1
|
Bardini M, Fazio G, Abascal LC, Meyer C, Maglia O, Sala S, Palamini S, Rebellato S, Marschalek R, Rizzari C, Biondi A, Cazzaniga G. Prenatal origin of NUTM1 gene rearrangement in infant B-cell precursor acute lymphoblastic leukaemia. Br J Haematol 2024. [PMID: 39099338 DOI: 10.1111/bjh.19685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Rearrangement of NUTM1 gene (NUTM1r) is one of the most frequent aberrations occurring in infants (younger than 1 year at diagnosis) with B-cell precursor Acute Lymphoblastic Leukaemia (BCP-ALL). In this study we had the unique opportunity to analyze the umbilical cord blood (UCB) sample from one infant patient with NUTM1r BCP-ALL. Herein we reported for the first time that NUTM1r infant ALL arise prenatally, as both the patient-specific CUX1::NUTM1 fusion gene, as well as two IG/TR leukaemic markers were already present and detectable in the patient's UCB at birth. Our results clearly demonstrate the prenatal origin of NUTM1r infant BCP-ALL.
Collapse
Affiliation(s)
- Michela Bardini
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | | | - Claus Meyer
- DCAL/Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | - Oscar Maglia
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Simona Sala
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Sonia Palamini
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Stefano Rebellato
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Rolf Marschalek
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Carmelo Rizzari
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
- Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
2
|
Kim R, Bergugnat H, Pastoret C, Pasquier F, Raffoux E, Larcher L, Passet M, Grardel N, Delabesse E, Kubetzko S, Caye-Eude A, Meyer C, Marschalek R, Lafage-Pochitaloff M, Thiebaut-Bertrand A, Balsat M, Escoffre-Barbe M, Blum S, Baumann M, Banos A, Straetmans N, Gallego-Hernanz MP, Chalandon Y, Graux C, Soulier J, Leguay T, Hunault M, Huguet F, Lhéritier V, Dombret H, Boissel N, Clappier E. Genetic alterations and MRD refine risk assessment for KMT2A-rearranged B-cell precursor ALL in adults: a GRAALL study. Blood 2023; 142:1806-1817. [PMID: 37595275 DOI: 10.1182/blood.2023021501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
KMT2A-rearranged (KMT2A-r) B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is widely recognized as a high-risk leukemia in both children and adults. However, there is a paucity of data on adults treated in recent protocols, and the optimal treatment strategy for these patients is still a matter of debate. In this study, we set out to refine the prognosis of adult KMT2A-r BCP-ALL treated with modern chemotherapy regimen and investigate the prognostic impact of comutations and minimal residual disease (MRD). Of 1091 adult patients with Philadelphia-negative BCP-ALL enrolled in 3 consecutive trials from the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL), 141 (12.9%) had KMT2A-r, with 5-year cumulative incidence of relapse (CIR) and overall survival (OS) rates of 40.7% and 53.3%, respectively. Molecular profiling highlighted a low mutational burden in this subtype, reminiscent of infant BCP-ALL. However, the presence of TP53 and/or IKZF1 alterations defined a subset of patients with significantly poorer CIR (69.3% vs 36.2%; P = .001) and OS (28.1% vs 60.7%; P = .006) rates. Next, we analyzed the prognostic implication of MRD measured after induction and first consolidation, using both immunoglobulin (IG) or T-cell receptor (TR) gene rearrangements and KMT2A genomic fusion as markers. In approximately one-third of patients, IG/TR rearrangements were absent or displayed clonal evolution during the disease course, compromising MRD monitoring. In contrast, KMT2A-based MRD was highly reliable and strongly associated with outcome, with early good responders having an excellent outcome (3-year CIR, 7.1%; OS, 92.9%). Altogether, our study reveals striking heterogeneity in outcomes within adults with KMT2A-r BCP-ALL and provides new biomarkers to guide risk-based therapeutic stratification.
Collapse
Affiliation(s)
- Rathana Kim
- Hematology Laboratory, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM U944, CNRS UMR 7212 GenCellDis, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Hugo Bergugnat
- INSERM U944, CNRS UMR 7212 GenCellDis, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Cédric Pastoret
- Hematology Laboratory, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Florence Pasquier
- Department of Hematology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Emmanuel Raffoux
- Hematology Department, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Lise Larcher
- Hematology Laboratory, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM U944, CNRS UMR 7212 GenCellDis, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Marie Passet
- Hematology Laboratory, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nathalie Grardel
- Hematology Laboratory, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Eric Delabesse
- Hematology Laboratory, Institut Universitaire de Cancer Toulouse-Oncopole, INSERM 1037, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Susanne Kubetzko
- Department of Hematology, University Hospital of Zürich, Zürich, Switzerland
| | - Aurélie Caye-Eude
- Genetics Department, Molecular Genetics Unit, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Claus Meyer
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia, Goethe University, Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia, Goethe University, Frankfurt/Main, Germany
| | - Marine Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Hôpital Timone Enfant, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille Université, Marseille, France
| | | | - Marie Balsat
- Department of Hematology, Hôpital Lyon Sud, Pierre Benite, France
| | | | - Sabine Blum
- Department of Hematology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Michael Baumann
- Klinik für Medizinische Onkologie und Hämatologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Anne Banos
- Department of Hematology, Centre Hospitalier de la Côte Basque, Bayonne, France
| | - Nicole Straetmans
- Department of Hematology, University Hospital Saint-Luc, Brussels, Belgium
| | | | - Yves Chalandon
- Division of Hematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland, for the Swiss Group for Clinical Cancer Research
- Swiss Group for Clinical Cancer Research
| | - Carlos Graux
- Department of Hematology, Université Catholique de Louvain, Centre Hospitalier Universitaire UCLouvain Namur-Godinne, Yvoir, Belgium
| | - Jean Soulier
- Hematology Laboratory, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM U944, CNRS UMR 7212 GenCellDis, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Thibaut Leguay
- Department of Hematology, Centre Hospitalier Universitaire de Bordeaux, Hôpital du Haut-Levêque, Pessac, France
| | - Mathilde Hunault
- Département des Maladies du Sang, Centre Hospitalier Universitaire Angers, INSERM, CNRS, CRCI2NA, Fédération Hospitalo-Universitaire Grand Ouest Against Leukemia, Université d'Angers, Université de Nantes, Angers, France
| | - Françoise Huguet
- Department of Hematology, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire de Cancer Toulouse-Oncopole, Toulouse, France
| | - Véronique Lhéritier
- Coordination du Groupe Group for Research on Adult Acute Lymphoblastic Leukemia, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre Benite, France
| | - Hervé Dombret
- Hematology Department, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Nicolas Boissel
- Hematology Department, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Emmanuelle Clappier
- Hematology Laboratory, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM U944, CNRS UMR 7212 GenCellDis, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Crump NT, Smith AL, Godfrey L, Dopico-Fernandez AM, Denny N, Harman JR, Hamley JC, Jackson NE, Chahrour C, Riva S, Rice S, Kim J, Basrur V, Fermin D, Elenitoba-Johnson K, Roeder RG, Allis CD, Roberts I, Roy A, Geng H, Davies JOJ, Milne TA. MLL-AF4 cooperates with PAF1 and FACT to drive high-density enhancer interactions in leukemia. Nat Commun 2023; 14:5208. [PMID: 37626123 PMCID: PMC10457349 DOI: 10.1038/s41467-023-40981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Aberrant enhancer activation is a key mechanism driving oncogene expression in many cancers. While much is known about the regulation of larger chromosome domains in eukaryotes, the details of enhancer-promoter interactions remain poorly understood. Recent work suggests co-activators like BRD4 and Mediator have little impact on enhancer-promoter interactions. In leukemias controlled by the MLL-AF4 fusion protein, we use the ultra-high resolution technique Micro-Capture-C (MCC) to show that MLL-AF4 binding promotes broad, high-density regions of enhancer-promoter interactions at a subset of key targets. These enhancers are enriched for transcription elongation factors like PAF1C and FACT, and the loss of these factors abolishes enhancer-promoter contact. This work not only provides an additional model for how MLL-AF4 is able to drive high levels of transcription at key genes in leukemia but also suggests a more general model linking enhancer-promoter crosstalk and transcription elongation.
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK.
| | - Alastair L Smith
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Laura Godfrey
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana M Dopico-Fernandez
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nicholas Denny
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joe R Harman
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joseph C Hamley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nicole E Jackson
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Catherine Chahrour
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Simone Riva
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Siobhan Rice
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Damian Fermin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kojo Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Anindita Roy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
4
|
Ford AM, Colman S, Greaves M. Covert pre-leukaemic clones in healthy co-twins of patients with childhood acute lymphoblastic leukaemia. Leukemia 2023; 37:47-52. [PMID: 36536099 PMCID: PMC9883163 DOI: 10.1038/s41375-022-01756-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Anthony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Susan Colman
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
5
|
Tirtakusuma R, Szoltysek K, Milne P, Grinev VV, Ptasinska A, Chin PS, Meyer C, Nakjang S, Hehir-Kwa JY, Williamson D, Cauchy P, Keane P, Assi SA, Ashtiani M, Kellaway SG, Imperato MR, Vogiatzi F, Schweighart EK, Lin S, Wunderlich M, Stutterheim J, Komkov A, Zerkalenkova E, Evans P, McNeill H, Elder A, Martinez-Soria N, Fordham SE, Shi Y, Russell LJ, Pal D, Smith A, Kingsbury Z, Becq J, Eckert C, Haas OA, Carey P, Bailey S, Skinner R, Miakova N, Collin M, Bigley V, Haniffa M, Marschalek R, Harrison CJ, Cargo CA, Schewe D, Olshanskaya Y, Thirman MJ, Cockerill PN, Mulloy JC, Blair HJ, Vormoor J, Allan JM, Bonifer C, Heidenreich O, Bomken S. Epigenetic regulator genes direct lineage switching in MLL/AF4 leukemia. Blood 2022; 140:1875-1890. [PMID: 35839448 PMCID: PMC10488321 DOI: 10.1182/blood.2021015036] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukemia, resulting in poor clinical outcomes caused by resistance to chemotherapies and immunotherapies. In this study, the myeloid relapses shared oncogene fusion breakpoints with their matched lymphoid presentations and originated from various differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programs, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing, or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4+ cell models, indicating that lineage switching in MLL/AF4 leukemia is driven and maintained by disrupted epigenetic regulation.
Collapse
Affiliation(s)
- Ricky Tirtakusuma
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Katarzyna Szoltysek
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Maria Sklodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Paul Milne
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Vasily V. Grinev
- Department of Genetics, the Faculty of Biology, Belarusian State University, Minsk, Republic of Belarus
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paulynn S. Chin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claus Meyer
- Institute of Pharmaceutical Biology/DCAL, Goethe-University, Frankfurt/Main, Germany
| | - Sirintra Nakjang
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Salam A. Assi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Minoo Ashtiani
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sophie G. Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria R. Imperato
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Fotini Vogiatzi
- ALL-BFM Study Group, Pediatric Hematology/Oncology, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | | | - Shan Lin
- Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mark Wunderlich
- Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Alexander Komkov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Elena Zerkalenkova
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Paul Evans
- Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom
| | - Hesta McNeill
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alex Elder
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Natalia Martinez-Soria
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah E. Fordham
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yuzhe Shi
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lisa J. Russell
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Deepali Pal
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alex Smith
- Epidemiology and Cancer Statistics Group, University of York, York, United Kingdom
| | | | - Jennifer Becq
- Illumina Cambridge Ltd., Great Abington, United Kingdom
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Oskar A. Haas
- St Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Peter Carey
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Roderick Skinner
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Natalia Miakova
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Matthew Collin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Venetia Bigley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Dermatology and Newcastle National Institute of Health Research (NIHR), Newcastle Biomedical Research Centre, Newcastle Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/DCAL, Goethe-University, Frankfurt/Main, Germany
| | - Christine J. Harrison
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine A. Cargo
- Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom
| | - Denis Schewe
- Department of Pediatrics, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yulia Olshanskaya
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Michael J. Thirman
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Peter N. Cockerill
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James C. Mulloy
- Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Helen J. Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Josef Vormoor
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - James M. Allan
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Simon Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Bang B, Eisfeldt J, Barbany G, Harila-Saari A, Heyman M, Zachariadis V, Taylan F, Nordgren A. A somatic UBA2 variant preceded ETV6-RUNX1 in the concordant BCP-ALL of monozygotic twins. Blood Adv 2022; 6:2275-2289. [PMID: 34982829 PMCID: PMC9006272 DOI: 10.1182/bloodadvances.2021005703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Genetic analysis of leukemic clones in monozygotic twins with concordant acute lymphoblastic leukemia (ALL) has proved a unique opportunity to gain insight into the molecular phylogenetics of leukemogenesis. Using whole-genome sequencing, we characterized constitutional and somatic single nucleotide variants/insertion-deletions (indels) and structural variants in a monozygotic twin pair with concordant ETV6-RUNX1+ B-cell precursor ALL (BCP-ALL). In addition, digital PCR (dPCR) was applied to evaluate the presence of and quantify selected somatic variants at birth, diagnosis, and remission. A shared somatic complex rearrangement involving chromosomes 11, 12, and 21 with identical fusion sequences in leukemias of both twins offered direct proof of a common clonal origin. The ETV6-RUNX1 fusion detected at diagnosis was found to originate from this complex rearrangement. A shared somatic frameshift deletion in UBA2 was also identified in diagnostic samples. In addition, each leukemia independently acquired analogous deletions of 3 genes recurrently targeted in BCP-ALLs (ETV6, ATF7IP, and RAG1/RAG2), providing evidence of a convergent clonal evolution only explained by a strong concurrent selective pressure. Quantification of the UBA2 deletion by dPCR surprisingly indicated it persisted in remission. This, for the first time to our knowledge, provided evidence of a UBA2 variant preceding the well-established initiating event ETV6-RUNX1. Further, we suggest the UBA2 deletion exerted a leukemia predisposing effect and that its essential role in Small Ubiquitin-like Modifier (SUMO) attachment (SUMOylation), regulating nearly all physiological and pathological cellular processes such as DNA-repair by nonhomologous end joining, may hold a mechanistic explanation for the predisposition.
Collapse
Affiliation(s)
- Benedicte Bang
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Arja Harila-Saari
- Department of Women’s and Children’s Health, Uppsala University Hospital, Uppsala, Sweden
| | - Mats Heyman
- Department of Women’s and Children’s Health, Karolinska University Hospital Solna, Stockholm, Sweden; and
| | - Vasilios Zachariadis
- Department of Oncology-Pathology, Cancer Centre Karolinska (CCK), Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Watt SM, Hua P, Roberts I. Increasing Complexity of Molecular Landscapes in Human Hematopoietic Stem and Progenitor Cells during Development and Aging. Int J Mol Sci 2022; 23:3675. [PMID: 35409034 PMCID: PMC8999121 DOI: 10.3390/ijms23073675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
The past five decades have seen significant progress in our understanding of human hematopoiesis. This has in part been due to the unprecedented development of advanced technologies, which have allowed the identification and characterization of rare subsets of human hematopoietic stem and progenitor cells and their lineage trajectories from embryonic through to adult life. Additionally, surrogate in vitro and in vivo models, although not fully recapitulating human hematopoiesis, have spurred on these scientific advances. These approaches have heightened our knowledge of hematological disorders and diseases and have led to their improved diagnosis and therapies. Here, we review human hematopoiesis at each end of the age spectrum, during embryonic and fetal development and on aging, providing exemplars of recent progress in deciphering the increasingly complex cellular and molecular hematopoietic landscapes in health and disease. This review concludes by highlighting links between chronic inflammation and metabolic and epigenetic changes associated with aging and in the development of clonal hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Peng Hua
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, and NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
8
|
Wang LL, Yan D, Tang X, Zhang M, Liu S, Wang Y, Zhang M, Zhou G, Li T, Jiang F, Chen X, Wen F, Liu S, Mai H. High Expression of BCL11A Predicts Poor Prognosis for Childhood MLL-r ALL. Front Oncol 2021; 11:755188. [PMID: 34938655 PMCID: PMC8685382 DOI: 10.3389/fonc.2021.755188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/15/2021] [Indexed: 01/17/2023] Open
Abstract
Background Despite much improvement in the treatment for acute lymphoblastic leukemia (ALL), childhood ALLs with MLL-rearrangement (MLL-r) still have inferior dismal prognosis. Thus, defining mechanisms underlying MLL-r ALL maintenance is critical for developing effective therapy. Methods GSE13159 and GSE28497 were selected via the Oncomine website. Differentially expressed genes (DEGs) between MLL-r ALLs and normal samples were identified by R software. Next, functional enrichment analysis of these DEGs were carried out by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Then, the key hub genes and modules were identified by Weighted Gene Co-expression Network Analysis (WGCNA). Therapeutically Applicable Research to Generate Effective Treatments (TARGET) ALL (Phase I) of UCSC Xena analysis, qPCR, and Kaplan-Meier analysis were conducted for validating the expression of key hub genes from bone marrow cells of childhood ALL patients or ALL cell lines. Results A total of 1,045 DEGs were identified from GSE13159 and GSE28497. Through GO, KEGG, GSEA, and STRING analysis, we demonstrated that MLL-r ALLs were upregulating “nucleosome assembly” and “B cell receptor signal pathway” genes or proteins. WGCNA analysis found 18 gene modules using hierarchical clustering between MLL-r ALLs and normal. The Venn diagram was used to filter the 98 hub genes found in the key module with the 1,045 DEGs. We identified 18 hub genes from this process, 9 of which were found to be correlated with MLL-r status, using the UCSC Xena analysis. By using qPCR, we validated these 9 hub key genes to be upregulated in the MLL-r ALLs (RS4;11 and SEM) compared to the non-MLL-r ALL (RCH-ACV) cell lines. Three of these genes, BCL11A, GLT8D1 and NCBP2, were shown to be increased in MLL-r ALL patient bone marrows compared to the non-MLL-r ALL patient. Finally, Kaplan–Meier analysis indicated that childhood ALL patients with high BCL11A expression had significantly poor overall survival. Conclusion These findings suggest that upregulated BCL11A gene expression in childhood ALLs may lead to MLL-r ALL development and BCL11A represents a new potential therapeutic target for childhood MLL-r ALL.
Collapse
Affiliation(s)
- Lu-Lu Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xue Tang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Mengqi Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shilin Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Ying Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Min Zhang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Guichi Zhou
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Tonghui Li
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Feifei Jiang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiaowen Chen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Huirong Mai
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
9
|
Genetic and Epigenetic Characterization of a Discordant KMT2A/AFF1-Rearranged Infant Monozygotic Twin Pair. Int J Mol Sci 2021; 22:ijms22189740. [PMID: 34575904 PMCID: PMC8466096 DOI: 10.3390/ijms22189740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022] Open
Abstract
The KMT2A/AFF1 rearrangement is associated with an unfavorable prognosis in infant acute lymphocytic leukemia (ALL). Discordant ALL in monozygotic twins is uncommon and represents an attractive resource to evaluate intrauterine environment–genetic interplay in ALL. Mutational and epigenetic profiles were characterized for a discordant KMT2A/AFF1-rearranged infant monozygotic twin pair and their parents, and they were compared to three independent KMT2A/AFF1-positive ALL infants, in which the DNA methylation and gene expression profiles were investigated. A de novo Q61H NRAS mutation was detected in the affected twin at diagnosis and backtracked in both twins at birth. The KMT2A/AFF1 rearrangement was absent at birth in both twins. Genetic analyses conducted at birth gave more insights into the timing of the mutation hit. We identified correlations between DNA methylation and gene expression changes for 32 genes in the three independent affected versus remitted patients. The strongest correlations were observed for the RAB32, PDK4, CXCL3, RANBP17, and MACROD2 genes. This epigenetic signature could be a putative target for the development of novel epigenetic-based therapies and could help in explaining the molecular mechanisms characterizing ALL infants with KMT2A/AFF1 fusions.
Collapse
|
10
|
Savage P. Chemotherapy Curability in Leukemia, Lymphoma, Germ Cell Tumors and Gestational Malignancies: A Reflection of the Unique Physiology of Their Cells of Origin. Front Genet 2020; 11:426. [PMID: 32582272 PMCID: PMC7295948 DOI: 10.3389/fgene.2020.00426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 11/21/2022] Open
Abstract
Cytotoxic DNA damaging chemotherapy brings clinical benefits in the treatment of many metastatic malignancies. However routine curative treatment remains restricted to a small number of malignancies including acute leukemia, high grade lymphoma, germ cell tumors, gestational malignancies and some of the rare childhood cancers. The detailed explanation for this dramatic divergence in outcomes remains to be elucidated. However, we have previously argued that there is a strong correlation between presence of the unique genetic events of immunoglobulin gene variable/diversity/joining (VDJ) recombination, somatic hypermutation (SHM), meiosis, nuclear fusion and gastrulation occurring in cells of origin of these malignancies and their high sensitivity to DNA damaging chemotherapy. In this study we have reviewed some of the basic physiological information relating to the specialized activity and sensitivity to DNA damage mediated apoptosis of normal cells undergoing these processes. In each of unique genetic events there are dramatic changes in apoptotic sensitivity. In VDJ recombination and somatic hypermutation over 95% of the cells involved undergo apoptosis, whilst in meiosis and nuclear fusion there are dramatic short term increases in the apoptotic sensitivity to DNA damage. It is apparent that each of the malignancies arising during these processes retains some of the unique phenotype associated with it. The impact of the physiological differences is most clearly seen in the two non-mutational malignancies. Gestational choriocarcinoma which arises shortly after nuclear fusion is routinely curable with chemotherapy whilst CIMP-positive ependymomas which is not linked to any of the unique genetic events is highly resistant. A similar pattern is found in a pair of malignancies driven by a single driver mutation. Infantile acute lymphoblastic leukemia (ALL) arises in a cell undergoing the early stages of VDJ recombination and has a 40% cure rate in contrast pediatric rhabdoid malignancy which is not linked to a unique genetic event responds very poorly to chemotherapy treatment. The physiological changes occurring in cancer cells at the time of the malignant transformation appear to have a major impact on the subsequent sensitivity to chemotherapy and curability. New therapies that impact on these pathways may be of therapeutic value.
Collapse
Affiliation(s)
- Philip Savage
- Department of Oncology, Brighton and Sussex University Hospitals, Brighton, United Kingdom
| |
Collapse
|
11
|
MLL-rearranged infant leukaemia: A 'thorn in the side' of a remarkable success story. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194564. [PMID: 32376390 DOI: 10.1016/j.bbagrm.2020.194564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Advances in treatment of childhood leukaemia has led to vastly improved survival rates, however some subtypes such as those characterised by MLL gene rearrangement (MLL-r), especially in infants, continue to have high relapse rates and poor survival. Natural history and molecular studies indicate that infant acute lymphoblastic leukaemia (ALL) originates in utero, is distinct from childhood ALL, and most cases are caused by MLL-r resulting in an oncogenic MLL fusion protein. Unlike childhood ALL, only a very small number of additional mutations are present in infant ALL, indicating that MLL-r alone may be sufficient to give rise to this rapid onset, aggressive leukaemia in an appropriate fetal cell context. Despite modifications in treatment approaches, the outcome of MLL-r infant ALL has remained dismal and a clear understanding of the underlying biology of the disease is required in order to develop appropriate disease models and more effective therapeutic strategies.
Collapse
|
12
|
Britten O, Ragusa D, Tosi S, Kamel YM. MLL-Rearranged Acute Leukemia with t(4;11)(q21;q23)-Current Treatment Options. Is There a Role for CAR-T Cell Therapy? Cells 2019; 8:cells8111341. [PMID: 31671855 PMCID: PMC6912830 DOI: 10.3390/cells8111341] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
The MLL (mixed-lineage leukemia) gene, located on chromosome 11q23, is involved in chromosomal translocations in a subtype of acute leukemia, which represents approximately 10% of acute lymphoblastic leukemia and 2.8% of acute myeloid leukemia cases. These translocations form fusions with various genes, of which more than 80 partner genes for MLL have been identified. The most recurrent fusion partner in MLL rearrangements (MLL-r) is AF4, mapping at chromosome 4q21, accounting for approximately 36% of MLL-r leukemia and particularly prevalent in MLL-r acute lymphoblastic leukemia (ALL) cases (57%). MLL-r leukemia is associated with a sudden onset, aggressive progression, and notoriously poor prognosis in comparison to non-MLL-r leukemias. Despite modern chemotherapeutic interventions and the use of hematopoietic stem cell transplantations, infants, children, and adults with MLL-r leukemia generally have poor prognosis and response to these treatments. Based on the frequency of patients who relapse, do not achieve complete remission, or have brief event-free survival, there is a clear clinical need for a new effective therapy. In this review, we outline the current therapy options for MLL-r patients and the potential application of CAR-T therapy.
Collapse
MESH Headings
- Adult
- Child
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 4/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Immunotherapy, Adoptive/methods
- Infant
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Myeloid-Lymphoid Leukemia Protein/genetics
- Oncogene Proteins, Fusion/genetics
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Oliver Britten
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Denise Ragusa
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Sabrina Tosi
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Yasser Mostafa Kamel
- ASYS Pharmaceutical Consultants-APC Inc. 2, Bedford, Nova Scotia B4A 4L2, Canada.
| |
Collapse
|
13
|
Inhibition of MEK and ATR is effective in a B-cell acute lymphoblastic leukemia model driven by Mll-Af4 and activated Ras. Blood Adv 2019; 2:2478-2490. [PMID: 30266823 DOI: 10.1182/bloodadvances.2018021592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
Infant B-cell acute lymphoblastic leukemias (B-ALLs) that harbor MLL-AF4 rearrangements are associated with a poor prognosis. One important obstacle to progress for this patient population is the lack of immunocompetent models that faithfully recapitulate the short latency and aggressiveness of this disease. Recent whole-genome sequencing of MLL-AF4 B-ALL samples revealed a high frequency of activating RAS mutations; however, single-agent targeting of downstream effectors of the RAS pathway in these mutated MLL-r B-ALLs has demonstrated limited and nondurable antileukemic effects. Here, we demonstrate that the expression of activating mutant N-Ras G12D cooperates with Mll-Af4 to generate a highly aggressive serially transplantable B-ALL in mice. We used our novel mouse model to test the sensitivity of Mll-Af4/N-Ras G12D leukemia to small molecule inhibitors and found potent and synergistic preclinical efficacy of dual targeting of the Mek and Atr pathways in mouse- and patient-derived xenografts with both mutations in vivo, suggesting this combination as an attractive therapeutic opportunity that might be used to treat patients with these mutations. Our studies indicate that this mouse model of Mll-Af4/N-Ras B-ALL is a powerful tool to explore the molecular and genetic pathogenesis of this disease subtype, as well as a preclinical discovery platform for novel therapeutic strategies.
Collapse
|
14
|
Ragusa D, Makarov EM, Britten O, Moralli D, Green CM, Tosi S. The RS4;11 cell line as a model for leukaemia with t(4;11)(q21;q23): Revised characterisation of cytogenetic features. Cancer Rep (Hoboken) 2019; 2:e1207. [PMID: 32721124 PMCID: PMC7941496 DOI: 10.1002/cnr2.1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Haematological malignancies harbouring rearrangements of the KMT2A gene represent a unique subtype of leukaemia, with biphenotypic clinical manifestations, a rapid and aggressive onset, and a generally poor prognosis. Chromosomal translocations involving KMT2A often cause the formation of oncogenic fusion genes, such as the most common translocation t(4;11)(q21;q23) producing the KMT2A-AFF1 chimera. AIM The aim of this study was to confirm and review the cytogenetic and molecular features of the KMT2A-rearranged RS4;11 cell line and put those in context with other reports of cell lines also harbouring a t(4;11) rearrangement. METHODS AND RESULTS The main chromosomal rearrangements t(4;11)(q21;q23) and i(7q), described when the cell line was first established, were confirmed by fluorescence in situ hybridisation (FISH) and 24-colour karyotyping by M-FISH. Additional cytogenetic abnormalities were investigated by further FISH experiments, including the presence of trisomy 18 as a clonal abnormality and the discovery of one chromosome 8 being an i(8q), which indicates a duplication of the oncogene MYC. A homozygous deletion of 9p21 containing the tumour-suppressor genes CDKN2A and CDKN2B was also revealed by FISH. The production of the fusion transcript KMT2A-AFF1 arising from the der(11)t(4;11) was confirmed by RT-PCR, but sequencing of the amplified fragment revealed the presence of multiple isoforms. Two transcript variants, resulting from alternative splicing, were identified differing in one glutamine residue in the translated protein. CONCLUSION As karyotype evolution is a common issue in cell lines, we highlight the need to monitor cell lines in order to re-confirm their characteristics over time. We also reviewed the literature to provide a comparison of key features of several cell lines harbouring a t(4;11). This would guide scientists in selecting the most suitable research model for this particular type of KMT2A-leukaemia.
Collapse
Affiliation(s)
- Denise Ragusa
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Evgeny M Makarov
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK.,Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Oliver Britten
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Daniela Moralli
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Catherine M Green
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sabrina Tosi
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK.,Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| |
Collapse
|
15
|
Dal Molin A, Bresolin S, Gaffo E, Tretti C, Boldrin E, Meyer LH, Guglielmelli P, Vannucchi AM, te Kronnie G, Bortoluzzi S. CircRNAs Are Here to Stay: A Perspective on the MLL Recombinome. Front Genet 2019; 10:88. [PMID: 30815012 PMCID: PMC6382020 DOI: 10.3389/fgene.2019.00088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/29/2019] [Indexed: 01/21/2023] Open
Abstract
Chromosomal translocations harbored by cancer genomes are important oncogenic drivers. In MLL rearranged acute leukemia (MLLre) MLL/KMT2A fuses with over 90 partner genes. Mechanistic studies provided clues of MLL fusion protein leukemogenic potential, but models failed to fully recapitulate the disease. Recently, expression of oncogenic fusion circular RNAs (f-circ) by MLL-AF9 fusion was proven. This discovery, together with emerging data on the importance and diversity of circRNAs formed the incentive to study the circRNAs of the MLL recombinome. Through interactions with other RNAs, such as microRNAs, and with proteins, circRNAs regulate cellular processes also related to cancer development. CircRNAs can translate into functional peptides too. MLL and most of the 90 MLL translocation partners do express circRNAs and exploration of our RNA-seq dataset of sorted blood cell populations provided new data on alternative circular isoform generation and expression variability of circRNAs of the MLL recombinome. Further, we provided evidence that rearrangements of MLL and three of the main translocation partner genes can impact circRNA expression, supported also by preliminary observations in leukemic cells. The emerging picture underpins the view that circRNAs are worthwhile to be considered when studying MLLre leukemias and provides a new perspective on the impact of chromosomal translocations in cancer cells at large.
Collapse
Affiliation(s)
- Anna Dal Molin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Silvia Bresolin
- Department of Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Enrico Gaffo
- Department of Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Caterina Tretti
- Department of Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Elena Boldrin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lueder H. Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Paola Guglielmelli
- CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, AOU Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro M. Vannucchi
- CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, AOU Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | |
Collapse
|
16
|
Agraz-Doblas A, Bueno C, Bashford-Rogers R, Roy A, Schneider P, Bardini M, Ballerini P, Cazzaniga G, Moreno T, Revilla C, Gut M, Valsecchi MG, Roberts I, Pieters R, De Lorenzo P, Varela I, Menendez P, Stam RW. Unraveling the cellular origin and clinical prognostic markers of infant B-cell acute lymphoblastic leukemia using genome-wide analysis. Haematologica 2019; 104:1176-1188. [PMID: 30679323 PMCID: PMC6545849 DOI: 10.3324/haematol.2018.206375] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
B-cell acute lymphoblastic leukemia is the commonest childhood cancer. In infants, B-cell acute lymphoblastic leukemia remains fatal, especially in patients with t(4;11), present in ~80% of cases. The pathogenesis of t(4;11)/KMT2A-AFF1+ (MLL-AF4+) infant B-cell acute lymphoblastic leukemia remains difficult to model, and the pathogenic contribution in cancer of the reciprocal fusions resulting from derivative translocated-chromosomes remains obscure. Here, “multi-layered” genome-wide analyses and validation were performed on a total of 124 de novo cases of infant B-cell acute lymphoblastic leukemia uniformly diagnosed and treated according to the Interfant 99/06 protocol. These patients showed the most silent mutational landscape reported so far for any sequenced pediatric cancer. Recurrent mutations were exclusively found in K-RAS and N-RAS, were subclonal and were frequently lost at relapse, despite a larger number of non-recurrent/non-silent mutations. Unlike non-MLL-rearranged B-cell acute lymphoblastic leukemias, B-cell receptor repertoire analysis revealed minor, non-expanded B-cell clones in t(4;11)+ infant B-cell acute lymphoblastic leukemia, and RNA-sequencing showed transcriptomic similarities between t(4;11)+ infant B-cell acute lymphoblastic leukemias and the most immature human fetal liver hematopoietic stem and progenitor cells, confirming a “pre-VDJ” fetal cellular origin for both t(4;11) and RASmut. The reciprocal fusion AF4-MLL was expressed in only 45% (19/43) of the t(4;11)+ patients, and HOXA cluster genes are exclusively expressed in AF4-MLL-expressing patients. Importantly, AF4-MLL/HOXA-expressing patients had a significantly better 4-year event-free survival (62.4% vs. 11.7%, P=0.001), and overall survival (73.7 vs. 25.2%, P=0.016). AF4-MLL expression retained its prognostic significance when analyzed in a Cox model adjusting for risk stratification according to the Interfant-06 protocol based on age at diagnosis, white blood cell count and response to prednisone. This study has clinical implications for disease outcome and diagnostic risk-stratification of t(4;11)+ infant B-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Antonio Agraz-Doblas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain.,Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | | | - Anindita Roy
- Department of Paediatrics, University of Oxford, UK
| | - Pauline Schneider
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Michela Bardini
- Centro Ricerca Tettamanti, Department of Pediatrics, University of Milano Bicocca, Fondazione MBBM, Monza, Italy
| | | | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Department of Pediatrics, University of Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Thaidy Moreno
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Carlos Revilla
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Marta Gut
- CNAG-CRG, Center for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria G Valsecchi
- Interfant Trial Data Center, University of Milano-Bicocca, Monza, Italy
| | - Irene Roberts
- Department of Paediatrics, University of Oxford, UK.,MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Rob Pieters
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Paola De Lorenzo
- Interfant Trial Data Center, University of Milano-Bicocca, Monza, Italy
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Spain .,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Barcelona, Spain
| | - Ronald W Stam
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
17
|
Abstract
Leukemia in infants is rare but generates tremendous interest due to its aggressive clinical presentation in a uniquely vulnerable host, its poor response to current therapies, and its fascinating biology. Increasingly, these biological insights are pointing the way toward novel therapeutic approaches. Using representative clinical case presentations, we review the key clinical, pathologic, and epidemiologic features of infant leukemia, including the high frequency of KMT2A gene rearrangements. We describe the current approach to risk-stratified treatment of infant leukemia in the major international cooperative groups. We highlight recent discoveries that elucidate the molecular biology of infant leukemia and suggest novel targeted therapeutic strategies, including modulation of aberrant epigenetic programs, inhibition of signaling pathways, and immunotherapeutics. Finally, we underscore the need for increased global collaboration to translate these discoveries into improved outcomes.
Collapse
|
18
|
Abstract
In this Review, I present evidence supporting a multifactorial causation of childhood acute lymphoblastic leukaemia (ALL), a major subtype of paediatric cancer. ALL evolves in two discrete steps. First, in utero initiation by fusion gene formation or hyperdiploidy generates a covert, pre-leukaemic clone. Second, in a small fraction of these cases, the postnatal acquisition of secondary genetic changes (primarily V(D)J recombination-activating protein (RAG) and activation-induced cytidine deaminase (AID)-driven copy number alterations in the case of ETS translocation variant 6 (ETV6)-runt-related transcription factor 1 (RUNX1)+ ALL) drives conversion to overt leukaemia. Epidemiological and modelling studies endorse a dual role for common infections. Microbial exposures earlier in life are protective but, in their absence, later infections trigger the critical secondary mutations. Risk is further modified by inherited genetics, chance and, probably, diet. Childhood ALL can be viewed as a paradoxical consequence of progress in modern societies, where behavioural changes have restrained early microbial exposure. This engenders an evolutionary mismatch between historical adaptations of the immune system and contemporary lifestyles. Childhood ALL may be a preventable cancer.
Collapse
Affiliation(s)
- Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
19
|
Affiliation(s)
- Irene Roberts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine; University of Oxford, Centre for Haematology; Oxford UK
- Oxford BRC Blood Theme, NIHR Oxford Biomedical Centre; Oxford UK
- Department of Paediatrics; University of Oxford; John Radcliffe Hospital; Oxford UK
| | - Nicholas J. Fordham
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine; University of Oxford, Centre for Haematology; Oxford UK
| | - Anupama Rao
- Great Ormond Street Hospital for Children; London UK
| | - Barbara J. Bain
- St Mary's Hospital campus of Imperial College London; St Mary's Hospital; London UK
| |
Collapse
|
20
|
Greaves M, Hughes W. Cancer cell transmission via the placenta. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:106-115. [PMID: 29765597 PMCID: PMC5946918 DOI: 10.1093/emph/eoy011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Cancer cells have a parasitic propensity in the primary host but their capacity to transit between individuals is severely restrained by two factors: a lack of a route for viable cell transfer and immune recognition in allogeneic, secondary recipients. Several examples of transmissible animal cancers are now recognised. In humans, the only natural route for transmission is via the haemochorial placenta which is permissive for cell traffic. There are three special examples of this occurring in utero: maternal to foetus, intraplacental twin to twin leukaemias and choriocarcinoma-extra-embryonic cells to mother. We discuss the rare circumstances under which such transmission occurs.
Collapse
Affiliation(s)
- Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, Brookes Lawley Building, London SM2 5NG, UK
| | - William Hughes
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
21
|
The role of RAS mutations in MLL-rearranged leukaemia: A path to intervention? Biochim Biophys Acta Rev Cancer 2017; 1868:521-526. [PMID: 29056538 DOI: 10.1016/j.bbcan.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022]
Abstract
Childhood acute lymphoblastic leukaemia (ALL) with MLL rearrangement (MLL-r) is an aggressive disease still associated with a high mortality rate. Recent investigations have identified co-operating mutations in the RAS pathway and although the functional consequences of these mutations are not yet fully understood, aberrant regulation of RAS pathway signalling at both transcriptional and protein levels is observed. Studies investigating the efficacy of specific inhibitors of this pathway, e.g. MEK-inhibitors, have also achieved encouraging results. In this context, this mini-review summarizes the available data surrounding MLL-r infant ALL with RAS mutation in relation to other well-known features of this intriguing disease.
Collapse
|
22
|
Chemical exposure and infant leukaemia: development of an adverse outcome pathway (AOP) for aetiology and risk assessment research. Arch Toxicol 2017; 91:2763-2780. [PMID: 28536863 DOI: 10.1007/s00204-017-1986-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Infant leukaemia (<1 year old) is a rare disease of an in utero origin at an early phase of foetal development. Rearrangements of the mixed-lineage leukaemia (MLL) gene producing abnormal fusion proteins are the most frequent genetic/molecular findings in infant B cell-acute lymphoblastic leukaemia. In small epidemiological studies, mother/foetus exposures to some chemicals including pesticides have been associated with infant leukaemia; however, the strength of evidence and power of these studies are weak at best. Experimental in vitro or in vivo models do not sufficiently recapitulate the human disease and regulatory toxicology studies are unlikely to capture this kind of hazard. Here, we develop an adverse outcome pathway (AOP) based substantially on an analogous disease-secondary acute leukaemia caused by the topoisomerase II (topo II) poison etoposide-and on cellular and animal models. The hallmark of the AOP is the formation of MLL gene rearrangements via topo II poisoning, leading to fusion genes and ultimately acute leukaemia by global (epi)genetic dysregulation. The AOP condenses molecular, pathological, regulatory and clinical knowledge in a pragmatic, transparent and weight of evidence-based framework. This facilitates the interpretation and integration of epidemiological studies in the process of risk assessment by defining the biologically plausible causative mechanism(s). The AOP identified important gaps in the knowledge relevant to aetiology and risk assessment, including the specific embryonic target cell during the short and spatially restricted period of susceptibility, and the role of (epi)genetic features modifying the initiation and progression of the disease. Furthermore, the suggested AOP informs on a potential Integrated Approach to Testing and Assessment to address the risk caused by environmental chemicals in the future.
Collapse
|
23
|
Bergmann AK, Castellano G, Alten J, Ammerpohl O, Kolarova J, Nordlund J, Martin-Subero JI, Schrappe M, Siebert R. DNA methylation profiling of pediatric B-cell lymphoblastic leukemia with KMT2A rearrangement identifies hypomethylation at enhancer sites. Pediatr Blood Cancer 2017; 64. [PMID: 27786413 DOI: 10.1002/pbc.26251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/15/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
Abstract
Deregulation of the epigenome is an important pathogenetic mechanism in acute lymphoblastic leukemia (ALL) with lysine (K)-specific methyltransferase 2A rearrangement (KMT2Ar). We performed array-based DNA methylation profiling of KMT2Ar ALL cells from 26 children in comparison to normal B-cell precursors. Significant changes in DNA methylation in KMT2Ar ALL were identified in 2,545 CpG loci, influenced by age and the translocation partners AFF1 and MLLT1. In KMT2Ar ALL, DNA methylation loss was enriched at enhancers and for certain transcription factor binding sites such as BCL11A, EBF, and MEF2A. In summary, DNA methylation changes in KMT2Ar ALL target enhancers, genes involved in leukemogenesis and normal hematopoiesis, as well as transcription factor networks.
Collapse
Affiliation(s)
- Anke K Bergmann
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Pediatrics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Giancarlo Castellano
- Departamento de Anatomía Patológica, Farmacología y Microbiología, Institutd'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Julia Alten
- Department of Pediatrics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Institute of Human Genetics, University of Ulm & University Medical Center Ulm, Ulm, Germany
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Sweden
| | - Jose Ignacio Martin-Subero
- Departamento de Anatomía Patológica, Farmacología y Microbiología, Institutd'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Martin Schrappe
- Department of Pediatrics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Institute of Human Genetics, University of Ulm & University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
24
|
Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Smith R, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Angeli K, Fritsche E, Hernandez-Jerez AF, Leist M, Mantovani A, Menendez P, Pelkonen O, Price A, Viviani B, Chiusolo A, Ruffo F, Terron A, Bennekou SH. Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson's disease and childhood leukaemia. EFSA J 2017; 15:e04691. [PMID: 32625422 PMCID: PMC7233269 DOI: 10.2903/j.efsa.2017.4691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In 2013, EFSA published a literature review on epidemiological studies linking exposure to pesticides and human health outcome. As a follow up, the EFSA Panel on Plant Protection Products and their residues (PPR Panel) was requested to investigate the plausible involvement of pesticide exposure as a risk factor for Parkinson's disease (PD) and childhood leukaemia (CHL). A systematic literature review on PD and CHL and mode of actions for pesticides was published by EFSA in 2016 and used as background documentation. The Panel used the Adverse Outcome Pathway (AOP) conceptual framework to define the biological plausibility in relation to epidemiological studies by means of identification of specific symptoms of the diseases as AO. The AOP combines multiple information and provides knowledge of biological pathways, highlights species differences and similarities, identifies research needs and supports regulatory decisions. In this context, the AOP approach could help in organising the available experimental knowledge to assess biological plausibility by describing the link between a molecular initiating event (MIE) and the AO through a series of biologically plausible and essential key events (KEs). As the AOP is chemically agnostic, tool chemical compounds were selected to empirically support the response and temporal concordance of the key event relationships (KERs). Three qualitative and one putative AOP were developed by the Panel using the results obtained. The Panel supports the use of the AOP framework to scientifically and transparently explore the biological plausibility of the association between pesticide exposure and human health outcomes, identify data gaps, define a tailored testing strategy and suggests an AOP's informed Integrated Approach for Testing and Assessment (IATA).
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The prognosis for infants less than 12 months of age who are diagnosed with acute lymphoblastic leukemia (ALL) remains poor despite overall advances in the treatment of childhood ALL. In this review, we highlight the recent advances in the understanding of the pathogenesis of infant ALL and discuss opportunities for translating these findings into clinical trials. RECENT FINDINGS Infant ALL can be divided into two major disease types, defined by the presence or absence of KMT2A (MLL) rearrangement (KMT2A-R). Recent molecular profiling studies have found that infant ALL with KMT2A-R is an epigenomic disease that lacks other somatic driver mutations. Strategies to intensify therapy have not improved survival for infants with KMT2A-R ALL. In contrast, infant ALL without KMT2A-R is more similar to ALL of older children and survival has improved modestly with intensification of chemotherapy. Discovery of clonal molecular markers that predict chemoresistance will allow further risk classification and development of novel treatment strategies. Modern clinical trials are integrating molecularly targeted therapies into the treatment of infant ALL. SUMMARY Advances in molecular profiling and integration of targeted therapy have the potential to reduce toxicity and improve survival for infants with ALL.
Collapse
|
26
|
Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric leukaemia by ultra deep sequencing analysis. Sci Rep 2016; 6:34449. [PMID: 27698462 PMCID: PMC5048141 DOI: 10.1038/srep34449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022] Open
Abstract
To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations.
Collapse
|
27
|
Urtishak KA, Robinson BW, Rappaport EF, Sarezky MD, Biegel JA, Nichols KE, Wilmoth DM, Wang LS, Stern JW, Felix CA. Unique Familial MLL(KMT2A)-Rearranged Precursor B-Cell Infant Acute Lymphoblastic Leukemia in Non-twin Siblings. Pediatr Blood Cancer 2016; 63:1175-80. [PMID: 26999444 DOI: 10.1002/pbc.25957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Infant acute lymphoblastic leukemia (ALL) has never occurred in families except for the ∼100% concordant cases in monozygous twins attributed to twin-to-twin metastases. We report the first kindred with infant ALL in non-twin siblings. The siblings were diagnosed with MLL-rearranged (MLL-R) ALL 26 months apart. The second affected sibling had an unaffected dichorionic monozygous co-twin. Both had fatal outcomes. PROCEDURES Translocations were characterized by karyotype, FISH, multiplex FISH, and MLL breakpoint cluster region (bcr) Southern blot analysis. Breakpoint junctions and fusion transcripts were cloned by PCR. TP53 mutation and NADPH quinone oxidorecuctase 1 (NQO1) C609T analyses were performed, and pedigree history and parental occupations were ascertained. The likelihood of chance occurrence of infant ALL in non-twin siblings was computed based on a binomial distribution. Zygosity was determined by single nucleotide polymorphism (SNP) array. RESULTS The translocations were not related or vertically transmitted. The complex karyotype of the proband's ALL had chromosome 2, 3, 4, and 11 abnormalities causing a 5'-MLL-AFF1-3' fusion and a non-productive rearrangement of 3'MLL with a chromosome 3q intergenic region. The affected twin's ALL exhibited a simple t(4;11). The complex karyotype of the proband's ALL suggested a genotoxic insult, but no exposure was identified. There was no germline TP53 mutation. The NQO1 C609T risk allele was absent. The likelihood of infant ALL occurring in non-twin siblings by chance alone is one in 1.198 × 10(9) families. CONCLUSIONS Whether because of a deleterious transplacental exposure, novel predisposition syndrome, or exceedingly rare chance occurrence, MLL-R infant ALL can occur in non-twin siblings. The discordant occurrence of infant ALL in the monozygous twins was likely because they were dichorionic.
Collapse
Affiliation(s)
- Karen A Urtishak
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Blaine W Robinson
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eric F Rappaport
- Nucleic Acids & Protein Core Facility, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Margaret D Sarezky
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jaclyn A Biegel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kim E Nichols
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Donna M Wilmoth
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julie W Stern
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carolyn A Felix
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Castaño J, Herrero AB, Bursen A, González F, Marschalek R, Gutiérrez NC, Menendez P. Expression of MLL-AF4 or AF4-MLL fusions does not impact the efficiency of DNA damage repair. Oncotarget 2016; 7:30440-52. [PMID: 27119507 PMCID: PMC5058691 DOI: 10.18632/oncotarget.8938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 11/30/2022] Open
Abstract
The most frequent rearrangement of the human MLL gene fuses MLL to AF4 resulting in high-risk infant B-cell acute lymphoblastic leukemia (B-ALL). MLL fusions are also hallmark oncogenic events in secondary acute myeloid leukemia. They are a direct consequence of mis-repaired DNA double strand breaks (DNA-DSBs) due to defects in the DNA damage response associated with exposure to topoisomerase-II poisons such as etoposide. It has been suggested that MLL fusions render cells susceptible to additional chromosomal damage upon exposure to etoposide. Conversely, the genome-wide mutational landscape in MLL-rearranged infant B-ALL has been reported silent. Thus, whether MLL fusions compromise the recognition and/or repair of DNA damage remains unanswered. Here, the fusion proteins MLL-AF4 (MA4) and AF4-MLL (A4M) were CRISPR/Cas9-genome edited in the AAVS1 locus of HEK293 cells as a model to study MLL fusion-mediated DNA-DSB formation/repair. Repair kinetics of etoposide- and ionizing radiation-induced DSBs was identical in WT, MA4- and A4M-expressing cells, as revealed by flow cytometry, by immunoblot for γH2AX and by comet assay. Accordingly, no differences were observed between WT, MA4- and A4M-expressing cells in the presence of master proteins involved in non-homologous end-joining (NHEJ; i.e.KU86, KU70), alternative-NHEJ (Alt-NHEJ; i.e.LigIIIa, WRN and PARP1), and homologous recombination (HR, i.e.RAD51). Moreover, functional assays revealed identical NHEJ and HR efficiency irrespective of the genotype. Treatment with etoposide consistently induced cell cycle arrest in S/G2/M independent of MA4/A4M expression, revealing a proper activation of the DNA damage checkpoints. Collectively, expression of MA4 or A4M does neither influence DNA signaling nor DNA-DSB repair.
Collapse
Affiliation(s)
- Julio Castaño
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Ana B. Herrero
- Hematology Department, University Hospital of Salamanca, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Aldeheid Bursen
- Institute Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | | | - Rolf Marschalek
- Institute Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | - Norma C. Gutiérrez
- Hematology Department, University Hospital of Salamanca, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
29
|
Ivanov Öfverholm I, Tran AN, Olsson L, Zachariadis V, Heyman M, Rudd E, Syk Lundberg E, Nordenskjöld M, Johansson B, Nordgren A, Barbany G. Detailed gene dose analysis reveals recurrent focal gene deletions in pediatric B-cell precursor acute lymphoblastic leukemia. Leuk Lymphoma 2016; 57:2161-70. [DOI: 10.3109/10428194.2015.1136740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Hernández AF, Menéndez P. Linking Pesticide Exposure with Pediatric Leukemia: Potential Underlying Mechanisms. Int J Mol Sci 2016; 17:461. [PMID: 27043530 PMCID: PMC4848917 DOI: 10.3390/ijms17040461] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/15/2016] [Accepted: 03/23/2016] [Indexed: 01/01/2023] Open
Abstract
Leukemia is the most common cancer in children, representing 30% of all childhood cancers. The disease arises from recurrent genetic insults that block differentiation of hematopoietic stem and/or progenitor cells (HSPCs) and drives uncontrolled proliferation and survival of the differentiation-blocked clone. Pediatric leukemia is phenotypically and genetically heterogeneous with an obscure etiology. The interaction between genetic factors and environmental agents represents a potential etiological driver. Although information is limited, the principal toxic mechanisms of potential leukemogenic agents (e.g., etoposide, benzene metabolites, bioflavonoids and some pesticides) include topoisomerase II inhibition and/or excessive generation of free radicals, which may induce DNA single- and double-strand breaks (DNA-DSBs) in early HSPCs. Chromosomal rearrangements (duplications, deletions and translocations) may occur if these lesions are not properly repaired. The initiating hit usually occurs in utero and commonly leads to the expression of oncogenic fusion proteins. Subsequent cooperating hits define the disease latency and occur after birth and may be of a genetic, epigenetic or immune nature (i.e., delayed infection-mediated immune deregulation). Here, we review the available experimental and epidemiological evidence linking pesticide exposure to infant and childhood leukemia and provide a mechanistic basis to support the association, focusing on early initiating molecular events.
Collapse
Affiliation(s)
- Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada 18016, Spain.
| | - Pablo Menéndez
- Department of Biomedicine, Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Barcelona 08036, Spain.
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
31
|
Prieto C, Stam RW, Agraz-Doblas A, Ballerini P, Camos M, Castaño J, Marschalek R, Bursen A, Varela I, Bueno C, Menendez P. Activated KRAS Cooperates with MLL-AF4 to Promote Extramedullary Engraftment and Migration of Cord Blood CD34+ HSPC But Is Insufficient to Initiate Leukemia. Cancer Res 2016; 76:2478-89. [PMID: 26837759 DOI: 10.1158/0008-5472.can-15-2769] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/08/2016] [Indexed: 11/16/2022]
Abstract
The MLL-AF4 (MA4) fusion gene is the genetic hallmark of an aggressive infant pro-B-acute lymphoblastic leukemia (B-ALL). Our understanding of MA4-mediated transformation is very limited. Whole-genome sequencing studies revealed a silent mutational landscape, which contradicts the aggressive clinical outcome of this hematologic malignancy. Only RAS mutations were recurrently detected in patients and found to be associated with poorer outcome. The absence of MA4-driven B-ALL models further questions whether MA4 acts as a single oncogenic driver or requires cooperating mutations to manifest a malignant phenotype. We explored whether KRAS activation cooperates with MA4 to initiate leukemia in cord blood-derived CD34(+) hematopoietic stem/progenitor cells (HSPC). Clonogenic and differentiation/proliferation assays demonstrated that KRAS activation does not cooperate with MA4 to immortalize CD34(+) HSPCs. Intrabone marrow transplantation into immunodeficient mice further showed that MA4 and KRAS(G12V) alone or in combination enhanced hematopoietic repopulation without impairing myeloid-lymphoid differentiation, and that mutated KRAS did not cooperate with MA4 to initiate leukemia. However, KRAS activation enhanced extramedullary hematopoiesis of MA4-expressing cell lines and CD34(+) HSPCs that was associated with leukocytosis and central nervous system infiltration, both hallmarks of infant t(4;11)(+) B-ALL. Transcriptional profiling of MA4-expressing patients supported a cell migration gene signature underlying the mutant KRAS-mediated phenotype. Collectively, our findings demonstrate that KRAS affects the homeostasis of MA4-expressing HSPCs, suggesting that KRAS activation in MA4(+) B-ALL is important for tumor maintenance rather than initiation. Cancer Res; 76(8); 2478-89. ©2016 AACR.
Collapse
Affiliation(s)
- Cristina Prieto
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Ronald W Stam
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Antonio Agraz-Doblas
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain. Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC-CSIC-UNIVERSIDAD DE CANTABRIA-SODERCAN), Santander, Spain
| | - Paola Ballerini
- Pediatric Hematology Department, A. Trousseau Hospital, Paris, France
| | - Mireia Camos
- Hematology Laboratory, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Julio Castaño
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Rolf Marschalek
- Institute Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | - Aldeheid Bursen
- Institute Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | - Ignacio Varela
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC-CSIC-UNIVERSIDAD DE CANTABRIA-SODERCAN), Santander, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain. Instituciò Catalana Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
32
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Tasian SK, Loh ML, Hunger SP. Childhood acute lymphoblastic leukemia: Integrating genomics into therapy. Cancer 2015; 121:3577-90. [PMID: 26194091 PMCID: PMC4592406 DOI: 10.1002/cncr.29573] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/31/2015] [Accepted: 06/17/2015] [Indexed: 12/31/2022]
Abstract
Acute lymphoblastic leukemia (ALL), the most common malignancy of childhood, is a genetically complex entity that remains a major cause of childhood cancer-related mortality. Major advances in genomic and epigenomic profiling during the past decade have appreciably enhanced knowledge of the biology of de novo and relapsed ALL and have facilitated more precise risk stratification of patients. These achievements have also provided critical insights regarding potentially targetable lesions for the development of new therapeutic approaches in the era of precision medicine. In this review, the authors delineate the current genetic landscape of childhood ALL, emphasizing patient outcomes with contemporary treatment regimens as well as therapeutic implications of newly identified genomic alterations in specific subsets of ALL.
Collapse
Affiliation(s)
- Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Abramson Cancer Center; Philadelphia, PA
| | - Mignon L Loh
- University of California, San Francisco Benioff Children's Hospital; San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center; San Francisco, CA
| | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA
| |
Collapse
|
34
|
Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia. Blood 2015; 126:2676-85. [PMID: 26463423 DOI: 10.1182/blood-2015-09-667378] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Infant B-cell acute lymphoblastic leukemia (B-ALL) accounts for 10% of childhood ALL. The genetic hallmark of most infant B-ALL is chromosomal rearrangements of the mixed-lineage leukemia (MLL) gene. Despite improvement in the clinical management and survival (∼85-90%) of childhood B-ALL, the outcome of infants with MLL-rearranged (MLL-r) B-ALL remains dismal, with overall survival <35%. Among MLL-r infant B-ALL, t(4;11)+ patients harboring the fusion MLL-AF4 (MA4) display a particularly poor prognosis and a pro-B/mixed phenotype. Studies in monozygotic twins and archived blood spots have provided compelling evidence of a single cell of prenatal origin as the target for MA4 fusion, explaining the brief leukemia latency. Despite its aggressiveness and short latency, current progress on its etiology, pathogenesis, and cellular origin is limited as evidenced by the lack of mouse/human models recapitulating the disease phenotype/latency. We propose this is because infant cancer is from an etiologic and pathogenesis standpoint distinct from adult cancer and should be seen as a developmental disease. This is supported by whole-genome sequencing studies suggesting that opposite to the view of cancer as a "multiple-and-sequential-hit" model, t(4;11) alone might be sufficient to spawn leukemia. The stable genome of these patients suggests that, in infant developmental cancer, one "big-hit" might be sufficient for overt disease and supports a key contribution of epigenetics and a prenatal cell of origin during a critical developmental window of stem cell vulnerability in the leukemia pathogenesis. Here, we revisit the biology of t(4;11)+ infant B-ALL with an emphasis on its origin, genetics, and disease models.
Collapse
|
35
|
Breese EH, Buechele C, Dawson C, Cleary ML, Porteus MH. Use of Genome Engineering to Create Patient Specific MLL Translocations in Primary Human Hematopoietic Stem and Progenitor Cells. PLoS One 2015; 10:e0136644. [PMID: 26351841 PMCID: PMC4564237 DOI: 10.1371/journal.pone.0136644] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/06/2015] [Indexed: 01/25/2023] Open
Abstract
One of the challenging questions in cancer biology is how a normal cell transforms into a cancer cell. There is strong evidence that specific chromosomal translocations are a key element in this transformation process. Our studies focus on understanding the developmental mechanism by which a normal stem or progenitor cell transforms into leukemia. Here we used engineered nucleases to induce simultaneous specific double strand breaks in the MLL gene and two different known translocation partners (AF4 and AF9), which resulted in specific chromosomal translocations in K562 cells as well as primary hematopoietic stem and progenitor cells (HSPCs). The initiation of a specific MLL translocation in a small number of HSPCs likely mimics the leukemia-initiating event that occurs in patients. In our studies, the creation of specific MLL translocations in CD34+ cells was not sufficient to transform cells in vitro. Rather, a variety of fates was observed for translocation positive cells including cell loss over time, a transient proliferative advantage followed by loss of the clone, or a persistent proliferative advantage. These studies highlight the application of genome engineering tools in primary human HSPCs to induce and prospectively study the consequences of initiating translocation events in leukemia pathogenesis.
Collapse
Affiliation(s)
- Erin H Breese
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Corina Buechele
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Catherine Dawson
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Michael L Cleary
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Matthew H Porteus
- Division of Pediatric Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
36
|
Rational combination therapies targeting survival signaling in aggressive B-cell leukemia/lymphoma. Curr Opin Hematol 2015; 21:297-308. [PMID: 24811162 DOI: 10.1097/moh.0000000000000045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW The identification of oncogenic 'driver' mutations and activated survival pathways in selected aggressive B-cell malignancies directs the development of novel adjunctive therapies using targeted small molecule inhibitors. With a focus on diffuse large B-cell lymphoma 'not otherwise specified', Hodgkin lymphoma and childhood B-cell precursor acute lymphoblastic leukemia, this review will provide an up-to-date account of the current literature on the development of new molecularly targeted treatment modalities for aggressive B-cell malignancies. RECENT FINDINGS Subclassification of B-cell malignancies depending on their particular genetic 'driver' lesions and transcriptional and/or signaling signatures has led to the development of targeted therapeutic approaches using small molecule inhibitors to amend current combination chemotherapy. SUMMARY Treatment outcome with current combination chemotherapy is still poor for subsets of aggressive B-cell malignancies, and demands development of targeted therapeutic approaches. Advanced gene expression profiling and genomic sequencing have revealed a more detailed landscape of recurrent alterations, allowing a better subclassification of B-cell lymphomas and leukemias. Many alterations directly or indirectly lead to activation of survival signaling pathways and expression of key oncoproteins and prosurvival molecules, including Janus kinase-signal transducer and activator of transcription (JAK-STAT), phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), avian myelocytomatosis viral oncogene homolog (MYC) and B-cell lymphoma 2 (BCLl-2). Small molecule inhibitors targeting these proteins and pathways are currently being tested in clinical trials and preclinically to improve chemotherapeutic regimes and treatment outcomes.
Collapse
|
37
|
Ghazavi F, Lammens T, Van Roy N, Poppe B, Speleman F, Benoit Y, Van Vlierberghe P, De Moerloose B. Molecular basis and clinical significance of genetic aberrations in B-cell precursor acute lymphoblastic leukemia. Exp Hematol 2015; 43:640-53. [DOI: 10.1016/j.exphem.2015.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 12/25/2022]
|
38
|
Abstract
In a recent issue of Nature Genetics, Andersson and colleagues report that MLL fusion alone may be sufficient to spawn an aggressive leukemia in infants. Some other pediatric cancers may share a similar, single, "big-hit" origin, possibly reflecting a critical developmental window of stem cell vulnerability.
Collapse
Affiliation(s)
- Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, Brookes Lawley Building, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK.
| |
Collapse
|
39
|
Andersson AK, Ma J, Wang J, Chen X, Gedman AL, Dang J, Nakitandwe J, Holmfeldt L, Parker M, Easton J, Huether R, Kriwacki R, Rusch M, Wu G, Li Y, Mulder H, Raimondi S, Pounds S, Kang G, Shi L, Becksfort J, Gupta P, Payne-Turner D, Vadodaria B, Boggs K, Yergeau D, Manne J, Song G, Edmonson M, Nagahawatte P, Wei L, Cheng C, Pei D, Sutton R, Venn NC, Chetcuti A, Rush A, Catchpoole D, Heldrup J, Fioretos T, Lu C, Ding L, Pui CH, Shurtleff S, Mullighan CG, Mardis ER, Wilson RK, Gruber TA, Zhang J, Downing JR. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet 2015; 47:330-7. [PMID: 25730765 PMCID: PMC4553269 DOI: 10.1038/ng.3230] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/02/2015] [Indexed: 12/13/2022]
Abstract
Infant acute lymphoblastic leukemia (ALL) with MLL rearrangements (MLL-R) represents a distinct leukemia with a poor prognosis. To define its mutational landscape, we performed whole genome, exome, RNA and targeted DNA sequencing on 65 infants (47 MLL-R and 18 non-MLL-R) and 20 older children (MLL-R cases) with leukemia. Our data demonstrated infant MLL-R ALL to have one of the lowest frequencies of somatic mutations of any sequenced cancer, with the predominant leukemic clone carrying a mean of 1.3 non-silent mutations. Despite the paucity of mutations, activating mutations in kinase/PI3K/RAS signaling pathways were detected in 47%. Surprisingly, however, these mutations were often sub-clonal and frequently lost at relapse. In contrast to infant cases, MLL-R leukemia in older children had more somatic mutations (a mean of 6.5/case versus 1.3/case, P=7.15×10−5) and contained frequent mutations (45%) in epigenetic regulators, a category of genes that with the exception of MLL was rarely mutated in infant MLL-R ALL.
Collapse
Affiliation(s)
- Anna K Andersson
- 1] Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Clinical Genetics, Lund University, Lund, Sweden
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jianmin Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Amanda Larson Gedman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jinjun Dang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Joy Nakitandwe
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Linda Holmfeldt
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew Parker
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John Easton
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert Huether
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Heather Mulder
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Susana Raimondi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jared Becksfort
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Pankaj Gupta
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bhavin Vadodaria
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kristy Boggs
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Donald Yergeau
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jayanthi Manne
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Michael Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Panduka Nagahawatte
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lei Wei
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rosemary Sutton
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicola C Venn
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Albert Chetcuti
- Tumor Bank, Children's Cancer Research Unit, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Amanda Rush
- Tumor Bank, Children's Cancer Research Unit, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Daniel Catchpoole
- Tumor Bank, Children's Cancer Research Unit, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Jesper Heldrup
- Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Lund University, Lund, Sweden
| | - Charles Lu
- 1] Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA. [2] Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Li Ding
- 1] Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA. [2] Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ching-Hon Pui
- 1] Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sheila Shurtleff
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Elaine R Mardis
- 1] Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA. [2] Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Richard K Wilson
- 1] Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA. [2] Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Tanja A Gruber
- 1] Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. [2] Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
40
|
Ballabio E, Milne TA. Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins. Mol Cell Oncol 2014; 1:e955330. [PMID: 27308325 PMCID: PMC4905190 DOI: 10.1080/23723548.2014.955330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
Although there has been great progress in the treatment of human cancers, especially leukemias, many remain resistant to treatment. A major current focus is the development of so-called epigenetic drugs. Epigenetic states are stable enough to persist through multiple cell divisions, but by their very nature are reversible and thus are amenable to therapeutic manipulation. Exciting work in this area has produced a new breed of highly specific small molecules designed to inhibit epigenetic proteins, some of which have entered clinical trials. The current and future development of epigenetic drugs is greatly aided by highly detailed information about normal and aberrant epigenetic changes at the molecular level. In this review we focus on a class of aggressive acute leukemias caused by mutations in the Mixed Lineage Leukemia (MLL) gene. We provide an overview of how detailed molecular analysis of MLL leukemias has provided several early-stage epigenetic drugs and propose that further study of MLL leukemogenesis may continue to provide molecular details that potentially have a wider range of applications in human cancers.
Collapse
Affiliation(s)
- Erica Ballabio
- MRC Molecular Hematology Unit; Weatherall Institute of Molecular Medicine; University of Oxford ; Oxford, UK
| | - Thomas A Milne
- MRC Molecular Hematology Unit; Weatherall Institute of Molecular Medicine; University of Oxford ; Oxford, UK
| |
Collapse
|
41
|
Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement. Leukemia 2014; 29:38-50. [PMID: 24798483 DOI: 10.1038/leu.2014.154] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 12/14/2022]
Abstract
Distinct from other forms of acute lymphoblastic leukemia (ALL), infant ALL with mixed lineage leukemia (MLL) gene rearrangement, the most common leukemia occurring within the first year of life, might arise without the need for cooperating genetic lesions. Through Ig/TCR rearrangement analysis of MLL-AF4+ infant ALL at diagnosis and xenograft leukemias from mice transplanted with the same diagnostic samples, we established that MLL-AF4+ infant ALL is composed of a branching subclonal architecture already at diagnosis, frequently driven by an Ig/TCR-rearranged founder clone. Some MLL-AF4+ clones appear to be largely quiescent at diagnosis but can reactivate and dominate when serially transplanted into immunodeficient mice, whereas other dominant clones at diagnosis can become more quiescent, suggesting a dynamic competition between actively proliferating and quiescent subclones. Investigation of paired diagnostic and relapse samples suggested that relapses often occur from subclones already present but more quiescent at diagnosis. Copy-number alterations identified at relapse might contribute to the activation and expansion of previously quiescent subclones. Finally, each of the identified subclones is able to contribute to the diverse phenotypic pool of MLL-AF4+ leukemia-propagating cells. Unraveling of the subclonal architecture and dynamics in MLL+ infant ALL may provide possible explanations for the therapy resistance and frequent relapses observed in this group of poor prognosis ALL.
Collapse
|
42
|
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy and a leading case of childhood cancer death. The last decade has witnessed a transformation in our understanding of the genetic basis of ALL due to detailed integrative genomic profiling of large cohorts of childhood ALL. Initially using microarray based approaches, and more recently with next-generation sequencing, these studies have enabled more precise subclassification of ALL, and have shown that each ALL entity is characterized by constellations of structural and sequence mutations that typically perturb key cellular pathways including lymphoid development, cell cycle regulation, tumor suppression, Ras- and tyrosine kinase-driven signaling, and epigenetic regulation. Importantly, several of the newly identified genetic alterations have entered the clinic to improve diagnosis and risk stratification, and are being pursued as new targets for therapeutic intervention. Studies of ALL have also led the way in dissecting the subclonal heterogeneity of cancer, and have shown that individual patients commonly harbor multiple related but genetically distinct subclones, and that this genetically determined clonal heterogeneity is an important determinant of relapse. In addition, genome-wide profiling has identified inherited genetic variants that influence ALL risk. Ongoing studies are deploying detailed integrative genetic transcriptomic and epigenetic sequencing to comprehensively define the genomic landscape of ALL. This review describes the recent advances in our understanding of the genetics of ALL, with an emphasis on those alterations of key pathogenic or therapeutic importance.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|