1
|
Nikaido M, Shirai A, Mizumaki Y, Shigenobu S, Ueno N, Hatta K. Intestinal expression patterns of transcription factors and markers for interstitial cells in the larval zebrafish. Dev Growth Differ 2023; 65:418-428. [PMID: 37452633 DOI: 10.1111/dgd.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
For the digestion of food, it is important for the gut to be differentiated regionally and to have proper motor control. However, the number of transcription factors that regulate its development is still limited. Meanwhile, the interstitial cells of the gastrointestinal (GI) tract are necessary for intestinal motility in addition to the enteric nervous system. There are anoctamine1 (Ano1)-positive and platelet-derived growth factor receptor α (Pdgfra)-positive interstitial cells in mammal, but Pdgfra-positive cells have not been reported in the zebrafish. To identify new transcription factors involved in GI tract development, we used RNA sequencing comparing between larval and adult gut. We isolated 40 transcription factors that were more highly expressed in the larval gut. We demonstrated expression patterns of the 13 genes, 7 of which were newly found to be expressed in the zebrafish larval gut. Six of the 13 genes encode nuclear receptors. The osr2 is expressed in the anterior part, while foxP4 in its distal part. Also, we reported the expression pattern of pdgfra for the first time in the larval zebrafish gut. Our data provide fundamental knowledge for studying vertebrate gut regionalization and motility by live imaging using zebrafish.
Collapse
Affiliation(s)
| | - Ayaka Shirai
- School of Science, University of Hyogo, Ako-gun, Japan
| | | | - Shuji Shigenobu
- Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan
| | - Naoto Ueno
- Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan
- Unit of Quantitative and Imaging Biology, International Research Collaboration Center, National Institute of Natural Sciences, Okazaki, Japan
| | - Kohei Hatta
- Graduate School of Science, University of Hyogo, Ako-gun, Japan
| |
Collapse
|
2
|
Frogne T, Sylvestersen KB, Kubicek S, Nielsen ML, Hecksher-Sørensen J. Pdx1 is post-translationally modified in vivo and serine 61 is the principal site of phosphorylation. PLoS One 2012; 7:e35233. [PMID: 22509401 PMCID: PMC3324462 DOI: 10.1371/journal.pone.0035233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 03/14/2012] [Indexed: 11/19/2022] Open
Abstract
Maintaining sufficient levels of Pdx1 activity is a prerequisite for proper regulation of blood glucose homeostasis and beta cell function. Mice that are haploinsufficient for Pdx1 display impaired glucose tolerance and lack the ability to increase beta cell mass in response to decreased insulin signaling. Several studies have shown that post-translational modifications are regulating Pdx1 activity through intracellular localization and binding to co-factors. Understanding the signaling cues converging on Pdx1 and modulating its activity is therefore an attractive approach in diabetes treatment. We employed a novel technique called Nanofluidic Proteomic Immunoassay to characterize the post-translational profile of Pdx1. Following isoelectric focusing in nano-capillaries, this technology relies on a pan specific antibody for detection and it therefore allows the relative abundance of differently charged protein species to be examined simultaneously. In all eukaryotic cells tested we find that the Pdx1 protein separates into four distinct peaks whereas Pdx1 protein from bacteria only produces one peak. Of the four peaks in eukaryotic cells we correlate one of them to a phosphorylation Using alanine scanning and mass spectrometry we map this phosphorylation to serine 61 in both Min6 cells and in exogenous Pdx1 over-expressed in HEK293 cells. A single phosphorylation is also present in cultured islets but it remains unaffected by changes in glucose levels. It is present during embryogenesis but is not required for pancreas development.
Collapse
Affiliation(s)
- Thomas Frogne
- Department of Beta-cell Regeneration, Hagedorn Research Institute, Gentofte, Denmark
| | | | - Stefan Kubicek
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Jacob Hecksher-Sørensen
- Department of Beta-cell Regeneration, Hagedorn Research Institute, Gentofte, Denmark
- * E-mail:
| |
Collapse
|
3
|
Kimmel RA, Onder L, Wilfinger A, Ellertsdottir E, Meyer D. Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish. BMC Biol 2011; 9:75. [PMID: 22034951 PMCID: PMC3215967 DOI: 10.1186/1741-7007-9-75] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/31/2011] [Indexed: 12/17/2022] Open
Abstract
Background Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed. Results To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1. Conclusions The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for the formation of duct-associated, second wave endocrine cells. We further reveal an unexpectedly low mitotic activity in these progenitor cells, indicating that they are set aside early in development.
Collapse
Affiliation(s)
- Robin A Kimmel
- Institute of Molecular Biology/CMBI; Leopold-Francis University, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
4
|
Caruso MA, Sheridan MA. New insights into the signaling system and function of insulin in fish. Gen Comp Endocrinol 2011; 173:227-47. [PMID: 21726560 DOI: 10.1016/j.ygcen.2011.06.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022]
Abstract
Fish have provided essential information about the structure, biosynthesis, evolution, and function of insulin (INS) as well as about the structure, evolution, and mechanism of action of insulin receptors (IR). INS, insulin-like growth factor (IGF)-1, and IGF-2 share a common ancestor; INS and a single IGF occur in Agnathans, whereas INS and distinct IGF-1 and IGF-2s appear in Chondrichthyes. Some but not all teleost fish possess multiple INS genes, but it is not clear if they arose from a common gene duplication event or from multiple separate gene duplications. INS is produced by the endocrine pancreas of fish as well as by several other tissues, including brain, pituitary, gastrointestinal tract, and adipose tissue. INS regulates various aspects of feeding, growth, development, and intermediary metabolism in fish. The actions of INS are mediated through the insulin receptor (IR), a member of the receptor tyrosine kinase family. IRs are widely distributed in peripheral tissues of fish, and multiple IR subtypes that derive from distinct mRNAs have been described. The IRs of fish link to several cellular effector systems, including the ERK and IRS-PI3k-Akt pathways. The diverse effects of INS can be modulated by altering the production and release of INS as well as by adjusting the production/surface expression of IR. The diverse actions of INS in fish as well as the diverse nature of the neural, hormonal, and environmental factors known to affect the INS signaling system reflects the various life history patterns that have evolved to enable fish to occupy a wide range of aquatic habitats.
Collapse
Affiliation(s)
- Michael A Caruso
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | |
Collapse
|
5
|
Jurczyk A, Roy N, Bajwa R, Gut P, Lipson K, Yang C, Covassin L, Racki WJ, Rossini AA, Phillips N, Stainier DYR, Greiner DL, Brehm MA, Bortell R, diIorio P. Dynamic glucoregulation and mammalian-like responses to metabolic and developmental disruption in zebrafish. Gen Comp Endocrinol 2011; 170:334-45. [PMID: 20965191 PMCID: PMC3014420 DOI: 10.1016/j.ygcen.2010.10.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 11/20/2022]
Abstract
Zebrafish embryos are emerging as models of glucose metabolism. However, patterns of endogenous glucose levels, and the role of the islet in glucoregulation, are unknown. We measured absolute glucose levels in zebrafish and mouse embryos, and demonstrate similar, dynamic glucose fluctuations in both species. Further, we show that chemical and genetic perturbations elicit mammalian-like glycemic responses in zebrafish embryos. We show that glucose is undetectable in early zebrafish and mouse embryos, but increases in parallel with pancreatic islet formation in both species. In zebrafish, increasing glucose is associated with activation of gluconeogenic phosphoenolpyruvate carboxykinase1 (pck1) transcription. Non-hepatic Pck1 protein is expressed in mouse embryos. We show using RNA in situ hybridization, that zebrafish pck1 mRNA is similarly expressed in multiple cell types prior to hepatogenesis. Further, we demonstrate that the Pck1 inhibitor 3-mercaptopicolinic acid suppresses normal glucose accumulation in early zebrafish embryos. This shows that pre- and extra-hepatic pck1 is functional, and provides glucose locally to rapidly developing tissues. To determine if the primary islet is glucoregulatory in early fish embryos, we injected pdx1-specific morpholinos into transgenic embryos expressing GFP in beta cells. Most morphant islets were hypomorphic, not a genetic, but embryos still exhibited persistent hyperglycemia. We conclude from these data that the early zebrafish islet is functional, and regulates endogenous glucose. In summary, we identify mechanisms of glucoregulation in zebrafish embryos that are conserved with embryonic and adult mammals. These observations justify use of this model in mechanistic studies of human metabolic disease.
Collapse
Affiliation(s)
- Agata Jurczyk
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Nicole Roy
- Sacred Heart University, Department of Biology, 5151 Park Ave, Fairfield, CT 06825 USA
| | - Rabia Bajwa
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Philipp Gut
- University of California, San Francisco, Department of Biochemistry & Biophysics, 1550 Fourth St., Room 318A, San Francisco, CA 94158-2324
| | - Kathryn Lipson
- Western New England College, Department of Physical and Biological Sciences, Springfield, MA 01119
| | - Chaoxing Yang
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Laurence Covassin
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Waldemar J. Racki
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Aldo A. Rossini
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Nancy Phillips
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Didier Y. R. Stainier
- University of California, San Francisco, Department of Biochemistry & Biophysics, 1550 Fourth St., Room 318A, San Francisco, CA 94158-2324
| | - Dale L. Greiner
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Michael A. Brehm
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Rita Bortell
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
| | - Philip diIorio
- University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, 373 Plantation Street, Suite 218, Worcester, MA 01605 USA
- Corresponding author. Address: University of Massachusetts Medical School, Program in Molecular Medicine, Diabetes Center of Excellence, Worcester, MA 01605, United States. Fax: 508-856-4093. Phone: 508-856-3679
| |
Collapse
|
6
|
Tehrani Z, Lin S. Antagonistic interactions of hedgehog, Bmp and retinoic acid signals control zebrafish endocrine pancreas development. Development 2011; 138:631-40. [PMID: 21228001 DOI: 10.1242/dev.050450] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic organogenesis is promoted or restricted by different signaling pathways. In amniotes, inhibition of hedgehog (Hh) activity in the early embryonic endoderm is a prerequisite for pancreatic specification. However, in zebrafish, loss of Hh signaling leads to a severe reduction of β-cells, leading to some ambiguity as to the role of Hh during pancreas development and whether its function has completely diverged between species. Here, we have employed genetic and pharmacological manipulations to temporally delineate the role of Hh in zebrafish endocrine pancreas development and investigate its relationship with the Bmp and retinoic acid (RA) signaling pathways. We found that Hh is required at the start of gastrulation for the medial migration and differentiation of pdx1-expressing pancreatic progenitors at later stages. This early positive role of Hh promotes β-cell lineage differentiation by restricting the repressive effects of Bmp. Inhibition of Bmp signaling in the early gastrula leads to increased β-cell numbers and partially rescued β-cell formation in Hh-deficient embryos. By the end of gastrulation, Hh switches to a negative role by antagonizing RA-mediated specification of the endocrine pancreas, but continues to promote differentiation of exocrine progenitors. We show that RA downregulates the Hh signaling components ptc1 and smo in endodermal explants, indicating a possible molecular mechanism for blocking axial mesoderm-derived Hh ligands from the prepancreatic endoderm during the specification stage. These results identify multiple sequential roles for Hh in pancreas development and highlight an unexpected antagonistic relationship between Hh and other signaling pathways to control pancreatic specification and differentiation.
Collapse
Affiliation(s)
- Zahra Tehrani
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095-1606, USA
| | | |
Collapse
|
7
|
Mason MN, Mahoney MJ. Selective beta-cell differentiation of dissociated embryonic pancreatic precursor cells cultured in synthetic polyethylene glycol hydrogels. Tissue Eng Part A 2009; 15:1343-52. [PMID: 19072086 DOI: 10.1089/ten.tea.2008.0290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Continuing advances in islet cell transplantation have been promising; however, several limitations, including severe shortage of transplantable islets, hinder the widespread use of this therapy. Pancreatic precursor cells are one alternative to cadaveric donor islets. These cells found in the developing pancreatic buds are capable of self-renewal and also have the innate ability to become insulin-producing beta-cells. For this work, bioinert polyethylene glycol (PEG) hydrogels were chosen as the supportive three-dimensional matrix for encapsulation of dissociated pancreatic precursor cells obtained from the dorsal pancreatic bud of day-15 rat embryos. This culture system was selected in order to eliminate cell-extracellular matrix and cell-cell signal heterogeneity present when intact pancreatic buds are embedded in protein-based gels, the typical in vitro culture conditions used to study this cell population. In this study it was found that (1) dissociated precursor cells maintain a robust viability for 7 days in PEG hydrogel culture, (2) encapsulated cells selectively differentiate into insulin-expressing beta-cells, and (3) differentiated beta-cells have releasable insulin stores, but are not achieving a mature, glucose responsive phenotype. These findings suggest that encapsulating dissociated pancreatic precursor cells in an environment designed to minimize the heterogeneous signaling cues present during development or in standard culture conditions generates a population highly enriched in pancreatic beta-cells; however, future efforts must focus on achieving glucose responsiveness in this cell population. Further, these results indicate that differentiation down a beta-cell lineage may be the default pathway in pancreatic development.
Collapse
Affiliation(s)
- Mariah N Mason
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
8
|
Anderson RM, Bosch JA, Goll MG, Hesselson D, Dong PDS, Shin D, Chi NC, Shin CH, Schlegel A, Halpern M, Stainier DYR. Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Dev Biol 2009; 334:213-23. [PMID: 19631206 DOI: 10.1016/j.ydbio.2009.07.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 07/07/2009] [Accepted: 07/15/2009] [Indexed: 02/02/2023]
Abstract
Developmental mechanisms regulating gene expression and the stable acquisition of cell fate direct cytodifferentiation during organogenesis. Moreover, it is likely that such mechanisms could be exploited to repair or regenerate damaged organs. DNA methyltransferases (Dnmts) are enzymes critical for epigenetic regulation, and are used in concert with histone methylation and acetylation to regulate gene expression and maintain genomic integrity and chromosome structure. We carried out two forward genetic screens for regulators of endodermal organ development. In the first, we screened for altered morphology of developing digestive organs, while in the second we screed for the lack of terminally differentiated cell types in the pancreas and liver. From these screens, we identified two mutant alleles of zebrafish dnmt1. Both lesions are predicted to eliminate dnmt1 function; one is a missense mutation in the catalytic domain and the other is a nonsense mutation that eliminates the catalytic domain. In zebrafish dnmt1 mutants, the pancreas and liver form normally, but begin to degenerate after 84 h post fertilization (hpf). Acinar cells are nearly abolished through apoptosis by 100 hpf, though neither DNA replication, nor entry into mitosis is halted in the absence of detectable Dnmt1. However, endocrine cells and ducts are largely spared. Surprisingly, dnmt1 mutants and dnmt1 morpholino-injected larvae show increased capacity for pancreatic beta cell regeneration in an inducible model of pancreatic beta cell ablation. Thus, our data suggest that Dnmt1 is dispensable for pancreatic duct or endocrine cell formation, but not for acinar cell survival. In addition, Dnmt1 may influence the differentiation of pancreatic beta cell progenitors or the reprogramming of cells toward the pancreatic beta cell fate.
Collapse
Affiliation(s)
- Ryan M Anderson
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, San Francisco, CA 94158-2324, USA. (
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li Z, Wen C, Peng J, Korzh V, Gong Z. Generation of living color transgenic zebrafish to trace somatostatin-expressing cells and endocrine pancreas organization. Differentiation 2009; 77:128-34. [DOI: 10.1016/j.diff.2008.09.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 08/10/2008] [Accepted: 08/11/2008] [Indexed: 11/30/2022]
|
10
|
Chen S, Huang J, Yuan G. siRNA specific to Pdx-1 disturbed the formation of the islet in early zebrafish embryos. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2008; 27:639-42. [PMID: 18231730 DOI: 10.1007/s11596-007-0604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Indexed: 11/28/2022]
Abstract
Pdx-1, an important transcription factor highlighting in the early pancreatic development, islet functions and pancreatic disorders, needs to be more investigated in zebrafish, and siRNA is still seldom applied in zebrafish embryo-related research. Our aim was to explore the role of pdx-1 in pancreatic development of zebrafish embryos by using siRNA approach. Microinjection, reverse transcriptase-PCR (RT-PCR), in situ hybridization and immunofluorescent staining were used in this research, and the morphology of the islet in normal zebrafish embryos, and in those treated with the siRNA specific to pdx-1 (siPDX-1) or siGFP was observed and compared. The expression of pdx-1 was detected in the stages of 1-cell, 2-cell, 4-cell, 8-cell, 16-cell, 16-hour by RT-PCT. The in situ hybridization and immunofluorescent staining results showed that siPDX-1 disturbed the formation of the islet in zebrafish embryos. Pdx-1 played multiple roles in maintaining the phenotype of the islet during embryogenesis in zebrafish.
Collapse
Affiliation(s)
- Shen Chen
- Department of Histology & Embryology, School of Preclinical Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | | | | |
Collapse
|
11
|
Hegde A, Qiu NC, Qiu X, Ho SHK, Tay KQY, George J, Ng FSL, Govindarajan KR, Gong Z, Mathavan S, Jiang YJ. Genomewide expression analysis in zebrafish mind bomb alleles with pancreas defects of different severity identifies putative Notch responsive genes. PLoS One 2008; 3:e1479. [PMID: 18213387 PMCID: PMC2195453 DOI: 10.1371/journal.pone.0001479] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 12/11/2007] [Indexed: 11/18/2022] Open
Abstract
Background Notch signaling is an evolutionarily conserved developmental pathway. Zebrafish mind bomb (mib) mutants carry mutations on mib gene, which encodes a RING E3 ligase required for Notch activation via Delta/Jagged ubiquitylation and internalization. Methodology/Principal Findings We examined the mib mutants for defects in pancreas development using in situ hybridization and GFP expression analysis of pancreas-specific GFP lines, carried out the global gene expression profile analysis of three different mib mutant alleles and validated the microarray data using real-time PCR and fluorescent double in situ hybridization. Our study showed that the mib mutants have diminished exocrine pancreas and this defect was most severe in mibta52b followed by mibm132 and then mibtfi91, which is consistent with the compromised Notch activity found in corresponding mib mutant alleles. Global expression profile analysis of mib mutants showed that there is a significant difference in gene expression profile of wt and three mib mutant alleles. There are 91 differentially expressed genes that are common to all three mib alleles. Through detailed analysis of microarray data, we have identified several previously characterized genes and some putative Notch-responsive genes involved in pancreas development. Moreover, results from real-time PCR and fluorescent double in situ hybridization were largely consistent with microarray data. Conclusions/Significance This study provides, for the first time, a global gene expression profile in mib mutants generating useful genomic resources and providing an opportunity to identify the function of novel genes involved in Notch signaling and Notch-regulated developmental processes.
Collapse
Affiliation(s)
- Ashok Hegde
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Nick Chuanxin Qiu
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Xuehui Qiu
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Steven Hao-Kee Ho
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Kenny Qi-Ye Tay
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Joshy George
- Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Felicia Soo Lee Ng
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sinnakaruppan Mathavan
- Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Yun-Jin Jiang
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Babu DA, Deering TG, Mirmira RG. A feat of metabolic proportions: Pdx1 orchestrates islet development and function in the maintenance of glucose homeostasis. Mol Genet Metab 2007; 92:43-55. [PMID: 17659992 PMCID: PMC2042521 DOI: 10.1016/j.ymgme.2007.06.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 01/30/2023]
Abstract
Emerging evidence over the past decade indicates a central role for transcription factors in the embryonic development of pancreatic islets and the consequent maintenance of normal glucose homeostasis. Pancreatic and duodenal homeobox 1 (Pdx1) is the best studied and perhaps most important of these factors. Whereas deletion or inactivating mutations of the Pdx1 gene causes whole pancreas agenesis in both mice and humans, even haploinsufficiency of the gene or alterations in its expression in mature islet cells causes substantial impairments in glucose tolerance and the development of a late-onset form of diabetes known as maturity onset diabetes of the young. The study of Pdx1 has revealed crucial phenotypic interrelationships of the varied cell types within the pancreas, particularly as these impinge upon cellular differentiation in the embryo and neogenesis and regeneration in the adult. In this review, we describe the actions of Pdx1 in the developing and mature pancreas and attempt to unify these actions with its known roles in modulating transcriptional complex formation and chromatin structure at the molecular genetic level.
Collapse
Affiliation(s)
- Daniella A. Babu
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908 USA
| | - Tye G. Deering
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908 USA
| | - Raghavendra G. Mirmira
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908 USA
- Diabetes Center, Department of Medicine, University of Virginia, Charlottesville, VA 22908 USA
- To whom correspondence should be addressed: University of Virginia Health System, 450 Ray C. Hunt Drive, Box 801407, Charlottesville, VA 22908. E-mail: , Telephone: 434-924-9416, Fax: 434-982-3796
| |
Collapse
|
13
|
Abstract
OBJECTIVES To investigate the anatomic structure of the pancreas and the distribution of the islets in adult zebrafish. METHODS In situ immunofluorescent staining, electron microscopy, and serial paraffin-embedded sectioning with hematoxylin/eosin staining were applied. RESULTS The pancreas along the intestine included 4 relatively independent and concentrated lobes, in which 4 kinds of islets-principal islets, Brockmann bodies, diffusely existing islets, and single beta-cell-were observed. Some islets contained both alpha and beta cells, whereas some contained only beta cells. The islet number in each adult zebrafish averaged 84.53 +/- 43.77; and the lower quartile, median, and upper quartile were 55.25, 70.50, and 112.00, respectively (n = 40). The different islets were differently distributed in the 4 pancreatic lobes with statistical significance (P < 0.05). Meanwhile, 3 kinds of secretory granules were found in the cytoplasm of different islet cells. CONCLUSIONS According to the distinct distribution, concentration of the pancreas, and different contents of the islets within the pancreas, 4 lobes of the pancreas along the intestine-the gallbladder-spleen lobe, the middle lobe, the left lobe, and the ventral lobe-were identified in adult zebrafish.
Collapse
Affiliation(s)
- Shen Chen
- Department of Histology and Embryology, School of Preclinical Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | |
Collapse
|
14
|
Abstract
Zebrafish are vertebrate organisms that are of growing interest for preclinical drug discovery applications. Zebrafish embryos develop most of the major organ systems present in mammals, including the cardiovascular, nervous and digestive systems, in < 1 week. Additional characteristics that make them advantageous for compound screening are their small size, transparency and ability to absorb compounds through the water. Furthermore, gene function analysis with antisense technology is now routine procedure. Thus, it is relatively simple to assess whether compounds or gene knockdowns cause toxic effects in zebrafish. Assays are being developed to exploit the unique characteristics of zebrafish for pharmacological toxicology. This review discusses assays that may be used to assess in vivo toxicity and provides examples of compounds known to be toxic to humans that have been demonstrated to function similarly in zebrafish.
Collapse
Affiliation(s)
- Amy L Rubinstein
- Zygogen LLC, 520 Kell Hall, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA.
| |
Collapse
|
15
|
Chen J, Ruan H, Ng SM, Gao C, Soo HM, Wu W, Zhang Z, Wen Z, Lane DP, Peng J. Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev 2006; 19:2900-11. [PMID: 16322560 PMCID: PMC1315396 DOI: 10.1101/gad.1366405] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcription factor p53 forms a network with associated factors to regulate the cell cycle and apoptosis in response to environmental stresses. However, there is currently no direct genetic evidence to show if or how the p53 pathway functions during organogenesis. Here we present evidence to show that the zebrafish def (digestive-organ expansion factor) gene encodes a novel pan-endoderm-specific factor. A loss-of-function mutation in def confers hypoplastic digestive organs and selectively up-regulates the expression of Delta113p53, counterpart to a newly identified isoform of p53 produced by an alternative internal promoter in intron 4 of the p53 gene in human. The increased Delta113p53 expression is limited to within the mutant digestive organs, and this increase selectively induces the expression of p53-responsive genes to trigger the arrest of the cell cycle but not apoptosis, resulting in compromised organ growth in the mutant. Our data demonstrate that, while induction of expression of p53 and/or its isoforms is crucial to suppress abnormal cell growth, Delta113p53 is tightly regulated by an organ/tissue-specific factor Def, especially during organogenesis, to prevent adverse inhibition of organ/tissue growth.
Collapse
Affiliation(s)
- Jun Chen
- Laboratory of Functional Genomics, Laboratory of Molecular and Developmental Immunology, Laboratory of Control of p53 Pathway, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mavropoulos A, Devos N, Biemar F, Zecchin E, Argenton F, Edlund H, Motte P, Martial JA, Peers B. sox4b is a key player of pancreatic alpha cell differentiation in zebrafish. Dev Biol 2005; 285:211-23. [PMID: 16055112 DOI: 10.1016/j.ydbio.2005.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 06/02/2005] [Accepted: 06/13/2005] [Indexed: 01/19/2023]
Abstract
Pancreas development relies on a network of transcription factors belonging mainly to the Homeodomain and basic Helix-Loop-Helix families. We show in this study that, in zebrafish, sox4, a member of the SRY-like HMG-box (SOX) family, is required for proper endocrine cell differentiation. We found that two genes orthologous to mammalian Sox4 are present in zebrafish and that only one of them, sox4b, is strongly expressed in the pancreatic anlage. Transcripts of sox4b were detected in mid-trunk endoderm from the 5-somite stage, well before the onset of expression of the early pancreatic gene pdx-1. Furthermore, by fluorescent double in situ hybridization, we found that expression of sox4b is mostly restricted to precursors of the endocrine compartment. This expression is not maintained in differentiated cells although transient expression can be detected in alpha cells and some beta cells. That sox4b-expressing cells belong to the endocrine lineage is further illustrated by their absence from the pancreata of slow-muscle-omitted mutant embryos, which specifically lack all early endocrine markers while retaining expression of exocrine markers. The involvement of sox4b in cell differentiation is suggested firstly by its up-regulation in mind bomb mutant embryos displaying accelerated pancreatic cell differentiation. In addition, sox4b knock-down leads to a drastic reduction in glucagon expression, while other pancreatic markers including insulin, somatostatin, and trypsin are not significantly affected. This disruption of alpha cell differentiation is due to down-regulation of the homeobox arx gene specifically in the pancreas. Taken together, these data demonstrate that, in zebrafish, sox4b is expressed transiently during endocrine cell differentiation and plays a crucial role in the generation of alpha endocrine cells.
Collapse
Affiliation(s)
- Anastasia Mavropoulos
- Laboratoire de Biologie Moléculaire et de Génie Génétique, Center of Biomedical Integrative Genoproteomics (CBIG), Université de Liège, Institut de Chimie, Bâtiment B6, 4000 Liège (Sart-Tilman), Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang H, Zhang B, Hartenstein PA, Chen JN, Lin S. NXT2 is required for embryonic heart development in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2005; 5:7. [PMID: 15790397 PMCID: PMC1079804 DOI: 10.1186/1471-213x-5-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 03/24/2005] [Indexed: 11/10/2022]
Abstract
Background NXT2 is a member of NXT family proteins that are generally involved in exporting nuclear RNA in eukaryotic cells. It is not known if NXT2 has any function in specific biological processes. Results A zebrafish mutant exhibiting specific heart defects during embryogenesis was generated by animal cloning-mediated retroviral insertions. Molecular analysis indicated that the mutant phenotype was caused by a disruption of NXT2. Whole-mount RNA in situ hybridization showed that NXT2 transcripts were clearly detectable in embryonic heart as well as other tissues. Further analysis revealed that expression level of one form of alternative splicing NXT2 mRNA transcripts was significantly reduced, resulting in deficient myocardial cell differentiation and the malformation of cardiac valve at the atrioventricular boundary. The defects could be reproduced by morpholino anti-sense oligo knockdown of NXT2. Conclusion NXT2 has a critical role in maintaining morphogenetic integrity of embryonic heart in vertebrate species.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Alternative Splicing
- Animals
- Cell Differentiation/genetics
- Cloning, Organism
- DNA Transposable Elements
- Edema, Cardiac/genetics
- Edema, Cardiac/pathology
- Heart/embryology
- Heart/physiology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Heart Valves/pathology
- Myocardium/chemistry
- Myocardium/cytology
- Myocardium/pathology
- Nuclear Export Signals/genetics
- Nuclear Export Signals/physiology
- Phenotype
- RNA, Antisense
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins/genetics
- Zebrafish Proteins/physiology
Collapse
Affiliation(s)
- Haigen Huang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Bo Zhang
- Center of Developmental Biology and Genetics, College of Life Sciences Peking University, Beijing 100871, P. R. CHINA
| | - Parvana A Hartenstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Jau-nian Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Shuo Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA
- Center of Developmental Biology and Genetics, College of Life Sciences Peking University, Beijing 100871, P. R. CHINA
| |
Collapse
|
18
|
Lin JW, Biankin AV, Horb ME, Ghosh B, Prasad NB, Yee NS, Pack MA, Leach SD. Differential requirement for ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. Dev Biol 2004; 274:491-503. [PMID: 15570689 DOI: 10.1016/j.ydbio.2004.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mammalian studies have implicated important roles for the basic helix-loop-helix transcription factor Ptf1a-p48 in the development of both exocrine and endocrine pancreas. We have cloned the Ptf1a-p48 ortholog in Danio rerio. Early zebrafish ptf1a expression is observed in developing hindbrain and in endodermal pancreatic precursors. Analysis of ptf1a and insulin expression reveals a population of exocrine precursors that, throughout early development, are temporally and spatially segregated from endocrine elements. Morpholino-mediated knockdown of ptf1a confirms early divergence of these endocrine and exocrine lineages. Ptf1a morphants lack differentiated exocrine pancreas, but maintain normal differentiation and organization of the principal islet. In addition to the exocrine phenotype, ptf1a knockdown also reduces the prevalence of a small population of anterior endocrine cells normally found outside the principal islet. Together, these findings suggest the presence of distinct ptf1a-dependent and ptf1a-independent precursor populations in developing zebrafish pancreas.
Collapse
Affiliation(s)
- John W Lin
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lin JW, Biankin AV, Horb ME, Ghosh B, Prasad NB, Yee NS, Pack MA, Leach SD. Differential requirement for ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. Dev Biol 2004; 270:474-86. [PMID: 15183727 DOI: 10.1016/j.ydbio.2004.02.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 01/20/2004] [Accepted: 02/25/2004] [Indexed: 11/15/2022]
Abstract
Mammalian studies have implicated important roles for the basic helix-loop-helix transcription factor Ptf1a-p48 in the development of both exocrine and endocrine pancreas. We have cloned the Ptf1a-p48 ortholog in Danio rerio. Early zebrafish ptf1a expression is observed in developing hindbrain and in endodermal pancreatic precursors. Analysis of ptf1a and insulin expression reveals a population of exocrine precursors that, throughout early development, are temporally and spatially segregated from endocrine elements. Morpholino-mediated knockdown of ptf1a confirms early divergence of these endocrine and exocrine lineages. Ptf1a morphants lack differentiated exocrine pancreas, but maintain normal differentiation and organization of the principal islet. In addition to the exocrine phenotype, ptf1a knockdown also reduces the prevalence of a small population of anterior endocrine cells normally found outside the principal islet. Together, these findings suggest the presence of distinct ptf1a-dependent and ptf1a-independent precursor populations in developing zebrafish pancreas.
Collapse
Affiliation(s)
- John W Lin
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Her GM, Chiang CC, Wu JL. Zebrafish intestinal fatty acid binding protein (I-FABP) gene promoter drives gut-specific expression in stable transgenic fish. Genesis 2004; 38:26-31. [PMID: 14755801 DOI: 10.1002/gene.10248] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mammalian intestinal fatty acid-binding protein (I-FABP) is a small cytosolic protein and is thought to play a crucial role of intracellular fatty acid trafficking and metabolism in gut. To establish an in vivo system for investigating its tissue-specific regulation during zebrafish intestinal development, we isolated 5'-flanking sequences of the zebrafish L-FABP gene and used a transgenic strategy to generate gut-specific transgenic zebrafish with green/red fluorescent intestine. The 4.5-kb 5'-flanking sequence of zebrafish I-FABP gene was sufficient to direct fluorescent expression in intestinal tube, first observed in 3 dpf embryos and then continuously to the adult stage. This pattern of transgenic expression is consistent with the expression pattern of the endogenous gene. In all five transgenic lines 45-52% of the F2 inheritance rates were consistent with the ratio of Mendelian segregation. These fish can also provide a valuable resource of labeled adult intestinal cells for in vivo or in vitro studies. Finally, it is possible to establish an in vivo system using these fish for screening genes required for gut development. genesis 38:26-31, 2004.
Collapse
Affiliation(s)
- Guor Mour Her
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Zoology, Academia Sinica, Taipei, Taiwan, R.O.C.
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Lara Gnügge
- Developmental Biology, University of Freiburg, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
22
|
|
23
|
Abstract
Recent studies in zebrafish have contributed to our understanding of early endoderm formation in vertebrates. Specifically, they have illustrated the importance of Nodal signaling as well as three transcription factors, Faust/Gata5, Bonnie and Clyde, and Casanova, in this process. Ongoing genetic and embryological studies in zebrafish are also contributing to our understanding of later aspects of endoderm development, including the formation of the gut and its associated organs, the liver and pancreas. The generation of transgenic lines expressing GFP in these organs promises to be particularly helpful in such studies.
Collapse
Affiliation(s)
- Elke A Ober
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, University of California, San Francisco, CA 94143-0448, USA
| | | | | |
Collapse
|
24
|
Müller F, Blader P, Strähle U. Search for enhancers: teleost models in comparative genomic and transgenic analysis of cis regulatory elements. Bioessays 2002; 24:564-72. [PMID: 12111739 DOI: 10.1002/bies.10096] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Homology searches between DNA sequences of evolutionary distant species (phylogenetic footprinting) offer a fast detection method for regulatory sequences. Because of the small size of their genomes, tetraodontid species such as the Japanese pufferfish and green spotted pufferfish have become attractive models for comparative genomics. A disadvantage of the tetraodontid species is, however, that they cannot be bred and manipulated routinely under laboratory conditions, so these species are less attractive for developmental and genetic analysis. In contrast, an increasing arsenal of transgene techniques with the developmental model species zebrafish and medaka are being used for functional analysis of cis regulatory sequences. The main disadvantage is the much larger genome. While comparison between many loci proved the suitability of phylogenetic footprinting using fish and mammalian sequences, fast rate of change in enhancer structure and gene duplication within teleosts may obscure detection of homologies. Here we discuss the contribution and potentials provided by different teleost models for the detection and functional analysis of conserved cis-regulatory elements.
Collapse
Affiliation(s)
- Ferenc Müller
- Institute of Toxicology and Genetics, Research Center Karlsruhe, Germany.
| | | | | |
Collapse
|