten-Gene Signature Predicting Prognosis in Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 8:629. [PMID: 32760725 PMCID: PMC7372135 DOI: 10.3389/fcell.2020.00629] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/23/2020] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has a dismal long-term outcome. We aimed to construct a multi-gene model for prognosis prediction to inform HCC management. The cancer-specific differentially expressed genes (DEGs) were identified using RNA-seq data of paired tumor and normal tissue. A prognostic signature was built by LASSO regression analysis. Gene set enrichment analysis (GSEA) was performed to further understand the underlying molecular mechanisms. A 10-gene signature was constructed to stratify the TCGA and ICGC cohorts into high- and low-risk groups where prognosis was significantly worse in the high-risk group across cohorts (P < 0.001 for all). The 10-gene signature outperformed all previously reported models for both C-index and the AUCs for 1-, 3-, 5-year survival prediction (C-index, 0.84 vs 0.67 to 0.73; AUCs for 1-, 3- and 5-year OS, 0.84 vs 0.68 to 0.79, 0.81 to 0.68 to 0.80, and 0.85 vs 0.67 to 0.78, respectively). Multivariate Cox regression analysis revealed risk group and tumor stage to be independent predictors of survival in HCC. A nomogram incorporating tumor stage and signature-based risk group showed better performance for 1- and 3-year survival than for 5-year survival. GSEA revealed enrichment of pathways related to cell cycle regulation among high-risk samples and metabolic processes in the low-risk group. Our 10-gene model is robust for prognosis prediction and may help inform clinical management of HCC.
Collapse
Affiliation(s)
- Taicheng Zhou
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, China
| | - Zhihua Cai
- Department of Oncology, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ning Ma
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, China
| | - Wenzhuan Xie
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Chan Gao
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Mengli Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yuezong Bai
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yangpeng Ni
- Department of Oncology, Jieyang People's Hospital, Sun Yat-sen University, Jieyang, China
| | - Yunqiang Tang
- Department of Hepatic-Biliary Surgery, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Lochhead PA, Tucker JA, Tatum NJ, Wang J, Oxley D, Kidger AM, Johnson VP, Cassidy MA, Gray NS, Noble MEM, Cook SJ. Paradoxical activation of the protein kinase-transcription factor ERK5 by ERK5 kinase inhibitors. Nat Commun 2020; 11:1383. [PMID: 32170057 PMCID: PMC7069993 DOI: 10.1038/s41467-020-15031-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
The dual protein kinase-transcription factor, ERK5, is an emerging drug target in cancer and inflammation, and small-molecule ERK5 kinase inhibitors have been developed. However, selective ERK5 kinase inhibitors fail to recapitulate ERK5 genetic ablation phenotypes, suggesting kinase-independent functions for ERK5. Here we show that ERK5 kinase inhibitors cause paradoxical activation of ERK5 transcriptional activity mediated through its unique C-terminal transcriptional activation domain (TAD). Using the ERK5 kinase inhibitor, Compound 26 (ERK5-IN-1), as a paradigm, we have developed kinase-active, drug-resistant mutants of ERK5. With these mutants, we show that induction of ERK5 transcriptional activity requires direct binding of the inhibitor to the kinase domain. This in turn promotes conformational changes in the kinase domain that result in nuclear translocation of ERK5 and stimulation of gene transcription. This shows that both the ERK5 kinase and TAD must be considered when assessing the role of ERK5 and the effectiveness of anti-ERK5 therapeutics.
Collapse
Affiliation(s)
- Pamela A Lochhead
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Julie A Tucker
- York Biomedical Research Institute and Department of Biology, University of York, York, YO10 5DD, UK
| | - Natalie J Tatum
- CRUK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Newcastle University, Newcastle, NE2 4HH, UK
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - David Oxley
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Andrew M Kidger
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Victoria P Johnson
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Megan A Cassidy
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Martin E M Noble
- CRUK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Newcastle University, Newcastle, NE2 4HH, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
16
|
Targeted Avenues for Cancer Treatment: The MEK5-ERK5 Signaling Pathway. Trends Mol Med 2020; 26:394-407. [PMID: 32277933 DOI: 10.1016/j.molmed.2020.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Twenty years have passed since extracellular signal-regulated kinase 5 (ERK5) and its upstream activator, mitogen-activated protein kinase 5 (MEK5), first emerged onto the cancer research scene. Although we have come a long way in defining the liaison between dysregulated MEK5-ERK5 signaling and the pathogenesis of epithelial and nonepithelial malignancies, selective targeting of this unique pathway remains elusive. Here, we provide an updated review of the existing evidence for a correlation between aberrant MEK5-ERK5 (phospho)proteomic/transcriptomic profiles, aggressive cancer states, and poor patient outcomes. We then focus on emerging insights from preclinical models regarding the relevance of upregulated ERK5 activity in promoting tumor growth, metastasis, therapy resistance, undifferentiated traits, and immunosuppression, highlighting the opportunities, prospects, and challenges of selectively blocking this cascade for antineoplastic treatment and chemosensitization.
Collapse
|
17
|
Impact of ERK5 on the Hallmarks of Cancer. Int J Mol Sci 2019; 20:ijms20061426. [PMID: 30901834 PMCID: PMC6471124 DOI: 10.3390/ijms20061426] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) belongs to the mitogen-activated protein kinase (MAPK) family that consists of highly conserved enzymes expressed in all eukaryotic cells and elicits several biological responses, including cell survival, proliferation, migration, and differentiation. In recent years, accumulating lines of evidence point to a relevant role of ERK5 in the onset and progression of several types of cancer. In particular, it has been reported that ERK5 is a key signaling molecule involved in almost all the biological features of cancer cells so that its targeting is emerging as a promising strategy to suppress tumor growth and spreading. Based on that, in this review, we pinpoint the hallmark-specific role of ERK5 in cancer in order to identify biological features that will potentially benefit from ERK5 targeting.
Collapse
|
18
|
Nguyen D, Lemos C, Wortmann L, Eis K, Holton SJ, Boemer U, Moosmayer D, Eberspaecher U, Weiske J, Lechner C, Prechtl S, Suelzle D, Siegel F, Prinz F, Lesche R, Nicke B, Nowak-Reppel K, Himmel H, Mumberg D, von Nussbaum F, Nising CF, Bauser M, Haegebarth A. Discovery and Characterization of the Potent and Highly Selective (Piperidin-4-yl)pyrido[3,2- d]pyrimidine Based in Vitro Probe BAY-885 for the Kinase ERK5. J Med Chem 2019; 62:928-940. [PMID: 30563338 DOI: 10.1021/acs.jmedchem.8b01606] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The availability of a chemical probe to study the role of a specific domain of a protein in a concentration- and time-dependent manner is of high value. Herein, we report the identification of a highly potent and selective ERK5 inhibitor BAY-885 by high-throughput screening and subsequent structure-based optimization. ERK5 is a key integrator of cellular signal transduction, and it has been shown to play a role in various cellular processes such as proliferation, differentiation, apoptosis, and cell survival. We could demonstrate that inhibition of ERK5 kinase and transcriptional activity with a small molecule did not translate into antiproliferative activity in different relevant cell models, which is in contrast to the results obtained by RNAi technology.
Collapse
Affiliation(s)
- Duy Nguyen
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Clara Lemos
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Lars Wortmann
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Knut Eis
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Simon J Holton
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Ulf Boemer
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Dieter Moosmayer
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Uwe Eberspaecher
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Joerg Weiske
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Christian Lechner
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Stefan Prechtl
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Detlev Suelzle
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Franziska Siegel
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Florian Prinz
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Ralf Lesche
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Barbara Nicke
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | | | - Herbert Himmel
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Dominik Mumberg
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Franz von Nussbaum
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Carl F Nising
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Marcus Bauser
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| | - Andrea Haegebarth
- Research & Development, Pharmaceuticals , Bayer AG , 13353 Berlin , Germany
| |
Collapse
|
19
|
Iwai N, Yasui K, Tomie A, Gen Y, Terasaki K, Kitaichi T, Soda T, Yamada N, Dohi O, Seko Y, Umemura A, Nishikawa T, Yamaguchi K, Moriguchi M, Konishi H, Naito Y, Itoh Y. Oncogenic miR-96-5p inhibits apoptosis by targeting the caspase-9 gene in hepatocellular carcinoma. Int J Oncol 2018; 53:237-245. [PMID: 29658604 DOI: 10.3892/ijo.2018.4369] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/09/2018] [Indexed: 11/06/2022] Open
Abstract
The aberrant expression or alteration of microRNAs (miRNAs/miRs) contributes to the development and progression of cancer. In the present study, the functions of miR-96-5p in hepatocellular carcinoma (HCC) were investigated. It was identified that miR-96-5p expression was significantly upregulated in primary HCC tumors compared with their non-tumorous counterparts. A copy number gain was frequently observed at chromosomal region 7q32.2 in which the MIR96 locus is located, suggesting that gene amplification may be one of the mechanisms by which miR-96-5p expression is increased in HCC. Transfection of miR-96-5p mimic into HCC cells decreased the expression of CASP9, which encodes caspase-9, the essential initiator caspase in the mitochondrial apoptotic pathway, at the mRNA and protein levels. A putative binding site for miR-96-5p was identified in the CASP9 3'-untranslated region, and the results of a luciferase assay indicated that CASP9 is a potential direct target of miR-96-5p. The miR-96-5p mimic increased resistance to doxorubicin- and ultraviolet-induced apoptosis through the decrease in caspase-9 expression in HCC cells. Transfection of miR-96-5p inhibitor enhanced the cytotoxic effect of doxorubicin by increasing caspase-9 expression in the HCC cells, suggesting a synergistic effect between the miR-96-5p inhibitor and doxorubicin. In conclusion, the results of the present study suggest that miR-96-5p, which is frequently upregulated in HCC, inhibits apoptosis by targeting CASP9. Therefore, miR-96-5p may be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Naoto Iwai
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kohichiroh Yasui
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Akira Tomie
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yasuyuki Gen
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kei Terasaki
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomoko Kitaichi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohiro Soda
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Nobuhisa Yamada
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuya Seko
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Umemura
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Taichiro Nishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
20
|
Loveridge CJ, Mui EJ, Patel R, Tan EH, Ahmad I, Welsh M, Galbraith J, Hedley A, Nixon C, Blyth K, Sansom O, Leung HY. Increased T-cell Infiltration Elicited by Erk5 Deletion in a Pten-Deficient Mouse Model of Prostate Carcinogenesis. Cancer Res 2017; 77:3158-3168. [PMID: 28515147 PMCID: PMC5474317 DOI: 10.1158/0008-5472.can-16-2565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/09/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
Prostate cancer does not appear to respond to immune checkpoint therapies where T-cell infiltration may be a key limiting factor. Here, we report evidence that ablating the growth regulatory kinase Erk5 can increase T-cell infiltration in an established Pten-deficient mouse model of human prostate cancer. Mice that were doubly mutant in prostate tissue for Pten and Erk5 (prostate DKO) exhibited a markedly increased median survival with reduced tumor size and proliferation compared with control Pten-mutant mice, the latter of which exhibited increased Erk5 mRNA expression. A comparative transcriptomic analysis revealed upregulation in prostate DKO mice of the chemokines Ccl5 and Cxcl10, two potent chemoattractants for T lymphocytes. Consistent with this effect, we observed a relative increase in a predominantly CD4+ T-cell infiltrate in the prostate epithelial and stroma of tumors from DKO mice. Collectively, our results offer a preclinical proof of concept for ERK5 as a target to enhance T-cell infiltrates in prostate cancer, with possible implications for leveraging immune therapy in this disease. Cancer Res; 77(12); 3158-68. ©2017 AACR.
Collapse
Affiliation(s)
- Carolyn J Loveridge
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Ernest J Mui
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Rachana Patel
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Ee Hong Tan
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Imran Ahmad
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Michelle Welsh
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Julie Galbraith
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Ann Hedley
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Colin Nixon
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Karen Blyth
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Owen Sansom
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Hing Y Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom.
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| |
Collapse
|
21
|
Hoang VT, Yan TJ, Cavanaugh JE, Flaherty PT, Beckman BS, Burow ME. Oncogenic signaling of MEK5-ERK5. Cancer Lett 2017; 392:51-59. [PMID: 28153789 PMCID: PMC5901897 DOI: 10.1016/j.canlet.2017.01.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/17/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) regulate diverse cellular processes including proliferation, cell survival, differentiation, and apoptosis. While conventional MAPK constituents have well-defined roles in oncogenesis, the MEK5 pathway has only recently emerged in cancer research. In this review, we consider the MEK5 signaling cascade, focusing specifically on its involvement in drug resistance and regulation of aggressive cancer phenotypes. Moreover, we explore the role of MEK5/ERK5 in tumorigenesis and metastatic progression, discussing the discrepancies in preclinical studies and assessing its viability as a therapeutic target for anti-cancer agents.
Collapse
Affiliation(s)
- Van T Hoang
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - Thomas J Yan
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - Jane E Cavanaugh
- Department of Pharmacological Sciences, Division of Medicinal Chemistry, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Patrick T Flaherty
- Department of Pharmacological Sciences, Division of Medicinal Chemistry, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | | | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA; Department of Pharmacology, Tulane University, New Orleans, LA, USA; Tulane Cancer Center, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
22
|
Yamamoto H, Ryu J, Min E, Oi N, Bai R, Zykova TA, Yu DH, Moriyama K, Bode AM, Dong Z. TRAF1 Is Critical for DMBA/Solar UVR-Induced Skin Carcinogenesis. J Invest Dermatol 2017; 137:1322-1332. [PMID: 28131816 DOI: 10.1016/j.jid.2016.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/27/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022]
Abstract
TRAF1 is a member of the TRAF protein family, which regulates the canonical and noncanonical NF-κB signaling cascades. Although aberrant TRAF1 expression in tumors has been reported, the role of TRAF1 remains elusive. Here, we report that TRAF1 is required for solar UV-induced skin carcinogenesis. Immunohistochemical analysis showed that TRAF1 expression is up-regulated in human actinic keratosis and squamous cell carcinoma. In vivo studies indicated that TRAF1 expression levels in mouse skin are induced by short-term solar UV irradiation, and a long-term skin carcinogenesis study showed that deletion of TRAF1 in mice results in a significant inhibition of skin tumor formation. Moreover, we show that TRAF1 is required for solar UV-induced extracellular signal-regulated kinase-5 (ERK5) phosphorylation and the expression of AP-1 family members (c-Fos/c-Jun). Mechanistic studies showed that TRAF1 expression enhances the ubiquitination of ERK5 on lysine 184, which is necessary for its kinase activity and AP-1 activation. Overall, our results suggest that TRAF1 mediates ERK5 activity by regulating the upstream effectors of ERK5 and also by modulating its ubiquitination status. Targeting TRAF1 function might lead to strategies for preventing and treating skin cancer.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Eli Min
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Naomi Oi
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Ruihua Bai
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Tatyana A Zykova
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Dong Hoon Yu
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kenji Moriyama
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA.
| |
Collapse
|
23
|
Zheng F, Zhang J, Luo S, Yi J, Wang P, Zheng Q, Wen Y. miR-143 is associated with proliferation and apoptosis involving ERK5 in HeLa cells. Oncol Lett 2016; 12:3021-3027. [PMID: 27698893 DOI: 10.3892/ol.2016.5016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
Inappropriate expression of microRNA (miR) is strongly associated with carcinogenesis. miR-143 was reported to be one of the most prominent miRs implicated in the genesis and progression of human cancer. However, its correlation with cell proliferation and apoptosis in cervical cancer remains to be fully elucidated. In the present study, it was demonstrated that miR-143 is able to suppress the proliferation of cervical cancer HeLa cells and induce cell apoptosis in a time- and dose-dependent manner. The present study also investigated the potential targets of miR-143, extracellular-signal-regulated kinase 5 (ERK5) and its downstream substrate oncoprotein c-Fos, both of which are involved in cell proliferation and apoptosis. Upon increasing the miR-143 level, the ERK5 and c-Fos protein expression was significantly decreased without the effect of ERK5 transcription. Therefore, miR-143 is able to suppress cell proliferation and induce apoptosis in HeLa cells, potentially through negative regulation of ERK5 at its post-transcriptional stage.
Collapse
Affiliation(s)
- Fang Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiahe Zhang
- Department of Public Health, Public Health Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Siyu Luo
- Department of Public Health, Public Health Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ping Wang
- Department of Obstetrics and Gynecology, Shaanxi Tumor Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Quanqing Zheng
- Department of Public Health, Public Health Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yurong Wen
- Center for Translational Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| |
Collapse
|
24
|
Myers SM, Bawn RH, Bisset LC, Blackburn TJ, Cottyn B, Molyneux L, Wong AC, Cano C, Clegg W, Harrington RW, Leung H, Rigoreau L, Vidot S, Golding BT, Griffin RJ, Hammonds T, Newell DR, Hardcastle IR. High-Throughput Screening and Hit Validation of Extracellular-Related Kinase 5 (ERK5) Inhibitors. ACS COMBINATORIAL SCIENCE 2016; 18:444-55. [PMID: 27400250 DOI: 10.1021/acscombsci.5b00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The extracellular-related kinase 5 (ERK5) is a promising target for cancer therapy. A high-throughput screen was developed for ERK5, based on the IMAP FP progressive binding system, and used to identify hits from a library of 57 617 compounds. Four distinct chemical series were evident within the screening hits. Resynthesis and reassay of the hits demonstrated that one series did not return active compounds, whereas three series returned active hits. Structure-activity studies demonstrated that the 4-benzoylpyrrole-2-carboxamide pharmacophore had excellent potential for further development. The minimum kinase binding pharmacophore was identified, and key examples demonstrated good selectivity for ERK5 over p38α kinase.
Collapse
Affiliation(s)
- Stephanie M Myers
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Ruth H Bawn
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Louise C Bisset
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Framlington Place, Newcastle University , Paul O'Gorman Building, Newcastle upon Tyne, NE2 4HH, U.K
| | - Timothy J Blackburn
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Betty Cottyn
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Lauren Molyneux
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Ai-Ching Wong
- Cancer Research Technology, Ltd., Discovery Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London, WC1E 6BT, U.K
| | - Celine Cano
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - William Clegg
- School of Chemistry, Newcastle University , Bedson Building, Newcastle upon Tyne, NE1 7RU, U.K
| | - Ross W Harrington
- School of Chemistry, Newcastle University , Bedson Building, Newcastle upon Tyne, NE1 7RU, U.K
| | - Hing Leung
- The Beatson Institute for Cancer Research , Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, U.K
| | - Laurent Rigoreau
- Cancer Research Technology, Ltd., Discovery Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London, WC1E 6BT, U.K
| | - Sandrine Vidot
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Bernard T Golding
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Roger J Griffin
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Tim Hammonds
- Cancer Research Technology, Ltd., Discovery Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London, WC1E 6BT, U.K
| | - David R Newell
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Framlington Place, Newcastle University , Paul O'Gorman Building, Newcastle upon Tyne, NE2 4HH, U.K
| | - Ian R Hardcastle
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
25
|
Simões AES, Rodrigues CMP, Borralho PM. The MEK5/ERK5 signalling pathway in cancer: a promising novel therapeutic target. Drug Discov Today 2016; 21:1654-1663. [PMID: 27320690 DOI: 10.1016/j.drudis.2016.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022]
Abstract
Conventional mitogen-activated protein kinase (MAPK) family members are among the most sought-after oncogenic effectors for the development of novel human cancer treatment strategies. MEK5/ERK5 has been the less-studied MAPK subfamily, despite its increasingly demonstrated relevance in the growth, survival, and differentiation of normal cells. MEK5/ERK5 signalling has already been proposed to have pivotal roles in several cancer hallmarks, and to mediate the effects of a range of oncogenes. Accumulating evidence indicates the contribution of MEK5/ERK5 signalling to therapy resistance and the benefits of using MEK5/ERK5 inhibitory strategies in the treatment of human cancer. Here, we explore the major known contributions of MEK5/ERK5 signalling to the onset and progression of several types of cancer, and highlight the potential clinical relevance of targeting MEK5/ERK5 pathways.
Collapse
Affiliation(s)
- André E S Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
26
|
Chen H, Tucker J, Wang X, Gavine PR, Phillips C, Augustin MA, Schreiner P, Steinbacher S, Preston M, Ogg D. Discovery of a novel allosteric inhibitor-binding site in ERK5: comparison with the canonical kinase hinge ATP-binding site. Acta Crystallogr D Struct Biol 2016; 72:682-93. [PMID: 27139631 PMCID: PMC4854315 DOI: 10.1107/s2059798316004502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 03/16/2016] [Indexed: 01/20/2023] Open
Abstract
MAP kinases act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, regulation of transcription and development. As a member of the MAP kinase family, ERK5 (MAPK7) is involved in the downstream signalling pathways of various cell-surface receptors, including receptor tyrosine kinases and G protein-coupled receptors. In the current study, five structures of the ERK5 kinase domain co-crystallized with ERK5 inhibitors are reported. Interestingly, three of the compounds bind at a novel allosteric binding site in ERK5, while the other two bind at the typical ATP-binding site. Binding of inhibitors at the allosteric site is accompanied by displacement of the P-loop into the ATP-binding site and is shown to be ATP-competitive in an enzymatic assay of ERK5 kinase activity. Kinase selectivity data show that the most potent allosteric inhibitor exhibits superior kinase selectivity compared with the two inhibitors that bind at the canonical ATP-binding site. An analysis of these structures and comparison with both a previously published ERK5-inhibitor complex structure (PDB entry 4b99) and the structures of three other kinases (CDK2, ITK and MEK) in complex with allosteric inhibitors are presented.
Collapse
Affiliation(s)
- Hongming Chen
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, 431 83 Mölndal, Sweden
| | - Julie Tucker
- Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Alderley Park, Macclesfield SK10 4TG, England
| | - Xiaotao Wang
- Innovation Centre China, AstraZeneca Asia and Emerging Markets iMed, Shanghai 201203, People’s Republic of China
| | - Paul R. Gavine
- Innovation Centre China, AstraZeneca Asia and Emerging Markets iMed, Shanghai 201203, People’s Republic of China
| | - Chris Phillips
- Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Alderley Park, Macclesfield SK10 4TG, England
| | - Martin A. Augustin
- Proteros biostructures GmbH, Bunsenstrasse 7a, 82152 Martinsried, Germany
| | - Patrick Schreiner
- Proteros biostructures GmbH, Bunsenstrasse 7a, 82152 Martinsried, Germany
| | - Stefan Steinbacher
- Proteros biostructures GmbH, Bunsenstrasse 7a, 82152 Martinsried, Germany
| | - Marian Preston
- Screening Sciences, Discovery Sciences, AstraZeneca R&D Alderley Park, Macclesfield SK10 4TG, England
| | - Derek Ogg
- Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Alderley Park, Macclesfield SK10 4TG, England
| |
Collapse
|
27
|
YAMADA NOBUHISA, YASUI KOHICHIROH, DOHI OSAMU, GEN YASUYUKI, TOMIE AKIRA, KITAICHI TOMOKO, IWAI NAOTO, MITSUYOSHI HIRONORI, SUMIDA YOSHIO, MORIGUCHI MICHIHISA, YAMAGUCHI KANJI, NISHIKAWA TAICHIRO, UMEMURA ATSUSHI, NAITO YUJI, TANAKA SHINJI, ARII SHIGEKI, ITOH YOSHITO. Genome-wide DNA methylation analysis in hepatocellular carcinoma. Oncol Rep 2016; 35:2228-36. [PMID: 26883180 DOI: 10.3892/or.2016.4619] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/03/2015] [Indexed: 11/05/2022] Open
|
28
|
Lochhead PA, Clark J, Wang LZ, Gilmour L, Squires M, Gilley R, Foxton C, Newell DR, Wedge SR, Cook SJ. Tumor cells with KRAS or BRAF mutations or ERK5/MAPK7 amplification are not addicted to ERK5 activity for cell proliferation. Cell Cycle 2016; 15:506-18. [PMID: 26959608 PMCID: PMC5056618 DOI: 10.1080/15384101.2015.1120915] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/08/2015] [Accepted: 11/12/2015] [Indexed: 10/24/2022] Open
Abstract
ERK5, encoded by MAPK7, has been proposed to play a role in cell proliferation, thus attracting interest as a cancer therapeutic target. While oncogenic RAS or BRAF cause sustained activation of the MEK1/2-ERK1/2 pathway, ERK5 is directly activated by MEK5. It has been proposed that RAS and RAF proteins can also promote ERK5 activation. Here we investigated the interplay between RAS-RAF-MEK-ERK and ERK5 signaling and studied the role of ERK5 in tumor cell proliferation in 2 disease-relevant cell models. We demonstrate that although an inducible form of CRAF (CRAF:ER*) can activate ERK5 in fibroblasts, the response is delayed and reflects feed-forward signaling. Additionally, oncogenic KRAS and BRAF do not activate ERK5 in epithelial cells. Although KRAS and BRAF do not couple directly to MEK5-ERK5, ERK5 signaling might still be permissive for proliferation. However, neither the selective MEK5 inhibitor BIX02189 or ERK5 siRNA inhibited proliferation of colorectal cancer cells harbouring KRAS(G12C/G13D) or BRAF(V600E). Furthermore, there was no additive or synergistic effect observed when BIX02189 was combined with the MEK1/2 inhibitor Selumetinib (AZD6244), suggesting that ERK5 was neither required for proliferation nor a driver of innate resistance to MEK1/2 inhibitors. Finally, even cancer cells with MAPK7 amplification were resistant to BIX02189 and ERK5 siRNA, showing that ERK5 amplification does not confer addiction to ERK5 for cell proliferation. Thus ERK5 signaling is unlikely to play a role in tumor cell proliferation downstream of KRAS or BRAF or in tumor cells with ERK5 amplification. These results have important implications for the role of ERK5 as an anti-cancer drug target.
Collapse
Affiliation(s)
| | - Jonathan Clark
- Biological Chemistry Facility; The Babraham Institute; Cambridge, UK
| | - Lan-Zhen Wang
- The Northern Institute for Cancer Research; University of Newcastle upon Tyne, Newcastle, UK
| | - Lesley Gilmour
- Cancer Research Technology; The Beatson Institute for Cancer Research; Garscube Estate; Glasgow, UK
- Current address: Translational Radiation Biology; The Beatson Institute for Cancer Research; Garscube Estate; Glasgow, UK
| | - Matthew Squires
- Signalling Laboratory; The Babraham Institute; Cambridge, UK
- Current address: Novartis; Basel, Switzerland
| | - Rebecca Gilley
- Signalling Laboratory; The Babraham Institute; Cambridge, UK
| | - Caroline Foxton
- Cancer Research Technology; CRT Discovery Laboratories; London Bioscience Innovation Centre; London, UK
- Current address: Centre for Drug Development; Cancer Research UK; London, UK
| | - David R. Newell
- The Northern Institute for Cancer Research; University of Newcastle upon Tyne, Newcastle, UK
| | - Stephen R. Wedge
- The Northern Institute for Cancer Research; University of Newcastle upon Tyne, Newcastle, UK
| | - Simon J. Cook
- Signalling Laboratory; The Babraham Institute; Cambridge, UK
| |
Collapse
|
29
|
New Tools for Molecular Therapy of Hepatocellular Carcinoma. Diseases 2015; 3:325-340. [PMID: 28943628 PMCID: PMC5548255 DOI: 10.3390/diseases3040325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer, arising from neoplastic transformation of hepatocytes or liver precursor/stem cells. HCC is often associated with pre-existing chronic liver pathologies of different origin (mainly subsequent to HBV and HCV infections), such as fibrosis or cirrhosis. Current therapies are essentially still ineffective, due both to the tumor heterogeneity and the frequent late diagnosis, making necessary the creation of new therapeutic strategies to inhibit tumor onset and progression and improve the survival of patients. A promising strategy for treatment of HCC is the targeted molecular therapy based on the restoration of tumor suppressor proteins lost during neoplastic transformation. In particular, the delivery of master genes of epithelial/hepatocyte differentiation, able to trigger an extensive reprogramming of gene expression, could allow the induction of an efficient antitumor response through the simultaneous adjustment of multiple genetic/epigenetic alterations contributing to tumor development. Here, we report recent literature data supporting the use of members of the liver enriched transcription factor (LETF) family, in particular HNF4α, as tools for gene therapy of HCC.
Collapse
|
30
|
Mitogen-activated protein kinase 7 promotes cell proliferation, migration and invasion in SOSP-M human osteosarcoma cell line. TUMORI JOURNAL 2015; 103:483-488. [PMID: 26350187 DOI: 10.5301/tj.5000399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 01/20/2023]
Abstract
PURPOSE Osteosarcoma (OS) is the most common primary bone tumor and has low cure rates. Our study aimed to evaluate the roles of mitogen-activated protein kinase 7 (MAPK7) in cell proliferation, migration and invasion using the SOSP-M human OS cell line as an in vitro model. METHODS SOSP-M cells were transfected with PCDNA3.1-MAPK7 and siRNA-MAPK7 plasmids using Lipofectamine 2000. Quantitative real-time polymerase chain reaction (RT-PCR) was performed to determine the relative expression level of MAPK7 and Western blot analysis was carried out to determine the expression level of ERK5 protein. Then MTT, scratch wound healing and Matrigel transwell assays were used to investigate the roles of MAPK7 expression in the proliferation, migration and invasion, respectively, of SOSP-M cells in vitro. RESULTS RT-PCR analysis showed that the expression level of MAPK7 increased significantly after transfection with PCDNA3.1-MAPK7 plasmid compared with the blank group, while it decreased significantly after transfection with siRNA-MAPK7 plasmid. Similar results for ERK5 expression were obtained by Western blot analysis. In addition, the cell proliferation rate, cell migration rate and invasive cell number in the PCDNA3.1-MAPK7 transfection group increased significantly compared with the blank group, while they decreased significantly in the siRNA-MAPK7 transfection group. CONCLUSIONS Our results indicate that overexpression of MAPK7 in human OS cells could promote cell proliferation, migration and invasion, whereas knockdown of MAPK7 expression had the opposite effect. All the results suggest that MAPK7 may serve as a potent target for drug development.
Collapse
|
31
|
Rovida E, Di Maira G, Tusa I, Cannito S, Paternostro C, Navari N, Vivoli E, Deng X, Gray NS, Esparís-Ogando A, David E, Pandiella A, Dello Sbarba P, Parola M, Marra F. The mitogen-activated protein kinase ERK5 regulates the development and growth of hepatocellular carcinoma. Gut 2015; 64:1454-65. [PMID: 25183205 DOI: 10.1136/gutjnl-2014-306761] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The extracellular signal-regulated kinase 5 (ERK5 or BMK1) is involved in tumour development. The ERK5 gene may be amplified in hepatocellular carcinoma (HCC), but its biological role has not been clarified. In this study, we explored the role of ERK5 expression and activity in HCC in vitro and in vivo. DESIGN ERK5 expression was evaluated in human liver tissue. Cultured HepG2 and Huh-7 were studied after ERK5 knockdown by siRNA or in the presence of the specific pharmacological inhibitor, XMD8-92. The role of ERK5 in vivo was assessed using mouse Huh-7 xenografts. RESULTS In tissue specimens from patients with HCC, a higher percentage of cells with nuclear ERK5 expression was found both in HCC and in the surrounding cirrhotic tissue compared with normal liver tissue. Inhibition of ERK5 decreased HCC cell proliferation and increased the proportion of cells in G0/G1 phase. These effects were associated with increased expression of p27 and p15 and decreased CCND1. Treatment with XMD8-92 or ERK5 silencing prevented cell migration induced by epidermal growth factor or hypoxia and caused cytoskeletal remodelling. In mouse xenografts, the rate of tumour appearance and the size of tumours were significantly lower when Huh-7 was silenced for ERK5. Moreover, systemic treatment with XMD8-92 of mice with established HCC xenografts markedly reduced tumour growth and decreased the expression of the proto-oncogene c-Rel. CONCLUSIONS ERK5 regulates the biology of HCC cells and modulates tumour development and growth in vivo. This pathway should be investigated as a possible therapeutic target in HCC.
Collapse
Affiliation(s)
- Elisabetta Rovida
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Italy
| | - Giovanni Di Maira
- Dipartimento di Medicina Sperimentale e Clinica Università di Firenze, Italy
| | - Ignazia Tusa
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Italy
| | - Stefania Cannito
- Dipartimento di Medicina e Oncologia Sperimentali, Università di Torino, Italy
| | - Claudia Paternostro
- Dipartimento di Medicina e Oncologia Sperimentali, Università di Torino, Italy
| | - Nadia Navari
- Dipartimento di Medicina Sperimentale e Clinica Università di Firenze, Italy
| | - Elisa Vivoli
- Dipartimento di Medicina Sperimentale e Clinica Università di Firenze, Italy
| | - Xianming Deng
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Nathanael S Gray
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| | - Ezio David
- Pathology Unit, Ospedale S. Giovanni Battista, Torino, Italy
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| | - Persio Dello Sbarba
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università di Firenze, Italy
| | - Maurizio Parola
- Dipartimento di Medicina e Oncologia Sperimentali, Università di Torino, Italy
| | - Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica Università di Firenze, Italy
| |
Collapse
|
32
|
Ortiz-Ruiz MJ, Álvarez-Fernández S, Parrott T, Zaknoen S, Burrows FJ, Ocaña A, Pandiella A, Esparís-Ogando A. Therapeutic potential of ERK5 targeting in triple negative breast cancer. Oncotarget 2015; 5:11308-18. [PMID: 25350956 PMCID: PMC4294347 DOI: 10.18632/oncotarget.2324] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/06/2014] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancers (TNBCs) account for 15% of all breast cancers, and represent one of the most aggressive forms of the disease, exhibiting short relapse-free survival. In contrast to other breast cancer subtypes, the absence of knowledge about the etiopathogenic alterations that cause TNBCs force the use of chemotherapeutics to treat these tumors. Because of this, efforts have been devoted with the aim of incorporating novel therapies into the clinical setting. Kinases play important roles in the pathophysiology of several tumors, including TNBC. Since expression of the MAP kinase ERK5 has been linked to patient outcome in breast cancer, we analyzed the potential value of its targeting in TNBC. ERK5 was frequently overexpressed and active in samples from patients with TNBC, as well as in explants from mice carrying genetically-defined TNBC tumors. Moreover, expression of ERK5 was linked to a worse prognosis in TNBC patients. Knockdown experiments demonstrated that ERK5 supported proliferation of TNBC cells. Pharmacological inhibition of ERK5 with TG02, a clinical stage inhibitor which targets ERK5 and other kinases, inhibited cell proliferation by blocking passage of cells through G1 and G2, and also triggered apoptosis in certain TNBC cell lines. TG02 had significant antitumor activity in a TNBC xenograft model in vivo, and also augmented the activity of chemotherapeutic agents commonly used to treat TNBC. Together, these data indicate that ERK5 targeting may represent a valid strategy against TNBC, and support the development of trials aimed at evaluating the clinical effectiveness of drugs that block this kinase.
Collapse
Affiliation(s)
- María Jesús Ortiz-Ruiz
- Instituto de Biología Molecular y Celular del Cáncer. CSIC-IBSAL-Universidad de Salamanca. Spain
| | - Stela Álvarez-Fernández
- Instituto de Biología Molecular y Celular del Cáncer. CSIC-IBSAL-Universidad de Salamanca. Spain
| | | | | | | | - Alberto Ocaña
- Hospital Universitario de Albacete, and AECC Unit, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer. CSIC-IBSAL-Universidad de Salamanca. Spain
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer. CSIC-IBSAL-Universidad de Salamanca. Spain
| |
Collapse
|
33
|
Yasui K, Konishi C, Gen Y, Endo M, Dohi O, Tomie A, Kitaichi T, Yamada N, Iwai N, Nishikawa T, Yamaguchi K, Moriguchi M, Sumida Y, Mitsuyoshi H, Tanaka S, Arii S, Itoh Y. EVI1, a target gene for amplification at 3q26, antagonizes transforming growth factor-β-mediated growth inhibition in hepatocellular carcinoma. Cancer Sci 2015; 106:929-37. [PMID: 25959919 PMCID: PMC4520646 DOI: 10.1111/cas.12694] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/27/2015] [Accepted: 05/02/2015] [Indexed: 02/01/2023] Open
Abstract
EVI1 (ecotropic viral integration site 1) is one of the most aggressive oncogenes associated with myeloid leukemia. We investigated DNA copy number aberrations in human hepatocellular carcinoma (HCC) cell lines using a high-density oligonucleotide microarray. We found that a novel amplification at the chromosomal region 3q26 occurs in the HCC cell line JHH-1, and that MECOM (MDS1 and EVI1 complex locus), which lies within the 3q26 region, was amplified. Quantitative PCR analysis of the three transcripts transcribed from MECOM indicated that only EVI1, but not the fusion transcript MDS1-EVI1 or MDS1, was overexpressed in JHH-1 cells and was significantly upregulated in 22 (61%) of 36 primary HCC tumors when compared with their non-tumorous counterparts. A copy number gain of EVI1 was observed in 24 (36%) of 66 primary HCC tumors. High EVI1 expression was significantly associated with larger tumor size and higher level of des-γ-carboxy prothrombin, a tumor marker for HCC. Knockdown of EVI1 resulted in increased induction of the cyclin-dependent kinase inhibitor p15(INK) (4B) by transforming growth factor (TGF)-β and decreased expression of c-Myc, cyclin D1, and phosphorylated Rb in TGF-β-treated cells. Consequently, knockdown of EVI1 led to reduced DNA synthesis and cell viability. Collectively, our results suggest that EVI1 is a probable target gene that acts as a driving force for the amplification at 3q26 in HCC and that the oncoprotein EVI1 antagonizes TGF-β-mediated growth inhibition of HCC cells.
Collapse
Affiliation(s)
- Kohichiroh Yasui
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chika Konishi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuyuki Gen
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mio Endo
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akira Tomie
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Kitaichi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobuhisa Yamada
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoto Iwai
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taichiro Nishikawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshio Sumida
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hironori Mitsuyoshi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinji Tanaka
- Department of Hepato-Biliary Pancreatic Surgery, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Molecular Oncology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeki Arii
- Department of Hepato-Biliary Pancreatic Surgery, Tokyo Medical and Dental University, Tokyo, Japan.,Hamamatsu Rosai Hospital, Japan Labour Health and Welfare Organization, Hamamatsu, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
34
|
Gavine PR, Wang M, Yu D, Hu E, Huang C, Xia J, Su X, Fan J, Zhang T, Ye Q, Zheng L, Zhu G, Qian Z, Luo Q, Hou YY, Ji Q. Identification and validation of dysregulated MAPK7 (ERK5) as a novel oncogenic target in squamous cell lung and esophageal carcinoma. BMC Cancer 2015; 15:454. [PMID: 26040563 PMCID: PMC4453990 DOI: 10.1186/s12885-015-1455-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/20/2015] [Indexed: 01/23/2023] Open
Abstract
Background MAPK7/ERK5 (extracellular-signal-regulated kinase 5) functions within a canonical three-tiered MAPK (mitogen activated protein kinase) signaling cascade comprising MEK (MAPK/ERK kinase) 5, MEKK(MEK kinase) 2/3 and ERK5 itself. Despite being the least well studied of the MAPK-modules, evidence supports a role for MAPK7-signaling in the pathology of several cancer types. Methods and results Fluorescence in situ hybridization (FISH) analysis identified MAPK7 gene amplification in 4 % (3/74) of non-small cell lung cancers (NSCLC) (enriched to 6 % (3/49) in squamous cell carcinoma) and 2 % (2/95) of squamous esophageal cancers (sqEC). Immunohistochemical (IHC) analysis revealed a good correlation between MAPK7 gene amplification and protein expression. MAPK7 was validated as a proliferative oncogenic driver by performing in vitro siRNA knockdown of MAPK7 in tumor cell lines. Finally, a novel MEK5/MAPK7 co-transfected HEK293 cell line was developed and used for routine cell-based pharmacodynamic screening. Phosphorylation antibody microarray analysis also identified novel downstream pharmacodynamic (PD) biomarkers of MAPK7 kinase inhibition in tumor cells (pMEF2A and pMEF2D). Conclusions Together, these data highlight a broader role for dysregulated MAPK7 in driving tumorigenesis within niche populations of highly prevalent tumor types, and describe current efforts in establishing a robust drug discovery screening cascade. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1455-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul R Gavine
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Mei Wang
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Dehua Yu
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Eva Hu
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Chunlei Huang
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Jenny Xia
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Xinying Su
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Joan Fan
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Tianwei Zhang
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Qingqing Ye
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Li Zheng
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Guanshan Zhu
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Ziliang Qian
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Qingquan Luo
- Shanghai Chest Hospital, Shanghai, People's Republic of China.
| | - Ying Yong Hou
- Shanghai Zhongshan Hospital, Shanghai, People's Republic of China.
| | - Qunsheng Ji
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
35
|
Aberrant MEK5/ERK5 signalling contributes to human colon cancer progression via NF-κB activation. Cell Death Dis 2015; 6:e1718. [PMID: 25855966 PMCID: PMC4650550 DOI: 10.1038/cddis.2015.83] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/21/2015] [Accepted: 02/05/2015] [Indexed: 02/08/2023]
Abstract
This study was designed to evaluate MEK5 and ERK5 expression in colon cancer progression and to ascertain the relevance of MEK5/ERK5 signalling in colon cancer. Expression of MEK5 and ERK5 was evaluated in 323 human colon cancer samples. To evaluate the role of MEK5/ERK5 signalling in colon cancer, we developed a stable cell line model with differential MEK5/ERK5 activation. Impact of differential MEK5/ERK5 signalling was evaluated on cell cycle progression by flow cytometry and cell migration was evaluated by wound healing and transwell migration assays. Finally, we used an orthotopic xenograft mouse model of colon cancer to assess tumour growth and progression. Our results demonstrated that MEK5 and ERK5 are overexpressed in human adenomas (P<0.01) and adenocarcinomas (P<0.05), where increased ERK5 expression correlated with the acquisition of more invasive and metastatic potential (P<0.05). Interestingly, we observed a significant correlation between ERK5 expression and NF-κB activation in human adenocarcinomas (P<0.001). We also showed that ERK5 overactivation significantly accelerated cell cycle progression (P<0.05) and increased cell migration (P<0.01). Furthermore, cells with overactivated ERK5 displayed increased NF-κB nuclear translocation and transcriptional activity (P<0.05), together with increased expression of the mesenchymal marker vimentin (P<0.05). We further demonstrated that increased NF-κB activation was associated with increased IκB phosphorylation and degradation (P<0.05). Finally, in the mouse model, lymph node metastasis was exclusively seen in orthotopically implanted tumours with overactivated MEK5/ERK5, and not in tumours with inhibited MEK5/ERK5. Our results suggested that MEK5/ERK5/NF-κB signalling pathway is important for tumour onset, progression and metastasis, possibly representing a novel relevant therapeutic target in colon cancer treatment.
Collapse
|
36
|
Deng X, Elkins JM, Zhang J, Yang Q, Erazo T, Gomez N, Choi HG, Wang J, Dzamko N, Lee JD, Sim T, Kim N, Alessi DR, Lizcano JM, Knapp S, Gray NS. Structural determinants for ERK5 (MAPK7) and leucine rich repeat kinase 2 activities of benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-ones. Eur J Med Chem 2013; 70:758-67. [PMID: 24239623 PMCID: PMC3914206 DOI: 10.1016/j.ejmech.2013.10.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 02/08/2023]
Abstract
The benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-one core was discovered as a novel ERK5 (also known as MAPK7 and BMK1) inhibitor scaffold, previously. Further structure-activity relationship studies of this scaffold led to the discovery of ERK5-IN-1 (26) as the most selective and potent ERK5 inhibitor reported to date. 26 potently inhibits ERK5 biochemically with an IC₅₀ of 0.162 ± 0.006 μM and in cells with a cellular EC₅₀ for inhibiting epidermal growth factor induced ERK5 autophosphorylation of 0.09 ± 0.03 μM. Furthermore, 26 displays excellent selectivity over other kinases with a KINOMEscan selectivity score (S₁₀) of 0.007, and exhibits exceptional bioavailability (F%) of 90% in mice. 26 will serve as a valuable tool compound to investigate the ERK5 signaling pathway and as a starting point for developing an ERK5 directed therapeutic agent.
Collapse
Affiliation(s)
- Xianming Deng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
| | - Jonathan M. Elkins
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine and Target Discovery Institute (TDI), University of Oxford, Oxford, UK
| | - Jinwei Zhang
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Qingkai Yang
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tatiana Erazo
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
| | - Nestor Gomez
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
| | - Hwan Geun Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
| | - Nicolas Dzamko
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Jiing-Dwan Lee
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Taebo Sim
- Future Convergence Research Division, Korea Institute of Science and Technology, 39-1 Hawologok-Dong, Wolsong-Gil5, Seongbuk-Gu, Seoul, 136-791, South Korea
| | - NamDoo Kim
- Future Convergence Research Division, Korea Institute of Science and Technology, 39-1 Hawologok-Dong, Wolsong-Gil5, Seongbuk-Gu, Seoul, 136-791, South Korea
| | - Dario R. Alessi
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Jose M. Lizcano
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
| | - Stefan Knapp
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine and Target Discovery Institute (TDI), University of Oxford, Oxford, UK
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
| |
Collapse
|
37
|
Qiu F, Yang L, Fang W, Li Y, Yang R, Yang X, Deng J, Huang B, Xie C, Zhou Y, Lu J. A functional polymorphism in the promoter of ERK5 gene interacts with tobacco smoking to increase the risk of lung cancer in Chinese populations. Mutagenesis 2013; 28:561-7. [PMID: 23804708 DOI: 10.1093/mutage/get033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mitogen/extracellular signal-regulated kinase-5 (MEK5)/extracellular signal-regulated protein kinase-5 (ERK5) pathway plays a pro-oncogenic role in tumourigenesis by anticell apoptosis, promoting cell proliferation and differentiation in response to extracellular stimuli. As overexpressed MEK5/ERK5 is involved in the development of lung cancer, we hypothesised that the single nucleotide polymorphisms (SNPs) in MEK5 and ERK5 genes may influence gene expression and thus be associated with lung cancer risk. Five putative functional polymorphisms (rs3743353T>C, rs7172582C>T and rs2278076A>G of MEK5 and rs3866958G>T and rs2233083C>T of ERK5) were genotyped in two independent case-control studies with a total of 1559 lung cancer patients and 1679 controls in southern and eastern Chinese population. We found the rs3866958G>T of ERK5 was significantly associated with lung cancer risk, while other SNPs were not. Compared with the rs3866958TG/TT genotypes, the GG genotype conferred an increased risk of lung cancer (odds ratio = 1.30, 95% confidence interval = 1.12-1.51, P = 5.0×10(-4)), and this effect was more pronounced in smokers, accompanying with a significant interaction with smoking (P interaction = 0.013). The GG genotype also had significant higher mRNA levels of ERK5 in lung cancer tissues than TG/TT genotypes (P = 1.0×10(-4)); the luciferase reporter with the G allele showed significant higher transcription activities than the T allele, especially after the treatment with tobacco extract in vitro. Our data indicated that the functional polymorphism rs3866958G>T in ERK5 was associated with an increased lung cancer risk in smokers by virtue of the positive interaction with smoking on promoting the ERK5 expression, which might be a valuable indicator for predicting lung cancer risk in smokers.
Collapse
Affiliation(s)
- Fuman Qiu
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Elkins JM, Wang J, Deng X, Pattison MJ, Arthur JSC, Erazo T, Gomez N, Lizcano JM, Gray NS, Knapp S. X-ray crystal structure of ERK5 (MAPK7) in complex with a specific inhibitor. J Med Chem 2013; 56:4413-21. [PMID: 23656407 PMCID: PMC3683888 DOI: 10.1021/jm4000837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
protein kinase ERK5 (MAPK7) is an emerging drug target for
a variety of indications, in particular for cancer where it plays
a key role mediating cell proliferation, survival, epithelial–mesenchymal
transition, and angiogenesis. To date, no three-dimensional structure
has been published that would allow rational design of inhibitors.
To address this, we determined the X-ray crystal structure of the
human ERK5 kinase domain in complex with a highly specific benzo[e]pyrimido[5,4-b]diazepine-6(11H)-one inhibitor. The structure reveals that specific residue
differences in the ATP-binding site, compared to the related ERKs
p38s and JNKs, allow for the development of ERK5-specific inhibitors.
The selectivity of previously observed ERK5 inhibitors can also be
rationalized using this structure, which provides a template for future
development of inhibitors with potential for treatment of disease.
Collapse
Affiliation(s)
- Jonathan M Elkins
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Akazawa T, Yasui K, Gen Y, Yamada N, Tomie A, Dohi O, Mitsuyoshi H, Yagi N, Itoh Y, Naito Y, Yoshikawa T. Aberrant expression of the PHF14 gene in biliary tract cancer cells. Oncol Lett 2013; 5:1849-1853. [PMID: 23833654 PMCID: PMC3700892 DOI: 10.3892/ol.2013.1278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/05/2013] [Indexed: 02/03/2023] Open
Abstract
DNA copy number aberrations in human biliary tract cancer (BTC) cell lines were investigated using a high-density oligonucleotide microarray. A novel homozygous deletion was detected at chromosomal region 7p21.3 in the OZ cell line. Further validation experiments using genomic PCR revealed a homozygous deletion of a single gene, plant homeodomain (PHD) finger protein 14 (PHF14). No PHF14 mRNA or protein expression was detected, thus demonstrating the absence of PHF14 expression in the OZ cell line. Although the PHD finger protein is considered to be involved in chromatin-mediated transcriptional regulation, little is known about the function of PHF14 in cancer. The present study observed that the knock down of PHF14 using small interfering RNA (siRNA) enhanced the growth of the BTC cells. These observations suggest that aberrant PHF14 expression may have a role in the tumorigenesis of BTC.
Collapse
Affiliation(s)
- Takako Akazawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shukla A, Miller JM, Cason C, Sayan M, MacPherson MB, Beuschel SL, Hillegass J, Vacek PM, Pass HI, Mossman BT. Extracellular signal-regulated kinase 5: a potential therapeutic target for malignant mesotheliomas. Clin Cancer Res 2013; 19:2071-83. [PMID: 23446998 DOI: 10.1158/1078-0432.ccr-12-3202] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Malignant mesothelioma is a devastating disease with a need for new treatment strategies. In the present study, we showed the importance of extracellular signal-regulated kinase 5 (ERK5) in malignant mesothelioma tumor growth and treatment. EXPERIMENTAL DESIGN ERK5 as a target for malignant mesothelioma therapy was verified using mesothelial and mesothelioma cell lines as well as by xenograft severe combined immunodeficient (SCID) mouse models. RESULTS We first showed that crocidolite asbestos activated ERK5 in LP9 cells and mesothelioma cell lines exhibit constitutive activation of ERK5. Addition of doxorubicin resulted in further activation of ERK5 in malignant mesothelioma cells. ERK5 silencing increased doxorubicin-induced cell death and doxorubicin retention in malignant mesothelioma cells. In addition, shERK5 malignant mesothelioma lines exhibited both attenuated colony formation on soft agar and invasion of malignant mesothelioma cells in vitro that could be related to modulation of gene expression linked to cell proliferation, apoptosis, migration/invasion, and drug resistance as shown by microarray analysis. Most importantly, injection of shERK5 malignant mesothelioma cell lines into SCID mice showed significant reduction in tumor growth using both subcutaneous and intraperitoneal models. Assessment of selected human cytokine profiles in peritoneal lavage fluid from intraperitoneal shERK5 and control tumor-bearing mice showed that ERK5 was critical in regulation of various proinflammatory (RANTES/CCL5, MCP-1) and angiogenesis-related (interleukin-8, VEGF) cytokines. Finally, use of doxorubicin and cisplatin in combination with ERK5 inhibition showed further reduction in tumor weight and volume in the intraperitoneal model of tumor growth. CONCLUSION ERK5 inhibition in combination with chemotherapeutic drugs is a beneficial strategy for combination therapy in patients with malignant mesothelioma.
Collapse
Affiliation(s)
- Arti Shukla
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Endo M, Yasui K, Zen Y, Gen Y, Zen K, Tsuji K, Dohi O, Mitsuyoshi H, Tanaka S, Taniwaki M, Nakanuma Y, Arii S, Yoshikawa T. Alterations of the SWI/SNF chromatin remodelling subunit-BRG1 and BRM in hepatocellular carcinoma. Liver Int 2013; 33:105-17. [PMID: 23088494 DOI: 10.1111/liv.12005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 09/10/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND The SWI/SNF chromatin remodelling complex, which contains either brahma-related gene-1 (BRG1) or brahma (BRM) as the catalytic ATPase, functions as a master regulator of gene expression. AIMS To examine alterations of BRG1 and BRM in hepatocellular carcinoma (HCC). METHODS We investigated DNA copy number aberrations in human HCC cell lines using a high-density oligonucleotide microarray. We determined DNA copy numbers and expression levels of BRG1 and BRM genes in primary HCC tumours, and conducted further searches for mutations in BRG1 and BRM genes. RESULTS Homozygous deletion of the BRG1 gene was found in HCC cell line SNU398. Copy number losses of BRG1 and BRM genes were observed in 14 (26%) and 7 (13%) of 54 primary HCC tumours respectively. We found four somatic missense mutations in the BRG1 gene in two of 36 primary HCC tumours, but no mutations in BRM gene. Expression of BRM mRNA, but not BRG1 mRNA, was significantly reduced in primary HCC tumours, compared to non-tumour tissue counterparts. Immunohistochemical analyses of non-tumour liver tissues showed that BRM protein was expressed in hepatocytes and bile-duct epithelial cells, whereas BRG1 protein was expressed in bile-duct epithelial cells, but not in hepatocytes. BRM protein expression was lost in nine (22.5%) of 40 HCC tumours. Loss of BRM protein expression was significantly associated with poor overall survival. CONCLUSION Reduced expression of BRM may contribute to the carcinogenesis of HCC. Although deletions and mutations in BRG1 gene were identified, the role of BRG1 in HCC tumourigenesis remains unclear.
Collapse
Affiliation(s)
- Mio Endo
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dohi O, Yasui K, Gen Y, Takada H, Endo M, Tsuji K, Konishi C, Yamada N, Mitsuyoshi H, Yagi N, Naito Y, Tanaka S, Arii S, Yoshikawa T. Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int J Oncol 2012; 42:411-8. [PMID: 23229728 PMCID: PMC3583616 DOI: 10.3892/ijo.2012.1724] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/09/2012] [Indexed: 01/16/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as endogenous silencers of target genes. Some tumor-suppressive miRNAs are known to be epigenetically silenced by promoter DNA methylation in cancer. In the present study, we aimed to identify miRNA genes that are silenced by DNA hypermethylation in hepatocellular carcinoma (HCC). We screened for miRNA genes with promoter DNA hypermethylation using a genome-wide methylation microarray analysis in HCC cells. It was found that miR-335, which is harbored within an intron of its protein-coding host gene, MEST, was downregulated by aberrant promoter hypermethylation via further methylation assays, including methylation-specific PCR, combined bisulfite and restriction analysis, bisulfite sequencing analysis and 5-aza-2′-deoxycytidine treatment. The expression levels of miR-335 significantly correlated with those of MEST, supporting the notion that the intronic miR-335 is co-expressed with its host gene. The levels of miR-335/MEST methylation were significantly higher in 18 (90%) out of 20 primary HCC tumors, compared to their non-tumor tissue counterparts (P<0.001). The expression levels of miR-335 were significantly lower in 25 (78%) out of 32 primary HCC tumors, compared to their non-tumor tissue counterparts (P=0.001). Furthermore, the expression levels of miR-335 were significantly lower in HCC tumors with distant metastasis compared to those without distant metastasis (P=0.02). In conclusion, our results indicate that expression of miR-335 is reduced by aberrant DNA methylation in HCC.
Collapse
Affiliation(s)
- Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cronan MR, Nakamura K, Johnson NL, Granger DA, Cuevas BD, Wang JG, Mackman N, Scott JE, Dohlman HG, Johnson GL. Defining MAP3 kinases required for MDA-MB-231 cell tumor growth and metastasis. Oncogene 2012; 31:3889-900. [PMID: 22139075 PMCID: PMC3297722 DOI: 10.1038/onc.2011.544] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 10/01/2011] [Accepted: 10/25/2011] [Indexed: 12/25/2022]
Abstract
Analysis of patient tumors suggests that multiple MAP3 kinases (MAP3Ks) are critical for growth and metastasis of cancer cells. MAP3Ks selectively control the activation of extracellular signal-regulated kinase 1/2 (ERK1/2), Jun N-terminal kinase (JNK), p38 and ERK5 in response to receptor tyrosine kinases and GTPases. We used MDA-MB-231 cells because of their ability to metastasize from the breast fat pad to distant lymph nodes for an orthotopic xenograft model to screen the function of seven MAP3Ks in controlling tumor growth and metastasis. Stable short hairpin RNA (shRNA) knockdown was used to inhibit the expression of each of the seven MAP3Ks, which were selected for their differential regulation of the MAPK network. The screen identified two MAP3Ks, MEKK2 and MLK3, whose shRNA knockdown caused significant inhibition of both tumor growth and metastasis. Neither MEKK2 nor MLK3 have been previously shown to regulate tumor growth and metastasis in vivo. These results demonstrated that MAP3Ks, which differentially activate JNK, p38 and ERK5, are necessary for xenograft tumor growth and metastasis of MDA-MB-231 tumors. The requirement for MAP3Ks signaling through multiple MAPK pathways explains why several members of the MAPK network are activated in cancer. MEKK2 was required for epidermal growth factor receptor and Her2/Neu activation of ERK5, with ERK5 being required for metastasis. Loss of MLK3 expression increased mitotic infidelity and apoptosis in vitro. Knockdown of MEKK2 and MLK3 resulted in increased apoptosis in orthotopic xenografts relative to control tumors in mice, inhibiting both tumor growth and metastasis; MEKK2 and MLK3 represent untargeted kinases in tumor biology for potential therapeutic development.
Collapse
Affiliation(s)
- Mark R. Cronan
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kazuhiro Nakamura
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Nancy L. Johnson
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Deborah A. Granger
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Bruce D. Cuevas
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153 USA
| | - Jian-Guo Wang
- Division of Hematology and Oncology, Department of Medicine, McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - John E. Scott
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Henrik G. Dohlman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
44
|
Abstract
The MEK5 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 5]/ERK5 pathway is the least well studied MAPK signalling module. It has been proposed to play a role in the pathology of cancer. In the present paper, we review the role of the MEK5/ERK5 pathway using the 'hallmarks of cancer' as a framework and consider how this pathway is deregulated. As well as playing a key role in endothelial cell survival and tubular morphogenesis during tumour neovascularization, ERK5 is also emerging as a regulator of tumour cell invasion and migration. Several oncogenes can stimulate ERK5 activity, and protein levels are increased by a novel amplification at chromosome locus 17p11 and by down-regulation of the microRNAs miR-143 and miR-145. Together, these finding underscore the case for further investigation into understanding the role of ERK5 in cancer.
Collapse
|
45
|
Gilley R, Lochhead PA, Balmanno K, Oxley D, Clark J, Cook SJ. CDK1, not ERK1/2 or ERK5, is required for mitotic phosphorylation of BIMEL. Cell Signal 2012; 24:170-80. [DOI: 10.1016/j.cellsig.2011.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/29/2011] [Indexed: 01/05/2023]
|
46
|
Abstract
The big mitogen activated protein kinase 1 (BMK1) pathway is the most recently discovered and least-studied mammalian mitogen-activated protein (MAP) kinase cascade, ubiquitously expressed in all types of cancer cells tested so far. Mitogens and oncogenic signals strongly activate this cellular MAP kinase pathway, thereby passing down proliferative, survival, chemoresistance, invasive, and angiogenic signals in tumor cells. Recently, several pharmacologic small molecule inhibitors of this pathway have been developed. Among them, the BMK1 inhibitor XMD8-92 blocks cellular BMK1 activation and significantly suppresses tumor growth in lung and cervical tumor models and is well tolerated in animals. On the other hand, MEK5 inhibitors, BIX02188, BIX02189, and compound 6, suppress cellular MEK5 activity, but no data exist to date on their effectiveness in animals.
Collapse
Affiliation(s)
- Qingkai Yang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
47
|
Abstract
Background: Aberrant mitogen/extracellular signal-regulated kinase 5 (MEK5)–extracellular signal-regulated protein kinase 5 (ERK5)-mediated signalling has been implicated in a number of tumour types including prostate cancer (PCa). The molecular basis of ERK5-driven carcinogenesis and its clinical relevance remain to be fully characterised. Methods: Modulation of ERK5 expression or function in human PCa PC3 and PC3–ERK5 (stably transfected with ERK5) cells was performed using siRNA-mediated knockdown or the MEK inhibitor PD18435 respectively. In vitro significance of ERK5 signalling was assessed by assays for proliferation, motility, invasion and invadopodia. Expression of matrix metalloproteinases/tissue inhibitors of metalloproteases was determined by Q-RT–PCR. Extracellular signal-regulated protein kinase 5 expression in primary and metastatic PCa was examined using immunohistochemistry. Results: Reduction of ERK5 expression or signalling significantly inhibited the motility and invasive capability of PC3 cells. Extracellular signal-regulated protein kinase 5-mediated signalling significantly promoted formation of in vivo metastasis in an orthotopic PCa model (P<0.05). Invadopodia formation was also enhanced by forced ERK5 expression in PC3 cells. Furthermore, in metastatic PCa, nuclear ERK5 immunoreactivity was significantly upregulated when compared with benign prostatic hyperplasia and primary PCa (P=0.013 and P<0.0001, respectively). Conclusion: Our in vitro, in vivo and clinical data support an important role for the MEK5–ERK5 signalling pathway in invasive PCa, which represents a potential target for therapy in primary and metastatic PCa.
Collapse
|
48
|
Alternative ERK5 regulation by phosphorylation during the cell cycle. Cell Signal 2010; 22:1829-37. [DOI: 10.1016/j.cellsig.2010.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/06/2010] [Accepted: 07/13/2010] [Indexed: 02/01/2023]
|
49
|
Tsuji K, Yasui K, Gen Y, Endo M, Dohi O, Zen K, Mitsuyoshi H, Minami M, Itoh Y, Taniwaki M, Tanaka S, Arii S, Okanoue T, Yoshikawa T. PEG10 is a probable target for the amplification at 7q21 detected in hepatocellular carcinoma. ACTA ACUST UNITED AC 2010; 198:118-25. [PMID: 20362226 DOI: 10.1016/j.cancergencyto.2010.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/03/2010] [Accepted: 01/03/2010] [Indexed: 12/24/2022]
Abstract
DNA copy number aberrations in human hepatocellular carcinoma (HCC) cell lines were investigated using a high-density oligonucleotide microarray, and a novel amplification at the chromosomal region 7q21 was detected. Molecular definition of the amplicon indicated that PEG10 (paternally expressed gene 10), a paternally expressed imprinted gene, was amplified together with CDK14 (cyclin-dependent kinase 14; previously PFTAIRE protein kinase 1, PFTK1) and CDK6 (cyclin-dependent kinase 6). An increase in PEG10 copy number was detected in 14 of 34 primary HCC tumors (41%). PEG10, but not CDK14 or CDK6, was significantly overexpressed in 30 of 41 tumors (73%) from HCC patients, compared with their nontumorous counterparts. These results suggest that PEG10 is a probable target, acting as a driving force for amplification of the 7q21 region, and may therefore be involved in the development or progression of HCCs.
Collapse
Affiliation(s)
- Kazuhiro Tsuji
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|