1
|
Inflammation Induced by Natural Neuronal Death and LPS Regulates Neural Progenitor Cell Proliferation in the Healthy Adult Brain. eNeuro 2020; 7:ENEURO.0023-20.2020. [PMID: 32424053 PMCID: PMC7333977 DOI: 10.1523/eneuro.0023-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022] Open
Abstract
Inflammation is typically considered a negative response to injury or insult; however, recent advances demonstrate that inflammatory cells regulate development, plasticity, and homeostasis through anticytotoxic, progenerative responses. Here, we extend analyses of neuroinflammation to natural neurodegenerative and homeostatic states by exploiting seasonal plasticity in cytoarchitecture of the avian telencephalic song control nucleus, high vocal center [HVC (proper name)], in the songbird Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii). We report that local injection of the endotoxin lipopolysaccharide into HVC of birds in both breeding (high circulating testosterone level) and nonbreeding (low circulating testosterone level) conditions increased neural progenitor cell proliferation in the nearby but distinct ventricular zone. Additionally, we found that oral administration of the anti-inflammatory drug minocycline during seasonal regression of HVC reduced microglia activation in HVC and prevented the normal proliferative response in the ventricular zone to apoptosis in HVC. Our results suggest that local neuroinflammation positively regulates neural progenitor cell proliferation and, in turn, contributes to the previously described repatterning of HVC cytoarchitecture following seasonally induced neuronal loss.
Collapse
|
2
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
3
|
Kim ID, Lee H, Kim SW, Lee HK, Choi J, Han PL, Lee JK. Alarmin HMGB1 induces systemic and brain inflammatory exacerbation in post-stroke infection rat model. Cell Death Dis 2018; 9:426. [PMID: 29555931 PMCID: PMC5859283 DOI: 10.1038/s41419-018-0438-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/13/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022]
Abstract
Post-stroke infection (PSI) is known to worsen functional outcomes of stroke patients and accounts to one-third of stroke-related deaths in hospital. In our previous reports, we demonstrated that massive release of high-mobility group box protein 1 (HMGB1), an endogenous danger signal molecule, is promoted by N-methyl-D-aspartic acid-induced acute damage in the postischemic brain, exacerbating neuronal damage by triggering delayed inflammatory processes. Moreover, augmentation of proinflammatory function of lipopolysaccharides (LPS) by HMGB1 via direct interaction has been reported. The aim of this study was to investigate the role of HMGB1 in aggravating inflammation in the PSI by exacerbating the function of LPS. PSI animal model was produced by administrating a low-dose LPS at 24 h post-middle cerebral artery occlusion (MCAO). Profound aggravations of inflammation, deterioration of behavioral outcomes, and infarct expansion were observed in LPS-injected MCAO animals, in which serum HMGB1 surge, especially disulfide type, occurred immediately after LPS administration and aggravated brain and systemic inflammations probably by acting in synergy with LPS. Importantly, blockage of HMGB1 function by delayed administrations of therapeutic peptides known to inhibit HMGB1 (HMGB1 A box, HPep1) or by treatment with LPS after preincubation with HMGB1 A box significantly ameliorated damages observed in the rat PSI model, demonstrating that HMGB1 plays a crucial role. Furthermore, administration of Rhodobacter sphaeroides LPS, a selective toll-like receptor 4 antagonist not only failed to exert these effects but blocked the effects of LPS, indicating its TLR4 dependence. Together, these results indicated that alarmin HMGB1 mediates potentiation of LPS function, exacerbating TLR4-dependent systemic and brain inflammation in a rat PSI model and there is a positive-feedback loop between augmentation of LPS function by HMGB1 and subsequent HMGB1 release/serum. Therefore, HMGB1 might be a valuable therapeutic target for preventing post-stroke infection.
Collapse
Affiliation(s)
- Il-Doo Kim
- Department of Anatomy, Inha University School of Medicine, Inchon, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Hahnbie Lee
- Department of Anatomy, Inha University School of Medicine, Inchon, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Seung-Woo Kim
- Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea.,Department of Biomedical Sciences, Inha University School of Medicine, Inchon, Republic of Korea
| | - Hye-Kyung Lee
- Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea.,Department of Biomedical Sciences, Inha University School of Medicine, Inchon, Republic of Korea
| | - Juli Choi
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Ja-Kyeong Lee
- Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea. .,Department of Biomedical Sciences, Inha University School of Medicine, Inchon, Republic of Korea.
| |
Collapse
|
4
|
Cheng X, Yang YL, Yang H, Wang YH, Du GH. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. Int Immunopharmacol 2018; 56:29-35. [PMID: 29328946 DOI: 10.1016/j.intimp.2018.01.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/02/2018] [Accepted: 01/02/2018] [Indexed: 11/17/2022]
Abstract
Kaempferol is a natural flavonoid with many biological activities including anti-oxidation and anti-inflammation. Nevertheless, its anti-neuroinflammation role and the relevant mechanism remain unclear. The present study was to investigate effects of kaempferol against LPS-induced neuroinflammation and blood-brain barrier dysfunction as well as the mechanism in mice. BALB/c mice were treated with LPS 5mg/kg to induce inflammation after pre-treatment with kaempferol 25, 50, or 100mg/kg for 7days. The results showed that kaempferol reduced the production of various pro-inflammatory factors and inflammatory proteins including IL-1β, IL-6, TNF-α, MCP-1, COX-2 and iNOS in brain tissues. In addition, kaempferol also protected BBB integrity and increased BBB related proteins including occludin-1, claudin-1 and CX43 in brain of LPS-induced mice. Furthermore, kaempferol significantly reduced HMGB1 level and suppressed TLR4/MyD88 inflammatory pathway in both transcription level and translation level. These results collectively suggested that kaempferol might be a promising neuroprotective agent for alleviating inflammatory responses and BBB dysfunction by inhibiting HMGB1 release and down-regulating TLR4/MyD88 inflammatory pathway.
Collapse
Affiliation(s)
- Xiao Cheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying-Lin Yang
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Huan Yang
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue-Hua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Bacterial toxins activation of abbreviated urea cycle in porcine cerebral vascular smooth muscle cells. Vascul Pharmacol 2016; 87:110-120. [DOI: 10.1016/j.vph.2016.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/19/2016] [Accepted: 08/27/2016] [Indexed: 01/04/2023]
|
6
|
Katnik C, Garcia A, Behensky AA, Yasny IE, Shuster AM, Seredenin SB, Petrov AV, Cuevas J. Activation of σ1 and σ2 receptors by afobazole increases glial cell survival and prevents glial cell activation and nitrosative stress after ischemic stroke. J Neurochem 2016; 139:497-509. [PMID: 27488244 DOI: 10.1111/jnc.13756] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
Activation of sigma receptors at delayed time points has been shown to decrease injury following ischemic stroke. The mixed σ1/σ2 receptor agonist, 5-ethoxy-2-[2-(morpholino)-ethylthio]benzimidazole (afobazole), provides superior long-term outcomes compared to other σ ligands in the rat middle cerebral artery occlusion (MCAO) stroke model. Experiments using the MCAO model were carried out to determine the molecular mechanism involved in the beneficial effects of afobazole. Administration of afobazole (3 mg/kg) at delayed time points post-stroke significantly increased the number of microglia and astrocytes detected in the ipsilateral hemisphere at 96 h post-surgery. Morphological analysis of the microglia indicated that a greater number of these cells were found in the ramified resting state in MCAO animals treated with afobazole relative to MCAO vehicle controls. Similarly, fewer reactive astrocytes were detected in the injured hemisphere of afobazole-treated animals. Both the enhanced survival and reduced activation of glial cells were abolished by co-application of either a σ1 (BD-1063) or a σ2 (SM-21) receptor antagonist with afobazole. To gain further insight into the mechanisms by which afobazole lessens stroke injury, we probed the brain sections for markers of neuroinflammation (tumor necrosis factor α) and nitrosative stress (S-nitrosocysteine). Data show that afobazole significantly reduces S-nitrosocysteine levels, but does not alter tumor necrosis factor α expression 96 h after an ischemic stroke. Taken together our data indicate that afobazole acting via both σ1 and σ2 receptors decreases stroke injury by enhancing glial cell survival, blocking ischemia-induced glial cell activation, and decreasing nitrosative stress.
Collapse
Affiliation(s)
- Christopher Katnik
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Angela Garcia
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Adam A Behensky
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | | | | | | | | | - Javier Cuevas
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.
| |
Collapse
|
7
|
Hwang S, Cho GS, Ryu S, Kim HJ, Song HY, Yune TY, Ju C, Kim WK. Post-ischemic treatment of WIB801C, standardized Cordyceps extract, reduces cerebral ischemic injury via inhibition of inflammatory cell migration. JOURNAL OF ETHNOPHARMACOLOGY 2016; 186:169-180. [PMID: 27036628 DOI: 10.1016/j.jep.2016.03.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/04/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anti-inflammatory therapy has been intensively investigated as a potential strategy for treatment of cerebral stroke. However, despite many positive outcomes reported in animal studies, anti-inflammatory treatments have not proven successful in humans as yet. Although immunomodulatory activity and safety of Cordyceps species (Chinese caterpillar fungi) have been proven in clinical trials and traditional Asian prescriptions for inflammatory diseases, its anti-ischemic effect remains elusive. AIM OF THE STUDY In the present study, therefore, we investigated the potential therapeutic efficacy of WIB801C, the standardized extract of Cordyceps militaris, for treatment of cerebral ischemic stroke. MATERIALS AND METHODS The anti-chemotactic activity of WIB801C was assayed in cultured rat microglia/macrophages. Sprague-Dawley rats were subjected to ischemic stroke via either transient (1.5-h tMCAO and subsequent 24-h reperfusion) or permanent middle cerebral artery occlusion (pMCAO for 24-h without reperfusion). WIB801C was orally administered twice at 3- and 8-h (50mg/kg each) after the onset of MCAO. Infarct volume, edema, blood brain barrier and white matter damages, neurological deficits, and long-term survival rates were investigated. The infiltration of inflammatory cells into ischemic lesions was assayed by immunostaining. RESULTS WIB801C significantly decreased migration of cultured microglia/macrophages. This anti-chemotactic activity of WIB-801C was not mediated via adenosine A3 receptors, although cordycepin, the major ingredient of WIB801C, is known as an adenosine receptor agonist. Post-ischemic treatment with WIB801C significantly reduced the infiltration of ED-1-and MPO-positive inflammatory cells into ischemic lesions in tMCAO rats. WIB801C-treated rats exhibited significantly decreased infarct volume and cerebral edema, less white matter and blood-brain barrier damages, and improved neurological deficits. WIB801C also improved survival rates over 34 days after ischemia onset. A significant reduction in infarct volume and neurobehavioral deficits by WIB801C was also observed in rats subjected to pMCAO. CONCLUSIONS In summary, post-ischemic treatment of WIB801C reduced infiltration of inflammatory cells into ischemic lesions via inhibition of chemotaxis, which confers long-lasting histological and neurological protection in ischemic brain. WIB801C may be a promising anti-ischemic drug candidate with clinically relevant therapeutic time window and safety.
Collapse
Affiliation(s)
- Sunyoung Hwang
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sangwoo Ryu
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hoon J Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hwa Young Song
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Tae Y Yune
- Department of Biochemistry and Molecular Biology and Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chung Ju
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - Won-Ki Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Dodson KH, Echevarria FD, Li D, Sappington RM, Edd JF. Retina-on-a-chip: a microfluidic platform for point access signaling studies. Biomed Microdevices 2015; 17:114. [PMID: 26559199 PMCID: PMC4707151 DOI: 10.1007/s10544-015-0019-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We report on a microfluidic platform for culture of whole organs or tissue slices with the capability of point access reagent delivery to probe the transport of signaling events. Whole mice retina were maintained for multiple days with negative pressure applied to tightly but gently bind the bottom of the retina to a thin poly-(dimethylsiloxane) membrane, through which twelve 100 μm diameter through-holes served as fluidic access points. Staining with toluidine blue, transport of locally applied cholera toxin beta, and transient response to lipopolysaccharide in the retina demonstrated the capability of the microfluidic platform. The point access fluidic delivery capability could enable new assays in the study of various kinds of excised tissues, including retina.
Collapse
Affiliation(s)
- Kirsten H Dodson
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Franklin D Echevarria
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Rebecca M Sappington
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Jon F Edd
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
- Cancer Center and BioMEMS Resource Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Hosseini SM, Samimi N, Farahmandnia M, Shakibajahromi B, Sarvestani FS, Sani M, Mohamadpour M. The Preventive Effects of Neural Stem Cells and Mesenchymal Stem Cells Intra-ventricular Injection on Brain Stroke in Rats. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2015; 7:390-6. [PMID: 26605202 PMCID: PMC4630731 DOI: 10.4103/1947-2714.166216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Stroke is one of the most important causes of disability in developed countries and, unfortunately, there is no effective treatment for this major problem of central nervous system (CNS); cell therapy may be helpful to recover this disease. In some conditions such as cardiac surgeries and neurosurgeries, there are some possibilities of happening brain stroke. Inflammation of CNS plays an important role in stroke pathogenesis, in addition, apoptosis and neural death could be the other reasons of poor neurological out come after stroke. In this study, we examined the preventive effects of the neural stem cells (NSCs) and mesenchymal stem cells (MSCs) intra-ventricular injected on stroke in rats. Aim: The aim of this study was to investigate the preventive effects of neural and MSCs for stroke in rats. Materials and Methods: The MSCs were isolated by flashing the femurs and tibias of the male rats with appropriate media. The NSCs were isolated from rat embryo ganglion eminence and they cultured NSCs media till the neurospheres formed. Both NSCs and MSCs were labeled with PKH26-GL. One day before stroke, the cells were injected into lateral ventricle stereotactically. Results: During following for 28 days, the neurological scores indicated that there are better recoveries in the groups received stem cells and they had less lesion volume in their brain measured by hematoxylin and eosin staining. Furthermore, the activities of caspase-3 were lower in the stem cell received groups than control group and the florescent microscopy images showed that the stem cells migrated to various zones of the brains. Conclusion: Both NSCs and MSCs are capable of protecting the CNS against ischemia and they may be good ways to prevent brain stroke consequences situations.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran ; Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Samimi
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Farahmandnia
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benafshe Shakibajahromi
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sabet Sarvestani
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran ; Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoomeh Mohamadpour
- Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Anthony Jalin AMA, Lee JC, Cho GS, Kim C, Ju C, Pahk K, Song HY, Kim WK. Simvastatin Reduces Lipopolysaccharides-Accelerated Cerebral Ischemic Injury via Inhibition of Nuclear Factor-kappa B Activity. Biomol Ther (Seoul) 2015; 23:531-8. [PMID: 26535078 PMCID: PMC4624069 DOI: 10.4062/biomolther.2015.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 11/14/2022] Open
Abstract
Preceding infection or inflammation such as bacterial meningitis has been associated with poor outcomes after stroke. Previously, we reported that intracorpus callosum microinjection of lipopolysaccharides (LPS) strongly accelerated the ischemia/reperfusion-evoked brain tissue damage via recruiting inflammatory cells into the ischemic lesion. Simvastatin, 3-hydroxy-3-methylgultaryl (HMG)-CoA reductase inhibitor, has been shown to reduce inflammatory responses in vascular diseases. Thus, we investigated whether simvastatin could reduce the LPS-accelerated ischemic injury. Simvastatin (20 mg/kg) was orally administered to rats prior to cerebral ischemic insults (4 times at 72, 48, 25, and 1-h pre-ischemia). LPS was microinjected into rat corpus callosum 1 day before the ischemic injury. Treatment of simvastatin reduced the LPS-accelerated infarct size by 73%, and decreased the ischemia/reperfusion-induced expressions of pro-inflammatory mediators such as iNOS, COX-2 and IL-1β in LPS-injected rat brains. However, simvastatin did not reduce the infiltration of microglial/macrophageal cells into the LPS-pretreated brain lesion. In vitro migration assay also showed that simvastatin did not inhibit the monocyte chemoattractant protein-1-evoked migration of microglial/macrophageal cells. Instead, simvastatin inhibited the nuclear translocation of NF-κB, a key signaling event in expressions of various proinflammatory mediators, by decreasing the degradation of IκB. The present results indicate that simvastatin may be beneficial particularly to the accelerated cerebral ischemic injury under inflammatory or infectious conditions.
Collapse
Affiliation(s)
- Angela M A Anthony Jalin
- Department of Neuroscience, Korea University College of Medicine, Seoul 06014, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Geum-Sil Cho
- Department of Neuroscience, Korea University College of Medicine, Seoul 06014, Republic of Korea
| | - Chunsook Kim
- Department of Nursing, Kyungdong University, Wonju 26495, Republic of Korea
| | - Chung Ju
- Department of Neuroscience, Korea University College of Medicine, Seoul 06014, Republic of Korea
| | - Kisoo Pahk
- Department of Neuroscience, Korea University College of Medicine, Seoul 06014, Republic of Korea
| | - Hwa Young Song
- Department of Neuroscience, Korea University College of Medicine, Seoul 06014, Republic of Korea
| | - Won-Ki Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul 06014, Republic of Korea
| |
Collapse
|
11
|
Exogenous S1P Exposure Potentiates Ischemic Stroke Damage That Is Reduced Possibly by Inhibiting S1P Receptor Signaling. Mediators Inflamm 2015; 2015:492659. [PMID: 26576074 PMCID: PMC4630407 DOI: 10.1155/2015/492659] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 01/31/2023] Open
Abstract
Initial and recurrent stroke produces central nervous system (CNS) damage, involving neuroinflammation. Receptor-mediated S1P signaling can influence neuroinflammation and has been implicated in cerebral ischemia through effects on the immune system. However, S1P-mediated events also occur within the brain itself where its roles during stroke have been less well studied. Here we investigated the involvement of S1P signaling in initial and recurrent stroke by using a transient middle cerebral artery occlusion/reperfusion (M/R) model combined with analyses of S1P signaling. Gene expression for S1P receptors and involved enzymes was altered during M/R, supporting changes in S1P signaling. Direct S1P microinjection into the normal CNS induced neuroglial activation, implicating S1P-initiated neuroinflammatory responses that resembled CNS changes seen during initial M/R challenge. Moreover, S1P microinjection combined with M/R potentiated brain damage, approximating a model for recurrent stroke dependent on S1P and suggesting that reduction in S1P signaling could ameliorate stroke damage. Delivery of FTY720 that removes S1P signaling with chronic exposure reduced damage in both initial and S1P-potentiated M/R-challenged brain, while reducing stroke markers like TNF-α. These results implicate direct S1P CNS signaling in the etiology of initial and recurrent stroke that can be therapeutically accessed by S1P modulators acting within the brain.
Collapse
|
12
|
Wright G, Sharifi Y, Jover-Cobos M, Jalan R. The brain in acute on chronic liver failure. Metab Brain Dis 2014; 29:965-73. [PMID: 24838253 PMCID: PMC4234892 DOI: 10.1007/s11011-014-9553-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/22/2014] [Indexed: 12/30/2022]
Abstract
Acute-on-chronic liver failure (ACLF) is a newly defined clinical entity with significant morbidity and mortality (~40-90% at 1 year dependent on need for organ support at presentation). It defines a presentation with acute severe liver injury, often with multiorgan dysfunction, on a background of previously known or unknown cirrhosis. In its severest form, it is almost indistinguishable from acute liver failure, as similarly in around 5% may rapidly progress to intracranial hypertension and cerebral oedema culminating in coma and/or death. Our understanding of such cerebral sequelae is currently limited to clinical observation, though our knowledge base is rapidly expanding since recent consensus clinical definition and guidance. Moreover, there are now animal models of ACLF and imaging modalities to better characterize events in the brain that occur with ACLF. However, as yet there has been little in the way of interventional study of this condition which are much needed. In this review we dissect existing clinical and experimental data to better characterise the manifestations of ACLF on the brain and allow for the development of targeted therapy as currently the plethora of existing interventions were designed to treat either the effects of cirrhosis or acute liver injury independently.
Collapse
Affiliation(s)
- Gavin Wright
- Institute for Liver and Digestive Health, Liver Failure Group, UCL Institute of Hepatology, The Royal Free Hospital, Upper Third UCL Medical School, Pond Street, London, NW3 2PF UK
- Basildon & Thurrock University Hospitals NHS Foundation Trust Nethermayne, Essex, SS16 5NL Basildon UK
| | - Yalda Sharifi
- Institute for Liver and Digestive Health, Liver Failure Group, UCL Institute of Hepatology, The Royal Free Hospital, Upper Third UCL Medical School, Pond Street, London, NW3 2PF UK
| | - Maria Jover-Cobos
- Institute for Liver and Digestive Health, Liver Failure Group, UCL Institute of Hepatology, The Royal Free Hospital, Upper Third UCL Medical School, Pond Street, London, NW3 2PF UK
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, Liver Failure Group, UCL Institute of Hepatology, The Royal Free Hospital, Upper Third UCL Medical School, Pond Street, London, NW3 2PF UK
| |
Collapse
|
13
|
Marshall GP, Deleyrolle LP, Reynolds BA, Steindler DA, Laywell ED. Microglia from neurogenic and non-neurogenic regions display differential proliferative potential and neuroblast support. Front Cell Neurosci 2014; 8:180. [PMID: 25076873 PMCID: PMC4100441 DOI: 10.3389/fncel.2014.00180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/11/2014] [Indexed: 11/23/2022] Open
Abstract
Microglia isolated from the neurogenic subependymal zone (SEZ) and hippocampus (HC) are capable of massive in vitro population expansion that is not possible with microglia isolated from non-neurogenic regions. We asked if this regional heterogeneity in microglial proliferative capacity is cell intrinsic, or is conferred by interaction with respective neurogenic or non-neurogenic niches. By combining SEZ and cerebral cortex (CTX) primary tissue dissociates to generate heterospatial cultures, we find that exposure to the SEZ environment does not enhance CTX microglia expansion; however, the CTX environment exerts a suppressive effect on SEZ microglia expansion. Furthermore, addition of purified donor SEZ microglia to either CTX- or SEZ-derived cultures suppresses the expansion of host microglia, while the addition of donor CTX microglia enhances the over-all microglia yield. These data suggest that SEZ and CTX microglia possess intrinsic, spatially restricted characteristics that are independent of their in vitro environment, and that they represent unique and functionally distinct populations. Finally, we determined that the repeated supplementation of neurogenic SEZ cultures with expanded SEZ microglia allows for sustained levels of inducible neurogenesis, provided that the ratio of microglia to total cells remains within a fairly narrow range.
Collapse
Affiliation(s)
- Gregory P Marshall
- Departments of Anatomy and Cell Biology, College of Medicine, University of Florida Gainesville, FL, USA
| | - Loic P Deleyrolle
- Department of Neurosurgery, College of Medicine, University of Florida Gainesville, FL, USA
| | - Brent A Reynolds
- Department of Neurosurgery, College of Medicine, University of Florida Gainesville, FL, USA
| | - Dennis A Steindler
- Department of Neurosurgery, College of Medicine, University of Florida Gainesville, FL, USA
| | - Eric D Laywell
- Department of Biomedical Sciences, College of Medicine, Florida State University Tallahassee, FL, USA
| |
Collapse
|
14
|
Joseph JP, Mecca AP, Regenhardt RW, Bennion DM, Rodríguez V, Desland F, Patel NA, Pioquinto DJ, Unger T, Katovich MJ, Steckelings UM, Sumners C. The angiotensin type 2 receptor agonist Compound 21 elicits cerebroprotection in endothelin-1 induced ischemic stroke. Neuropharmacology 2014; 81:134-41. [PMID: 24508710 DOI: 10.1016/j.neuropharm.2014.01.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 12/17/2022]
Abstract
Evidence indicates that angiotensin II type 2 receptors (AT2R) exert cerebroprotective actions during stroke. A selective non-peptide AT2R agonist, Compound 21 (C21), has been shown to exert beneficial effects in models of cardiac and renal disease, as well as hemorrhagic stroke. Here, we hypothesize that C21 may exert beneficial effects against cerebral damage and neurological deficits produced by ischemic stroke. We determined the effects of central and peripheral administration of C21 on the cerebral damage and neurological deficits in rats elicited by endothelin-1 induced middle cerebral artery occlusion (MCAO), a model of cerebral ischemia. Rats infused centrally (intracerebroventricular) with C21 before endothelin-1 induced MCAO exhibited significant reductions in cerebral infarct size and the neurological deficits produced by cerebral ischemia. Similar cerebroprotection was obtained in rats injected systemically (intraperitoneal) with C21 either before or after endothelin-1 induced MCAO. The protective effects of C21 were reversed by central administration of an AT2R inhibitor, PD123319. While C21 did not alter cerebral blood flow at the doses used here, peripheral post-stroke administration of this agent significantly attenuated the MCAO-induced increases in inducible nitric oxide synthase, chemokine (C-C) motif ligand 2 and C-C chemokine receptor type 2 mRNAs in the cerebral cortex, indicating that the cerebroprotective action is associated with an anti-inflammatory effect. These results strengthen the view that AT2R agonists may have potential therapeutic value in ischemic stroke, and provide the first evidence of cerebroprotection induced by systemic post stroke administration of a selective AT2R agonist.
Collapse
Affiliation(s)
- Jason P Joseph
- Department of Physiology and Functional Genomics & McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Adam P Mecca
- Department of Physiology and Functional Genomics & McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Robert W Regenhardt
- Department of Physiology and Functional Genomics & McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Douglas M Bennion
- Department of Physiology and Functional Genomics & McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Vermali Rodríguez
- Department of Physiology and Functional Genomics & McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Fiona Desland
- Department of Physiology and Functional Genomics & McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Neal A Patel
- Department of Physiology and Functional Genomics & McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - David J Pioquinto
- Department of Physiology and Functional Genomics & McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Thomas Unger
- School for Cardiovascular Diseases, Maastricht University, Netherlands
| | - Michael J Katovich
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - U Muscha Steckelings
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Colin Sumners
- Department of Physiology and Functional Genomics & McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Ozturk H, Ozturk H, Terzi EH, Bugdayci G, Duran A. Interleukin 10 Reduces Testicular Damage in Experimental Testicular Ischemia/Reperfusion Injury. Urology 2014; 83:508.e1-6. [DOI: 10.1016/j.urology.2013.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/29/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
|
16
|
Rivers-Auty J, Ashton JC. Neuroinflammation in ischemic brain injury as an adaptive process. Med Hypotheses 2013; 82:151-8. [PMID: 24345344 DOI: 10.1016/j.mehy.2013.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 12/12/2022]
Abstract
Cerebral ischaemia triggers various physiological processes, some of which have been considered deleterious and others beneficial. These processes have been characterized in one influential model as being part of a transition from injury to repair processes. We argue that another important distinction is between dysregulated and regulated processes. Although intervening in the course of dysregulated processes may be neuroprotective, this is unlikely to be true for regulated processes. This is because from an evolutionary perspective, regulated complex processes that are conserved across many species are likely to be adaptive and provide a survival advantage. We argue that the neuroinflammatory cascade is an adaptive process in this sense, and contrast this with a currently popular theory which we term the maladaptive immune response theory. We review the evidence from clinical and preclinical pharmacology with respect to this theory, and deduced that the evidence is inconclusive at best, and probably falsifies the theory. We argue that this is why there are no anti-inflammatory treatments for cerebral ischaemia, despite 30 years of seemingly promising preclinical results. We therefore propose an opposing theory, which we call the adaptive immune response hypothesis.
Collapse
Affiliation(s)
- Jack Rivers-Auty
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - John C Ashton
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| |
Collapse
|
17
|
Liang XY, Li HN, Yang XY, Zhou WY, Niu JG, Chen BD. Effect of Danshen aqueous extract on serum hs-CRP, IL-8, IL-10, TNF-α levels, and IL-10 mRNA, TNF-α mRNA expression levels, cerebral TGF-β1 positive expression level and its neuroprotective mechanisms in CIR rats. Mol Biol Rep 2013; 40:3419-27. [PMID: 23378241 DOI: 10.1007/s11033-012-2419-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/18/2012] [Indexed: 12/28/2022]
Abstract
To observe the effects of Danshen aqueous extract (DSAE) on the cerebral tissue and nerve stem cells in cerebral ischemia reperfusion (CIR) rats. The model rats were prepared by occlusion of the middle cerebral artery for 2 h and then by reperfusion. They were randomly divided into five groups: a control group, an CIR group and three DSAE-treated groups. As compared with the sham control group, there was significant increase (P < 0.05, P < 0.01) in the serum high-sensitivity C-reactive protein (hs-CRP) and interleukin-8 (IL-8) levels, interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α) levels, and IL-10 mRNA, TNF-α mRNA expression levels, function score, Infarct size, TUNEL + cell counts, cerebral transforming growth factor beta 1 (TGF-β1) positive expression and cerebral neuron specific enolase (NSE) levels, and decrease in fas-associated protein with death domain (FADD) and death-associated protein (Daxx) positive expression levels in the CIR group. Compared with CIR group, DSAE treatment dose-dependently significantly decreased serum hs-CRP, IL-8, IL-10, TNF-α levels, and IL-10 mRNA, TNF-α mRNA expression levels, function score, Infarct size, TUNEL + cell counts, cerebral TGF-β1 positive expression and cerebral NSE levels, and increase FADD and Daxx positive expression levels in the CIR + DSAE groups. Taken together, these results suggest that DSAE has a neuroprotective role in the CIR rats, which may be related to improvement of immunity function, proteins and genes expression.
Collapse
Affiliation(s)
- Xue-Yun Liang
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | | | | | | | | | | |
Collapse
|
18
|
N-Methyl-D-aspartate receptor antagonists memantine and MK-801 attenuate the cerebral infarct accelerated by intracorpus callosum injection of lipopolysaccharides. Neurosci Lett 2013; 538:9-14. [PMID: 23376060 DOI: 10.1016/j.neulet.2013.01.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/03/2013] [Accepted: 01/23/2013] [Indexed: 11/22/2022]
Abstract
Inflammatory responses have been shown to modulate the pattern and degree of ischemic injury. Previously, we demonstrated that intracorpus callosum microinjection of lipopolysaccharide (LPS, a well-known endotoxin) markedly induced inflammatory responses confined to ipsilateral hemisphere and aggravated cerebral ischemic injury. Here we report that LPS injection increases the degree of N-methyl-d-aspartate (NMDA) receptor-mediated excitotoxicity, one of major causes of cerebral ischemic injury. Intracorpus callosum microinjection of LPS 1 day prior to ischemic insults augmented intraneuronal Ca(2+) rise in rat brains subjected to transient occlusion of middle cerebral artery. Intraperitoneal administration of memantine, a NMDA receptor antagonist, reduced the LPS-enhanced calcium response as well as ischemic tissue damage. Western blot and immunohistochemistry data showed that the level of IL-1β was enhanced in LPS-injected rat brains, particularly in isolectin-B4 immunoreactive cells. Intraventricular microinjection of recombinant rat IL-1β aggravated cerebral ischemic injury, which was significantly reduced by memantine. Intraventricular injection of anti-IL-1β antibody significantly reduced the cerebral infarction aggravated by LPS preinjection. The results indicate that IL-1β released from isolectin-B4 immunoreactive cells enhanced excitotoxicity, consequently aggravating ischemic brain injury.
Collapse
|
19
|
Ahn SK, Hong S, Park YM, Choi JY, Lee WT, Park KA, Lee JE. Protective effects of agmatine on lipopolysaccharide-injured microglia and inducible nitric oxide synthase activity. Life Sci 2012; 91:1345-50. [PMID: 23123442 DOI: 10.1016/j.lfs.2012.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
AIMS Proinflammatory factors released from activated microglia contribute to maintaining homeostasis against various noxious stimuli in the central nervous system. If excessive, however, they may initiate a pathologic neuroinflammatory process. In this investigation, we evaluated whether agmatine, a primary polyamine known to protect neurons, reduces lipopolysaccharide (LPS)-induced damage to microglia in vitro and in vivo. MAIN METHODS For in vitro study, BV2-immortalized murine microglia were exposed to LPS with agmatine treatment. After 24hours, cell viability and the amount of nitrite generated were determined. For in vivo study, LPS was microinjected into the corpus callosum of adult male albino mice. Agmatine was intraperitoneally administered at the time of injury. Brains were evaluated 24hours after LPS microinjection to check for immunoreactivity with a microglial marker of ionized calcium binding adaptor molecule 1 (Iba1) and inducible nitric oxide synthase (iNOS). Using western blot analysis, protein expression of iNOS as well as that of the proinflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β, was determined. KEY FINDINGS Agmatine significantly reduced the LPS-induced BV2 microglial cytotoxicity from over 80% to less than 60% (p<0.001), as determined by lactate dehydrogenase assay. It suppressed the nitrite production from 16.4±3.14μM to 5.5±1.27μM (p<0.001), as measured using the Griess reaction. Agmatine also decreased the activities of microglia and iNOS induced by LPS microinjection into corpus callosum. SIGNIFICANCE Our findings reveal that agmatine attenuates LPS-induced microglial damage and suggest that agmatine may serve as a novel therapeutic strategy for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Soo Kyung Ahn
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Liu NS, Du X, Lu J, He BP. Diva reduces cell death in response to oxidative stress and cytotoxicity. PLoS One 2012; 7:e43180. [PMID: 22905226 PMCID: PMC3419649 DOI: 10.1371/journal.pone.0043180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/20/2012] [Indexed: 01/01/2023] Open
Abstract
Diva is a member of the Bcl2 family but its function in apoptosis remains largely unclear because of its specific expression found within limited adult tissues. Previous overexpression studies done on various cell lines yielded conflicting conclusions pertaining to its apoptotic function. Here, we discovered the expression of endogenous Diva in PC12 neuronal-like cell line and rat bone marrow mesenchymal stem cells (BMSCs), leading to their utilisation for the functional study of Diva. Through usage of recombinant Fas ligand, hydrogen peroxide, overexpression and knock down experiments, we discovered that Diva plays a crucial pro-survival role via the mitochondrial death pathway. In addition, immunoprecipitation studies also noted a decrease in Diva’s interaction with Bcl2 and Bax following apoptosis induced by oxidative stress. By overexpressing Diva in BMSCs, we had observed an increase in the cells’ capacity to survive under oxidative stress and microglial toxicity. The result obtained from our study gives us reason to believe that Diva plays an important role in controlling the survival of BMSCs. Through overexpression of Diva, the viability of these BMSCs may be boosted under adverse conditions.
Collapse
Affiliation(s)
- Nicole Suyun Liu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoli Du
- Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Jia Lu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Bei Ping He
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
21
|
Neuroprotective effect of fucoidin on lipopolysaccharide accelerated cerebral ischemic injury through inhibition of cytokine expression and neutrophil infiltration. J Neurol Sci 2012; 318:25-30. [PMID: 22560605 DOI: 10.1016/j.jns.2012.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 03/25/2012] [Accepted: 04/11/2012] [Indexed: 11/22/2022]
Abstract
In our previous study, we reported that lipopolysaccharide (LPS) activated microglia and accelerated cerebral ischemic injury in the rat brain through the overexpression of cytokines in microglia. In the present study, we investigated the effect of the intraperitoneal administration of fucoidin, a potent inhibitor of leukocyte rolling and anti-inflammatory agent, against accelerated cerebral ischemic injury by LPS pretreatment using rats. We found that fucoidin treatment inhibited the expressions of some brain cytokine or chemokine mRNA such as IL-8, TNF-α and iNOS in the brain of the rats treated only with LPS. We also observed that fucoidin treatment dramatically decreased the infarct size in accelerated cerebral ischemic injury induced by LPS treatment at an early time after ischemic injury. In addition, the immunoreactivity of myleoperoxidase (MPO), a marker for quantifying neutrophil accumulation, was distinctively decreased in the ischemic brain of the fucoidin-treated rat. In brief, our results indicate that fucoidin showed a neuroprotective effect on LPS accelerated cerebral ischemic injury through inhibiting the expression of some cytokine/chemokine and neutrophil recruitments.
Collapse
|
22
|
Choi IY, Lee JC, Ju C, Hwang S, Cho GS, Lee HW, Choi WJ, Jeong LS, Kim WK. A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2042-52. [PMID: 21854743 PMCID: PMC3181366 DOI: 10.1016/j.ajpath.2011.07.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 06/23/2011] [Accepted: 07/01/2011] [Indexed: 12/27/2022]
Abstract
A3 adenosine receptor (A3AR) is recognized as a novel therapeutic target for ischemic injury; however, the mechanism underlying anti-ischemic protection by the A3AR agonist remains unclear. Here, we report that 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyl-4'-thioadenosine (LJ529), a selective A3AR agonist, reduces inflammatory responses that may contribute to ischemic cerebral injury. Postischemic treatment with LJ529 markedly reduced cerebral ischemic injury caused by 1.5-hour middle cerebral artery occlusion, followed by 24-hour reperfusion in rats. This effect was abolished by the simultaneous administration of the A3AR antagonist MRS1523, but not the A2AAR antagonist SCH58261. LJ529 prevented the infiltration/migration of microglia and monocytes occurring after middle cerebral artery occlusion and reperfusion, and also after injection of lipopolysaccharides into the corpus callosum. The reduced migration of microglia by LJ529 could be related with direct inhibition of chemotaxis and down-regulation of spatiotemporal expression of Rho GTPases (including Rac, Cdc42, and Rho), rather than by biologically relevant inhibition of inflammatory cytokine/chemokine release (eg, IL-1β, TNF-α, and MCP-1) or by direct inhibition of excitotoxicity/oxidative stress (not affected by LJ529). The present findings indicate that postischemic activation of A3AR and the resultant reduction of inflammatory response should provide a promising therapeutic strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- In-Young Choi
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae-Chul Lee
- Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chung Ju
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sunyoung Hwang
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyuk Woo Lee
- Department of Bioinspired Science and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Won Jun Choi
- College of Pharmacy, Dongguk University, Goyang-si, Republic of Korea
| | - Lak Shin Jeong
- Department of Bioinspired Science and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Won-Ki Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Ozan G, Turkozkan N, Bircan FS, Balabanli B. Effect of Taurine on Brain 8-hydroxydeoxyguanosine and 3-nitrotyrosine Levels in Endotoxemia. Inflammation 2011; 35:665-70. [DOI: 10.1007/s10753-011-9359-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Cai Y, Cho GS, Ju C, Wang SL, Ryu JH, Shin CY, Kim HS, Nam KW, Jalin AMAA, Sun W, Choi IY, Kim WK. Activated Microglia Are Less Vulnerable to Hemin Toxicity due to Nitric Oxide-Dependent Inhibition of JNK and p38 MAPK Activation. THE JOURNAL OF IMMUNOLOGY 2011; 187:1314-21. [DOI: 10.4049/jimmunol.1002925] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Mecca AP, Regenhardt RW, O'Connor TE, Joseph JP, Raizada MK, Katovich MJ, Sumners C. Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Exp Physiol 2011; 96:1084-96. [PMID: 21685445 DOI: 10.1113/expphysiol.2011.058578] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activation of angiotensin-converting enzyme 2 (ACE2), production of angiotensin-(1-7) [Ang-(1-7)] and stimulation of the Ang-(1-7) receptor Mas exert beneficial actions in various peripheral cardiovascular diseases, largely through opposition of the deleterious effects of angiotensin II via its type 1 receptor. Here we considered the possibility that Ang-(1-7) may exert beneficial effects against CNS damage and neurological deficits produced by cerebral ischaemic stroke. We determined the effects of central administration of Ang-(1-7) or pharmacological activation of ACE2 on the cerebral damage and behavioural deficits elicited by endothelin-1 (ET-1)-induced middle cerebral artery occlusion (MCAO), a model of cerebral ischaemia. The results of the present study demonstrated that intracerebroventricular infusion of either Ang-(1-7) or an ACE2 activator, diminazine aceturate (DIZE), prior to and following ET-1-induced MCAO significantly attenuated the cerebral infarct size and neurological deficits measured 72 h after the insult. These beneficial actions of Ang-(1-7) and DIZE were reversed by co-intracerebroventricular administration of the Mas receptor inhibitor, A-779. Neither the Ang-(1-7) nor the DIZE treatments altered the reduction in cerebral blood flow elicited by ET-1. Lastly, intracerebroventricular administration of Ang-(1-7) significantly reduced the increase in inducible nitric oxide synthase mRNA expression within the cerebral infarct that occurs following ET-1-induced MCAO. This is the first demonstration of cerebroprotective properties of the ACE2-Ang-(1-7)-Mas axis during ischaemic stroke, and suggests that the mechanism of the Ang-(1-7) protective action includes blunting of inducible nitric oxide synthase expression.
Collapse
Affiliation(s)
- Adam P Mecca
- Department of Physiology & Functional Genomics, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0274, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Delayed olfactory ensheathing cell transplants reduce nociception after dorsal root injury. Exp Neurol 2011; 229:143-57. [DOI: 10.1016/j.expneurol.2010.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/08/2010] [Accepted: 07/12/2010] [Indexed: 02/08/2023]
|
27
|
Choi YK, Cho GS, Hwang S, Kim BW, Lim JH, Lee JC, Kim HC, Kim WK, Kim YS. Methyleugenol reduces cerebral ischemic injury by suppression of oxidative injury and inflammation. Free Radic Res 2011; 44:925-35. [PMID: 20815773 DOI: 10.3109/10715762.2010.490837] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study tested the cytoprotective effect of methyleugenol in an in vivo ischemia model (i.e. middle cerebral artery occlusion (MCAO) for 1.5 h and subsequent reperfusion for 24 h) and further investigated its mechanism of action in in vitro cerebral ischemic models. When applied shortly after reperfusion, methyleugenol largely reduced cerebral ischemic injury. Methyleugenol decreased the caspase-3 activation and death of cultured cerebral cortical neurons caused by oxygen-glucose deprivation (OGD) for 1 h and subsequent re-oxygenation for 24 h. Methyleugenol markedly reduced superoxide generation in the ischemic brain and decreased the intracellular oxidative stress caused by OGD/re-oxygenation. It was found that methyleugenol elevated the activities of superoxide dismutase and catalase. Further, methyleugenol inhibited the production of nitric oxide and decreased the protein expression of inducible nitric oxide synthase. Methyleugenol down-regulated the production of pro-inflammatory cytokines in the ischemic brain as well as in immunostimulated mixed glial cells. The results indicate that methyleugenol could be useful for the treatment of ischemia/inflammation-related diseases.
Collapse
Affiliation(s)
- Yoo Keum Choi
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Choi IY, Lim JH, Hwang S, Lee JC, Cho GS, Kim WK. Anti-ischemic and anti-inflammatory activity of (S)-cis-verbenol. Free Radic Res 2010; 44:541-51. [PMID: 20214504 DOI: 10.3109/10715761003667562] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
(S)-cis-verbenol, a natural metabolite from (-)-alpha-pinene of host pine tree, has been suggested to have anti-ischemic activity. However, the exact mechanism for the anti-ischemic activity of (S)-cis-verbenol remains unclear yet. In the present study, (S)-cis-verbenol reduced cerebral ischemic injury caused by 1.5-h middle cerebral artery occlusion followed by 24-h reperfusion. Furthermore, (S)-cis-verbenol significantly prevented neuronal cell death caused by oxygen-glucose deprivation (OGD, 1 h) and subsequent re-oxygenation (5 h). While (S)-cis-verbenol did not inhibit the NMDA-stimulated calcium influx, it reduced the intracellular level of reactive oxygen species (ROS) elevated by OGD/re-oxygenation. ORAC assay indicated that (S)-cis-verbenol potently eliminated peroxyl radicals. In DPPH and DHR123 fluorescence assays, however, (S)-cis-verbenol did not show a direct ROS scavenging effect. Furthermore, (S)-cis-verbenol reduced the expression levels of pro-inflammatory cytokines in ischemic brain and immunostimulated glial cells. The present results indicate that (S)-cis-verbenol may be a useful therapeutic agent due to its anti-oxidative and anti-inflammatory activities.
Collapse
Affiliation(s)
- In-Young Choi
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
29
|
Jackson JS, Golding JP, Chapon C, Jones WA, Bhakoo KK. Homing of stem cells to sites of inflammatory brain injury after intracerebral and intravenous administration: a longitudinal imaging study. Stem Cell Res Ther 2010; 1:17. [PMID: 20550687 PMCID: PMC2905093 DOI: 10.1186/scrt17] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/15/2010] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION This study aimed to determine the homing potential and fate of epidermal neural crest stem cells (eNCSCs) derived from hair follicles, and bone marrow-derived stem cells (BMSCs) of mesenchymal origin, in a lipopolysaccharide (LPS)-induced inflammatory lesion model in the rat brain. Both eNCSCs and BMSCs are easily accessible from adult tissues by using minimally invasive procedures and can differentiate into a variety of neuroglial lineages. Thus, these cells have the potential to be used in autologous cell-replacement therapies, minimizing immune rejection, and engineered to secrete a variety of molecules. METHODS Both eNCSCs and BMSCs were prelabeled with iron-oxide nanoparticles (IO-TAT-FITC) and implanted either onto the corpus callosum in healthy or LPS-lesioned animals or intravenously into lesioned animals. Both cell types were tracked longitudinally in vivo by using magnetic resonance imaging (MRI) for up to 30 days and confirmed by postmortem immunohistochemistry. RESULTS Transplanted cells in nonlesioned animals remained localized along the corpus callosum. Cells implanted distally from an LPS lesion (either intracerebrally or intravenously) migrated only toward the lesion, as seen by the localized MRI signal void. Fluorescence microscopy of the FITC tag on the nanoparticles confirmed the in vivo MRI data, CONCLUSIONS This study demonstrated that both cell types can be tracked in vivo by using noninvasive MRI and have pathotropic properties toward an inflammatory lesion in the brain. As these cells differentiate into the glial phenotype and are derived from adult tissues, they offer a viable alternative autologous stem cell source and gene-targeting potential for neurodegenerative and demyelinating pathologies.
Collapse
Affiliation(s)
- Johanna S Jackson
- Stem Cell Imaging, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | |
Collapse
|
30
|
Abe T, Shimamura M, Jackman K, Kurinami H, Anrather J, Zhou P, Iadecola C. Key role of CD36 in Toll-like receptor 2 signaling in cerebral ischemia. Stroke 2010; 41:898-904. [PMID: 20360550 DOI: 10.1161/strokeaha.109.572552] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Toll-like receptors (TLRs) and the scavenger receptor CD36 are key molecular sensors for the innate immune response to invading pathogens. However, these receptors may also recognize endogenous "danger signals" generated during brain injury, such as cerebral ischemia, and trigger a maladaptive inflammatory reaction. Indeed, CD36 and TLR2 and 4 are involved in the inflammation and related tissue damage caused by brain ischemia. Because CD36 may act as a coreceptor for TLR2 heterodimers (TLR2/1 or TLR2/6), we tested whether such interaction plays a role in ischemic brain injury. METHODS The TLR activators FSL-1 (TLR2/6), Pam3 (TLR2/1), or lipopolysaccharide (TLR4) were injected intracerebroventricularly into wild-type or CD36-null mice, and inflammatory gene expression was assessed in the brain. The effect of TLR activators on the infarct produced by transient middle cerebral artery occlusion was also studied. RESULTS The inflammatory response induced by TLR2/1 activation, but not TLR2/6 or TLR4 activation, was suppressed in CD36-null mice. Similarly, TLR2/1 activation failed to increase infarct volume in CD36-null mice, whereas TLR2/6 or TLR4 activation exacerbated postischemic inflammation and increased infarct volume. In contrast, the systemic inflammatory response evoked by TLR2/6 activation, but not by TLR2/1 activation, was suppressed in CD36-null mice. CONCLUSIONS In the brain, TLR2/1 signaling requires CD36. The cooperative signaling of TLR2/1 and CD36 is a critical factor in the inflammatory response and tissue damage evoked by cerebral ischemia. Thus, suppression of CD36-TLR2/1 signaling could be a valuable approach to minimize postischemic inflammation and the attendant brain injury.
Collapse
Affiliation(s)
- Takato Abe
- Division of Neurobiology, Weill Cornell Medical College, 407 E 61st St, Room RR303, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Cho GS, Choi IY, Choi YK, Kim SK, Cai Y, Nho K, Lee JC. Attenuated Cerebral Ischemic Injury by Polyethylene Glycol-Conjugated Hemoglobin. Biomol Ther (Seoul) 2009. [DOI: 10.4062/biomolther.2009.17.3.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
32
|
Jackson J, Chapon C, Jones W, Hirani E, Qassim A, Bhakoo K. In vivo multimodal imaging of stem cell transplantation in a rodent model of Parkinson's disease. J Neurosci Methods 2009; 183:141-8. [PMID: 19559725 DOI: 10.1016/j.jneumeth.2009.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/15/2009] [Accepted: 06/17/2009] [Indexed: 12/16/2022]
Abstract
Stem cell therapy in the nervous system aims to replace the lost neurons and provide functional recovery. However, it is imperative that we understand the in vivo behaviour of these cells post-implantation. We report visualisation of iron oxide labelled bone marrow-derived stem cells (BMSCs) implanted into the striatum of hemi-parkinsonian rats by magnetic resonance imaging (MRI). Functional efficacy of the donor cells was monitored in vivo using the positron emission tomography (PET) radioligand [11C]raclopride. The cells were visible for 28 days by in vivo MRI. BMSCs provided functional recovery demonstrated by a decreased binding of [11C]raclopride. Although, histology confirmed the persistence of donor cells, no tyrosine hydroxylase positive cells were present. This suggests that BMSCs may have a limited paracrine effect and influence functional recovery. We demonstrate, using multimodal imaging, that we can not only track BMSCs but also establish their effects in a pre-clinical model of Parkinson's disease.
Collapse
Affiliation(s)
- Johanna Jackson
- Stem Cell Imaging, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
33
|
Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease. J Neurosci 2009; 29:2193-204. [PMID: 19228972 DOI: 10.1523/jneurosci.5473-08.2009] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by an expanded CAG tract in the HD gene. Polyglutamine expansion of huntingtin (htt) results in early, progressive loss of medium spiny striatal neurons, as well as cortical neurons that project to the striatum. Excitotoxicity has been postulated to play a key role in the selective vulnerability of striatal neurons in HD. Early excitotoxic neuropathological changes observed in human HD brain include increased quinolinate (QUIN) concurrent with proliferative changes such as increased spine density and dendritic length. In later stages of the disease, degenerative-type changes are apparent, such as loss of dendritic arborization, a reduction in spine density and reduced levels of 3-hydroxykynurenine and QUIN. It is currently unknown whether sensitivity to excitotoxic stress varies between initiation and progression of disease. Here, we have assessed the excitotoxic phenotype in the YAC128 mouse model of HD by examining the response to excitotoxic stress at different stages of disease. Our results demonstrate that YAC128 mice display enhanced sensitivity to NMDA ex vivo and QUIN in vivo before obvious phenotypic changes. In contrast, 10-month-old symptomatic YAC128 mice are resistant to QUIN-induced neurotoxicity. These findings are paralleled by a significant increase in NMDAR-mediated membrane currents in presymptomatic YAC128 dissociated medium spiny neurons progressing to reduced NMDAR-mediated membrane currents with disease progression. These data highlight the dynamic nature of the mutant htt-mediated excitotoxic phenotype and suggests that therapeutic approaches to HD may need to be altered, depending on the stage and development of the disease.
Collapse
|
34
|
Abstract
Inflammatory and immune responses play important roles following ischaemic stroke. Inflammatory responses contribute to damage and also contribute to repair. Injury to tissue triggers an immune response. This is initiated through activation of the innate immune system. In stroke there is microglial activation. This is followed by an influx of lymphocytes and macrophages into the brain, triggered by production of pro-inflammatory cytokines. This inflammatory response contributes to further tissue injury. There is also a systemic immune response to stroke, and there is a degree of immunosuppression that may contribute to the stroke patient's risk of infection. This immunosuppressive response may also be protective, with regulatory lymphocytes producing cytokines and growth factors that are neuroprotective. The specific targets of the immune response after stroke are not known, and the details of the immune and inflammatory responses are only partly understood. The role of inflammation and immune responses after stroke is twofold. The immune system may contribute to damage after stroke, but may also contribute to repair processes. The possibility that some of the immune response after stroke may be neuroprotective is exciting and suggests that deliberate enhancement of these responses may be a therapeutic option.
Collapse
Affiliation(s)
- P A McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital and Neuroimmunology Research Unit, Central Clinical School, University of Queensland, Brisbane, Australia.
| | | |
Collapse
|
35
|
Kim Y, So HS, Moon BS, Youn MJ, Kim HJ, Shin YI, Moon SK, Song MS, Choi KY, Song J, Park R. Sasim attenuates LPS-induced TNF-alpha production through the induction of HO-1 in THP-1 differentiated macrophage-like cells. JOURNAL OF ETHNOPHARMACOLOGY 2008; 119:122-128. [PMID: 18602978 DOI: 10.1016/j.jep.2008.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/26/2008] [Accepted: 06/11/2008] [Indexed: 05/26/2023]
Abstract
AIM OF THE STUDY Sasim, a traditional prescription composed of seven herbal mixtures, has been widely used as an oriental medicine for the treatment of cerebral infarction in Korea. However, the regulatory mechanisms by which the formula affects immune processing in cerebral infarction patients remain unknown. MATERIALS AND METHODS The levels of secretory protein of tumor necrosis factor (TNF)-alpha were determined in both THP-1 differentiated macrophage-like (THP-1/M) cells and Peripheral blood mononuclear cells (PBMCs) from cerebral infarction patients. Also, the levels of protein and mRNA of TNF-alpha and heme oxygenase-1 (HO-1) were detected in THP-1/M cells under our experimental condition. RESULTS Sasim markedly suppressed lipopolysaccharide (LPS)-induced TNF-alpha at the levels of secretory protein and mRNA in both PBMCs from cerebral infarction patients and THP-1/M cells. Interestingly, Sasim strongly induced HO-1, the rate-limiting enzyme of heme catabolism, at both the protein and mRNA levels in THP-1/M cells. Treatment with tin protoporphyrin IX (SnPP), an inhibitor of the catalytic activity of HO, significantly abolished the suppressive effect of Sasim on LPS-induced TNF-a production in THP-1/M cells. CONCLUSIONS These data indicate that Sasim may be beneficial in the cessation of inflammatory processes associated with cerebral infarction through the induction of HO-1 expression.
Collapse
Affiliation(s)
- Yunha Kim
- Vestibulocochlear System Research Center and Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Piao HZ, Choi IY, Park JS, Kim HS, Cheong JH, Son KH, Jeon SJ, Ko KH, Kim WK. Wogonin inhibits microglial cell migration via suppression of nuclear factor-kappa B activity. Int Immunopharmacol 2008; 8:1658-62. [PMID: 18725324 DOI: 10.1016/j.intimp.2008.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/29/2008] [Indexed: 01/06/2023]
Abstract
Previously, we and others have demonstrated that wogonin, an active component from the root of Scutellaria baicalensis Georgi, has a neuroprotective effect in cerebral ischemic insult. The neuroprotective effect of wogonin may at least in part be due to its anti-inflammatory properties. Microglial cells, well-known residential macrophages in the central nervous system, migrate to the ischemic lesion and play a pivotal role in the development of chronic inflammation. In the present study, we observed that wogonin potently inhibited microglial migration toward a chemokine, monocyte chemoattractant protein-1 (MCP-1). The anti-migratory effect of wogonin was provoked at nanomolar concentrations, at which wogonin did not significantly inhibit the production of cytokines and chemokines. NF-kappaB has previously shown to regulate microglial cell migration, and activation of cAMP-signaling pathway has also been associated with inhibition of microglial cell motility. In the present study, wogonin at low micromolar concentrations completely suppressed the activity of NF-kappaB in MCP-1-stimulated microglia, and NF-kappaB inhibitors such as N-acetyl cysteine and pyrrolidinedithiocarbamate inhibited the MCP-1-induced migration of microglial cells. However, wogonin did not stimulate the production of cAMP in microglial cells. Our results indicate that the anti-inflammatory activity of wogonin is exerted at least in part by suppressing microglial cell motility via inhibition of NF-kappaB activity.
Collapse
Affiliation(s)
- Hua Zi Piao
- Department of Pharmacology, College of Medicine, Yanbian University, Yanji, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim Y, So HS, Kim SJ, Youn MJ, Lee JH, Kim NS, Lee JH, Woo WH, Lee DW, Cho KH, Moon BS, Park R. Antiinflammatory effect of Daesiho, a Korean traditional prescription for cerebral infarct patients. Phytother Res 2008; 22:829-35. [DOI: 10.1002/ptr.2389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Kim Y, So HS, Youn MJ, Kim ES, Song MS, Chai KY, Woo WH, Cho KH, Moon BS, Park R. Anti-inflammatory effect of So-Pung-Tang, a Korean traditional prescription for cerebral infarction patients. JOURNAL OF ETHNOPHARMACOLOGY 2007; 114:425-431. [PMID: 17931810 DOI: 10.1016/j.jep.2007.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 07/18/2007] [Accepted: 08/16/2007] [Indexed: 05/25/2023]
Abstract
So-Pung-Tang (Sopung), a prescription composed of 14 herbal mixtures, has been widely used in the treatment of cerebral infarction in Oriental Medicine. However, the mechanisms by which the formula affects on the production of pro-inflammatory cytokines in cerebral infarction patients remain unknown yet. The levels of secretory protein of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-alpha, interlukin (IL)-1beta, and IL-6, were significantly increased in both THP-1 differentiated macrophage-like cells (THP-1/M) and peripheral blood mononuclear cells (PBMCs) from cerebral infarction patients after stimulation. However, pretreatment with Sopung markedly inhibited the secretion of TNF-alpha and IL-6, but not IL-1beta, in lipopolysaccharide (LPS)-stimulated THP-1/M cells and PBMCs treated with LPS and phytohemagglutinin (PHA). Furthermore, Sopung significantly inhibited LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK1/2) and c-jun N-terminal kinase (JNK), but not p38 in THP-1/M cells. These data indicate that Sopung may be beneficial in the cessation of inflammatory processes of cerebral infarction through suppression of ERK1/2 and JNK activation.
Collapse
Affiliation(s)
- Yunha Kim
- Vestibulocochlear System Research Center and Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tang Q, Svensson CI, Fitzsimmons B, Webb M, Yaksh TL, Hua XY. Inhibition of spinal constitutive NOS-2 by 1400W attenuates tissue injury and inflammation-induced hyperalgesia and spinal p38 activation. Eur J Neurosci 2007; 25:2964-72. [PMID: 17561811 DOI: 10.1111/j.1460-9568.2007.05576.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) and its synthesizing enzymes, including NO synthase-2 (NOS-2, also called inducible NOS, iNOS), have been implicated in spinal nociception. 1400W is a highly selective NOS-2 inhibitor, as compared with either NOS-1 (neuronal NOS, nNOS) or NOS-3 (endothelial NOS). Here we examined the anti-nociceptive effects of intrathecal (IT) administration of 1400W in two experimental models of hyperalgesia (formalin and carrageenan models), in addition to the effect of 1400W on stimulation-induced activation of spinal p38 mitogen-activated protein kinase (p38). IT treatment of rats with 1400W produced a dose-dependent inhibition of paw formalin-induced phase II flinches, and attenuated carrageenan-induced thermal hyperalgesia. In contrast, IT injection of a selective inhibitor of NOS-1, nNOS inhibitor-I, had no effect in either model. Furthermore, 1400W at a dose that suppressed formalin-induced flinching behavior also blocked formalin-evoked p38 phosphorylation (activation) in the spinal cord, while nNOS inhibitor-I displayed no activity. The prompt effects of IT 1400W suggest involvement of constitutively expressed NOS-2 in spinal nociception. The NOS-2 protein in rat spinal cords was undetectable by Western blotting. However, when the protein was immunoprecipitated prior to Western blotting, NOS-2-immunoreactive bands were detected in the tissues, including naïve spinal cords. The presence of constitutive spinal NOS-2 was further confirmed by reverse transcriptase-polymerase chain reaction. Taken together, the present studies suggest that constitutively expressed spinal NOS-2 mediates tissue injury and inflammation-induced hyperalgesia, and that activation of p38 is one of the downstream factors in NO-mediated signaling in the initial processing of spinal nociception.
Collapse
Affiliation(s)
- Qingbo Tang
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
40
|
Kim Y, So HS, Kim JK, Park C, Lee JH, Woo WH, Cho KH, Moon BS, Park R. Anti-inflammatory effect of oyaksungisan in peripheral blood mononuclear cells from cerebral infarction patients. Biol Pharm Bull 2007; 30:1037-41. [PMID: 17541150 DOI: 10.1248/bpb.30.1037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oyaksungisan, the herbal prescription composed of eleven herbs, has been widely used in treatment of cerebral infarct in Oriental Medicine. However, the mechanisms by which the herbal formula affects on the production of pro- and anti-inflammatory cytokines in cerebral infarction patients remain unknown yet. The secretory levels of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6, and IL-10 were significantly increased in both LPS and PHA-stimulated peripheral blood mononuclear cells (PBMCs) from cerebral infarction patients. However, pretreatment with oyaksungisan significantly inhibited the secretion of pro- and anti-inflammatory in PBMCs. Also, oyaksungisan induced a significant increase of transforming growth factor (TGF)-beta1 in PBMCs. Thus, these data indicate that oyaksungisan may be beneficial in the cessation of inflammatory processes of cerebral infarct through suppression of TNF-alpha, IL-1beta, IL-6, and IL-10 and induction of TGF-beta1.
Collapse
Affiliation(s)
- Yunha Kim
- Department of Microbiology, Wonkwang University School of Medicine, Jeonbuk, Korea (South)
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wright G, Davies NA, Shawcross DL, Hodges SJ, Zwingmann C, Brooks HF, Mani AR, Harry D, Stadlbauer V, Zou Z, Zou Z, Williams R, Davies C, Moore KP, Jalan R. Endotoxemia produces coma and brain swelling in bile duct ligated rats. Hepatology 2007; 45:1517-26. [PMID: 17523148 DOI: 10.1002/hep.21599] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED This study explores the hypothesis that the inflammatory response induced by administration of lipopolysaccharide (LPS) exacerbates brain edema in cirrhotic rats; and if so whether this is associated with altered brain metabolism of ammonia or anatomical disturbance of the blood-brain barrier. Adult Sprague-Dawley rats 4 weeks after bile duct ligation (BDL)/Sham-operation, or naïve rats fed a hyperammonemic diet (HD), were injected with LPS (0.5 mg/kg, intraperitoneally) or saline, and killed 3 hours later. LPS administration increased brain water in HD, BDL, and sham-operated groups significantly (P < 0.05), but this was associated with progression to pre-coma stages only in BDL rats. LPS induced cytotoxic brain swelling and maintained anatomical integrity of the blood-brain barrier. Plasma/brain ammonia levels were higher in HD and BDL rats than in sham-operated controls and did not change with LPS administration. Brain glutamine/myoinositol ratio was increased in the HD group but reduced in the BDL animals. There was a background pro-inflammatory cytokine response in the brains of cirrhotic rats, and plasma/brain tumor necrosis factor alpha (TNF-alpha) and IL-6 significantly increased in LPS-treated animals. Plasma nitrite/nitrate levels increased significantly in LPS groups compared with non-LPS controls; however, frontal cortex nitrotyrosine levels only increased in the BDL + LPS rats (P < 0.005 versus BDL controls). CONCLUSION Injection of LPS into cirrhotic rats induces pre-coma and exacerbates cytotoxic edema because of the synergistic effect of hyperammonemia and the induced inflammatory response. Although the exact mechanism of how hyperammonemia and LPS facilitate cytotoxic edema and pre-coma in cirrhosis is not clear, our data support an important role for the nitrosation of brain proteins.
Collapse
Affiliation(s)
- Gavin Wright
- Liver Failure Group, Institute of Hepatology, Division of Medicine, University College London, 69-75 Chenies Mews, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim Y, So HS, Youn MJ, Kim HJ, Woo WH, Shin SH, Lee I, Moon BS, Cho KH, Park R. Anti-inflammatory effect of Sasim extracts in PHA-stimulated THP-1 and peripheral blood mononuclear cells from cerebral infarction patients. JOURNAL OF ETHNOPHARMACOLOGY 2007; 112:32-9. [PMID: 17349756 DOI: 10.1016/j.jep.2007.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 12/26/2006] [Accepted: 01/25/2007] [Indexed: 05/14/2023]
Abstract
Sasim, a prescription composed of seven herbal mixtures, has been widely used for the treatment of cerebral infarction as an oriental medicine in Korea. However, the mechanisms by which the formula affects on the production of pro-inflammatory cytokines in cerebral infarct patients remain unknown yet. The levels of secretory protein and mRNA of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-alpha, interlukin (IL)-1beta, and IL-6, were significantly increased in both THP-1 differentiated macrophage-like cells (T/M) and peripheral blood mononuclear cells (PBMCs) from cerebral infarct patients at 24h after stimulation with phytohemagglutinin (PHA) (p<0.05). However, pretreatment of Sasim strongly suppressed the secretion of pro-inflammatory cytokines in PHA-stimulated T/M cells and PBMCs. Moreover, Sasim significantly suppressed the transcriptional levels of pro-inflammatory cytokines in PHA-stimulated THP-1/M cells. These data indicate that Sasim may be beneficial in the cessation of inflammatory processes of cerebral infarction through suppression on the production of pro-inflammatory cytokines via inhibition of mRNA expression.
Collapse
Affiliation(s)
- Yunha Kim
- Vestibulocochlear System Research Center and Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Choi HB, Ryu JK, Kim SU, McLarnon JG. Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. J Neurosci 2007; 27:4957-68. [PMID: 17475804 PMCID: PMC6672082 DOI: 10.1523/jneurosci.5417-06.2007] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/13/2007] [Accepted: 03/28/2007] [Indexed: 12/30/2022] Open
Abstract
We investigated the involvement and roles of the ionotropic purinergic receptor P2X(7)R in microglia in mediating lipopolysaccharide (LPS)-induced inflammatory responses and neuronal damage in rat striatum. A detailed in vivo study showed that LPS injection into striatum markedly increased the expression of P2X(7)R in microglia compared with control (saline)-injected animals. Additionally, LPS injection upregulated a broad spectrum of proinflammatory mediators, including inducible nitric oxide synthase (nitric oxide production marker), 3-nitrotyrosine (peroxynitrite-mediated nitration marker), 4-hydroxynonenal (lipid peroxidation marker), and 8-hydroxy-2'-deoxyguanosine (oxidative DNA damage marker), and reduced neuronal viability. The P2X(7)R antagonist oxidized ATP (oxATP) was effective in attenuating expressions of all inflammatory mediators and in addition inhibited LPS-induced activation of the cellular signaling factors p38 mitogen-activated protein kinase and transcriptional factor nuclear factor kappaB. Most importantly, in vivo, oxATP blockade of P2X(7)R also reduced numbers of caspase-3-positive neurons and increased neuronal survival in LPS-injected brain. In vitro, LPS stimulation of cultured human microglia enhanced cellular expressions of a host of proinflammatory factors, including cyclooxygenase-2, interleukin-1beta (IL-1beta), IL-6, IL-12, and tumor necrosis factor-alpha; all factors were inhibited by oxATP. A novel finding was that LPS potentiated intracellular [Ca(2+)](i) mobilization induced by the P2X(7)R ligand 2',3'-O-(4-benzoyl-benzoyl) ATP, which could serve as a mechanistic link for P2X(7)R amplification of inflammatory responses. Our results suggest critical roles for P2X(7)R in mediating inflammation and inhibition of this subtype purinergic receptor as a novel therapeutic approach to reduce microglial activation and confer neuroprotection in inflamed and diseased brain.
Collapse
Affiliation(s)
- Hyun B. Choi
- Department of Anesthesiology, Pharmacology, and Therapeutics and
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3, and
| | - Jae K. Ryu
- Department of Anesthesiology, Pharmacology, and Therapeutics and
| | - Seung U. Kim
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3, and
- Brain Disease Research Center, Ajou University, Suwon, Korea 443-749
| | | |
Collapse
|
44
|
Spencer SJ, Mouihate A, Pittman QJ. Peripheral Inflammation Exacerbates Damage After Global Ischemia Independently of Temperature and Acute Brain Inflammation. Stroke 2007; 38:1570-7. [PMID: 17395866 DOI: 10.1161/strokeaha.106.476507] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Concomitant infection can exacerbate damage caused by cerebral ischemia. However, the interaction between and relative importance of the febrile and inflammatory components of the immune response is still unknown.
Methods—
Male Sprague-Dawley rats were subjected to a 2-vessel occlusion with hypotension, immediately followed by intraperitoneal injection of lipopolysaccharide or pyrogen-free saline.
Results—
Inflammation immediately after 2-vessel occlusion exacerbated hippocampal cell loss at 3 days and enhanced anxiety-related behaviors in the elevated plus maze and open field. These effects were not associated with differences in body temperature changes or with hippocampal pro-inflammatory cytokine production or hippocampal microglial activation.
Conclusion—
We show a previously undocumented dissociation between lipopolysaccharide-exacerbated damage after global ischemia in the rat and the temperature and acute brain immune response, indicating that the mechanism for enhanced lipopolysaccharide damage is hippocampal cytokine and temperature independent in this case.
Collapse
Affiliation(s)
- Sarah J Spencer
- Hotchkiss Brain Institute and Institute of Infection, Immunity and Inflammation, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
45
|
Wang W, Hu D, Xiong H. Macrophage attenuation of neuronal excitability: Implications for pathogenesis of neurodegenerative disorders. Glia 2007; 56:241-6. [DOI: 10.1002/glia.20609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006; 9:1512-9. [PMID: 17115040 DOI: 10.1038/nn1805] [Citation(s) in RCA: 1071] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 10/26/2006] [Indexed: 01/02/2023]
Abstract
Microglia are primary immune sentinels of the CNS. Following injury, these cells migrate or extend processes toward sites of tissue damage. CNS injury is accompanied by release of nucleotides, serving as signals for microglial activation or chemotaxis. Microglia express several purinoceptors, including a G(i)-coupled subtype that has been implicated in ATP- and ADP-mediated migration in vitro. Here we show that microglia from mice lacking G(i)-coupled P2Y(12) receptors exhibit normal baseline motility but are unable to polarize, migrate or extend processes toward nucleotides in vitro or in vivo. Microglia in P2ry(12)(-/-) mice show significantly diminished directional branch extension toward sites of cortical damage in the living mouse. Moreover, P2Y(12) expression is robust in the 'resting' state, but dramatically reduced after microglial activation. These results imply that P2Y(12) is a primary site at which nucleotides act to induce microglial chemotaxis at early stages of the response to local CNS injury.
Collapse
Affiliation(s)
- Sharon E Haynes
- Department of Physiology & Cellular, University of California, San Francisco (UCSF), 600 16th Street, San Francisco, California 94158-2517, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Kucharova K, Lukacova N, Pavel J, Radonak J, Hefferan MP, Kolesar D, Kolesarova M, Marsala M, Marsala J. Spatiotemporal alterations of the NO/NOS neuronal pools following transient abdominal aorta occlusion: morphological and biochemical studies in the rabbit. Cell Mol Neurobiol 2006; 26:1295-310. [PMID: 16786431 DOI: 10.1007/s10571-006-9089-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2005] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
1. Brief interruption of spinal cord blood flow resulting from transient abdominal aortic occlusion may lead to degeneration of specific spinal cord neurons and to irreversible loss of neurological function. The alteration of nitric oxide/nitric oxide synthase (NO/NOS) pool occurring after ischemic insult may play a protective or destructive role in neuronal survival of affected spinal cord segments. 2. In the present study, the spatiotemporal changes of NOS following transient ischemia were evaluated by investigating neuronal NOS immunoreactivity (nNOS-IR), reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry, and calcium-dependent NOS (cNOS) conversion of [(3)H] l-arginine to [(3)H] l-citrulline. 3. The greatest levels of these enzymes and activities were detected in the dorsal horn, which appeared to be most resistant to ischemia. In that area, the first significant increase in NADPHd staining and cNOS catalytic activity was found immediately after a 15-min ischemic insult. 4. Increases in the ventral horn were observed later (i.e., after a 24-h reperfusion period). While the most intense increase in nNOS-IR was detected in surviving motoneurons of animals with a shorter ischemic insult (13 min), the greatest increase of cNOS catalytic activity and NADPHd staining of the endothelial cells was found after stronger insult (15 min). 5. Given that the highest levels of nNOS, NADPHd, and cNOS were found in the ischemia-resistant dorsal horn, and nNOS-IR in surviving motoneurons, it is possible that NO production may play a neuroprotective role in ischemic/reperfusion injury.
Collapse
Affiliation(s)
- K Kucharova
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Guo G, Bhat NR. Hypoxia/reoxygenation differentially modulates NF-kappaB activation and iNOS expression in astrocytes and microglia. Antioxid Redox Signal 2006; 8:911-8. [PMID: 16771681 DOI: 10.1089/ars.2006.8.911] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hypoxia/ischemic brain injury accompanies an inflammatory response involving an activation of glial cells. This study, using an in vitro model, investigated the signaling mechanisms mediating hypoxic responses of the two glial cell types (astrocytes and microglia) in relation to the expression of inducible nitric oxide synthase (iNOS). In cultures of rat brain microglia and astrocytes, hypoxia (8 h) followed by reoxygenation (24 h) (H/O) had little (microglia) or no (astrocytes) effect on the expression of iNOS. However, H/O elicited opposite effects on lipopolysaccharide (LPS) induction of iNOS in the two cell types: it potentiated LPS induction of iNOS in microglia but inhibited this response in astrocytes. Similar differential effects of hypoxia were observed on the production of tumor necrosis factor-alpha (TNFalpha). In contrast, there was an upregulation of hemoxygenase- 1 (HO-1), a counter-regulatory pathway, with astrocytes showing a bigger induction than microglia. While hypoxic activation of mitogen-activated protein kinases (MAPKs) was similar in the two glial types, the activation pattern of NFkappaB was clearly different: hypoxia stimulated the activation of NFkappaB pathway and NFkappaB-dependent transcription in microglia but not in astrocytes. Lastly, the two cell types displayed differential vulnerabilities to hypoxia-induced cell death, the astrocytes being relatively more resistant than microglia.
Collapse
Affiliation(s)
- Guiwen Guo
- Department of Neurology, Medical University of South Carolina, Charleston, 29425, USA
| | | |
Collapse
|
49
|
Schulz R, Heusch G. Angiotensin II type 1 receptors in cerebral ischaemia-reperfusion: initiation of inflammation. J Hypertens 2006; 24:S123-9. [PMID: 16601565 DOI: 10.1097/01.hjh.0000220417.01397.6a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cerebral ischaemia-reperfusion injury is associated with an inflammatory response, with contributions from leucocytes and microglia. Formation of free radicals and nitric oxide contributes to the development of cerebral infarction and of the neurological deficit that follows transient focal ischaemia. The circulating and cerebral renin-angiotensin systems contribute, via stimulation of the angiotensin II (Ang II) types 1 (AT1) and 2 receptors, to the initiation or progression of inflammatory processes, and blockade of AT1-receptors prevents irreversible tissue injury and improves outcome from stroke in animal experiments. Such cerebral protection can be achieved even when treatment is initiated hours after established reperfusion. Blockade of AT1-receptors also reduces the incidence of stroke and cardiovascular mortality associated with stroke in patients; however, the mechanisms underlying the prevention of stroke by AT1-receptor blockade in patients remain to be elucidated. In this review we summarize the existing experimental and clinical data demonstrating that the renin-angiotensin system contributes to the inflammation and subsequent irreversible injury after cerebral ischaemia-reperfusion. We conclude that AT1-receptor blockade reduces cerebral ischaemia-reperfusion injury in part by attenuating inflammatory processes.
Collapse
Affiliation(s)
- Rainer Schulz
- Institute for Pathophysiology, University of Duisburg-Essen, Essen, Germany.
| | | |
Collapse
|
50
|
Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K. Microglia provide neuroprotection after ischemia. FASEB J 2006; 20:714-6. [PMID: 16473887 DOI: 10.1096/fj.05-4882fje] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many neurological insults are accompanied by a marked acute inflammatory reaction, involving the activation of microglia. Using a model of exogenous application of fluorescence-labeled BV2 microglia in pathophysiologically relevant concentrations onto organotypic hippocampal slice cultures, we investigated the specific effects of microglia on neuronal damage after ischemic injury. Neuronal cell death after oxygen-glucose deprivation (OGD) was determined by propidium iodide incorporation and Nissl staining. Migration and interaction with neurons were analyzed by time resolved 3-D two-photon microscopy. We show that microglia protect against OGD-induced neuronal damage and engage in close physical cell-cell contact with neurons in the damaged brain area. Neuroprotection and migration of microglia were not seen with integrin regulator CD11a-deficient microglia or HL-60 granulocytes. The induction of migration and neuron-microglia interaction deep inside the slice was markedly increased under OGD conditions. Lipopolysaccharide-prestimulated microglia failed to provide neuroprotection after OGD. Pharmacological interference with microglia function resulted in a reduced neuroprotection. Microglia proved to be neuroprotective even when applied up to 4 h after OGD, thus defining a "protective time window." In acute injury such as trauma or stroke, appropriately activated microglia may primarily have a neuroprotective role. Anti-inflammatory treatment within the protective time window of microglia would therefore be counterintuitive.
Collapse
Affiliation(s)
- Jens Neumann
- Leibniz Institute for Neurobiology, Project Group Neuropharmacology, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|