1
|
Lu Y, Travnickova J, Badonyi M, Rambow F, Coates A, Khan Z, Marques J, Murphy LC, Garcia-Martinez P, Marais R, Louphrasitthiphol P, Chan AHY, Schofield CJ, von Kriegsheim A, Marsh JA, Pavet V, Sansom OJ, Illingworth RS, Patton EE. ALDH1A3-acetaldehyde metabolism potentiates transcriptional heterogeneity in melanoma. Cell Rep 2024; 43:114406. [PMID: 38963759 PMCID: PMC11290356 DOI: 10.1016/j.celrep.2024.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer cellular heterogeneity and therapy resistance arise substantially from metabolic and transcriptional adaptations, but how these are interconnected is poorly understood. Here, we show that, in melanoma, the cancer stem cell marker aldehyde dehydrogenase 1A3 (ALDH1A3) forms an enzymatic partnership with acetyl-coenzyme A (CoA) synthetase 2 (ACSS2) in the nucleus to couple high glucose metabolic flux with acetyl-histone H3 modification of neural crest (NC) lineage and glucose metabolism genes. Importantly, we show that acetaldehyde is a metabolite source for acetyl-histone H3 modification in an ALDH1A3-dependent manner, providing a physiologic function for this highly volatile and toxic metabolite. In a zebrafish melanoma residual disease model, an ALDH1-high subpopulation emerges following BRAF inhibitor treatment, and targeting these with an ALDH1 suicide inhibitor, nifuroxazide, delays or prevents BRAF inhibitor drug-resistant relapse. Our work reveals that the ALDH1A3-ACSS2 couple directly coordinates nuclear acetaldehyde-acetyl-CoA metabolism with specific chromatin-based gene regulation and represents a potential therapeutic vulnerability in melanoma.
Collapse
Affiliation(s)
- Yuting Lu
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Jana Travnickova
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Florian Rambow
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, 45131 Essen, Germany; University of Duisburg-Essen, 45141 Essen, Germany
| | - Andrea Coates
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Zaid Khan
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Jair Marques
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Pablo Garcia-Martinez
- Insitute of Genetics and Cancer, The Univeristy of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Richard Marais
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Oncodrug Ltd, Alderley Park, Macclesfield SK10 4TG, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Alex H Y Chan
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 5JJ, UK
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 5JJ, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Valeria Pavet
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Cancer Research UK Beatson Institute, CRUK Scotland Centre, Garscube Estate, Switchback Road, Bearsden Glasgow G61 1BD, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, CRUK Scotland Centre, Garscube Estate, Switchback Road, Bearsden Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G12 0ZD, UK
| | - Robert S Illingworth
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
2
|
Lukacova E, Hanzlikova Z, Podlesnyi P, Sedlackova T, Szemes T, Grendar M, Samec M, Hurtova T, Malicherova B, Leskova K, Budis J, Burjanivova T. Novel liquid biopsy CNV biomarkers in malignant melanoma. Sci Rep 2024; 14:15786. [PMID: 38982214 PMCID: PMC11233564 DOI: 10.1038/s41598-024-65928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Malignant melanoma (MM) is known for its abundance of genetic alterations and a tendency for rapid metastasizing. Identification of novel plasma biomarkers may enhance non-invasive diagnostics and disease monitoring. Initially, we examined copy number variations (CNV) in CDK genes (CDKN2A, CDKN2B, CDK4) using MLPA (gDNA) and ddPCR (ctDNA) analysis. Subsequently, low-coverage whole genome sequencing (lcWGS) was used to identify the most common CNV in plasma samples, followed by ddPCR verification of chosen biomarkers. CNV alterations in CDK genes were identified in 33.3% of FFPE samples (Clark IV, V only). Detection of the same genes in MM plasma showed no significance, neither compared to healthy plasmas nor between pre- versus post-surgery plasma. Sequencing data showed the most common CNV occurring in 6q27, 4p16.1, 10p15.3, 10q22.3, 13q34, 18q23, 20q11.21-q13.12 and 22q13.33. CNV in four chosen genes (KIF25, E2F1, DIP2C and TFG) were verified by ddPCR using 2 models of interpretation. Model 1 was concordant with lcWGS results in 54% of samples, for model 2 it was 46%. Although CDK genes have not been proven to be suitable CNV liquid biopsy biomarkers, lcWGS defined the most frequently affected chromosomal regions by CNV. Among chosen genes, DIP2C demonstrated a potential for further analysis.
Collapse
Affiliation(s)
- E Lukacova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | | | - P Podlesnyi
- Instituto de Investigaciones Biomedicas de Barcelona (IIBB), CSIC /Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas (CiberNed), Barcelona, Spain
| | - T Sedlackova
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - T Szemes
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - M Grendar
- Laboratory of Bioinformatics and Biostatistics, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - M Samec
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - T Hurtova
- Department of Dermatovenereology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - B Malicherova
- Department of Clinical Biochemistry, University Hospital in Martin and Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - K Leskova
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Martin, Slovakia
| | - J Budis
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - T Burjanivova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia.
| |
Collapse
|
3
|
Lim SY, Pedersen B, Rizos H. Protein-based classification of melanoma differentiation subtypes. Pigment Cell Melanoma Res 2022; 35:471-473. [PMID: 35452161 DOI: 10.1111/pcmr.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Su Yin Lim
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.,Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Bernadette Pedersen
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.,Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Helen Rizos
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.,Melanoma Institute Australia, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Population-based Targeted RNA Sequencing Reveals Novel Disease-related Gene Fusions in pediatric and adult T-ALL. Leuk Res 2022; 116:106825. [DOI: 10.1016/j.leukres.2022.106825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
|
5
|
Giblin W, Bringman-Rodenbarger L, Guo AH, Kumar S, Monovich AC, Mostafa AM, Skinner ME, Azar M, Mady AS, Chung CH, Kadambi N, Melong KA, Lee HJ, Zhang L, Sajjakulnukit P, Trefely S, Varner EL, Iyer S, Wang M, Wilmott JS, Soyer HP, Sturm RA, Pritchard AL, Andea AA, Scolyer RA, Stark MS, Scott DA, Fullen DR, Bosenberg MW, Chandrasekaran S, Nikolovska-Coleska Z, Verhaegen ME, Snyder NW, Rivera MN, Osterman AL, Lyssiotis CA, Lombard DB. The deacylase SIRT5 supports melanoma viability by influencing chromatin dynamics. J Clin Invest 2021; 131:138926. [PMID: 33945506 PMCID: PMC8203465 DOI: 10.1172/jci138926] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanoma remains the most lethal skin cancer, and ranks third among all malignancies in terms of years of life lost. Despite the advent of immune checkpoint and targeted therapies, only roughly half of patients with advanced melanoma achieve a durable remission. Sirtuin 5 (SIRT5) is a member of the sirtuin family of protein deacylases that regulates metabolism and other biological processes. Germline Sirt5 deficiency is associated with mild phenotypes in mice. Here we showed that SIRT5 was required for proliferation and survival across all cutaneous melanoma genotypes tested, as well as uveal melanoma, a genetically distinct melanoma subtype that arises in the eye and is incurable once metastatic. Likewise, SIRT5 was required for efficient tumor formation by melanoma xenografts and in an autochthonous mouse Braf Pten-driven melanoma model. Via metabolite and transcriptomic analyses, we found that SIRT5 was required to maintain histone acetylation and methylation levels in melanoma cells, thereby promoting proper gene expression. SIRT5-dependent genes notably included MITF, a key lineage-specific survival oncogene in melanoma, and the c-MYC proto-oncogene. SIRT5 may represent a druggable genotype-independent addiction in melanoma.
Collapse
Affiliation(s)
- William Giblin
- Department of Pathology and
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Ahmed M. Mostafa
- Department of Pathology and
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | | | | | | | | | | | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sophie Trefely
- Department of Cancer Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Erika L. Varner
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sowmya Iyer
- Department of Pathology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - H. Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Richard A. Sturm
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - Antonia L. Pritchard
- Institute of Health Research and Innovation, University of the Highlands and Islands, An Lóchran, Inverness, United Kingdom
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Aleodor A. Andea
- Department of Pathology and
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, and NSW Pathology, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mitchell S. Stark
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - David A. Scott
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Douglas R. Fullen
- Department of Pathology and
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marcus W. Bosenberg
- Departments of Pathology and Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering and
- Program in Chemical Biology
- Center for Computational Medicine and Bioinformatics, and
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zaneta Nikolovska-Coleska
- Department of Pathology and
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Nathaniel W. Snyder
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Miguel N. Rivera
- Department of Pathology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Division of Gastroenterology, Department of Internal Medicine and
| | - David B. Lombard
- Department of Pathology and
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Kelly GM, Al-Ejeh F, McCuaig R, Casciello F, Ahmad Kamal N, Ferguson B, Pritchard AL, Ali S, Silva IP, Wilmott JS, Long GV, Scolyer RA, Rao S, Hayward NK, Gannon F, Lee JS. G9a Inhibition Enhances Checkpoint Inhibitor Blockade Response in Melanoma. Clin Cancer Res 2021; 27:2624-2635. [PMID: 33589432 DOI: 10.1158/1078-0432.ccr-20-3463] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/24/2020] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE G9a histone methyltransferase exerts oncogenic effects in several tumor types and its inhibition promotes anticancer effects. However, the impact on checkpoint inhibitor blockade response and the utility of G9a or its target genes as a biomarker is poorly studied. We aimed to examine whether G9a inhibition can augment the efficacy of checkpoint inhibitor blockade and whether LC3B, a G9a target gene, can predict treatment response. EXPERIMENTAL DESIGN Clinical potential of LC3B as a biomarker of checkpoint inhibitor blockade was assessed using patient samples including tumor biopsies and circulating tumor cells from liquid biopsies. Efficacy of G9a inhibition to enhance checkpoint inhibitor blockade was examined using a mouse model. RESULTS Patients with melanoma who responded to checkpoint inhibitor blockade were associated with not only a higher level of tumor LC3B but also a higher proportion of cells expressing LC3B. A higher expression of MAP1LC3B or LC3B protein was associated with longer survival and lower incidence of acquired resistance to checkpoint inhibitor blockade, suggesting LC3B as a potential predictive biomarker. We demonstrate that G9a histone methyltransferase inhibition is able to not only robustly induce LC3B level to augment the efficacy of checkpoint inhibitor blockade, but also induces melanoma cell death. CONCLUSIONS Checkpoint inhibitor blockade response is limited to a subset of the patient population. These results have implications for the development of LC3B as a predictive biomarker of checkpoint inhibitor blockade to guide patient selection, as well as G9a inhibition as a strategy to extend the proportion of patients responding to immunotherapy.
Collapse
Affiliation(s)
- Gregory M Kelly
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Robert McCuaig
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Francesco Casciello
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Blake Ferguson
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Sayed Ali
- Faculty of Education, Science, Technology & Mathematics, University of Canberra, Canberra, Australia
- St John of God Midland Public and Private Hospitals, Midland, Western Australia, Australia
| | - Ines P Silva
- Melanoma Institute Australia, University of Sydney, Wollstonecraft, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - James S Wilmott
- Melanoma Institute Australia, University of Sydney, Wollstonecraft, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, University of Sydney, Wollstonecraft, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Mater Hospital, North Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, University of Sydney, Wollstonecraft, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Sudha Rao
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Frank Gannon
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jason S Lee
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
- School of Medicine, University of Queensland, Herston, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|
8
|
Tiffen J, Gallagher SJ, Filipp F, Gunatilake D, Emran AA, Cullinane C, Dutton-Register K, Aoude L, Hayward N, Chatterjee A, Rodger EJ, Eccles MR, Hersey P. EZH2 Cooperates with DNA Methylation to Downregulate Key Tumor Suppressors and IFN Gene Signatures in Melanoma. J Invest Dermatol 2020; 140:2442-2454.e5. [PMID: 32360600 DOI: 10.1016/j.jid.2020.02.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/04/2020] [Accepted: 02/21/2020] [Indexed: 01/14/2023]
Abstract
The histone methylase EZH2 is frequently dysregulated in melanoma and is associated with DNA methylation and silencing of genes involved in tumor suppression. In this study, we used chromatin immunoprecipitation and sequencing to identify key suppressor genes that are silenced by histone methylation in constitutively active EZH2(Y641) mutant melanoma and assessed whether these regions were also sites of DNA methylation. The genes identified were validated by their re-expression after treatment with EZH2 and DNA methyltransferase inhibitors. The expression of putative EZH2 target genes was shown to be highly relevant to the survival of patients with melanoma in clinical datasets. To determine correlates of response to EZH2 inhibitors, we screened a panel of 53 melanoma cell lines for drug sensitivity. We compared RNA sequencing profiles of sensitive to resistant melanoma cells and performed pathway analysis. Sensitivity was associated with strong downregulation of IFN-γ and IFN-α gene signatures that were reversed by treatment with EZH2 inhibitors. This is consistent with EZH2-driven dedifferentiated invasive states associated with treatment resistance and defects in antigen presentation. These results suggest that EZH2 inhibitors may be most effectively targeted to immunologically cold melanoma to both induce direct cytotoxicity and increase immune responses in the context of checkpoint inhibitor immunotherapy.
Collapse
Affiliation(s)
- Jessamy Tiffen
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Stuart J Gallagher
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Fabian Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, Merced, California, USA
| | - Dilini Gunatilake
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Abdullah Al Emran
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Carleen Cullinane
- Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Lauren Aoude
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Nick Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, The Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
9
|
Sana G, Madigan JP, Gartner JJ, Fourrez M, Lin J, Qutob N, Narayan J, Shukla S, Ambudkar SV, Xia D, Rosenberg SA, Gottesman MM, Samuels Y, Gillet JP. Exome Sequencing of ABCB5 Identifies Recurrent Melanoma Mutations that Result in Increased Proliferative and Invasive Capacities. J Invest Dermatol 2019; 139:1985-1992.e10. [PMID: 30905807 PMCID: PMC6708748 DOI: 10.1016/j.jid.2019.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 02/09/2023]
Abstract
ABCB5 is an ABC transporter that was shown to confer low-level multidrug resistance in cancer. In this study, we show that ABCB5 was mutated in 13.75% of the 640 melanoma samples analyzed. Besides nonsense mutations, two mutation hotspots were found in the ABCB5 protein, in the drug-binding pocket and the nucleotide-binding domains. Four mutations, which are representative of the mutation pattern, were selected. ATPase assays showed that these mutations resulted in a decrease in basal ATP hydrolysis by ABCB5. To select informative melanoma cell lines, mutational profiles of the clinical samples were further analyzed. This study showed mutations in the tumor suppressor CDKN2A gene and the NRAS oncogene in 62.5% and 75%, respectively of the samples that had mutations in the ABCB5 gene. No mutation was found in the tumor suppressor PTEN gene, whereas the activating V600E mutation in the BRAF oncogene was found in 25% of the samples with a mutated ABCB5 gene. Studies in four melanoma cell lines with various genetic backgrounds showed an increase in the proliferation and migration capacity of mutant ABCB5-expressing cells, suggesting that ABCB5 plays a role in the development of melanoma as a tumor suppressor gene.
Collapse
Affiliation(s)
- Géraldine Sana
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit (URPHYM), Namur Research Institute for Life Sciences, Faculty of Medicine, Department of Biomedical Sciences, University of Namur, Namur, Belgium
| | - James P Madigan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jared J Gartner
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie Fourrez
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit (URPHYM), Namur Research Institute for Life Sciences, Faculty of Medicine, Department of Biomedical Sciences, University of Namur, Namur, Belgium
| | - Jimmy Lin
- Washington University School of Medicine, Genome Technology Access Center, Genomics and Pathology Services, St. Louis, Missouri, USA
| | - Nouar Qutob
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jitendra Narayan
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Faculty of Sciences, Department of Biology, University of Namur, Namur, Belgium
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Yardena Samuels
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit (URPHYM), Namur Research Institute for Life Sciences, Faculty of Medicine, Department of Biomedical Sciences, University of Namur, Namur, Belgium.
| |
Collapse
|
10
|
Detection of novel fusion-transcripts by RNA-Seq in T-cell lymphoblastic lymphoma. Sci Rep 2019; 9:5179. [PMID: 30914738 PMCID: PMC6435891 DOI: 10.1038/s41598-019-41675-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Fusions transcripts have been proven to be strong drivers for neoplasia-associated mutations, although their incidence in T-cell lymphoblastic lymphoma needs to be determined yet. Using RNA-Seq we have selected 55 fusion transcripts identified by at least two of three detection methods in the same tumour. We confirmed the existence of 24 predicted novel fusions that had not been described in cancer or normal tissues yet, indicating the accuracy of the prediction. Of note, one of them involves the proto oncogene TAL1. Other confirmed fusions could explain the overexpression of driver genes such as COMMD3-BMI1, LMO1 or JAK3. Five fusions found exclusively in tumour samples could be considered pathogenic (NFYG-TAL1, RIC3-TCRBC2, SLC35A3-HIAT1, PICALM MLLT10 and MLLT10-PICALM). However, other fusions detected simultaneously in normal and tumour samples (JAK3-INSL3, KANSL1-ARL17A/B and TFG-ADGRG7) could be germ-line fusions genes involved in tumour-maintaining tasks. Notably, some fusions were confirmed in more tumour samples than predicted, indicating that the detection methods underestimated the real number of existing fusions. Our results highlight the potential of RNA-Seq to identify new cryptic fusions, which could be drivers or tumour-maintaining passenger genes. Such novel findings shed light on the searching for new T-LBL biomarkers in these haematological disorders.
Collapse
|
11
|
Stark MS, Tom LN, Boyle GM, Bonazzi VF, Soyer HP, Herington AC, Pollock PM, Hayward NK. The "melanoma-enriched" microRNA miR-4731-5p acts as a tumour suppressor. Oncotarget 2018; 7:49677-49687. [PMID: 27331623 PMCID: PMC5226538 DOI: 10.18632/oncotarget.10109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/01/2016] [Indexed: 01/06/2023] Open
Abstract
We previously identified miR-4731-5p (miR-4731) as a melanoma-enriched microRNA following comparison of melanoma with other cell lines from solid malignancies. Additionally, miR-4731 has been found in serum from melanoma patients and expressed less abundantly in metastatic melanoma tissues from stage IV patients relative to stage III patients. As miR-4731 has no known function, we used biotin-labelled miRNA duplex pull-down to identify binding targets of miR-4731 in three melanoma cell lines (HT144, MM96L and MM253). Using the miRanda miRNA binding algorithm, all pulled-down transcripts common to the three cell lines (n=1092) had potential to be targets of miR-4731 and gene-set enrichment analysis of these (via STRING v9.1) highlighted significantly associated genes related to the 'cell cycle' pathway and the 'melanosome'. Following miR-4731 overexpression, a selection (n=81) of pull-down transcripts underwent validation using a custom qRT-PCR array. These data revealed that miR-4731 regulates multiple genes associated with the cell cycle (e.g. CCNA2, ORC5L, and PCNA) and the melanosome (e.g. RAB7A, CTSD, and GNA13). Furthermore, members of the synovial sarcoma X breakpoint family (SSX) (melanoma growth promoters) were also down-regulated (e.g. SSX2, SSX4, and SSX4B) as a result of miR-4731 overexpression. Moreover, this down-regulation of mRNA expression resulted in ablation or reduction of SSX4 protein, which, in keeping with previous studies, resulted in loss of 2D colony formation. We therefore speculate that loss of miR-4731 expression in stage IV patient tumours supports melanoma growth by, in part; reducing its regulatory control of SSX expression levels.
Collapse
Affiliation(s)
- Mitchell S Stark
- Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Lisa N Tom
- Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, QLD, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Vanessa F Bonazzi
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, at The Translational Research Institute, Brisbane, QLD, Australia
| | - H Peter Soyer
- Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, QLD, Australia
| | - Adrian C Herington
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, at The Translational Research Institute, Brisbane, QLD, Australia
| | - Pamela M Pollock
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, at The Translational Research Institute, Brisbane, QLD, Australia
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Bartonicek N, Clark MB, Quek XC, Torpy JR, Pritchard AL, Maag JLV, Gloss BS, Crawford J, Taft RJ, Hayward NK, Montgomery GW, Mattick JS, Mercer TR, Dinger ME. Intergenic disease-associated regions are abundant in novel transcripts. Genome Biol 2017; 18:241. [PMID: 29284497 PMCID: PMC5747244 DOI: 10.1186/s13059-017-1363-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genotyping of large populations through genome-wide association studies (GWAS) has successfully identified many genomic variants associated with traits or disease risk. Unexpectedly, a large proportion of GWAS single nucleotide polymorphisms (SNPs) and associated haplotype blocks are in intronic and intergenic regions, hindering their functional evaluation. While some of these risk-susceptibility regions encompass cis-regulatory sites, their transcriptional potential has never been systematically explored. RESULTS To detect rare tissue-specific expression, we employed the transcript-enrichment method CaptureSeq on 21 human tissues to identify 1775 multi-exonic transcripts from 561 intronic and intergenic haploblocks associated with 392 traits and diseases, covering 73.9 Mb (2.2%) of the human genome. We show that a large proportion (85%) of disease-associated haploblocks express novel multi-exonic non-coding transcripts that are tissue-specific and enriched for GWAS SNPs as well as epigenetic markers of active transcription and enhancer activity. Similarly, we captured transcriptomes from 13 melanomas, targeting nine melanoma-associated haploblocks, and characterized 31 novel melanoma-specific transcripts that include fusion proteins, novel exons and non-coding RNAs, one-third of which showed allelically imbalanced expression. CONCLUSIONS This resource of previously unreported transcripts in disease-associated regions ( http://gwas-captureseq.dingerlab.org ) should provide an important starting point for the translational community in search of novel biomarkers, disease mechanisms, and drug targets.
Collapse
Affiliation(s)
- N Bartonicek
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - M B Clark
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - X C Quek
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - J R Torpy
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - A L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - J L V Maag
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - B S Gloss
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - J Crawford
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - R J Taft
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Illumina, Inc., San Diego, CA, USA
| | - N K Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - G W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - J S Mattick
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - T R Mercer
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
- Altius Institute for Biomedical Sciences, Seattle, USA
| | - M E Dinger
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Wu F, Cui L. Resveratrol suppresses melanoma by inhibiting NF-κB/miR-221 and inducing TFG expression. Arch Dermatol Res 2017; 309:823-831. [PMID: 28936555 DOI: 10.1007/s00403-017-1784-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022]
Abstract
Resveratrol (Res) is a natural compound with anti-cancer effects. The goal of this study is to evaluate the suppression of Res in melanoma and investigate its relationship with miRNAs during this process. The in vitro and in vivo anti-cancer abilities of Res were evaluated using cellular assays and animal model. Two melanoma cell lines (A375 and MV3) were used for both in vitro assay and in vivo experiments. qRT-PCR and Western blot were used to detect the changes in gene expressions and protein levels. Dual-luciferase reporter assay and bioinformatic tools were used to further confirm the protein binding and activation of targeted genes. In vitro experiments showed Res significantly decreased the expression of miR-221, an oncogenic microRNA, which was confirmed by the overexpression of miR-221 with or without Res treatment. Mechanistically, we showed that the inhibition of miR-221 by Res was achieved by regulating NF-κB (RELA) activity. In the meantime, we also identified that TFG, a tumor suppressor gene, was a target of miR-221. Finally, using in vivo melanoma model, we confirmed the tumor suppressive effects of Res and our in vitro regulatory network. Res displayed a significant anti-tumor effect on melanoma cells both in vitro and in vivo. The cellular mechanism under this effect involves miRNA regulation.
Collapse
Affiliation(s)
- Fangfang Wu
- Department of Traditional Chinese Medicine, Daqing Oilfield General Hospital, Daqing, China.
| | - Liying Cui
- Department of Traditional Chinese Medicine, Daqing Oilfield General Hospital, Daqing, China
| |
Collapse
|
14
|
Shin JM, Kong SJ, Shin YA, Chang YH, Kim JY, Sohn KC, Seo YJ, Kim CD, Lee JH, Lee Y. Possible role of tropomyosin-receptor kinase fused gene on skin collagen remodeling. J Dermatol Sci 2017; 88:375-377. [PMID: 28882477 DOI: 10.1016/j.jdermsci.2017.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 08/03/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Jung-Min Shin
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, KyungHee University, Seoul, Republic of Korea; LG Household and Healthcare, Daejeon, Republic of Korea; Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - So-Jung Kong
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, KyungHee University, Seoul, Republic of Korea; LG Household and Healthcare, Daejeon, Republic of Korea; Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Ah Shin
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, KyungHee University, Seoul, Republic of Korea; LG Household and Healthcare, Daejeon, Republic of Korea; Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yun-Hee Chang
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, KyungHee University, Seoul, Republic of Korea; LG Household and Healthcare, Daejeon, Republic of Korea; Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Young Kim
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, KyungHee University, Seoul, Republic of Korea; LG Household and Healthcare, Daejeon, Republic of Korea; Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung-Cheol Sohn
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, KyungHee University, Seoul, Republic of Korea; LG Household and Healthcare, Daejeon, Republic of Korea; Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Joon Seo
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, KyungHee University, Seoul, Republic of Korea; LG Household and Healthcare, Daejeon, Republic of Korea; Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chang-Deok Kim
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, KyungHee University, Seoul, Republic of Korea; LG Household and Healthcare, Daejeon, Republic of Korea; Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, KyungHee University, Seoul, Republic of Korea; LG Household and Healthcare, Daejeon, Republic of Korea; Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young Lee
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, KyungHee University, Seoul, Republic of Korea; LG Household and Healthcare, Daejeon, Republic of Korea; Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Abstract
The ROS1 gene belongs to the sevenless subfamily of tyrosine kinase insulin receptor genes. A literature review identified a ROS1 fusion in 2.54% of the patients with lung adenocarcinoma and even higher frequencies in spitzoid neoplasms and inflammatory myofibroblastic tumors. At present, 26 genes were found to fuse with ROS1, some of them already known to fuse with RET and ALK. All the fusion proteins retain the ROS1 kinase domain, but rarely its transmembrane domain. Most of the partners have dimerization domains that are retained in the fusion, presumably leading to constitutive ROS1 tyrosine kinase activation. Some partners have transmembrane domains that are retained or not in the chimeric proteins. Therefore, different ROS1 fusions have distinct subcellular localization, suggesting that they may activate different substrates in vivo.
Collapse
Affiliation(s)
- Arnaud Uguen
- Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Service d'Anatomie et Cytologie Pathologiques, Hôpital Morvan, CHRU Brest, Brest, France
| | - Marc De Braekeleer
- Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Service de Cytogénétique et Biologie de la Reproduction, Hôpital Morvan, CHRU Brest, Brest, France
| |
Collapse
|
16
|
Pasini L, Re A, Tebaldi T, Ricci G, Boi S, Adami V, Barbareschi M, Quattrone A. TrkA is amplified in malignant melanoma patients and induces an anti-proliferative response in cell lines. BMC Cancer 2015; 15:777. [PMID: 26496938 PMCID: PMC4619539 DOI: 10.1186/s12885-015-1791-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 10/15/2015] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The nerve growth factor (NGF) receptor tyrosine-kinase TrkA is a well-known determinant of the melanocytic lineage, through modulation of the MAPK and AKT cascades. While TrkA gene is frequently rearranged in cancers, its involvement in malignant melanoma (MM) development is still unclear. METHODS We analyzed a dataset of primary cutaneous MM (n = 31) by array comparative genomic hybridization (aCGH), to identify genomic amplifications associated with tumor progression. The analysis was validated by genomic quantitative PCR (qPCR) on an extended set of cases (n = 64) and the results were correlated with the clinical outcome. To investigate TrkA molecular pathways and cellular function, we generated inducible activation of the NGF-TrkA signaling in human MM cell lines. RESULTS We identified amplification of 1q23.1, where the TrkA locus resides, as a candidate hotspot implicated in the progression of MM. Across 40 amplicons detected, segmental amplification of 1q23.1 showed the strongest association with tumor thickness. By validation of the analysis, TrkA gene amplification emerged as a frequent event in primary melanomas (50 % of patients), and correlated with worse clinical outcome. However, experiments in cell lines revealed that induction of the NGF-TrkA signaling produced a phenotype of dramatic suppression of cell proliferation through inhibition of cell division and pronounced intracellular vacuolization, in a way straightly dependent on NGF activation of TrkA. These events were triggered via MAPK activity but not via AKT, and involved p21(cip1) protein increase, compatibly with a mechanism of oncogene-induced growth arrest. CONCLUSIONS Taken together, our findings point to TrkA as a candidate oncogene in MM and support a model in which the NGF-TrkA-MAPK pathway may mediate a trade-off between neoplastic transformation and adaptive anti-proliferative response.
Collapse
Affiliation(s)
- Luigi Pasini
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Angela Re
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Toma Tebaldi
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Gianluca Ricci
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Sebastiana Boi
- Department of Pathology, Santa Chiara Hospital, Trento, Italy.
| | - Valentina Adami
- High Throughput Screening Facility, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | | | | |
Collapse
|
17
|
Peyser ND, Du Y, Li H, Lui V, Xiao X, Chan TA, Grandis JR. Loss-of-Function PTPRD Mutations Lead to Increased STAT3 Activation and Sensitivity to STAT3 Inhibition in Head and Neck Cancer. PLoS One 2015; 10:e0135750. [PMID: 26267899 PMCID: PMC4534317 DOI: 10.1371/journal.pone.0135750] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/25/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Protein tyrosine phosphatase receptor type D (PTPRD) is a putative tumor suppressor in several cancers including head and neck squamous cell carcinoma (HNSCC). STAT3 is a frequently hyperactivated oncogene in HNSCC. As STAT3 is a direct substrate of PTPRD, we sought to determine the genetic or epigenetic alterations of PTPRD that contribute to overactive STAT3 in HNSCC. METHODS We analyzed data from The Cancer Genome Atlas (TCGA) and our previous whole-exome sequencing study and summarized the mutation, methylation, and copy number status of PTPRD in HNSCC and other cancers. In vitro studies involved standard transfection and MTT protocols, as well as methylation-specific PCR. RESULTS Our findings indicate that PTPRD mutation, rather than methylation or copy number alteration, is the primary mechanism by which PTPRD function is lost in HNSCC. We demonstrate that overexpression of wild-type PTPRD in HNSCC cells significantly inhibits growth and STAT3 activation while PTPRD mutants do not, suggesting that mutation may lead to loss of function and subsequent hyper-phosphorylation of PTPRD substrates, especially STAT3. Importantly, we determined that HNSCC cells harboring an endogenous PTPRD mutation are more sensitive to STAT3 blockade than PTPRD wild-type cells. We additionally found that PTPRD mRNA expression does not correlate with pSTAT3 expression, suggesting that alterations that manifest through altered mRNA expression, including hypermethylation and gene copy number alterations, do not significantly contribute to STAT3 overactivation in HNSCC. CONCLUSION PTPRD mutation, but not methylation or copy number loss, may serve as a predictive biomarker of sensitivity to STAT3 inhibitors in HNSCC.
Collapse
Affiliation(s)
- Noah D. Peyser
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America, 15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America, 15213
| | - Yu Du
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America, 15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America, 15213
- School of Medicine, Tsinghua University, Beijing, China, 100084
| | - Hua Li
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America, 15213
| | - Vivian Lui
- Pharmacogenomics and Precision Therapeutics Laboratory, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
- Department of Biochemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xiao Xiao
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America, 15213
| | - Timothy A. Chan
- Human Oncology and Pathogenesis Program and Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, United States of America, 10065
| | - Jennifer R. Grandis
- Department of Otolaryngology, University of California San Francisco, San Francisco, CA, United States of America, 94143
- * E-mail:
| |
Collapse
|
18
|
Du Y, Grandis JR. Receptor-type protein tyrosine phosphatases in cancer. CHINESE JOURNAL OF CANCER 2014; 34:61-9. [PMID: 25322863 PMCID: PMC4360074 DOI: 10.5732/cjc.014.10146] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein tyrosine phosphatases (PTPs) play an important role in regulating cell signaling events in coordination with tyrosine kinases to control cell proliferation, apoptosis, survival, migration, and invasion. Receptor-type protein tyrosine phosphatases (PTPRs) are a subgroup of PTPs that share a transmembrane domain with resulting similarities in function and target specificity. In this review, we summarize genetic and epigenetic alterations including mutation, deletion, amplification, and promoter methylation of PTPRs in cancer and consider the consequences of PTPR alterations in different types of cancers. We also summarize recent developments using PTPRs as prognostic or predictive biomarkers and/or direct targets. Increased understanding of the role of PTPRs in cancer may provide opportunities to improve therapeutic approaches.
Collapse
Affiliation(s)
- Yu Du
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
19
|
Wynne C, Lazzari E, Smith S, McCarthy EM, Ní Gabhann J, Kallal LE, Higgs R, Cryan SA, Biron CA, Jefferies CA. TRIM68 negatively regulates IFN-β production by degrading TRK fused gene, a novel driver of IFN-β downstream of anti-viral detection systems. PLoS One 2014; 9:e101503. [PMID: 24999993 PMCID: PMC4084880 DOI: 10.1371/journal.pone.0101503] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/08/2014] [Indexed: 12/28/2022] Open
Abstract
In recent years members of the tripartite motif-containing (TRIM) family of E3 ubiquitin ligases have been shown to both positively and negatively regulate viral defence and as such are emerging as compelling targets for modulating the anti-viral immune response. In this study we identify TRIM68, a close homologue of TRIM21, as a novel regulator of Toll-like receptor (TLR)- and RIG-I-like receptor (RLR)-driven type I IFN production. Proteomic analysis of TRIM68-containing complexes identified TRK-fused gene (TFG) as a potential TRIM68 target. Overexpression of TRIM68 and TFG confirmed their ability to associate, with TLR3 stimulation appearing to enhance the interaction. TFG is a known activator of NF-κB via its ability to interact with inhibitor of NF-κB kinase subunit gamma (IKK-γ) and TRAF family member-associated NF-κB activator (TANK). Our data identifies a novel role for TFG as a positive regulator of type I IFN production and suggests that TRIM68 targets TFG for lysosomal degradation, thus turning off TFG-mediated IFN-β production. Knockdown of TRIM68 in primary human monocytes resulted in enhanced levels of type I IFN and TFG following poly(I:C) treatment. Thus TRIM68 targets TFG, a novel regulator of IFN production, and in doing so turns off and limits type I IFN production in response to anti-viral detection systems.
Collapse
Affiliation(s)
- Claire Wynne
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| | - Elisa Lazzari
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siobhán Smith
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eoghan M. McCarthy
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Joan Ní Gabhann
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Lara E. Kallal
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Rowan Higgs
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sally Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| | - Christine A. Biron
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Caroline A. Jefferies
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
20
|
Kaufmann WK, Carson CC, Omolo B, Filgo AJ, Sambade MJ, Simpson DA, Shields JM, Ibrahim JG, Thomas NE. Mechanisms of chromosomal instability in melanoma. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:457-71. [PMID: 24616037 PMCID: PMC4128338 DOI: 10.1002/em.21859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 05/25/2023]
Abstract
A systems biology approach was applied to investigate the mechanisms of chromosomal instability in melanoma cell lines. Chromosomal instability was quantified using array comparative genomic hybridization to identify somatic copy number alterations (deletions and duplications). Primary human melanocytes displayed an average of 8.5 alterations per cell primarily representing known polymorphisms. Melanoma cell lines displayed 25 to 131 alterations per cell, with an average of 68, indicative of chromosomal instability. Copy number alterations included approximately equal numbers of deletions and duplications with greater numbers of hemizygous (-1,+1) alterations than homozygous (-2,+2). Melanoma oncogenes, such as BRAF and MITF, and tumor suppressor genes, such as CDKN2A/B and PTEN, were included in these alterations. Duplications and deletions were functional as there were significant correlations between DNA copy number and mRNA expression for these genes. Spectral karyotype analysis of three lines confirmed extensive chromosomal instability with polyploidy, aneuploidy, deletions, duplications, and chromosome rearrangements. Bioinformatic analysis identified a signature of gene expression that was correlated with chromosomal instability but this signature provided no clues to the mechanisms of instability. The signature failed to generate a significant (P = 0.105) prediction of melanoma progression in a separate dataset. Chromosomal instability was not correlated with elements of DNA damage response (DDR) such as radiosensitivity, nucleotide excision repair, expression of the DDR biomarkers γH2AX and P-CHEK2, nor G1 or G2 checkpoint function. Chromosomal instability in melanoma cell lines appears to influence gene function but it is not simply explained by alterations in the system of DDR.
Collapse
Affiliation(s)
- William K Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dutton-Regester K, Kakavand H, Aoude LG, Stark MS, Gartside MG, Johansson P, O'Connor L, Lanagan C, Tembe V, Pupo GM, Haydu LE, Schmidt CW, Mann GJ, Thompson JF, Scolyer RA, Hayward NK. Melanomas of unknown primary have a mutation profile consistent with cutaneous sun-exposed melanoma. Pigment Cell Melanoma Res 2013; 26:852-60. [PMID: 23890154 DOI: 10.1111/pcmr.12153] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/19/2013] [Indexed: 11/29/2022]
Abstract
Melanoma of unknown primary (MUP) is an uncommon phenomenon whereby patients present with metastatic disease without an evident primary site. To determine their likely site of origin, we combined exome sequencing from 33 MUPs to assess the total rate of somatic mutations and degree of UV mutagenesis. An independent cohort of 91 archival MUPs was also screened for 46 hot spot mutations highly prevalent in melanoma including BRAF, NRAS, KIT, GNAQ, and GNA11. Results showed that the majority of MUPs exhibited high somatic mutation rates, high ratios of C>T/G>A transitions, and a high rate of BRAF (45 of 101, 45%) and NRAS (32 of 101, 32%) mutations, collectively indicating a mutation profile consistent with cutaneous sun-exposed melanomas. These data suggest that a significant proportion of MUPs arise from regressed or unrecognized primary cutaneous melanomas or arise de novo in lymph nodes from nevus cells that have migrated from the skin.
Collapse
Affiliation(s)
- Ken Dutton-Regester
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Somatic mutations in MAP3K5 attenuate its proapoptotic function in melanoma through increased binding to thioredoxin. J Invest Dermatol 2013; 134:452-460. [PMID: 24008424 PMCID: PMC3947167 DOI: 10.1038/jid.2013.365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/24/2013] [Accepted: 07/12/2013] [Indexed: 12/13/2022]
Abstract
Patients with advanced metastatic melanoma have poor prognosis and the genetics underlying its pathogenesis are poorly understood. High throughput sequencing has allowed comprehensive discovery of somatic mutations in cancer samples. Here, upon analysis of our whole-genome and whole-exome sequencing data of 29 melanoma samples we identified several genes that harbor recurrent non-synonymous mutations. These included MAP3K5, which in a prevalence screen of 288 melanomas was found to harbor a R256C substitution in 5 cases. All MAP3K5 mutated samples were wild-type for BRAF, suggesting a mutual exclusivity for these mutations. Functional analysis of the MAP3K5 R256C mutation revealed attenuation of MKK4 activation through increased binding of the inhibitory protein thioredoxin (TXN/TRX-1/Trx); resulting in increased proliferation and anchorage-independent growth of melanoma cells. This mutation represents a potential target for the design of new therapies to treat melanoma.
Collapse
|
23
|
Dutton-Regester K, Hayward NK. Reviewing the somatic genetics of melanoma: from current to future analytical approaches. Pigment Cell Melanoma Res 2012; 25:144-54. [PMID: 22248438 DOI: 10.1111/j.1755-148x.2012.00975.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metastatic melanoma has traditionally been difficult to treat, and although molecularly based targeted therapies have shown promising results, they have yet to show consistent improvements in overall survival rates. Thus, identifying the key mutation events underlying the etiology of metastatic melanoma will no doubt lead to the improvement of existing therapeutic approaches and the development of new treatment strategies. Significant advances toward understanding the complexity of the melanoma genome have recently been achieved using next-generation sequencing (NGS) technologies. However, identifying those mutations driving tumorigenesis will continue to be a challenge for researchers, in part because of the high rates of mutation compared to other cancers. This article will review the catalog of mutations identified in melanoma through a variety of approaches, including the use of unbiased exome and whole-genome NGS platforms, as well discuss complementary strategies for identifying driver mutations. The promise of personalized medicine afforded by better understanding these mutation events should provide impetus for increased activity and rapid advances in this field.
Collapse
Affiliation(s)
- Ken Dutton-Regester
- Oncogenomics Laboratory, Queensland Institute of Medical Research, Brisbane, Qld, Australia.
| | | |
Collapse
|
24
|
Lai F, Jin L, Gallagher S, Mijatov B, Zhang XD, Hersey P. Histone deacetylases (HDACs) as mediators of resistance to apoptosis in melanoma and as targets for combination therapy with selective BRAF inhibitors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 65:27-43. [PMID: 22959022 DOI: 10.1016/b978-0-12-397927-8.00002-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
HDACs are viewed as enzymes used by cancer cells to inhibit tumor suppressor mechanisms. In particular, we discuss their role as suppressors of apoptosis in melanoma cells and as mediators of resistance to selective BRAF inhibitors. Synergistic increases in apoptosis are seen when pan-HDAC inhibitors are combined with selective BRAF inhibitors. Moreover, cell lines from patients with acquired resistance to Vemurafenib undergo PLX4720 induced apoptosis when combined with pan-HDAC inhibitors. The mechanisms of upregulation of HDACs and the mechanisms involved in HDACi reversal of resistance to apoptosis are as yet poorly understood.
Collapse
Affiliation(s)
- Fritz Lai
- Oncology and Immunology Unit, University of Newcastle, Newcastle, Australia
| | | | | | | | | | | |
Collapse
|