1
|
Sdeor E, Okada H, Saad R, Ben-Yishay T, Ben-David U. Aneuploidy as a driver of human cancer. Nat Genet 2024; 56:2014-2026. [PMID: 39358600 DOI: 10.1038/s41588-024-01916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024]
Abstract
Aneuploidy, an abnormal chromosome composition, is a major contributor to cancer development and progression and an important determinant of cancer therapeutic responses and clinical outcomes. Despite being recognized as a hallmark of human cancer, the exact role of aneuploidy as a 'driver' of cancer is still largely unknown. Identifying the specific genetic elements that underlie the recurrence of common aneuploidies remains a major challenge of cancer genetics. In this Review, we discuss recurrent aneuploidies and their function as drivers of tumor development. We then delve into the context-dependent identification and functional characterization of the driver genes underlying driver aneuploidies and examine emerging strategies to uncover these driver genes using cancer genomics data and cancer models. Lastly, we explore opportunities for targeting driver aneuploidies in cancer by leveraging the functional consequences of these common genetic alterations.
Collapse
Affiliation(s)
- Eran Sdeor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hajime Okada
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ron Saad
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Ben-Yishay
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Kaseb H, Tan C, Townsend JP, Costa J, Laskin WB. Genomic Landscape of Osteosarcoma of Bone in an Older-Aged Patient Population and Analysis of Possible Etiologies Based on Molecular Signature. Genet Test Mol Biomarkers 2024; 28:351-359. [PMID: 39052504 DOI: 10.1089/gtmb.2024.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Background: Osteosarcoma (OS), the most common primary malignant bone tumor, occurs mostly in the pediatric and adolescent (P/A) population where it has been subject to intense study whereas OS arising in the older-aged adult population has undergone less scrutiny. Materials and Methods: In this study, we assess the molecular aberrations detected in eight older adult patients (>59 years of age) with OS of bone by whole-exome sequencing (WES) on formalin-fixed, paraffin-embedded tissue and quantified the contributions of endogenous and exogenous mutational processes to tumor mutational burden and to tumorigenesis through computational analysis. Results: We identified 86 clinically significant somatic mutations. TP53 mutations occurred in OSs of three patients and one patient harbored a pathogenic germline mutation of TP53. Loss-of-heterozygosity of DNA-damage repair genes occurred in all six tumors evaluated. Computational analysis of single nucleotide variants within each tumor detected eight distinct mutagenic processes of which age-associated mutational processes, thiopurine chemotherapy, and defective homologous DNA recombination repair contributed the most to both tumor mutation burden and tumor pathogenesis. Conclusion: The genomic landscape of our older OS patients deciphered by WES is extremely diverse with only 15% of mutated somatic genes uncovered in our study previously described in P/A-enriched OS studies. Endogenous age-related mutagenic processes, defective DNA homologous recombination repair, and exogenous effects of chemotherapy are mainly responsible for pathogenic mutations in OS occurring in our cohort.
Collapse
Affiliation(s)
- Hatem Kaseb
- Department of Clinical Sciences Pathology, University of Central Florida College of Medicine, Orlando, Florida, USA
- Department of Pathology, University of Central Florida Lake Nona Hospital, Orlando, Florida, USA
| | - Chichun Tan
- Department of Biostatistics, School of Public Health, Brown University, Providence, Rhode Island, USA
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Jose Costa
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - William B Laskin
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Miranda-Carboni GA, Krum SA. Targeting WNT5B and WNT10B in osteosarcoma. Oncotarget 2024; 15:535-540. [PMID: 39102216 PMCID: PMC11299661 DOI: 10.18632/oncotarget.28617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
WNT signaling regulates osteosarcoma proliferation. However, there is controversy in the field of osteosarcoma as to whether WNT signaling is pro- or anti-tumorigenic. WNT-targeting therapeutics, both activators and inhibitors, are compared. WNT5B, a β-catenin-independent ligand, and WNT10B, a β-catenin-dependent WNT ligand, are each expressed in osteosarcomas, but they are not expressed in the same tumors. Furthermore, WNT10B and WNT5B regulate different histological subtypes of osteosarcomas. Using WNT signaling modulators as therapeutics may depend on the WNT ligand and/or the activated signaling pathway.
Collapse
Affiliation(s)
- Gustavo A. Miranda-Carboni
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Susan A. Krum
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
4
|
Perkins RS, Murray G, Suthon S, Davis L, Perkins NB, Fletcher L, Bozzi A, Schreiber SL, Lin J, Laxton S, Pillai RR, Wright AJ, Miranda‐Carboni GA, Krum SA. WNT5B drives osteosarcoma stemness, chemoresistance and metastasis. Clin Transl Med 2024; 14:e1670. [PMID: 38689429 PMCID: PMC11061378 DOI: 10.1002/ctm2.1670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Treatment for osteosarcoma, a paediatric bone cancer with no therapeutic advances in over three decades, is limited by a lack of targeted therapies. Osteosarcoma frequently metastasises to the lungs, and only 20% of patients survive 5 years after the diagnosis of metastatic disease. We found that WNT5B is the most abundant WNT expressed in osteosarcoma tumours and its expression correlates with metastasis, histologic subtype and reduced survival. METHODS Using tumor-spheroids to model cancer stem-like cells, we performed qPCR, immunoblotting, and immunofluorescence to monitor changes in gene and protein expression. Additionally, we measured sphere size, migration and forming efficiency to monitor phenotypic changes. Therefore, we characterised WNT5B's relevance to cancer stem-like cells, metastasis, and chemoresistance and evaluated its potential as a therapeutic target. RESULTS In osteosarcoma cell lines and patient-derived spheres, WNT5B is enriched in stem cells and induces the expression of the stemness gene SOX2. WNT5B promotes sphere size, sphere-forming efficiency, and cell proliferation, migration, and chemoresistance to methotrexate (but not cisplatin or doxorubicin) in spheres formed from conventional cell lines and patient-derived xenografts. In vivo, WNT5B increased osteosarcoma lung and liver metastasis and inhibited the glycosaminoglycan hyaluronic acid via upregulation of hyaluronidase 1 (HYAL1), leading to changes in the tumour microenvironment. Further, we identified that WNT5B mRNA and protein correlate with the receptor ROR1 in primary tumours. Targeting WNT5B through inhibition of WNT/ROR1 signalling with an antibody to ROR1 reduced stemness properties, including chemoresistance, sphere size and SOX2 expression. CONCLUSIONS Together, these data define WNT5B's role in driving osteosarcoma cancer stem cell expansion and methotrexate resistance and provide evidence that the WNT5B pathway is a promising candidate for treating osteosarcoma patients. KEY POINTS WNT5B expression is high in osteosarcoma stem cells leading to increased stem cell proliferation and migration through SOX2. WNT5B expression in stem cells increases rates of osteosarcoma metastasis to the lungs and liver in vivo. The hyaluronic acid degradation enzyme HYAL1 is regulated by WNT5B in osteosarcoma contributing to metastasis. Inhibition of WNT5B with a ROR1 antibody decreases osteosarcoma stemness.
Collapse
Affiliation(s)
- Rachel S. Perkins
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- Center for Cancer ResearchUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Glenn Murray
- Department of PathologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of PathologyRegional One HospitalMemphisTennesseeUSA
| | - Sarocha Suthon
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Lindsey Davis
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Nicholson B. Perkins
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Lily Fletcher
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- College of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Amanda Bozzi
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Saylor L. Schreiber
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Jianjian Lin
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Steven Laxton
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- College of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Rahul R. Pillai
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- College of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Alec J. Wright
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- College of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Gustavo A. Miranda‐Carboni
- Department of PathologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Susan A. Krum
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- Center for Cancer ResearchUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
5
|
Qiu X, He H, Zeng H, Tong X, Zhang C, Liu Y, Liao Z, Liu Q. Integrative transcriptome analysis identifies MYBL2 as a poor prognosis marker for osteosarcoma and a pan-cancer marker of immune infiltration. Genes Dis 2024; 11:101004. [PMID: 38292182 PMCID: PMC10825309 DOI: 10.1016/j.gendis.2023.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/23/2023] [Accepted: 04/29/2023] [Indexed: 02/01/2024] Open
Abstract
MYBL2 (MYB proto-oncogene like 2) is an emerging prognostic marker for malignant tumors, and its potential role in osteosarcoma and its relationship with immune infiltration in pan-cancer is yet to be elucidated. We constructed a transcription factor activity profile of osteosarcoma using the single-cell regulatory network inference algorithm based on single-cell RNA sequencing data obtained from the Gene Expression Omnibus. Subsequently, we calculated the extent of MYBL2 activation in malignant proliferative osteoblasts. We also explored the association between MYBL2 and chemotherapy resistance in osteosarcoma. Furthermore, we systematically correlated MYBL2 with immunological signatures in the tumor microenvironment in pan-cancer, including immune cell infiltration, immune checkpoints, and tumor immunotherapy prognosis. Finally, we developed and validated a risk score (MRGS), derived an osteosarcoma risk score nomogram based on MRGS, and tested its ability to predict prognosis. MYBL2 and gene enrichment analyses in osteosarcoma and pan-cancer revealed that MYBL2 was positively correlated with cell proliferation and tumor immune pathways. MYBL2 expression positively correlated with SLC19A1 in pan-cancer and osteosarcoma cell lines. Pan-cancer immune infiltration analysis revealed that MYBL2 was correlated with myeloid-derived suppressor cells, Th2 cell infiltration, CD276, RELT gene expression, and tumor mutation burden. In summary, MYBL2 regulates proliferation, progression, and immune infiltration in osteosarcoma and pan-cancer. Therefore, we found that MYBL2 could be used as a potential marker for predicting the osteosarcoma prognosis. Patients with osteosarcoma and high MYBL2 expression are theoretically more sensitive to methotrexate. An osteosarcoma prognostic nomogram can provide new ideas in the search for osteosarcoma prognostic markers.
Collapse
Affiliation(s)
- Xinzhu Qiu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongbo He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Hao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Xiaopeng Tong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Can Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yupeng Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Zhan Liao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Qing Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| |
Collapse
|
6
|
Valenzuela Alvarez MJP, Gutierrez LM, Bayo JM, Cantero MJ, Garcia MG, Bolontrade MF. Osteosarcoma cells exhibit functional interactions with stromal cells, fostering a lung microenvironment conducive to the establishment of metastatic tumor cells. Mol Biol Rep 2024; 51:467. [PMID: 38551765 DOI: 10.1007/s11033-024-09315-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Osteosarcoma (OS) stands out as the most common bone tumor, with approximately 20% of the patients receiving a diagnosis of metastatic OS at their initial assessment. A significant challenge lies in the frequent existence of undetected metastases during the initial diagnosis. Mesenchymal stem cells (MSCs) possess unique abilities that facilitate tumor growth, and their interaction with OS cells is crucial for metastatic spread. METHODS AND RESULTS We demonstrated that, in vitro, MSCs exhibited a heightened migration response toward the secretome of non-metastatic OS cells. When challenged to a secretome derived from lungs preloaded with OS cells, MSCs exhibited greater migration toward lungs colonized with metastatic OS cells. Moreover, in vivo, MSCs displayed preferential migratory and homing behavior toward lungs colonized by metastatic OS cells. Metastatic OS cells, in turn, demonstrated an increased migratory response to the MSCs' secretome. This behavior was associated with heightened cathepsin D (CTSD) expression and the release of active metalloproteinase 2 (MMP2) by metastatic OS cells. CONCLUSIONS Our assessment focused on two complementary tumor capabilities crucial to metastatic spread, emphasizing the significance of inherent cell features. The findings underscore the pivotal role of signaling integration within the niche, with a complex interplay of migratory responses among established OS cells in the lungs, prometastatic OS cells in the primary tumor, and circulating MSCs. Pulmonary metastases continue to be a significant factor contributing to OS mortality. Understanding these mechanisms and identifying differentially expressed genes is essential for pinpointing markers and targets to manage metastatic spread and improve outcomes for patients with OS.
Collapse
Affiliation(s)
- Matías J P Valenzuela Alvarez
- Remodeling Processes and cellular niches laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET-Hospital Italiano Buenos Aires (HIBA)-Instituto Universitario del Hospital Italiano (IUHI), 4240, C1199ACL, Potosí, CABA, Argentina
| | - Luciana M Gutierrez
- Remodeling Processes and cellular niches laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET-Hospital Italiano Buenos Aires (HIBA)-Instituto Universitario del Hospital Italiano (IUHI), 4240, C1199ACL, Potosí, CABA, Argentina
| | - Juan M Bayo
- IIMT-CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Perón 1500, EPB1629AHJ, Pilar, Argentina
| | - María J Cantero
- IIMT-CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Perón 1500, EPB1629AHJ, Pilar, Argentina
| | - Mariana G Garcia
- IIMT-CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Perón 1500, EPB1629AHJ, Pilar, Argentina
| | - Marcela F Bolontrade
- Remodeling Processes and cellular niches laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET-Hospital Italiano Buenos Aires (HIBA)-Instituto Universitario del Hospital Italiano (IUHI), 4240, C1199ACL, Potosí, CABA, Argentina.
| |
Collapse
|
7
|
Ferrena A, Wang J, Zhang R, Karadal-Ferrena B, Al-Hardan W, Singh S, Borjihan H, Schwartz EL, Zhao H, Oktay MH, Yang R, Geller DS, Hoang BH, Zheng D. SKP2 Knockout in Rb1/p53-Deficient Mouse Models of Osteosarcoma Induces Immune Infiltration and Drives a Transcriptional Program with a Favorable Prognosis. Mol Cancer Ther 2024; 23:223-234. [PMID: 37871911 PMCID: PMC10842346 DOI: 10.1158/1535-7163.mct-23-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/27/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Osteosarcoma is an aggressive bone malignancy with a poor prognosis. One putative proto-oncogene in osteosarcoma is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase. We previously demonstrated that Skp2 knockout in murine osteosarcoma improved survival and delayed tumorigenesis. Here, we performed RNA sequencing (RNA-seq) on tumors from a transgenic osteosarcoma mouse model with conditional Trp53 and Rb1 knockouts in the osteoblast lineage ("DKO": Osx1-Cre;Rb1lox/lox;p53lox/lox) and a triple-knockout model with additional Skp2 germline knockout ("TKO": Osx1-Cre;Rb1lox/lox;p53lox/lox;Skp2-/-), followed by qPCR and immunohistochemistry validation. To investigate the clinical implications of our results, we analyzed a human osteosarcoma patient cohort ("NCI-TARGET OS") with RNA-seq and clinical data. We found large differences in gene expression after SKP2 knockout. Surprisingly, we observed increased expression of genes related to immune microenvironment infiltration in TKO tumors, especially the signature genes for macrophages and to a lesser extent, T cells, B cells, and vascular cells. We also uncovered a set of relevant transcription factors that may mediate these changes. In osteosarcoma patient cohorts, high expression of genes upregulated in TKO was correlated with favorable overall survival, which was largely explained by the macrophage gene signatures. This relationship was further supported by our finding that SKP2 expression was negatively correlated with macrophage infiltration in the NCI-TARGET osteosarcoma and the TCGA Sarcoma cohorts. Overall, our findings indicate that SKP2 may mediate immune exclusion from the osteosarcoma tumor microenvironment, suggesting that SKP2 modulation in osteosarcoma may induce antitumor immune activation.
Collapse
Affiliation(s)
- Alexander Ferrena
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranxin Zhang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Waleed Al-Hardan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Swapnil Singh
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hasibagan Borjihan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward L. Schwartz
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hongling Zhao
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maja H. Oktay
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David S Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang H Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
8
|
Tang S, Roberts RD, Cheng L, Li L. Osteosarcoma Multi-Omics Landscape and Subtypes. Cancers (Basel) 2023; 15:4970. [PMID: 37894336 PMCID: PMC10605601 DOI: 10.3390/cancers15204970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy that exhibits remarkable histologic diversity and genetic heterogeneity. The complex nature of osteosarcoma has confounded precise molecular categorization, prognosis, and prediction for this disease. In this study, we performed a comprehensive multiplatform analysis on 86 osteosarcoma tumors, including somatic copy-number alteration, gene expression and methylation, and identified three molecularly distinct and clinically relevant subtypes of osteosarcoma. The subgrouping criteria was validated on another cohort of osteosarcoma tumors. Previously unappreciated osteosarcoma-type-specific changes in specific genes' copy number, expression and methylation were revealed based on the subgrouping. The subgrouping and novel gene signatures provide insights into refining osteosarcoma therapy and relationships to other types of cancer.
Collapse
Affiliation(s)
- Shan Tang
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Ryan D. Roberts
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Lijun Cheng
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Lang Li
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
9
|
Rav E, Maegawa S, Gopalakrishnan V, Gordon N. Overview of CD70 as a Potential Therapeutic Target for Osteosarcoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1067-1072. [PMID: 37722095 DOI: 10.4049/jimmunol.2200591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/25/2023] [Indexed: 09/20/2023]
Abstract
Osteosarcoma is a primary malignant bone tumor. Effective chemotherapy regimens for refractory disease are scarce, accounting for no improvement in survival. Immune-based cell therapies have emerged as novel alternatives. However, advancements with these therapies have been seen mostly when immune cells are armed to target specific tumor Ags. Recent studies identified cluster of differentiation 70 (CD70) as a promising target to osteosarcoma particularly because CD70 is highly expressed in osteosarcoma lung metastases (Pahl et al. 2015. Cancer Cell Int. 15: 31), and its overexpression by tumors has been correlated with immune evasion and tumor proliferation (Yang et al. 2007. Blood 110: 2537-2544). However, the limited knowledge of the overall CD70 expression within normal tissues and the potential for off-target effect pose several challenges (Flieswasser et al. 2022. J. Exp. Clin. Cancer Res. 41: 12). Nonetheless, CD70-based clinical trials are currently ongoing and are preliminarily showing promising results for patients with osteosarcoma. The present review sheds light on the recent literature on CD70 as it relates to osteosarcoma and highlights the benefits and challenges of targeting this pathway.
Collapse
Affiliation(s)
- Emily Rav
- Division of Pediatrics, Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shinji Maegawa
- Division of Pediatrics, Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vidya Gopalakrishnan
- Division of Pediatrics, Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nancy Gordon
- Division of Pediatrics, Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
10
|
Patkar S, Mannheimer J, Harmon S, Mazcko C, Choyke P, Brown GT, Turkbey B, LeBlanc A, Beck J. Large Scale Comparative Deconvolution Analysis of the Canine and Human Osteosarcoma Tumor Microenvironment Uncovers Conserved Clinically Relevant Subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559797. [PMID: 37808704 PMCID: PMC10557692 DOI: 10.1101/2023.09.27.559797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Osteosarcoma is a relatively rare but aggressive cancer of the bones with a shortage of effective biomarkers. Although less common in humans, Osteosarcomas are fairly common in adult pet dogs and have been shown to share many similarities with their human analogs. In this work, we analyze bulk transcriptomic data of 213 primary and 100 metastatic Osteosarcoma samples from 210 pet dogs enrolled in nation-wide clinical trials to uncover three Tumor Microenvironment (TME)-based subtypes: Immune Enriched (IE), Immune Enriched Dense Extra-Cellular Matrix-like (IE-ECM) and Immune Desert (ID) with distinct cell type compositions, oncogenic pathway activity and chromosomal instability. Furthermore, leveraging bulk transcriptomic data of canine primary tumors and their matched metastases from different sites, we characterize how the Osteosarcoma TME evolves from primary to metastatic disease in a standard of care clinical setting and assess its overall impact on clinical outcomes of canines. Most importantly, we find that TME-based subtypes of canine Osteosarcomas are conserved in humans and predictive of progression free survival outcomes of human patients, independently of known prognostic biomarkers such as presence of metastatic disease at diagnosis and percent necrosis following chemotherapy. In summary, these results demonstrate the power of using canines to model the human Osteosarcoma TME and discover novel biomarkers for clinical translation.
Collapse
Affiliation(s)
- Sushant Patkar
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Josh Mannheimer
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephanie Harmon
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Christina Mazcko
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Peter Choyke
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - G Tom Brown
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Baris Turkbey
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Amy LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jessica Beck
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
11
|
Nirala BK, Patel TD, Kurenbekova L, Shuck R, Dasgupta A, Rainusso N, Coarfa C, Yustein JT. MYC regulates CSF1 expression via microRNA 17/20a to modulate tumor-associated macrophages in osteosarcoma. JCI Insight 2023; 8:e164947. [PMID: 37279073 PMCID: PMC10371352 DOI: 10.1172/jci.insight.164947] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor of childhood. Approximately 20%-30% of OSs carry amplification of chromosome 8q24, which harbors the oncogene c-MYC and correlates with a poor prognosis. To understand the mechanisms that underlie the ability of MYC to alter both the tumor and its surrounding tumor microenvironment (TME), we generated and molecularly characterized an osteoblast-specific Cre-Lox-Stop-Lox-c-MycT58A p53fl/+ knockin genetically engineered mouse model (GEMM). Phenotypically, the Myc-knockin GEMM had rapid tumor development with a high incidence of metastasis. MYC-dependent gene signatures in our murine model demonstrated significant homology to the human hyperactivated MYC OS. We established that hyperactivation of MYC led to an immune-depleted TME in OS demonstrated by the reduced number of leukocytes, particularly macrophages. MYC hyperactivation led to the downregulation of macrophage colony-stimulating factor 1, through increased microRNA 17/20a expression, causing a reduction of macrophage population in the TME of OS. Furthermore, we developed cell lines from the GEMM tumors, including a degradation tag-MYC model system, which validated our MYC-dependent findings both in vitro and in vivo. Our studies utilized innovative and clinically relevant models to identify a potentially novel molecular mechanism through which MYC regulates the profile and function of the OS immune landscape.
Collapse
Affiliation(s)
- Bikesh K. Nirala
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Tajhal D. Patel
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Lyazat Kurenbekova
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Ryan Shuck
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Atreyi Dasgupta
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Nino Rainusso
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Cristian Coarfa
- Department of Molecular & Human Genetics, and
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason T. Yustein
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
- Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Bisaccia J, Meyer S, Bertrand-Chapel A, Hecquet Q, Barbet V, Kaniewski B, Léon S, Gadot N, Rochet I, Fajnorova I, Leblond P, Cordier-Bussat M, Corradini N, Vasiljevic A, Billaud M, Picard C, Broutier L, Gallerne C, Dutour A, Blay JY, Castets M. The TLR3 L412F polymorphism prevents TLR3-mediated tumor cell death induction in pediatric sarcomas. Cell Death Discov 2023; 9:230. [PMID: 37414800 DOI: 10.1038/s41420-023-01513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Toll-like receptor 3 (TLR3) is a pattern recognition receptor mainly known for its role in innate immune response to infection. Indeed, binding of double-stranded RNA (dsRNA) to TLR3 triggers a pro-inflammatory cascade leading to cytokine release and immune cell activation. Its anti-tumoral potential has emerged progressively, associated with a direct impact on tumor cell death induction and with an indirect action on immune system reactivation. Accordingly, TLR3 agonists are currently being tested in clinical trials for several adult cancers. Meanwhile, TLR3 variants have been linked to auto-immune disorders, and as risk factors of viral infection and cancers. However, aside from neuroblastoma, TLR3 role in childhood cancers has not been evaluated. Here, by integrating public transcriptomic data of pediatric tumors, we unveil that high TLR3 expression is largely associated with a better prognosis in childhood sarcomas. Using osteosarcomas and rhabdomyosarcomas as models, we show that TLR3 efficiently drives tumor cell death in vitro and induces tumor regression in vivo. Interestingly, this anti-tumoral effect was lost in cells expressing the homozygous TLR3 L412F polymorphism, which is enriched in a rhabdomyosarcomas cohort. Thus, our results demonstrate the therapeutic potential associated with the targeting of TLR3 in pediatric sarcomas, but also the need to stratify patients eligible for this clinical approach with respect to the TLR3 variants expressed.
Collapse
Affiliation(s)
- Joseph Bisaccia
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
| | - Swann Meyer
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
| | - Adrien Bertrand-Chapel
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
| | - Quentin Hecquet
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
| | - Virginie Barbet
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
| | - Bastien Kaniewski
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
| | - Sophie Léon
- EX-VIVO Platform, Université de Lyon, Université Claude Bernard de Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon (CRCL), Lyon, France
| | - Nicolas Gadot
- Anatomopathology Research Platform, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Isabelle Rochet
- Department of Pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - Iveta Fajnorova
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
| | - Pierre Leblond
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
- Department of Pediatric Oncology, Institut d'hématologie et d'oncologie pédiatrique, Centre Léon Bérard, Lyon, France
- Department of Translational Research in Paediatric Oncology, Centre Léon Bérard, Lyon, France
- Department of Pediatric Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Martine Cordier-Bussat
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
- Department of Translational Research in Paediatric Oncology, Centre Léon Bérard, Lyon, France
| | - Nadège Corradini
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
- Department of Pediatric Oncology, Institut d'hématologie et d'oncologie pédiatrique, Centre Léon Bérard, Lyon, France
- Department of Translational Research in Paediatric Oncology, Centre Léon Bérard, Lyon, France
- Department of Pediatric Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Alexandre Vasiljevic
- Department of Pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - Marc Billaud
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
- Department of Translational Research in Paediatric Oncology, Centre Léon Bérard, Lyon, France
| | - Cécile Picard
- Department of Pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - Laura Broutier
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
- Department of Translational Research in Paediatric Oncology, Centre Léon Bérard, Lyon, France
| | - Cindy Gallerne
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
| | - Aurélie Dutour
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
- Department of Translational Research in Paediatric Oncology, Centre Léon Bérard, Lyon, France
| | - Jean-Yves Blay
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France
- Department of Translational Research in Paediatric Oncology, Centre Léon Bérard, Lyon, France
| | - Marie Castets
- Cell Death and Childhood Cancers Laboratory, LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon, Centre Léon Bérard, Institut Convergence Plascan, Lyon, France.
- Department of Translational Research in Paediatric Oncology, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
13
|
Ferrena A, Wang J, Zhang R, Karadal-Ferrena B, Al-Hardan W, Singh S, Borjihan H, Schwartz E, Zhao H, Yang R, Geller D, Hoang B, Zheng D. SKP2 knockout in Rb1/p53 deficient mouse models of osteosarcoma induces immune infiltration and drives a transcriptional program with a favorable prognosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540053. [PMID: 37214958 PMCID: PMC10197654 DOI: 10.1101/2023.05.09.540053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Purpose Osteosarcoma (OS) is an aggressive bone malignancy with a poor prognosis. One putative proto-oncogene in OS is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase. We previously demonstrated that SKP2 knockout in murine OS improved survival and delayed tumorigenesis. Here we aim to define the SKP2 drives transcriptional program and its clinical implication in OS. Experimental Design We performed RNA-sequencing (RNA-seq) on tumors from a transgenic OS mouse model with conditional Trp53 and Rb1 knockouts in the osteoblast lineage ("DKO": Osx1-Cre;Rb1lox/lox;p53lox/lox) and a triple-knockout model with additional Skp2 germline knockout ("TKO": Osx1-Cre;Rb1lox/lox;p53lox/lox;SKP2-/-). We validated our RNA-seq findings using qPCR and immunohistochemistry. To investigate the clinical implications of our results, we analyzed a human OS patient cohort ("NCI-TARGET OS") with RNA-seq and clinical data. Results We found large differences in gene expression after SKP2 knockout. Strikingly, we observed increased expression of genes related to immune microenvironment infiltration in TKO tumors. We observed significant increases in signature genes for macrophages and to a lesser extent, T cells, B cells and vascular cells. We also uncovered a set of relevant transcription factors that may mediate the changes. In OS patient cohorts, high expression of genes upregulated in TKO was correlated with favorable overall survival, which was largely explained by the macrophage gene signatures. This relationship was further supported by our finding that SKP2 expression was negatively correlated with macrophage infiltration in the NCI-TARGET OS and the TCGA Sarcoma cohort. Conclusion Our findings indicate that SKP2 may mediate immune exclusion from the OS tumor microenvironment, suggesting that SKP2 modulation in OS may induce anti-tumor immune activation.
Collapse
Affiliation(s)
- Alexander Ferrena
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranxin Zhang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Waleed Al-Hardan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Swapnil Singh
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hasibagan Borjihan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward Schwartz
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hongling Zhao
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
14
|
Pires SF, de Barros JS, da Costa SS, de Oliveira Scliar M, Van Helvoort Lengert A, Boldrini É, da Silva SRM, Tasic L, Vidal DO, Krepischi ACV, Maschietto M. DNA methylation patterns suggest the involvement of DNMT3B and TET1 in osteosarcoma development. Mol Genet Genomics 2023; 298:721-733. [PMID: 37020053 DOI: 10.1007/s00438-023-02010-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
DNA methylation may be involved in the development of osteosarcomas. Osteosarcomas commonly arise during the bone growth and remodeling in puberty, making it plausible to infer the involvement of epigenetic alterations in their development. As a highly studied epigenetic mechanism, we investigated DNA methylation and related genetic variants in 28 primary osteosarcomas aiming to identify deregulated driver alterations. Methylation and genomic data were obtained using the Illumina HM450K beadchips and the TruSight One sequencing panel, respectively. Aberrant DNA methylation was spread throughout the osteosarcomas genomes. We identified 3146 differentially methylated CpGs comparing osteosarcomas and bone tissue samples, with high methylation heterogeneity, global hypomethylation and focal hypermethylation at CpG islands. Differentially methylated regions (DMR) were detected in 585 loci (319 hypomethylated and 266 hypermethylated), mapped to the promoter regions of 350 genes. These DMR genes were enriched for biological processes related to skeletal system morphogenesis, proliferation, inflammatory response, and signal transduction. Both methylation and expression data were validated in independent groups of cases. Six tumor suppressor genes harbored deletions or promoter hypermethylation (DLEC1, GJB2, HIC1, MIR149, PAX6, and WNT5A), and four oncogenes presented gains or hypomethylation (ASPSCR1, NOTCH4, PRDM16, and RUNX3). Our analysis also revealed hypomethylation at 6p22, a region that contains several histone genes. Copy-number changes in DNMT3B (gain) and TET1 (loss), as well as overexpression of DNMT3B in osteosarcomas provide a possible explanation for the observed phenotype of CpG island hypermethylation. While the detected open-sea hypomethylation likely contributes to the well-known osteosarcoma genomic instability, enriched CpG island hypermethylation suggests an underlying mechanism possibly driven by overexpression of DNMT3B likely resulting in silencing of tumor suppressors and DNA repair genes.
Collapse
Affiliation(s)
- Sara Ferreira Pires
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Sobral de Barros
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Marília de Oliveira Scliar
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ljubica Tasic
- Laboratory of Biological Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Daniel Onofre Vidal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
- Research Center, Boldrini Children's Hospital, Campinas, SP, Brazil.
| |
Collapse
|
15
|
Yuan B, Shi K, Zha J, Cai Y, Gu Y, Huang K, Yue W, Zhai Q, Ding N, Ren W, He W, Xu Y, Wang T. Nuclear receptor modulators inhibit osteosarcoma cell proliferation and tumour growth by regulating the mTOR signaling pathway. Cell Death Dis 2023; 14:51. [PMID: 36681687 PMCID: PMC9867777 DOI: 10.1038/s41419-022-05545-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023]
Abstract
Osteosarcoma is the most common primary malignant bone tumour in children and adolescents. Chemoresistance leads to poor responses to conventional therapy in patients with osteosarcoma. The discovery of novel effective therapeutic targets and drugs is still the main focus of osteosarcoma research. Nuclear receptors (NRs) have shown substantial promise as novel therapeutic targets for various cancers. In the present study, we performed a drug screen using 29 chemicals that specifically target 17 NRs in several different human osteosarcoma and osteoblast cell lines. The retinoic acid receptor beta (RARb) antagonist LE135, peroxisome proliferator activated receptor gamma (PPARg) antagonist T0070907, liver X receptor (LXR) agonist T0901317 and Rev-Erba agonist SR9011 significantly inhibited the proliferation of malignant osteosarcoma cells (U2OS, HOS-MNNG and Saos-2 cells) but did not inhibit the growth of normal osteoblasts. The effects of these NR modulators on osteosarcoma cells occurred in a dose-dependent manner and were not observed in NR-knockout osteosarcoma cells. These NR modulators also significantly inhibited osteosarcoma growth in vivo and enhanced the antitumour effect of doxorubicin (DOX). Transcriptomic and immunoblotting results showed that these NR modulators may inhibit the growth of osteosarcoma cells by regulating the PI3K/AKT/mTOR and ERK/mTOR pathways. DDIT4, which blocks mTOR activation, was identified as one of the common downstream target genes of these NRs. DDIT4 knockout significantly attenuated the inhibitory effects of these NR modulators on osteosarcoma cell growth. Together, our results revealed that modulators of RARb, PPARg, LXRs and Rev-Erba inhibit osteosarcoma growth both in vitro and in vivo through the mTOR signaling pathway, suggesting that treatment with these NR modulators is a novel potential therapeutic strategy.
Collapse
Affiliation(s)
- Baoshi Yuan
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kexin Shi
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
- Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310030, China
| | - Juanmin Zha
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yujia Cai
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yue Gu
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kai Huang
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenchang Yue
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Qiaocheng Zhai
- Department of Orthopaedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Ning Ding
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenyan Ren
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Weiqi He
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Tao Wang
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
16
|
Xie L, Yin W, Tang F, He M. Pan-Cancer analysis of TERT and Validation in Osteosarcoma Cell Lines. Biochem Biophys Res Commun 2023; 639:106-116. [PMID: 36476950 DOI: 10.1016/j.bbrc.2022.11.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate the possible functions of TERT in pan-cancer and OS. METHODS First, differential TERT gene expression analysis was conducted using multi-omics data integrative analyses, including differential expression, prognosis, the correlation between infiltrating inflammatory immune cells, and mutation in pan-cancer. Furthermore, differential TERT gene expression analysis was conducted using mRNA expression profiles related to OS based on the GEO Datasets. Various differentially expressed genes were chosen based on a fitness threshold for further investigations. Finally, the function of the TERT gene was assessed in OS cells, including cellular proliferation, migration, and metastasis. RESULTS Pan-cancer research demonstrated that variable expression of TERT was not only associated with numerous types of human cancer but was also intimately linked to DNA methylation. Bioinformatic investigation revealed a link between the differential expression of TERT with immune cell infiltration in the tumor microenvironment (TME). In vitro studies indicated that inhibition of TERT decreased OS cell proliferation, motility, and metastasis. CONCLUSION TERT may serve as a useful genomic biomarker for the diagnosis and prediction of pan-cancer and as a prospective therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Long Xie
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Trauma Department of Orthopaedics, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Wenhua Yin
- Trauma Department of Orthopaedics, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Fuxing Tang
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Maolin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
17
|
Feng W, Lin H, Rothzerg E, Song D, Zhao W, Ning T, Wei Q, Zhao J, Wood D, Liu Y, Xu J. RNA-seq and Single-Cell Transcriptome Analyses of TRAIL Receptors Gene Expression in Human Osteosarcoma Cells and Tissues. Cancer Inform 2023; 22:11769351231161478. [PMID: 37101729 PMCID: PMC10123892 DOI: 10.1177/11769351231161478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 04/28/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary cancer in the skeletal system, characterized by a high incidence of lung metastasis, local recurrence and death. Systemic treatment of this aggressive cancer has not improved significantly since the introduction of chemotherapy regimens, underscoring a critical need for new treatment strategies. TRAIL receptors have long been proposed to be therapeutic targets for cancer treatment, but their role in osteosarcoma remains unclear. In this study, we investigated the expression profile of four TRAIL receptors in human OS cells using total RNA-seq and single-cell RNA-seq (scRNA-seq). The results revealed that TNFRSF10B and TNFRSF10D but not TNFRSF10A and TNFRSF10C are differentially expressed in human OS cells as compared to normal cells. At the single cell level by scRNA-seq analyses, TNFRSF10B, TNFRSF10D, TNFRSF10A and TNFRSF10C are most abundantly expressed in endothelial cells of OS tissues among nine distinct cell clusters. Notably, in osteoblastic OS cells, TNFRSF10B is most abundantly expressed, followed by TNFRSF10D, TNFRSF10A and TNFRSF10C. Similarly, in an OS cell line U2-OS using RNA-seq, TNFRSF10B is most abundantly expressed, followed by TNFRSF10D, TNFRSF10A and TNFRSF10C. According to the TARGET online database, poor patient outcomes were associated with low expression of TNFRSF10C. These results could provide a new perspective to design novel therapeutic targets of TRAIL receptors for the diagnosis, prognosis and treatment of OS and other cancers.
Collapse
Affiliation(s)
- Wenyu Feng
- Department of Orthopaedics, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haiyingjie Lin
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Dezhi Song
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | | | | - Qingjun Wei
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - David Wood
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Yun Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Jiake Xu, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia.
| |
Collapse
|
18
|
Zeng W, Wu M, Cheng Y, Liu L, Han Y, Xie Q, Li J, Wei L, Fang Y, Chen Y, Peng J, Shen A. CCT6A knockdown suppresses osteosarcoma cell growth and Akt pathway activation in vitro. PLoS One 2022; 17:e0279851. [PMID: 36584147 PMCID: PMC9803215 DOI: 10.1371/journal.pone.0279851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
We assessed the role of the protein-coding gene chaperonin-containing TCP1 subunit 6A (CCT6A) in osteosarcoma, as this is currently unknown. Using data from the R2 online genomic analysis and visualization application, we found that CCT6A messenger ribonucleic acid (RNA) expression is increased in osteosarcoma tissue and cells. Transfection of CCT6A small interfering RNA into cultured osteosarcoma cells revealed that CCT6A knockdown attenuates cell growth, cell viability, cell survival, and induced apoptosis and cell cycle progression at the G0/G1 phases. Moreover, CCT6A knockdown downregulated phospho-protein kinase B (p-Akt), cyclinD1 and B-cell lymphoma-2, whereas upregulated Bcl-2-associated X-protein expression. Thus, CCT6A knockdown inhibits cell proliferation, induces cell apoptosis, and suppresses the Akt pathway.
Collapse
Affiliation(s)
- Weiquan Zeng
- Department of Orthopaedics, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yuying Han
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jiapeng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, United States of America
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- * E-mail: (JP); (AS)
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- * E-mail: (JP); (AS)
| |
Collapse
|
19
|
Hurkmans EGE, Koenderink JB, van den Heuvel JJMW, Versleijen-Jonkers YMH, Hillebrandt-Roeffen MHS, Groothuismink JM, Vos HI, van der Graaf WTA, Flucke U, Muradjan G, Schreuder HWB, Hagleitner MM, Brunner HG, Gelderblom H, Cleton-Jansen AM, Guchelaar HJ, de Bont ESJM, Touw DJ, Nijhoff GJ, Kremer LCM, Caron H, Windsor R, Patiño-García A, González-Neira A, Saletta F, McCowage G, Nagabushan S, Catchpoole D, te Loo DMWM, Coenen MJH. SLC7A8 coding for LAT2 is associated with early disease progression in osteosarcoma and transports doxorubicin. Front Pharmacol 2022; 13:1042989. [PMID: 36438828 PMCID: PMC9681801 DOI: 10.3389/fphar.2022.1042989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Despite (neo) adjuvant chemotherapy with cisplatin, doxorubicin and methotrexate, some patients with primary osteosarcoma progress during first-line systemic treatment and have a poor prognosis. In this study, we investigated whether patients with early disease progression (EDP), are characterized by a distinctive pharmacogenetic profile. Methods and Findings: Germline DNA from 287 Dutch high-grade osteosarcoma patients was genotyped using the DMET Plus array (containing 1,936 genetic markers in 231 drug metabolism and transporter genes). Associations between genetic variants and EDP were assessed using logistic regression models and associated variants (p <0.05) were validated in independent cohorts of 146 (Spain and United Kingdom) and 28 patients (Australia). In the association analyses, EDP was significantly associated with an SLC7A8 locus and was independently validated (meta-analysis validation cohorts: OR 0.19 [0.06–0.55], p = 0.002). The functional relevance of the top hits was explored by immunohistochemistry staining and an in vitro transport models. SLC7A8 encodes for the L-type amino acid transporter 2 (LAT2). Transport assays in HEK293 cells overexpressing LAT2 showed that doxorubicin, but not cisplatin and methotrexate, is a substrate for LAT2 (p < 0.0001). Finally, SLC7A8 mRNA expression analysis and LAT2 immunohistochemistry of osteosarcoma tissue showed that the lack of LAT2 expression is a prognostic factor of poor prognosis and reduced overall survival in patients without metastases (p = 0.0099 and p = 0.14, resp.). Conclusion: This study identified a novel locus in SLC7A8 to be associated with EDP in osteosarcoma. Functional studies indicate LAT2-mediates uptake of doxorubicin, which could give new opportunities to personalize treatment of osteosarcoma patients.
Collapse
Affiliation(s)
| | - Jan B. Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | | | | | - Hanneke I. Vos
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Winette T. A. van der Graaf
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Uta Flucke
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Grigor Muradjan
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Han G. Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Eveline S. J. M. de Bont
- Department of Pediatrics, Beatrix Children’s Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Daan J. Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | - G. Jan Nijhoff
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | - Leontien C. M. Kremer
- Department of Pediatrics, Amsterdam University Medical Centers, Emma Children’s Hospital, Amsterdam, Netherlands
| | - Huib Caron
- Department of Pediatrics, Amsterdam University Medical Centers, Emma Children’s Hospital, Amsterdam, Netherlands
| | - Rachael Windsor
- Pediatric & Adolescent Division, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Ana Patiño-García
- Department of Pediatrics, Clínica Universidad de Navarra, Solid Tumor Program, CIMA, Pamplona, Spain
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Federica Saletta
- Children’s Cancer Research Unit, The Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Geoff McCowage
- Cancer Centre for Children, The Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Sumanth Nagabushan
- Cancer Centre for Children, The Children’s Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, Australia
| | - Daniel Catchpoole
- Children’s Cancer Research Unit, The Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - D. Maroeska W. M. te Loo
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marieke J. H. Coenen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- *Correspondence: Marieke J. H. Coenen,
| |
Collapse
|
20
|
Wu SC, Kim A, Gu Y, Martinez DI, Zocchi L, Chen CC, Lopez J, Salcido K, Singh S, Wu J, Nael A, Benavente CA. UHRF1 overexpression promotes osteosarcoma metastasis through altered exosome production and AMPK/SEMA3E suppression. Oncogenesis 2022; 11:51. [PMID: 36068209 PMCID: PMC9448786 DOI: 10.1038/s41389-022-00430-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Loss-of-function mutations at the retinoblastoma (RB1) gene are associated with increased mortality, metastasis, and poor therapeutic outcome in several cancers, including osteosarcoma. However, the mechanism(s) through which RB1 loss worsens clinical outcome remains understudied. Ubiquitin-like with PHD and Ring Finger domains 1 (UHRF1) has been identified as a critical downstream effector of the RB/E2F signaling pathway that is overexpressed in various cancers. Here, we determined the role and regulatory mechanisms of UHRF1 in rendering osteosarcoma cells more aggressive. Higher UHRF1 expression correlated with malignancy in osteosarcoma cell lines, clinical samples, and genetically engineered mouse models. Gain- and loss-of-function assays revealed that UHRF1 has cell-intrinsic and extrinsic functions promoting cell proliferation, migration, invasion, angiogenesis, and metastasis. UHRF1 overexpression induced angiogenesis by suppressing AMPK activation and Semaphorin 3E (SEMA3E) expression. Further, UHRF1-mediated migration and metastasis resulted, at least in part, through altered expression of extracellular vesicles and their cargo, including urokinase-type plasminogen activator (uPA). Novel osteosarcoma genetically engineered mouse models confirmed that knocking out Uhrf1 considerably decreased metastasis and reversed the poorer survival associated with Rb1 loss. This presents a new mechanistic insight into RB1 loss-associated poor prognosis and novel oncogenic roles of UHRF1 in the regulation of angiogenesis and exosome secretion, both critical for osteosarcoma metastasis. This provides substantial support for targeting UHRF1 or its downstream effectors as novel therapeutic options to improve current treatment for osteosarcoma.
Collapse
Affiliation(s)
- Stephanie C Wu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Ahhyun Kim
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Yijun Gu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Daniel I Martinez
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Loredana Zocchi
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Claire C Chen
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Jocelyne Lopez
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Kelsey Salcido
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Sarah Singh
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA
| | - Ali Nael
- Department of Pathology, University of California, Irvine, CA, 92697, USA
- Department of Pathology, Children's Hospital of Orange County, Orange, CA, 92868, USA
| | - Claudia A Benavente
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
21
|
Taylor AM, Sun JM, Yu A, Voicu H, Shen J, Barkauskas DA, Triche TJ, Gastier-Foster JM, Man TK, Lau CC. Integrated DNA Copy Number and Expression Profiling Identifies IGF1R as a Prognostic Biomarker in Pediatric Osteosarcoma. Int J Mol Sci 2022; 23:ijms23148036. [PMID: 35887382 PMCID: PMC9319262 DOI: 10.3390/ijms23148036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is a primary malignant bone tumor arising from bone-forming mesenchymal cells in children and adolescents. Despite efforts to understand the biology of the disease and identify novel therapeutics, the survival of osteosarcoma patients remains dismal. We have concurrently profiled the copy number and gene expression of 226 osteosarcoma samples as part of the Strategic Partnering to Evaluate Cancer Signatures (SPECS) initiative. Our results demonstrate the heterogeneous landscape of osteosarcoma in younger populations by showing the presence of genome-wide copy number abnormalities occurring both recurrently among samples and in a high frequency. Insulin growth factor receptor 1 (IGF1R) is a receptor tyrosine kinase which binds IGF1 and IGF2 to activate downstream pathways involved in cell apoptosis and proliferation. We identify prevalent amplification of IGF1R corresponding with increased gene expression in patients with poor survival outcomes. Our results substantiate previously tenuously associated copy number abnormalities identified in smaller datasets (13q34+, 20p13+, 4q35-, 20q13.33-), and indicate the significance of high fibroblast growth factor receptor 2 (FGFR2) expression in distinguishing patients with poor prognosis. FGFR2 is involved in cellular proliferation processes such as division, growth and angiogenesis. In summary, our findings demonstrate the prognostic significance of several genes associated with osteosarcoma pathogenesis.
Collapse
Affiliation(s)
- Aaron M. Taylor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiayi M. Sun
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander Yu
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
| | - Horatiu Voicu
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jianhe Shen
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
| | - Donald A. Barkauskas
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Timothy J. Triche
- Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | | | - Tsz-Kwong Man
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ching C. Lau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
- Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-207-288-6000
| |
Collapse
|
22
|
Zhang C, Zhu N, Li H, Gong Y, Gu J, Shi Y, Liao D, Wang W, Dai A, Qin L. New dawn for cancer cell death: Emerging role of lipid metabolism. Mol Metab 2022; 63:101529. [PMID: 35714911 PMCID: PMC9237930 DOI: 10.1016/j.molmet.2022.101529] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistance to cell death, a protective mechanism for removing damaged cells, is a "Hallmark of Cancer" that is essential for cancer progression. Increasing attention to cancer lipid metabolism has revealed a number of pathways that induce cancer cell death. SCOPE OF REVIEW We summarize emerging concepts regarding lipid metabolic reprogramming in cancer that is mainly involved in lipid uptake and trafficking, de novo synthesis and esterification, fatty acid synthesis and oxidation, lipogenesis, and lipolysis. During carcinogenesis and progression, continuous metabolic adaptations are co-opted by cancer cells, to maximize their fitness to the ever-changing environmental. Lipid metabolism and the epigenetic modifying enzymes interact in a bidirectional manner which involves regulating cancer cell death. Moreover, lipids in the tumor microenvironment play unique roles beyond metabolic requirements that promote cancer progression. Finally, we posit potential therapeutic strategies targeting lipid metabolism to improve treatment efficacy and survival of cancer patient. MAJOR CONCLUSIONS The profound comprehension of past findings, current trends, and future research directions on resistance to cancer cell death will facilitate the development of novel therapeutic strategies targeting the lipid metabolism.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, PR China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yongzhen Gong
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Duanfang Liao
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Aiguo Dai
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
23
|
Protein Expression of AEBP1, MCM4, and FABP4 Differentiate Osteogenic, Adipogenic, and Mesenchymal Stromal Stem Cells. Int J Mol Sci 2022; 23:ijms23052568. [PMID: 35269711 PMCID: PMC8910760 DOI: 10.3390/ijms23052568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) gain an increasing focus in the field of regenerative medicine due to their differentiation abilities into chondrocytes, adipocytes, and osteoblastic cells. However, it is apparent that the transformation processes are extremely complex and cause cellular heterogeneity. The study aimed to characterize differences between MSCs and cells after adipogenic (AD) or osteoblastic (OB) differentiation at the proteome level. Comparative proteomic profiling was performed using tandem mass spectrometry in data-independent acquisition mode. Proteins were quantified by deep neural networks in library-free mode and correlated to the Molecular Signature Database (MSigDB) hallmark gene set collections for functional annotation. We analyzed 4108 proteins across all samples, which revealed a distinct clustering between MSCs and cell differentiation states. Protein expression profiling identified activation of the Peroxisome proliferator-activated receptors (PPARs) signaling pathway after AD. In addition, two distinct protein marker panels could be defined for osteoblastic and adipocytic cell lineages. Hereby, overexpression of AEBP1 and MCM4 for OB as well as of FABP4 for AD was detected as the most promising molecular markers. Combination of deep neural network and machine-learning algorithms with data-independent mass spectrometry distinguish MSCs and cell lineages after adipogenic or osteoblastic differentiation. We identified specific proteins as the molecular basis for bone formation, which could be used for regenerative medicine in the future.
Collapse
|
24
|
Chen X, Margaret C, Hicks MJ, Sarkar P, Gaber MW, Man TK. LOX upregulates FAK phosphorylation to promote metastasis in osteosarcoma. Genes Dis 2022; 10:254-266. [PMID: 37013056 PMCID: PMC10066266 DOI: 10.1016/j.gendis.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/02/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022] Open
Abstract
Osteosarcoma is a malignant bone tumor that commonly occurs in the pediatric population. Despite the use of chemotherapy and surgery, metastasis remains to be the leading cause of death in patients with osteosarcoma. We have previously reported that cytoplasmic mislocalization of p27 is associated with a poor outcome in osteosarcoma. In this study, we further show that lysyl oxidase (LOX) expression was associated with p27 mislocalization. LOX is an enigmatic molecule that acts as a tumor suppressor or a metastatic promoter; however, its role in osteosarcoma is still unclear. Hence, we performed both in vitro and in vivo analyses to dissect the role of LOX in osteosarcoma. The result of our survival analysis indicated that LOX expression significantly correlated with a poor outcome in osteosarcoma with or without controlling for the initial metastasis status (P < 0.05). Functionally, we found that higher LOX expression promoted osteosarcoma cell proliferation, migration, and invasiveness in vitro and produced a higher number of mice with pulmonary metastases in an orthotopic xenograft mouse model. Mechanistically, phospho-FAK was increased in osteosarcoma cells with high LOX expression. Our results further showed that FAK inhibition significantly reduced tumor cell proliferation and migration in vitro as well as LOX-mediated metastasis in mice. Together, our findings suggest that there is a novel link between p27 mislocalization and LOX expression. LOX plays a pivotal role in osteosarcoma metastasis by upregulating FAK phosphorylation. FAK inhibition may constitute a promising therapeutic strategy to reduce the development of metastasis in osteosarcoma with LOX overexpression.
Collapse
|
25
|
Yao ZP, Zhu H, Shen F, Gong D. Hsp90 regulates the tumorigenic function of tyrosine protein kinase in osteosarcoma. Clin Exp Pharmacol Physiol 2021; 49:380-390. [PMID: 34767669 DOI: 10.1111/1440-1681.13613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023]
Abstract
Despite recent advances in diagnosis and treatment, osteosarcoma remains as the most common bone cancer in children and is associated with poor prognosis. Growing evidence has supported dysregulation of threonine and tyrosine protein kinase (TTK) expression as a hallmark of multiple cancers, however, its function in osteosarcoma remains to be elucidated. In the present study, we found that TTK was frequently overexpressed in osteosarcoma and associated with increased tumour growth and progression. Moreover, using both in vitro and in vivo assays, we provided evidence that TTK level was regulated by a molecular chaperone, heat shock protein 90 (Hsp90). Hsp90 directly interacted with TTK and prevents proteasome-dependent TTK degradation, leading to the accumulation of TTK in osteosarcoma cells. Elevated TTK promoted cancer cell proliferation and survival by activating cell-cycle progression and inhibiting apoptosis. Consistently, depletion of TTK by Hsp90 inhibition induced cell-cycle arrest, generated aneuploidy and eventually resulted in apoptotic cancer cell death. Together, our study revealed an important Hsp90-TTK regulatory axis in osteosarcoma cells to promote cancer cell growth and survival. These findings expand our knowledge on osteosarcoma pathogenesis and offer novel therapeutic options for clinical practice.
Collapse
Affiliation(s)
- Zhao-Peng Yao
- Department of Orthopaedics, The First Hospital of Nanchang, Nanchang, China
| | - Hui Zhu
- Department of Breast Cancer Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, China
| | - Feng Shen
- Department of Orthopaedics, The First Hospital of Nanchang, Nanchang, China
| | - Dan Gong
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
26
|
Allen TA, Cullen MM, Hawkey N, Mochizuki H, Nguyen L, Schechter E, Borst L, Yoder JA, Freedman JA, Patierno SR, Cheng K, Eward WC, Somarelli JA. A Zebrafish Model of Metastatic Colonization Pinpoints Cellular Mechanisms of Circulating Tumor Cell Extravasation. Front Oncol 2021; 11:641187. [PMID: 34631514 PMCID: PMC8495265 DOI: 10.3389/fonc.2021.641187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Metastasis is a multistep process in which cells must detach, migrate/invade local structures, intravasate, circulate, extravasate, and colonize. A full understanding of the complexity of this process has been limited by the lack of ability to study these steps in isolation with detailed molecular analyses. Leveraging a comparative oncology approach, we injected canine osteosarcoma cells into the circulation of transgenic zebrafish with fluorescent blood vessels in a biologically dynamic metastasis extravasation model. Circulating tumor cell clusters that successfully extravasated the vasculature as multicellular units were isolated under intravital imaging (n = 6). These extravasation-positive tumor cell clusters sublines were then molecularly profiled by RNA-Seq. Using a systems-level analysis, we pinpointed the downregulation of KRAS signaling, immune pathways, and extracellular matrix (ECM) organization as enriched in extravasated cells (p < 0.05). Within the extracellular matrix remodeling pathway, we identified versican (VCAN) as consistently upregulated and central to the ECM gene regulatory network (p < 0.05). Versican expression is prognostic for a poorer metastasis-free and overall survival in patients with osteosarcoma. Together, our results provide a novel experimental framework to study discrete steps in the metastatic process. Using this system, we identify the versican/ECM network dysregulation as a potential contributor to osteosarcoma circulating tumor cell metastasis.
Collapse
Affiliation(s)
- Tyler A Allen
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Mark M Cullen
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Nathan Hawkey
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Hiroyuki Mochizuki
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Lan Nguyen
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Elyse Schechter
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Luke Borst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Jennifer A Freedman
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| | - Steven R Patierno
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
| | - William C Eward
- Department of Orthopedics, Duke University Medical Center, Durham, NC, United States
| | - Jason A Somarelli
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
27
|
Gong Y, Wei ZR. Identification of PSMD14 as a potential novel prognosis biomarker and therapeutic target for osteosarcoma. Cancer Rep (Hoboken) 2021; 5:e1522. [PMID: 34383385 PMCID: PMC9327663 DOI: 10.1002/cnr2.1522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/08/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary bone tumor. The survival rate of osteosarcoma patients has not significantly increased in the past decades. Uncovering the mechanisms of malignancy, progression, and metastasis will shed light on the development of new therapeutic targets and treatment for osteosarcoma. AIM The aim of this study is to identify potential osteosarcoma biomarker and/or therapeutic targets by using integrated bioinformatics analysis. METHODS AND RESULTS We utilized existing gene expression datasets to identify differential expressed genes (DEGs) that could serve as osteosarcoma biomarkers or even as therapeutic targets. We found 48 DEGs were overlapped in three datasets. Among these 48 DEGs, PSMD14 was on the top of the up-regulated gene list. We further found that higher PSMD14 expression was correlated with higher risk group (younger age group, ≤20.83 years of age), metastasis within 5 years and higher grade of tumor. Higher PSMD14 expression in osteosarcoma had positive correlation with higher infiltration of CD8+ T cells, neutrophils and myeloid dendritic cells. Kaplan-Myer survival data further revealed that higher expression of PSMD14 predicted significantly worse prognosis (p = .013). Gene set enrichment analysis was further performed for the DEGs related to PSMD14 in osteosarcoma. We found that lower PSMD14 expression group had more immune responses such as interferon γ, α responses, inflammation response etc. However, the higher PSMD14 expression group had more cell proliferation-related biological processes, such as G2M checkpoints and Myc targets. Through establishing protein-protein interaction networks using PSMD14 related DEGs, we identified 10 hub genes that were all ribosomal proteins. These hub genes may play roles in osteosarcoma tumorigenesis, progression and/or metastasis. CONCLUSION We identified PSMD14 gene as a possible osteosarcoma biomarker, and/or a possible therapeutic target.
Collapse
Affiliation(s)
- Yubao Gong
- Department of Orthopedics, Jilin University First Hospital, Jilin, China
| | - Zheng-Ren Wei
- Department of Pharmocology, Jilin University Bethune College of Medicine, Jilin, China
| |
Collapse
|
28
|
The Immune Landscape of Osteosarcoma: Implications for Prognosis and Treatment Response. Cells 2021; 10:cells10071668. [PMID: 34359840 PMCID: PMC8304628 DOI: 10.3390/cells10071668] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS) is a high-grade malignant stromal tumor composed of mesenchymal cells producing osteoid and immature bone, with a peak of incidence in the second decade of life. Hence, although relatively rare, the social impact of this neoplasm is particularly relevant. Differently from carcinomas, molecular genetics and the role of the tumor microenvironment in the development and progression of OS are mainly unknown. Indeed, while the tumor microenvironment has been widely studied in other solid tumor types and its contribution to tumor progression has been definitely established, tumor-stroma interaction in OS has been quite neglected for years. Only recently have new insights been gained, also thanks to the availability of new technologies and bioinformatics tools. A better understanding of the cross-talk between the bone microenvironment, including immune and stromal cells, and OS will be key not only for a deeper knowledge of osteosarcoma pathophysiology, but also for the development of novel therapeutic strategies. In this review, we summarize the current knowledge about the tumor microenvironment in OS, mainly focusing on immune cells, discussing their role and implication for disease prognosis and treatment response.
Collapse
|
29
|
Liu Y, Yang S, Wang F, Zhou Z, Xu W, Xie J, Qiao L, Gu Y. PLEK2 promotes osteosarcoma tumorigenesis and metastasis by activating the PI3K/AKT signaling pathway. Oncol Lett 2021; 22:534. [PMID: 34084215 PMCID: PMC8161470 DOI: 10.3892/ol.2021.12795] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/28/2021] [Indexed: 01/20/2023] Open
Abstract
Increasing evidence suggest that pleckstrin-2 (PLEK2) acts as an oncogene in several malignancies. The present study aimed to investigate the effects of PLEK2 on osteosarcoma (OS) tumorigenesis and metastasis. PLEK2 expression in OS was analyzed via bioinformatics, reverse transcription-quantitative PCR, western blot and immunohistochemistry analyses. The Cell Counting Kit-8 (CCK-8), colony formation and EdU assays were performed to assess the role of PLEK2 in OS cell proliferation. The pro-metastatic effects of PLEK2 were assessed via the Transwell and wound healing assays. In addition, the PLEK2 downstream pathway was analyzed via bioinformatics analysis and verified via western blot analysis. The results demonstrated that PLEK2 expression was upregulated in both OS cell lines and specimens. The results of the CCK-8, colony formation and EdU assays demonstrated that PLEK2 promoted OS cell proliferation in vitro. The in vivo experiments further demonstrated that PLEK2 knockdown significantly suppressed OS growth. In addition, the Transwell and wound healing assays indicated that PLEK2 promoted OS invasiveness in vitro, which was induced by the activation of the epithelial-to-mesenchymal transition process. Bioinformatics analysis revealed that PLEK2 can activate the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, which was verified via western blot analysis. Taken together, the results of the present study suggest that PLEK2 may play a tumor-promoting role in OS via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Siting Yang
- Department of Anesthesiology and Nursing, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Feng Wang
- Department of Analysis Center, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zheng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenjing Xu
- Department of Ultrasound, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214000, P.R. China
| | - Jingjing Xie
- Department of Ultrasound, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214000, P.R. China
| | - Linhui Qiao
- Department of Orthopedics, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Yanglin Gu
- Department of Orthopedics, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
30
|
Xie L, Yang Y, Guo W, Che D, Xu J, Sun X, Liu K, Ren T, Liu X, Yang Y, Ji T, Tang X. The Clinical Implications of Tumor Mutational Burden in Osteosarcoma. Front Oncol 2021; 10:595527. [PMID: 33898301 PMCID: PMC8059407 DOI: 10.3389/fonc.2020.595527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background Osteosarcoma (OTS) is aggressive bone malignancy without well-recognized prognosis biomarker. Tumor mutational burden (TMB) has been proved as effective biomarker in predicting clinical outcomes in several cancer types. However, its prognostic value in OTS remains unknown. In this study, we aim to evaluate the implication of TMB in OTS patients. Methods To depict the landscape of somatic mutations in OTS, we performed Whole-Exome Sequencing (WES) on 31 OTS tissue samples and corresponding White Blood Cells (WBCs) as matched control. TMB was calculated as the total number of somatic alterations in coding regions normalized to the per sequenced genomic megabase (~30.4Mb in WES). The prognostic values of TMB were evaluated by Kaplan-Meier methods and Cox regression models. Results The median age was 16.0 years at diagnosis, and 54.8% of patients were male. The most common genetic alterations were mainly involved in cell cycle and DNA damage response and repair, including H3F3A, TP53, MYC, and CDKN2A/B. The median progression-free survival (PFS) was 775.5 days in TMB-High (defined as third quartile of TMB value, <2.565) versus 351 days in TMB-Low (<2.565). All patients with TMB-High are PFS-Long (>400 days), while 36.4% of all patients with TMB-Low were PFS-Long (P=0.003). TMB were significantly greater in PFS-Long than in PFS-Short (<400 days) (P=0.002). Moreover, the median overall survival (OS) was 1,307 days in TMB-High versus 672.5 days in TMB-Low. Furthermore, TMB-High group had significantly improved PFS (P=0.04) and OS (P=0.03). Conclusions TMB-High can be used as prognostic marker for OTS. Our findings demonstrate that TMB may be helpful in combination with traditionally clinicopathologic risk factors to optimize risk stratification and guide treatment decisions.
Collapse
Affiliation(s)
- Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Yufei Yang
- The Division of Bioinformatics, Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Dongxue Che
- The Division of Bioinformatics, Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Xin Sun
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Kuisheng Liu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Xingyu Liu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Yi Yang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Tao Ji
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| |
Collapse
|
31
|
Cao H, Quan S, Zhang L, Chen Y, Jiao G. BMPR2 expression level is correlated with low immune infiltration and predicts metastasis and poor survival in osteosarcoma. Oncol Lett 2021; 21:391. [PMID: 33777214 PMCID: PMC7988701 DOI: 10.3892/ol.2021.12652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumor in adolescents and young adults, and identifying biomarkers for prognosis and therapy is necessary. Bone morphogenetic protein receptor 2 (BMPR2) is involved in various cellular functions, including cell adhesion, proliferation and invasion, inflammation, apoptosis and metastatic spread. However, the correlation between BMPR2 expression levels and prognosis and tumor-infiltrating immune cells in osteosarcoma is not well understood. In the present study, the expression level of BMPR2 was investigated using the Oncomine and R2 databases. The association between the expression level of BMPR2 and the clinical prognosis of patients with cancer was analyzed using the R2 database. The relationship between the expression level of BMPR2 and immune cell infiltration in the stroma of osteosarcoma was assessed using the Tumor Immune Estimation Resource (TIMER) and CIBERSORT. The correlations between BMPR2 expression level and infiltrated immune cell gene marker sets in osteosarcoma were validated in the TIMER and R2 databases. Analysis of a cohort of patients with osteosarcoma revealed that BMPR2 expression was significantly higher in osteosarcoma compared with in normal tissue and was correlated with poor prognosis. M0 macrophages, M2 macrophages, resting mast, γ δ T and CD8+ T cells were the top five immune cells with the highest degrees of infiltration in osteosarcoma. In addition, BMPR2 expression level showed a significant negative correlation with the gene markers of CD8+ T cells, monocytes and M2 macrophages. Low levels of infiltrating CD8+ T cells, monocytes or M2 macrophages in osteosarcoma was significantly associated with poor survival. These data suggested that CD8+ T cells, monocytes and M2 macrophages play significant roles in the establishment of the immune microenvironment of osteosarcoma. High BMPR2 expression was associated with poor prognosis and low infiltration of CD8+ T cells, monocytes and M2 macrophages in osteosarcoma. Hence, BMPR2 can be considered a biomarker of the immune infiltration, metastasis and prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Hongxin Cao
- Department of Medical Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuang Quan
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lu Zhang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guangjun Jiao
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
32
|
Systems Biology Approach Identifies Prognostic Signatures of Poor Overall Survival and Guides the Prioritization of Novel BET-CHK1 Combination Therapy for Osteosarcoma. Cancers (Basel) 2020; 12:cancers12092426. [PMID: 32859084 PMCID: PMC7564419 DOI: 10.3390/cancers12092426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/01/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) patients exhibit poor overall survival, partly due to copy number variations (CNVs) resulting in dysregulated gene expression and therapeutic resistance. To identify actionable prognostic signatures of poor overall survival, we employed a systems biology approach using public databases to integrate CNVs, gene expression, and survival outcomes in pediatric, adolescent, and young adult OS patients. Chromosome 8 was a hotspot for poor prognostic signatures. The MYC-RAD21 copy number gain (8q24) correlated with increased gene expression and poor overall survival in 90% of the patients (n = 85). MYC and RAD21 play a role in replication-stress, which is a therapeutically actionable network. We prioritized replication-stress regulators, bromodomain and extra-terminal proteins (BETs), and CHK1, in order to test the hypothesis that the inhibition of BET + CHK1 in MYC-RAD21+ pediatric OS models would be efficacious and safe. We demonstrate that MYC-RAD21+ pediatric OS cell lines were sensitive to the inhibition of BET (BETi) and CHK1 (CHK1i) at clinically achievable concentrations. While the potentiation of CHK1i-mediated effects by BETi was BET-BRD4-dependent, MYC expression was BET-BRD4-independent. In MYC-RAD21+ pediatric OS xenografts, BETi + CHK1i significantly decreased tumor growth, increased survival, and was well tolerated. Therefore, targeting replication stress is a promising strategy to pursue as a therapeutic option for this devastating disease.
Collapse
|
33
|
Liu J, Wu S, Xie X, Wang Z, Lei Q. Identification of potential crucial genes and key pathways in osteosarcoma. Hereditas 2020; 157:29. [PMID: 32665038 PMCID: PMC7362476 DOI: 10.1186/s41065-020-00142-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background The aim of this study is to identify the potential pathogenic and metastasis-related differentially expressed genes (DEGs) in osteosarcoma through bioinformatic analysis of Gene Expression Omnibus (GEO) database. Results Gene expression profiles of GSE14359, GSE16088, and GSE33383, in total 112 osteosarcoma tissue samples and 7 osteoblasts, were analyzed. Seventy-four normal-primary DEGs (NPDEGs) and 764 primary-metastatic DEGs (PMDEGs) were screened. VAMP8, A2M, HLA-DRA, SPARCL1, HLA-DQA1, APOC1 and AQP1 were identified continuously upregulating during the oncogenesis and metastasis of osteosarcoma. The enriched functions and pathways of NPDEGs include procession and presentation of antigens, activation of MHC class II receptors and phagocytosis. The enriched functions and pathways of PMDEGs include mitotic nuclear division, cell adhesion molecules (CAMs) and focal adhesion. With protein-protein interaction (PPI) network analyzed by Molecular Complex Detection (MCODE) plug-in of Cytoscape software, one hub NPDEG (HLA-DRA) and 7 hub PMDEGs (CDK1, CDK20, CCNB1, MTIF2, MRPS7, VEGFA and EGF) were eventually selected, and the most significant pathways in NPDEGs module and PMDEGs module were enriched in the procession and presentation of exogenous peptide antigen via MHC class II and the nuclear division, respectively. Conclusions By integrated bioinformatic analysis, numerous DEGs related to osteosarcoma were screened, and the hub DEGs identified in this study are possibly part of the potential biomarkers for osteosarcoma. However, further experimental studies are still necessary to elucidate the biological function and mechanism of these genes.
Collapse
Affiliation(s)
- Junwei Liu
- Department of Orthopedic surgery, Daping Hospital, Army medical university, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Siyu Wu
- Department of Orthopedic surgery, Daping Hospital, Army medical university, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Xiaoyu Xie
- Department of Orthopedic surgery, Daping Hospital, Army medical university, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China
| | - Ziming Wang
- Department of Orthopedic surgery, Daping Hospital, Army medical university, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, PR China.
| | - Qianqian Lei
- Department of Radiation Oncology, Chongqing University Cancer Hospital, No. 181, Hanyu road, Shapingba District, Chongqing, 400030, PR China.
| |
Collapse
|
34
|
Hou J, Liu G, Zhang P, Wang B, Yan Q, Wu P, Wang C, Yao W. Experimental Study of Somatic Variants of Osteosarcoma by Whole-Exome Sequencing. Med Sci Monit 2020; 26:e920826. [PMID: 32193367 PMCID: PMC7106971 DOI: 10.12659/msm.920826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background This study aimed to investigate the role of gene mutation site distribution, biological function, pathway enrichment, and gene association analysis in the occurrence, development, and migration of osteosarcoma. Material/Methods Somatic mutation screening was performed using the whole-exome sequencing of osteosarcoma samples, and the distribution of mutations was demonstrated by Circos diagrams. Metascape was used to analyze the GO and KEGG signal pathway enrichment of the genes harboring protein coding alterations, and GeneMANIA was used to analyze the interaction of mutated genes. Results The results showed that the protein coding alterations were found throughout the whole genome in 3 osteosarcoma samples. A large number of identical or related biological processes and pathways were found in osteosarcoma samples. The GeneMANIA analysis of the 10 mutations shared by 3 samples showed that the target gene minichromosome maintenance complex component 4 (MCM4) and 3 lateral genes were most functional, and were all related to DNA replication. The analysis of GO and KEGG signal pathway enrichment showed that the mutated genes were involved mainly in tumor-related metabolic pathways. Three mutated genes were involved in the cell process, and 2 mutated genes were involved in the metabolic process. Known driver gene mutations were also observed in the samples. Conclusions The gene analysis confirmed that patients with osteosarcoma had a wide range of common gene mutations related to each other, which are involved in tumor-related metabolic pathways. These findings provide a basis for further gene-targeted therapy and pathway research.
Collapse
Affiliation(s)
- Jingyu Hou
- Department of Bone and Soft Tissue Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Guoqing Liu
- Department of Bone and Soft Tissue Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Peng Zhang
- Department of Bone and Soft Tissue Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Bangmin Wang
- Department of Bone and Soft Tissue Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Qiang Yan
- Department of Bone and Soft Tissue Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Pin Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Chuchu Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Weitao Yao
- Department of Bone and Soft Tissue Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
35
|
Li YH, Tong KL, Lu JL, Lin JB, Li ZY, Sang Y, Ghodbane A, Gao XJ, Tam MS, Hu CD, Zhang HT, Zha ZG. PRMT5-TRIM21 interaction regulates the senescence of osteosarcoma cells by targeting the TXNIP/p21 axis. Aging (Albany NY) 2020; 12:2507-2529. [PMID: 32023548 PMCID: PMC7041745 DOI: 10.18632/aging.102760] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
Abstract
Osteosarcoma (OS) is the most common bone malignancy in adolescents and has poor clinical outcomes. Protein arginine methyltransferase 5 (PRMT5) has recently been shown to be aberrantly expressed in various cancers, yet its role in OS remains elusive. Here, we found that PRMT5 was overexpressed in OS and its overexpression predicted poor clinical outcomes. PRMT5 knockdown significantly triggered pronounced senescence in OS cells, as evidenced by the increase in senescence-associated β-galactosidase (SA-β-gal)-stained cells, induction of p21 expression, and upregulation of senescence-associated secretory phenotype (SASP) gene expression. In addition, we found that PRMT5 plays a key role in regulating DNA damaging agents-induced OS cell senescence, possibly, via affecting the repair of DNA damage. Furthermore, we found that TXNIP acts as a key factor mediating PRMT5 depletion-induced DNA damage and cellular senescence. Mechanistically, TRIM21, which interacts with PRMT5, was essential for the regulation of TXNIP/p21 expression. In summary, we propose a model in which PRMT5, by interaction with TRIM21, plays a key role in regulating the TXNIP/p21 axis during senescence in OS cells. The present findings suggest that PRMT5 overexpression in OS cells might confer resistance to chemotherapy and that targeting the PRMT5/TRIM21/TXNIP signaling may enhance the therapeutic efficacy in OS.
Collapse
Affiliation(s)
- Yu-Hang Li
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Kui-Leung Tong
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Jun-Lei Lu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jie-Bin Lin
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Zhen-Yan Li
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Yuan Sang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong, China
| | - Abdelmoumin Ghodbane
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Xue-Juan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Man-Seng Tam
- IAN WO Medical Center, Macao Special Administrative Region, Macao 999078, China
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Huan-Tian Zhang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
36
|
Shi Y, He R, Zhuang Z, Ren J, Wang Z, Liu Y, Wu J, Jiang S, Wang K. A risk signature-based on metastasis-associated genes to predict survival of patients with osteosarcoma. J Cell Biochem 2020; 121:3479-3490. [PMID: 31898371 DOI: 10.1002/jcb.29622] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022]
Abstract
Osteosarcoma (OS) is the most common primary solid malignant bone tumor, and its metastasis is a prominent cause of high mortality in patients. In this study, a prognosis risk signature was constructed based on metastasis-associated genes. Four microarrays datasets with clinical information were downloaded from Gene Expression Omnibus, and 256 metastasis-associated genes were identified by limma package. Further, a protein-protein interaction network was constructed, and survival analysis was performed using data from the Therapeutically Applicable Research to Generate Effective Treatments data matrix, identifying 19 genes correlated with prognosis. Six genes were selected by the least absolute shrinkage and selection operator regression for multivariate cox analysis. Finally, a three-gene (MYC, CPE, and LY86) risk signature was constructed, and datasets GSE21257 and GSE16091 were used to validate the prediction efficiency of the signature. The survival times of low- and high-risk groups were significantly different in the training set and validation set. Additionally, gene set enrichment analysis revealed that the genes in the signature may affect the cell cycle, gap junctions, and interleukin-6 production. Therefore, the three-gene survival risk signature could potentially predict the prognosis of patients with OS. Further, proteins encoded by CPE and LY86 may provide novel insights into the prediction of OS prognosis and therapeutic targets.
Collapse
Affiliation(s)
- Yi Shi
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ronghan He
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ze Zhuang
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianhua Ren
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhe Wang
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuangao Liu
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiajun Wu
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shihai Jiang
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kun Wang
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Negri GL, Grande BM, Delaidelli A, El-Naggar A, Cochrane D, Lau CC, Triche TJ, Moore RA, Jones SJ, Montpetit A, Marra MA, Malkin D, Morin RD, Sorensen PH. Integrative genomic analysis of matched primary and metastatic pediatric osteosarcoma. J Pathol 2019; 249:319-331. [PMID: 31236944 DOI: 10.1002/path.5319] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/23/2019] [Accepted: 06/20/2019] [Indexed: 01/14/2023]
Abstract
Despite being the most common childhood bone tumor, the genomic characterization of osteosarcoma remains incomplete. In particular, very few osteosarcoma metastases have been sequenced to date, critical to better understand mechanisms of progression and evolution in this tumor. We performed an integrated whole genome and exome sequencing analysis of paired primary and metastatic pediatric osteosarcoma specimens to identify recurrent genomic alterations. Sequencing of 13 osteosarcoma patients including 13 primary, 10 metastatic, and 3 locally recurring tumors revealed a highly heterogeneous mutational landscape, including cases of hypermutation and microsatellite instability positivity, but with virtually no recurrent alterations except for mutations involving the tumor suppressor genes RB1 and TP53. At the germline level, we detected alterations in multiple cancer related genes in the majority of the cohort, including those potentially disrupting DNA damage response pathways. Metastases retained only a minimal number of short variants from their corresponding primary tumors, while copy number alterations showed higher conservation. One recurrently amplified gene, KDR, was highly expressed in advanced cases and associated with poor prognosis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gian Luca Negri
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Bruno M Grande
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Amal El-Naggar
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Dawn Cochrane
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Ching C Lau
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Timothy J Triche
- Department of Pathology and Laboratory Medicine, Childrens Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pathology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Steven Jm Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Alexandre Montpetit
- Department of Human Genetics, McGill University and Research Institute, McGill University Health Centre, Montreal, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - David Malkin
- Division of Haematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
38
|
Newton R, Wernisch L. A meta-analysis of multiple matched aCGH/expression cancer datasets reveals regulatory relationships and pathway enrichment of potential oncogenes. PLoS One 2019; 14:e0213221. [PMID: 31335867 PMCID: PMC6650054 DOI: 10.1371/journal.pone.0213221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
The copy numbers of genes in cancer samples are often highly disrupted and form a natural amplification/deletion experiment encompassing multiple genes. Matched array comparative genomics and transcriptomics datasets from such samples can be used to predict inter-chromosomal gene regulatory relationships. Previously we published the database METAMATCHED, comprising the results from such an analysis of a large number of publically available cancer datasets. Here we investigate genes in the database which are unusual in that their copy number exhibits consistent heterogeneous disruption in a high proportion of the cancer datasets. We assess the potential relevance of these genes to the pathology of the cancer samples, in light of their predicted regulatory relationships and enriched biological pathways. A network-based method was used to identify enriched pathways from the genes’ inferred targets. The analysis predicts both known and new regulator-target interactions and pathway memberships. We examine examples in detail, in particular the gene POGZ, which is disrupted in many of the cancer datasets and has an unusually large number of predicted targets, from which the network analysis predicts membership of cancer related pathways. The results suggest close involvement in known cancer pathways of genes exhibiting consistent heterogeneous copy number disruption. Further experimental work would clarify their relevance to tumor biology. The results of the analysis presented in the database METAMATCHED, and included here as an R archive file, constitute a large number of predicted regulatory relationships and pathway memberships which we anticipate will be useful in informing such experiments.
Collapse
Affiliation(s)
- Richard Newton
- MRC Biostatistics Unit, Cambridge University, Cambridge, United Kingdom
- * E-mail:
| | - Lorenz Wernisch
- MRC Biostatistics Unit, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
39
|
Sorenson L, Fu Y, Hood T, Warren S, McEachron TA. Targeted transcriptional profiling of the tumor microenvironment reveals lymphocyte exclusion and vascular dysfunction in metastatic osteosarcoma. Oncoimmunology 2019; 8:e1629779. [PMID: 31428529 PMCID: PMC6685511 DOI: 10.1080/2162402x.2019.1629779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone tumor in pediatric and adolescent/young adult patients yet little is known about the microenvironment that supports this aggressive disease. We have used targeted gene expression profiling and immunohistochemistry to characterize the microenvironment of metastatic and non-metastatic OS specimens from pediatric patients exhibiting poor histologic response to chemotherapy. Our results indicate that metastatic specimens exhibit lymphocyte exclusion as T cells are confined to the periphery of the pulmonary lesions. Furthermore, our data provides evidence of vascular dysfunction in metastatic OS indicated by increased expression of VEGFA, an increased ANGPT2:ANGPT1 gene expression ratio, and decreased expression of SELE, the gene encoding the adhesion molecule E-selectin. Moreover, correlation analyses show an inverse relationship between lymphocyte abundance and markers of vascular dysfunction exclusively in the metastatic specimens. Together, our data shows that the non-metastatic OS specimens demonstrate increased expression of various immunotherapeutic targets in comparison metastatic specimens and identifies vascular dysfunction and lymphocyte exclusion as important processes for therapeutic intervention in metastatic disease.
Collapse
Affiliation(s)
- Laurie Sorenson
- Department of Translational Genomics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Yanfen Fu
- NanoString Technologies, Inc., Seattle, WA, USA
| | - Tressa Hood
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Troy A. McEachron
- Department of Translational Genomics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
40
|
Huh HD, Kim DH, Jeong HS, Park HW. Regulation of TEAD Transcription Factors in Cancer Biology. Cells 2019; 8:E600. [PMID: 31212916 PMCID: PMC6628201 DOI: 10.3390/cells8060600] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Transcriptional enhanced associate domain (TEAD) transcription factors play important roles during development, cell proliferation, regeneration, and tissue homeostasis. TEAD integrates with and coordinates various signal transduction pathways including Hippo, Wnt, transforming growth factor beta (TGFβ), and epidermal growth factor receptor (EGFR) pathways. TEAD deregulation affects well-established cancer genes such as KRAS, BRAF, LKB1, NF2, and MYC, and its transcriptional output plays an important role in tumor progression, metastasis, cancer metabolism, immunity, and drug resistance. To date, TEADs have been recognized to be key transcription factors of the Hippo pathway. Therefore, most studies are focused on the Hippo kinases and YAP/TAZ, whereas the Hippo-dependent and Hippo-independent regulators and regulations governing TEAD only emerged recently. Deregulation of the TEAD transcriptional output plays important roles in tumor progression and serves as a prognostic biomarker due to high correlation with clinicopathological parameters in human malignancies. In addition, discovering the molecular mechanisms of TEAD, such as post-translational modifications and nucleocytoplasmic shuttling, represents an important means of modulating TEAD transcriptional activity. Collectively, this review highlights the role of TEAD in multistep-tumorigenesis by interacting with upstream oncogenic signaling pathways and controlling downstream target genes, which provides unprecedented insight and rationale into developing TEAD-targeted anticancer therapeutics.
Collapse
Affiliation(s)
- Hyunbin D Huh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Dong Hyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
41
|
Zhang H, Guo L, Zhang Z, Sun Y, Kang H, Song C, Liu H, Lei Z, Wang J, Mi B, Xu Q, Guan H, Li F. Co-Expression Network Analysis Identified Gene Signatures in Osteosarcoma as a Predictive Tool for Lung Metastasis and Survival. J Cancer 2019; 10:3706-3716. [PMID: 31333788 PMCID: PMC6636290 DOI: 10.7150/jca.32092] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/04/2019] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor, whose poor prognosis is mainly due to lung metastasis. The aim of this study is to build a practical and valid diagnostic test that can predict the risk of OS metastasis and progression. We performed weighted gene co-expression network analysis (WGCNA) on GSE21257 from the Gene Expression Omnibus (GEO) database, which contains microarray data of biopsies from OS patients. In these modules, the highest association was found between the blue module and metastasis stage (r = -0.52) by Pearson's correlation analysis. Based on Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression, we derived eight clinically significant genes and constructed an eight-gene signature for metastasis status. It showed great efficacy to distinguish metastasis from non-metastasis (AUC = 0.886) and the results were validated in The Cancer Genome Atlas (TCGA) database. Functional enrichment analysis of hub genes showed that their biological processes focused on immune-related pathways, suggesting the important roles of immune cells, immune pathways and the tumor microenvironment in metastasis development. In conclusion, we discovered an efficient gene signature with great efficacy to distinguish metastasis status, which may help improve early diagnosis and treatment, enhancing the clinical outcomes of OS patients. Besides we created an effective protocol to seek for several hub genes in high-throughput data by combining WGCNA and LASSO Cox regression.
Collapse
Affiliation(s)
- Honghua Zhang
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan, 430030, China
| | - Linwei Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zheng Zhang
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan, 430030, China
| | - Yunlong Sun
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan, 430030, China
| | - Honglei Kang
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan, 430030, China
| | - Chao Song
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan, 430030, China
| | - Huiyong Liu
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan, 430030, China
| | - Zhuowei Lei
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan, 430030, China
| | - Jia Wang
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan, 430030, China
| | - Baoguo Mi
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, No. 76 Nanguo Road, Xi'an, 710054, Shanxi, China
| | - Qian Xu
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave., Wuhan, 430030, China
| | - Hanfeng Guan
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan, 430030, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jiefang Ave, Wuhan, 430030, China
| |
Collapse
|
42
|
Riccardo F, Tarone L, Iussich S, Giacobino D, Arigoni M, Sammartano F, Morello E, Martano M, Gattino F, Maria RD, Ferrone S, Buracco P, Cavallo F. Identification of CSPG4 as a promising target for translational combinatorial approaches in osteosarcoma. Ther Adv Med Oncol 2019; 11:1758835919855491. [PMID: 31217827 PMCID: PMC6557023 DOI: 10.1177/1758835919855491] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Osteosarcoma (OSA) is a highly metastatic pediatric bone tumor. Adjuvant chemotherapy and surgical resection represent standard treatments; however, the prognosis is still poor. Effective strategies are urgently needed. Chondroitin sulfate proteoglycan (CSPG)4 is a transmembrane proteoglycan with a low expression in normal tissues but high expression in several solid tumors, where it plays a central tumorigenic role. Therefore, it represents a promising therapeutic target. The high homology between human and canine CSPG4 and the recognized translational power of canine tumors as preclinical models for human malignancies prompted us to evaluate CSPG4 expression and the consequences of its immune-targeting for both human and canine OSA treatment. Methods: We analyzed CSPG4 overexpression in human and canine OSA samples and its significance for the survival of OSA patients. We exploited functional in vitro experiments to assess the antitumor potential of CSPG4 immune-targeting. Results: CSPG4 is overexpressed in OSA and has possible clinical implications as suggested by an evident correlation between CSPG4 overexpression and a shorter survival for both OSA-affected humans and dogs. The potential of CSPG4 immune-targeting for OSA treatment came from the ability of anti-CSPG4 monoclonal antibodies and sera, derived from human-CSPG4-DNA vaccinated canine patients, to significantly inhibit human and canine CSPG4-positive OSA cell proliferation, migration, and osteospheres generation. Moreover, CSPG4 immune-targeting has been shown to potentiate the effect of doxorubicin. Conclusions: Overall, these results provide the rationale to investigate the CSPG4 immune-targeting as a promising weapon for the treatment of CSPG4-positive OSA canine patients, to be successfully translated to a human setting.
Collapse
Affiliation(s)
- Federica Riccardo
- University of Torino, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, Via Nizza, 52, Torino, TO, 10126, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Bioinformatics and Genomic Unit, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | - Emanuela Morello
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Marina Martano
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Francesca Gattino
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
43
|
Jolly MK, Ware KE, Xu S, Gilja S, Shetler S, Yang Y, Wang X, Austin RG, Runyambo D, Hish AJ, Bartholf DeWitt S, George JT, Kreulen RT, Boss MK, Lazarides AL, Kerr DL, Gerber DG, Sivaraj D, Armstrong AJ, Dewhirst MW, Eward WC, Levine H, Somarelli JA. E-Cadherin Represses Anchorage-Independent Growth in Sarcomas through Both Signaling and Mechanical Mechanisms. Mol Cancer Res 2019; 17:1391-1402. [PMID: 30862685 PMCID: PMC6548594 DOI: 10.1158/1541-7786.mcr-18-0763] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/16/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
CDH1 (also known as E-cadherin), an epithelial-specific cell-cell adhesion molecule, plays multiple roles in maintaining adherens junctions, regulating migration and invasion, and mediating intracellular signaling. Downregulation of E-cadherin is a hallmark of epithelial-to-mesenchymal transition (EMT) and correlates with poor prognosis in multiple carcinomas. Conversely, upregulation of E-cadherin is prognostic for improved survival in sarcomas. Yet, despite the prognostic benefit of E-cadherin expression in sarcoma, the mechanistic significance of E-cadherin in sarcomas remains poorly understood. Here, by combining mathematical models with wet-bench experiments, we identify the core regulatory networks mediated by E-cadherin in sarcomas, and decipher their functional consequences. Unlike carcinomas, E-cadherin overexpression in sarcomas does not induce a mesenchymal-to-epithelial transition (MET). However, E-cadherin acts to reduce both anchorage-independent growth and spheroid formation of sarcoma cells. Ectopic E-cadherin expression acts to downregulate phosphorylated CREB1 (p-CREB) and the transcription factor, TBX2, to inhibit anchorage-independent growth. RNAi-mediated knockdown of TBX2 phenocopies the effect of E-cadherin on CREB levels and restores sensitivity to anchorage-independent growth in sarcoma cells. Beyond its signaling role, E-cadherin expression in sarcoma cells can also strengthen cell-cell adhesion and restricts spheroid growth through mechanical action. Together, our results demonstrate that E-cadherin inhibits sarcoma aggressiveness by preventing anchorage-independent growth. IMPLICATIONS: We highlight how E-cadherin can restrict aggressive behavior in sarcomas through both biochemical signaling and biomechanical effects.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Kathryn E Ware
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Shengnan Xu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Shivee Gilja
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Samantha Shetler
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Yanjun Yang
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Department of Applied Physics, Rice University, Houston, Texas
| | - Xueyang Wang
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - R Garland Austin
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniella Runyambo
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Alexander J Hish
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - R Timothy Kreulen
- Department of Orthopedics, Duke University Medical Center, Durham, North Carolina
| | - Mary-Keara Boss
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | | | - David L Kerr
- Department of Orthopedics, Duke University Medical Center, Durham, North Carolina
| | - Drew G Gerber
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Dharshan Sivaraj
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Andrew J Armstrong
- Solid Tumor Program, Duke University Medical Center, Durham, North Carolina
- Duke Prostate Center, Duke University Medical Center, Durham, North Carolina
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - William C Eward
- Department of Orthopedics, Duke University Medical Center, Durham, North Carolina
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
| | - Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
44
|
Cheng L, Pandya PH, Liu E, Chandra P, Wang L, Murray ME, Carter J, Ferguson M, Saadatzadeh MR, Bijangi-Visheshsaraei K, Marshall M, Li L, Pollok KE, Renbarger JL. Integration of genomic copy number variations and chemotherapy-response biomarkers in pediatric sarcoma. BMC Med Genomics 2019; 12:23. [PMID: 30704460 PMCID: PMC6357363 DOI: 10.1186/s12920-018-0456-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background While most pediatric sarcomas respond to front-line therapy, some bone sarcomas do not show radiographic response like soft-tissue sarcomas (rhabdomyosarccomas) but do show 90% necrosis. Though, new therapies are urgently needed to improve survival and quality of life in pediatric patients with sarcomas. Complex chromosomal aberrations such as amplifications and deletions of DNA sequences are frequently observed in pediatric sarcomas. Evaluation of copy number variations (CNVs) associated with pediatric sarcoma patients at the time of diagnosis or following therapy offers an opportunity to assess dysregulated molecular targets and signaling pathways that may drive sarcoma development, progression, or relapse. The objective of this study was to utilize publicly available data sets to identify potential predictive biomarkers of chemotherapeutic response in pediatric Osteosarcoma (OS), Rhabdomyosarcoma (RMS) and Ewing’s Sarcoma Family of Tumors (ESFTs) based on CNVs following chemotherapy (OS n = 117, RMS n = 64, ESFTs n = 25 tumor biopsies). Methods There were 206 CNV profiles derived from pediatric sarcoma biopsies collected from the public databases TARGET and NCBI-Gene Expression Omnibus (GEO). Through our comparative genomic analyses of OS, RMS, and ESFTs and 22,255 healthy individuals called from the Database of Genomic Variants (DGV), we identified CNVs (amplifications and deletions) pattern of genomic instability in these pediatric sarcomas. By integrating CNVs of Cancer Cell Line Encyclopedia (CCLE) identified in the pool of genes with drug-response data from sarcoma cell lines (n = 27) from Cancer Therapeutics Response Portal (CTRP) Version 2, potential predictive biomarkers of therapeutic response were identified. Results Genes associated with survival and/recurrence of these sarcomas with statistical significance were found on long arm of chromosome 8 and smaller aberrations were also identified at chromosomes 1q, 12q and x in OS, RMS, and ESFTs. A pool of 63 genes that harbored amplifications and/or deletions were frequently associated with recurrence across OS, RMS, and ESFTs. Correlation analysis of CNVs from CCLE with drug-response data of CTRP in 27 sarcoma cell lines, 33 CNVs out of 63 genes correlated with either sensitivity or resistance to 17 chemotherapies from which actionable CNV signatures such as IGF1R, MYC, MAPK1, ATF1, and MDM2 were identified. These CNV signatures could potentially be used to delineate patient populations that will respond versus those that will not respond to a particular chemotherapy. Conclusions The large-scale analyses of CNV-drug screening provides a platform to evaluate genetic alterations across aggressive pediatric sarcomas. Additionally, this study provides novel insights into the potential utilization of CNVs as not only prognostic but also as predictive biomarkers of therapeutic response. Information obtained in this study may help guide and prioritize patient-specific therapeutic options in pediatric bone and soft-tissue sarcomas. Electronic supplementary material The online version of this article (10.1186/s12920-018-0456-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lijun Cheng
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA
| | - Pankita H Pandya
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.,Division of Hematology/Oncology, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Enze Liu
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA.,Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Pooja Chandra
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Limei Wang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA
| | - Mary E Murray
- Division of Hematology/Oncology, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Jacquelyn Carter
- Division of Hematology/Oncology, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Michael Ferguson
- Division of Hematology/Oncology, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Mohammad Reza Saadatzadeh
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.,Division of Hematology/Oncology, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Khadijeh Bijangi-Visheshsaraei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.,Division of Hematology/Oncology, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Mark Marshall
- Division of Hematology/Oncology, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA. .,Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| | - Karen E Pollok
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA. .,Division of Hematology/Oncology, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA. .,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA.
| | - Jamie L Renbarger
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA. .,Division of Hematology/Oncology, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA. .,Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA. .,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA. .,Indiana Institute of Personalized Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
45
|
Shekhar R, Priyanka P, Kumar P, Ghosh T, Khan MM, Nagarajan P, Saxena S. The microRNAs miR-449a and miR-424 suppress osteosarcoma by targeting cyclin A2 expression. J Biol Chem 2019; 294:4381-4400. [PMID: 30679313 DOI: 10.1074/jbc.ra118.005778] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/18/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs of the miR-16 and miR-34 families have been reported to inhibit cell cycle progression, and their loss has been linked to oncogenic transformation. Utilizing a high-throughput, genome-wide screen for miRNAs and mRNAs that are differentially regulated in osteosarcoma (OS) cell lines, we report that miR-449a and miR-424, belonging to the miR-34 and miR-16 families, respectively, target the major S/G2 phase cyclin, cyclin A2 (CCNA2), in a bipartite manner. We found that the 3'-UTR of CCNA2 is recognized by miR-449a, whereas the CCNA2 coding region is targeted by miR-424. Of note, we observed loss of both miR-449a and miR-424 in OS, resulting in derepression of CCNA2 and appearance of aggressive cancer phenotypes. Ectopic expression of miR-449a and miR-424 significantly decreased cyclin A2 levels and inhibited proliferation rate, migratory potential, and colony-forming ability of OS cells. To further probe the roles of miR-449a and miR-424 in OS, we developed an OS mouse model by intraosseous injection of U2OS cells into the tibia bone of NOD-scid mice, which indicated that miR-449a and miR-424 co-expression suppresses tumor growth. On the basis of this discovery, we analyzed the gene expression of human OS biopsy samples, revealing that miR-449a and miR-424 are both down-regulated, whereas cyclin A2 is significantly up-regulated in these OS samples. In summary, the findings in our study highlight that cyclin A2 repression by miRNAs of the miR-16 and miR-34 families is lost in aggressive OS.
Collapse
Affiliation(s)
- Ritu Shekhar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Priyanka Priyanka
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Praveen Kumar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Tanushree Ghosh
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Md Muntaz Khan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Perumal Nagarajan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Sandeep Saxena
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
46
|
Villanueva F, Araya H, Briceño P, Varela N, Stevenson A, Jerez S, Tempio F, Chnaiderman J, Perez C, Villarroel M, Concha E, Khani F, Thaler R, Salazar-Onfray F, Stein GS, van Wijnen AJ, Galindo M. The cancer-related transcription factor RUNX2 modulates expression and secretion of the matricellular protein osteopontin in osteosarcoma cells to promote adhesion to endothelial pulmonary cells and lung metastasis. J Cell Physiol 2019; 234:13659-13679. [PMID: 30637720 DOI: 10.1002/jcp.28046] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022]
Abstract
Osteosarcomas are bone tumors that frequently metastasize to the lung. Aberrant expression of the transcription factor, runt-related transcription factor 2 (RUNX2), is a key pathological feature in osteosarcoma and associated with loss of p53 and miR-34 expression. Elevated RUNX2 may transcriptionally activate genes mediating tumor progression and metastasis, including the RUNX2 target gene osteopontin (OPN/SPP1). This gene encodes a secreted matricellular protein produced by osteoblasts to regulate bone matrix remodeling and tissue calcification. Here we investigated whether and how the RUNX2/OPN axis regulates lung metastasis of osteosarcoma. Importantly, RUNX2 depletion attenuates lung metastasis of osteosarcoma cells in vivo. Using next-generation RNA-sequencing, protein-based assays, as well as the loss- and gain-of-function approaches in selected osteosarcoma cell lines, we show that osteopontin messenger RNA levels closely correlate with RUNX2 expression and that RUNX2 controls the levels of secreted osteopontin. Elevated osteopontin levels promote heterotypic cell-cell adhesion of osteosarcoma cells to human pulmonary microvascular endothelial cells, but not in the presence of neutralizing antibodies. Collectively, these findings indicate that the RUNX2/OPN axis regulates the ability of osteosarcoma cells to attach to pulmonary endothelial cells as a key step in metastasis of osteosarcoma cells to the lung.
Collapse
Affiliation(s)
- Francisco Villanueva
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hector Araya
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pedro Briceño
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nelson Varela
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Andres Stevenson
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sofia Jerez
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fabian Tempio
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jonas Chnaiderman
- Program of Virology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carola Perez
- Laboratory Animal Facility, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Milena Villarroel
- Department of Oncology, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile.,National Child Programme of Antineoplastic Drugs (PINDA), Santiago, Chile
| | - Emma Concha
- Department of Oncology, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Gary S Stein
- Department of Biochemistry, University of Vermont Cancer Center, The Robert Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Mario Galindo
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
47
|
El-Naggar AM, Clarkson PW, Negri GL, Turgu B, Zhang F, Anglesio MS, Sorensen PH. HACE1 is a potential tumor suppressor in osteosarcoma. Cell Death Dis 2019; 10:21. [PMID: 30622235 PMCID: PMC6325116 DOI: 10.1038/s41419-018-1276-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/23/2018] [Accepted: 12/06/2018] [Indexed: 12/24/2022]
Abstract
Osteosarcoma is a malignant bone sarcoma characterized by extensive genomic disruption and a propensity for metastatic spread. Osteoid production suggests a close relationship with normal osteoblasts, and the latter are the presumptive cell of origin of this disease. The HACE1 gene, localized to human chromosome 6q21, encodes the HACE1 HECT E3 ligase, a tumor suppressor in diverse tumors that acts in part by targeting the activated form of RAC1 GTPase for proteasomal degradation. Disruption or loss of 6q21 is relatively common in osteosarcomas, and Hace1-/-/Tp53+/- mice frequently develop osteosarcomas, in contrast to Tp53+/- mice, which do not. This suggests an unexplored link between HACE1 loss and osteosarcoma. Here we compared HACE1 expression in normal osteoblasts and osteosarcoma cell lines in vitro by western blotting and quantitative RT-PCR, and in human osteosarcoma specimens by immunohistochemistry. Both HACE1 transcript and protein levels were reduced in osteosarcoma compared to osteoblasts in vitro. Reduced HACE1 expression in osteosarcoma tumors was observed in 76% of cases and associated with high-grade lesions. Further, clonally derived pairs of high and low metastatic osteosarcoma cell lines showed significant downregulation in the high compared to corresponding low metastatic cells. Ectopic expression of HACE1 markedly inhibited anchorage-independent growth and cell motility of HACE1 osteosarcoma cell lines, and was associated with reduced RAC1 activation and decreased reactive oxygen species (ROS). Finally, HACE1 overexpression blocked osteosarcoma xenograft growth and dramatically reduced pulmonary metastases. These findings point to a potential tumor suppressor function for HACE1 in osteosarcoma.
Collapse
Affiliation(s)
- Amal M El-Naggar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia Governorate, Egypt
| | - Paul W Clarkson
- Department of Orthopedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gian Luca Negri
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Busra Turgu
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Fan Zhang
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Anglesio
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. .,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| |
Collapse
|
48
|
Sayles LC, Breese MR, Koehne AL, Leung SG, Lee AG, Liu HY, Spillinger A, Shah AT, Tanasa B, Straessler K, Hazard FK, Spunt SL, Marina N, Kim GE, Cho SJ, Avedian RS, Mohler DG, Kim MO, DuBois SG, Hawkins DS, Sweet-Cordero EA. Genome-Informed Targeted Therapy for Osteosarcoma. Cancer Discov 2018; 9:46-63. [PMID: 30266815 DOI: 10.1158/2159-8290.cd-17-1152] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is a highly aggressive cancer for which treatment has remained essentially unchanged for more than 30 years. Osteosarcoma is characterized by widespread and recurrent somatic copy-number alterations (SCNA) and structural rearrangements. In contrast, few recurrent point mutations in protein-coding genes have been identified, suggesting that genes within SCNAs are key oncogenic drivers in this disease. SCNAs and structural rearrangements are highly heterogeneous across osteosarcoma cases, suggesting the need for a genome-informed approach to targeted therapy. To identify patient-specific candidate drivers, we used a simple heuristic based on degree and rank order of copy-number amplification (identified by whole-genome sequencing) and changes in gene expression as identified by RNA sequencing. Using patient-derived tumor xenografts, we demonstrate that targeting of patient-specific SCNAs leads to significant decrease in tumor burden, providing a road map for genome-informed treatment of osteosarcoma. SIGNIFICANCE: Osteosarcoma is treated with a chemotherapy regimen established 30 years ago. Although osteosarcoma is genomically complex, we hypothesized that tumor-specific dependencies could be identified within SCNAs. Using patient-derived tumor xenografts, we found a high degree of response for "genome-matched" therapies, demonstrating the utility of a targeted genome-informed approach.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Leanne C Sayles
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Marcus R Breese
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Amanda L Koehne
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Stanley G Leung
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Alex G Lee
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Heng-Yi Liu
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Aviv Spillinger
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Avanthi T Shah
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Bogdan Tanasa
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Krystal Straessler
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California
| | - Florette K Hazard
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Sheri L Spunt
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Neyssa Marina
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Grace E Kim
- Department of Pathology, University of California, San Francisco, California
| | - Soo-Jin Cho
- Department of Pathology, University of California, San Francisco, California
| | - Raffi S Avedian
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford University, Stanford, California
| | - David G Mohler
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Mi-Ok Kim
- Biostatistics Core, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.,Division of Biostatistics, Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts
| | - Douglas S Hawkins
- Seattle Children's Hospital, University of Washington, Fred Hutchison Cancer Research Center, Seattle, Washington
| | - E Alejandro Sweet-Cordero
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, California.
| |
Collapse
|
49
|
Gambera S, Abarrategi A, Rodríguez-Milla MA, Mulero F, Menéndez ST, Rodriguez R, Navarro S, García-Castro J. Role of Activator Protein-1 Complex on the Phenotype of Human Osteosarcomas Generated from Mesenchymal Stem Cells. Stem Cells 2018; 36:1487-1500. [PMID: 30001480 DOI: 10.1002/stem.2869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/09/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is a highly aggressive bone tumor that usually arises intramedullary at the extremities of long bones. Due to the fact that the peak of incidence is in the growth spurt of adolescence, the specific anatomical location, and the heterogeneity of cells, it is believed that osteosarcomagenesis is a process associated with bone development. Different studies in murine models showed that the tumor-initiating cell in OS could be an uncommitted mesenchymal stem cell (MSC) developing in a specific bone microenvironment. However, only a few studies have reported transgene-induced human MSCs transformation and mostly obtained undifferentiated sarcomas. In our study, we demonstrate that activator protein 1 family members induce osteosarcomagenesis in immortalized hMSC. c-JUN or c-JUN/c-FOS overexpression act as tumorigenic factors generating OS with fibroblastic or pleomorphic osteoblastic phenotypes, respectively. Stem Cells 2018;36:1487-1500.
Collapse
Affiliation(s)
- Stefano Gambera
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Ander Abarrategi
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Madrid, Spain.,Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | | | - Francisca Mulero
- Molecular Image Core Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Sofía T Menéndez
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias and, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - René Rodriguez
- Hospital Universitario Central de Asturias-Instituto de Investigación Sanitaria del Principado de Asturias and, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Samuel Navarro
- CIBER de Cáncer (CIBERONC), Madrid, Spain.,Pathology Department, University of Valencia, Valencia, Spain
| | | |
Collapse
|
50
|
Cross-species genomics identifies DLG2 as a tumor suppressor in osteosarcoma. Oncogene 2018; 38:291-298. [PMID: 30093633 PMCID: PMC6756098 DOI: 10.1038/s41388-018-0444-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 07/24/2018] [Indexed: 11/27/2022]
Abstract
Leveraging the conserved cancer genomes across mammals has the potential to transform driver gene discovery in orphan cancers. Here, we combine cross-species genomics with validation across human–dog–mouse systems to uncover a new bone tumor suppressor gene. Comparative genomics of spontaneous human and dog osteosarcomas (OS) expose Disks Large Homolog 2 (DLG2) as a tumor suppressor candidate. DLG2 copy number loss occurs in 42% of human and 56% of canine OS. Functional validation through pertinent human and canine OS DLG2-deficient cell lines identifies a regulatory role of DLG2 in cell division, migration and tumorigenesis. Moreover, osteoblast-specific deletion of Dlg2 in a clinically relevant genetically engineered mouse model leads to acceleration of OS development, establishing DLG2 as a critical determinant of OS. This widely applicable cross-species approach serves as a platform to expedite the search of cancer drivers in rare human malignancies, offering new targets for cancer therapy.
Collapse
|