1
|
Yang Y, Lai Y, Tong X, Li Z, Cheng Y, Tian LW. Arjunolic acid ameliorates lipopolysaccharide-induced depressive behavior by inhibiting neuroinflammation via microglial SIRT1/AMPK/Notch1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118225. [PMID: 38670408 DOI: 10.1016/j.jep.2024.118225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neuroinflammation is involved in the pathogenesis of depression disorder by activating microglia cells, increasing proinflammatory cytokines, effecting serotonin synthesis and metabolism, and neuronal apoptosis and neurogenesis. Arjunolic acid (ARG) is a triterpenoid derived from the fruits of Akebia trifoliata for treating psychiatric disorders in TCM clinic, which exhibits anti-inflammatory and neuroprotective effects. However, its anti-depressive effect and underlying mechanism are unknown. AIM OF THE STUDY The aim of this study is to explore the effect of arjunolic acid on depression and its possible mechanisms. METHODS Intraperitoneal injection of LPS in mice and LPS stimulated-BV2 microglia were utilized to set up in vivo and in vitro models. Behavioral tests, H&E staining and ELISA were employed to evaluate the effect of arjunolic acid on depression. RT-qPCR, immunofluorescence, molecular docking and Western blot were performed to elucidate the molecular mechanisms. RESULTS Arjunolic acid dramatically ameliorated depressive behavior in LPS-induced mice. The levels of BDNF and 5-HT in the hippocampus of the mice were increased, while the number of iNOS + IBA1+ cells in the brain were decreased and Arg1+IBA1+ positive cells were increased after arjunolic acid treatment. In addition, arjunolic acid promoted the polarization of BV2 microglia from M1 to M2 type. Notably, drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA) and molecular docking technologies identified SIRT1 as the target of arjunolic acid. Moreover, after SIRT1 inhibition by using EX-527, the effects of arjunolic acid on ameliorating LPS-induced depressive behavior in mice and promoting M2 Microglia polarization were blocked. In addition, arjunolic acid activated AMPK and decreased Notch1 expression, however, inhibition of AMPK, the effect of arjunolic acid on the downregulation of Notch1 expression were weaken. CONCLUSIONS This study elucidates that arjunolic acid suppressed neuroinflammation through modulating the SIRT1/AMPK/Notch1 signaling pathway. Our study demonstrates that arjunolic acid might serve as a potiential anti-depressant.
Collapse
Affiliation(s)
- Ying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Ying Lai
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Xueli Tong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zipei Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yuanyuan Cheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Li-Wen Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Liu Y, Theil S, Ibach M, Walter J. DAP12 interacts with RER1 and is retained in the secretory pathway before assembly with TREM2. Cell Mol Life Sci 2024; 81:302. [PMID: 39008111 PMCID: PMC11335228 DOI: 10.1007/s00018-024-05298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024]
Abstract
DNAX-activating protein of 12 kDa (DAP12) is a transmembrane adapter protein expressed in lymphoid and myeloid lineage cells. It interacts with several immunoreceptors forming functional complexes that trigger intracellular signaling pathways. One of the DAP12 associated receptors is the triggering receptor expressed on myeloid cells 2 (TREM2). Mutations in both DAP12 and TREM2 have been linked to neurodegenerative diseases. However, mechanisms involved in the regulation of subcellular trafficking and turnover of these proteins are not well understood. Here, we demonstrate that proteasomal degradation of DAP12 is increased in the absence of TREM2. Interestingly, unassembled DAP12 is also retained in early secretory compartments, including the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC), thereby preventing its transport to the plasma membrane. We also show that unassembled DAP12 interacts with the retention in ER sorting receptor 1 (RER1). The deletion of endogenous RER1 decreases expression of functional TREM2-DAP12 complexes and membrane proximal signaling, and resulted in almost complete inhibition of phagocytic activity in THP-1 differentiated macrophage-like cells. These results indicate that RER1 acts as an important regulator of DAP12 containing immunoreceptor complexes and immune cell function.
Collapse
Affiliation(s)
- Yanxia Liu
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | - Sandra Theil
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | - Melanie Ibach
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, 53127, Germany.
| |
Collapse
|
3
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
4
|
Hao X, Lin L, Sun C, Li C, Wang J, Jiang M, Yao Z, Yang Y. Inhibition of Notch1 signal promotes brain recovery by modulating glial activity after stroke. J Stroke Cerebrovasc Dis 2024; 33:106578. [PMID: 38636320 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/21/2022] [Accepted: 05/15/2022] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Notch1 signaling inhibiton with N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester] (DAPT) treatment could promote brain recovery and the intervention effect is different between striatum (STR) and cortex (CTX), which might be accounted for different changes of glial activities, but the in-depth mechanism is still unknown. The purpose of this study was to identify whether DAPT could modulate microglial subtype shifts and astroglial-endfeet aquaporin-4 (AQP4) mediated waste solute drainage. METHODS Sprague-Dawley rats (n=10) were subjected to 90min of middle cerebral artery occlusion (MCAO) and were treated with DAPT (n=5) or act as control with no treatment (n=5). Two groups of rats underwent MRI scans at 24h and 4 week, and sacrificed at 4 week after stroke for immunofluorescence (IF). RESULTS Compared with control rats, MRI data showed structural recovery in ipsilateral STR but not CTX. And IF showed decreased pro-inflammatory M1 microglia and increased anti-inflammatory M2 microglia in striatal lesion core and peri-lesions of STR, CTX. Meanwhile, IF showed decreased AQP4 polarity in ischemic brain tissue, however, AQP4 polarity in striatal peri-lesions of DAPT treated rats was higher than that in control rats but shows no difference in cortical peri-lesions between control and treated rats. CONCLUSIONS The present study indicated that DAPT could promote protective microglia subtype shift and striatal astrocyte mediated waste solute drainage, that the later might be the major contributor of waste solute metabolism and one of the accounts for discrepant recovery of STR and CTX.
Collapse
Affiliation(s)
- Xiaozhu Hao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Luyi Lin
- Department of Radiology, Shanghai cancer center, Fudan University, Shanghai 200032, China
| | - Chengfeng Sun
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chanchan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Min Jiang
- Institutes of Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yanmei Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
5
|
Wang Y, Tian J, Liu D, Li T, Mao Y, Zhu C. Microglia in radiation-induced brain injury: Cellular and molecular mechanisms and therapeutic potential. CNS Neurosci Ther 2024; 30:e14794. [PMID: 38867379 PMCID: PMC11168970 DOI: 10.1111/cns.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Radiation-induced brain injury is a neurological condition resulting from radiotherapy for malignant tumors, with its underlying pathogenesis still not fully understood. Current hypotheses suggest that immune cells, particularly the excessive activation of microglia in the central nervous system and the migration of peripheral immune cells into the brain, play a critical role in initiating and progressing the injury. This review aimed to summarize the latest advances in the cellular and molecular mechanisms and the therapeutic potential of microglia in radiation-induced brain injury. METHODS This article critically examines recent developments in understanding the role of microglia activation in radiation-induced brain injury. It elucidates associated mechanisms and explores novel research pathways and therapeutic options for managing this condition. RESULTS Post-irradiation, activated microglia release numerous inflammatory factors, exacerbating neuroinflammation and facilitating the onset and progression of radiation-induced damage. Therefore, controlling microglial activation and suppressing the secretion of related inflammatory factors is crucial for preventing radiation-induced brain injury. While microglial activation is a primary factor in neuroinflammation, the precise mechanisms by which radiation prompts this activation remain elusive. Multiple signaling pathways likely contribute to microglial activation and the progression of radiation-induced brain injury. CONCLUSIONS The intricate microenvironment and molecular mechanisms associated with radiation-induced brain injury underscore the crucial roles of immune cells in its onset and progression. By investigating the interplay among microglia, neurons, astrocytes, and peripheral immune cells, potential strategies emerge to mitigate microglial activation, reduce the release of inflammatory agents, and impede the entry of peripheral immune cells into the brain.
Collapse
Affiliation(s)
- Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
- Department of Hematology and Oncology, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Jiayu Tian
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Dandan Liu
- Department of Electrocardiogram, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Tao Li
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Yanna Mao
- Department of Hematology and Oncology, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Department of PediatricsInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityKangfuqian Street 7Zhengzhou450052None SelectedChina
- Center for Brain Repair and Rehabilitation, Department of Clinical NeuroscienceInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgMedicinaregtan 11Göteborg40530Sweden
| |
Collapse
|
6
|
Augusto-Oliveira M, Tremblay MÈ, Verkhratsky A. Receptors on Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:83-121. [PMID: 39207688 DOI: 10.1007/978-3-031-55529-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglial cells are the most receptive cells in the central nervous system (CNS), expressing several classes of receptors reflecting their immune heritage and newly acquired neural specialisation. Microglia possess, depending on the particular context, receptors to neurotransmitters and neuromodulators as well as immunocompetent receptors. This rich complement allows microglial cells to monitor the functional status of the nervous system, contribute actively to the regulation of neural activity and plasticity and homeostasis, and guard against pathogens as well as other challenges to the CNS's integrity and function.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
7
|
Askari H, Rabiei F, Yahyazadeh M, Biagini G, Ghasemi-Kasman M. Notch Signaling in Central Nervous System: From Cellular Development to Multiple Sclerosis Disease. Curr Neuropharmacol 2024; 23:3-19. [PMID: 39162293 PMCID: PMC11519821 DOI: 10.2174/1570159x22666240731114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION/OBJECTIVE Multiple sclerosis (MS), is characterized by autoimmune-driven neuroinflammation, axonal degeneration, and demyelination. This study aimed to explore the therapeutic potential of targeting Notch signaling within the central nervous system (CNS) in the context of MS. Understanding the intricate roles of Notch signaling could pave the way for targeted interventions to mitigate MS progression. METHODS A comprehensive literature review was conducted using databases such as PubMed, Web of Science, and Scopus. Keywords such as "Notch signaling," "neuroglial interactions," and "MS" were used. The selection criteria included relevance to neuroglial interactions, peer-reviewed publications, and studies involving animal models of MS. RESULTS This review highlights the diverse functions of Notch signaling in CNS development, including its regulation of neural stem cell differentiation into neurons, astrocytes, and oligodendrocytes. In the context of MS, Notch signaling has emerged as a promising therapeutic target, exhibiting positive impacts on neuroprotection and remyelination. However, its intricate nature within the CNS necessitates precise modulation for therapeutic efficacy. CONCLUSION This study provides a comprehensive overview of the potential therapeutic role of Notch signaling in MS. The findings underscore the significance of Notch modulation for neuroprotection and remyelination, emphasizing the need for precision in therapeutic interventions. Further research is imperative to elucidate the specific underlying mechanisms involved, which will provide a foundation for targeted therapeutic strategies for the management of MS and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Masoomeh Yahyazadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
8
|
Harry GJ. Microglia Colonization Associated with Angiogenesis and Neural Cell Development. ADVANCES IN NEUROBIOLOGY 2024; 37:163-178. [PMID: 39207692 DOI: 10.1007/978-3-031-55529-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The temporal and spatial pattern of microglia colonization of the nervous system implies a role in early stages of organ development including cell proliferation, differentiation, and neurovascularization. As microglia colonize and establish within the developing nervous system, they assume a neural-specific identity and contribute to key developmental events. Their association around blood vessels implicates them in development of the vascular system or vice versa. A similar association has been reported for neural cell proliferation and associated phenotypic shifts and for cell fate differentiation to neuronal or glial phenotypes. These processes are accomplished by phagocytic activities, cell-cell contact relationships, and secretion of various factors. This chapter will present data currently available from studies evaluating the dynamic and interactive nature of these processes throughout the progression of nervous system development.
Collapse
Affiliation(s)
- G Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
9
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
10
|
Fu J, Zhao B, Luo G, Ni H, Xu L, He Q, Xu M, Xu C, Wang Y, Ni C, Yao M. JAG-1/Notch signaling axis in the spinal cord contributes to bone cancer pain in rats. J Neurochem 2023; 166:747-762. [PMID: 37422446 DOI: 10.1111/jnc.15910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023]
Abstract
Notch signal plays an important role in regulating cell-cell interactions with the adjacent cells. However, it remains unknown whether Jagged1 (JAG-1) mediated Notch signaling regulates bone cancer pain (BCP) via the spinal cell interactions mechanism. Here, we showed that intramedullary injection of Walker 256 breast cancer cells increased the expression of JAG-1 in spinal astrocytes and knockdown of JAG-1 reduced BCP. The supplementation of exogenous JAG-1 to the spinal cord induced BCP-like behavior and promoted expression of c-Fos and hairy and enhancer of split homolog-1 (Hes-1) in the spinal cord of the naïve rats. These effects were reversed when the rats were administered intrathecal injections of N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT). The intrathecal injection of DAPT reduced BCP and inhibited Hes-1 and c-Fos expression in the spinal cord. Furthermore, our results showed that JAG-1 up-regulated Hes-1 expression by inducing the recruitment of Notch intracellular domain (NICD) to the RBP-J/CSL-binding site located within the Hes-1 promoter sequence. Finally, the intrathecal injection of c-Fos-antisense oligonucleotides (c-Fos-ASO) and administration of sh-Hes-1 to the spinal dorsal horn also alleviated BCP. The study indicates that inhibition of the JAG-1/Notch signaling axis may be a potential strategy for the treatment of BCP.
Collapse
Affiliation(s)
- Jie Fu
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Baoxia Zhao
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ge Luo
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiuli He
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Miao Xu
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chengfei Xu
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yahui Wang
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research center, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
11
|
Pan Y, Kagawa Y, Sun J, Lucas DSD, Takechi R, Mamo JCL, Wai DCC, Norton RS, Jin L, Nicolazzo JA. Peripheral Administration of the Kv1.3-Blocking Peptide HsTX1[R14A] Improves Cognitive Performance in Senescence Accelerated SAMP8 Mice. Neurotherapeutics 2023; 20:1198-1214. [PMID: 37226029 PMCID: PMC10457257 DOI: 10.1007/s13311-023-01387-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
Increased expression of the voltage-gated potassium channel Kv1.3 in activated microglia, and the subsequent release of pro-inflammatory mediators, are closely associated with the progression of Alzheimer's disease (AD). Studies have shown that reducing neuroinflammation through the non-selective blockade of microglial Kv1.3 has the potential to improve cognitive function in mouse models of familial AD. We have previously demonstrated that a potent and highly-selective peptide blocker of Kv1.3, HsTX1[R14A], not only entered the brain parenchyma after peripheral administration in a lipopolysaccharide (LPS)-induced mouse model of inflammation, but also significantly reduced pro-inflammatory mediator release from activated microglia. In this study, we show that microglial expression of Kv1.3 is increased in senescence accelerated mice (SAMP8), an animal model of sporadic AD, and that subcutaneous dosing of HsTX1[R14A] (1 mg/kg) every other day for 8 weeks provided a robust improvement in cognitive deficits in SAMP8 mice. The effect of HsTX1[R14A] on the whole brain was assessed using transcriptomics, which revealed that the expression of genes associated with inflammation, neuron differentiation, synapse function, learning and memory were altered by HsTX1[R14A] treatment. Further study is required to investigate whether these changes are downstream effects of microglial Kv1.3 blockade or a result of alternative mechanisms, including any potential effect of Kv1.3 blockade on other brain cell types. Nonetheless, these results collectively demonstrate the cognitive benefits of Kv1.3 blockade with HsTX1[R14A] in a mouse model of sporadic AD, demonstrating its potential as a therapeutic candidate for this neurodegenerative disease.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiteru Kagawa
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Jiaqi Sun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Deanna S Deveson Lucas
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ryusuke Takechi
- School of Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
| | - John C L Mamo
- School of Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
12
|
Gjølberg TT, Wik JA, Johannessen H, Krüger S, Bassi N, Christopoulos PF, Bern M, Foss S, Petrovski G, Moe MC, Haraldsen G, Fosse JH, Skålhegg BS, Andersen JT, Sundlisæter E. Antibody blockade of Jagged1 attenuates choroidal neovascularization. Nat Commun 2023; 14:3109. [PMID: 37253747 PMCID: PMC10229650 DOI: 10.1038/s41467-023-38563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Antibody-based blocking of vascular endothelial growth factor (VEGF) reduces choroidal neovascularization (CNV) and retinal edema, rescuing vision in patients with neovascular age-related macular degeneration (nAMD). However, poor response and resistance to anti-VEGF treatment occurs. We report that targeting the Notch ligand Jagged1 by a monoclonal antibody reduces neovascular lesion size, number of activated phagocytes and inflammatory markers and vascular leakage in an experimental CNV mouse model. Additionally, we demonstrate that Jagged1 is expressed in mouse and human eyes, and that Jagged1 expression is independent of VEGF signaling in human endothelial cells. When anti-Jagged1 was combined with anti-VEGF in mice, the decrease in lesion size exceeded that of either antibody alone. The therapeutic effect was solely dependent on blocking, as engineering antibodies to abolish effector functions did not impair the therapeutic effect. Targeting of Jagged1 alone or in combination with anti-VEGF may thus be an attractive strategy to attenuate CNV-bearing diseases.
Collapse
Affiliation(s)
- Torleif Tollefsrud Gjølberg
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, 0450, Oslo, Norway
| | - Jonas Aakre Wik
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Department of Nutrition, Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372, Oslo, Norway
| | - Hanna Johannessen
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Department of Pediatric Surgery, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Stig Krüger
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Nicola Bassi
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | | | - Malin Bern
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Stian Foss
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Goran Petrovski
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, 0450, Oslo, Norway
| | - Morten C Moe
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, 0450, Oslo, Norway
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Johanna Hol Fosse
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Department of Nutrition, Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway.
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway.
| | - Eirik Sundlisæter
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway.
| |
Collapse
|
13
|
Alghibiwi H, Ansari MA, Nadeem A, Algonaiah MA, Attia SM, Bakheet SA, Albekairi TH, Almudimeegh S, Alhamed AS, Shahid M, Alwetaid MY, Alassmrry YA, Ahmad SF. DAPTA, a C-C Chemokine Receptor 5 (CCR5), Leads to the Downregulation of Notch/NF-κB Signaling and Proinflammatory Mediators in CD40 + Cells in Experimental Autoimmune Encephalomyelitis Model in SJL/J Mice. Biomedicines 2023; 11:1511. [PMID: 37371605 DOI: 10.3390/biomedicines11061511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system characterized by motor deficits, cognitive impairment, fatigue, pain, and sensory and visual dysfunction. CD40, highly expressed in B cells, plays a significant role in MS pathogenesis. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS has been well established, as well as its relevance in MS patients. This study aimed to evaluate the therapeutic potential of DAPTA, a selective C-C chemokine receptor 5 (CCR5) antagonist in the murine model of MS, and to expand the knowledge of its mechanism of action. Following the induction of EAE, DAPTA was administrated (0.01 mg/kg, i.p.) daily from day 14 to day 42. We investigated the effects of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α in CD40+ spleen B cells using flow cytometry. Furthermore, we also analyzed the effect of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α mRNA expression levels using qRT-PCR in brain tissue. EAE mice treated with DAPTA showed substantial reductions in NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α but an increase in the IκBα of CD40+ B lymphocytes. Moreover, EAE mice treated with DAPTA displayed decreased NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α and but showed increased IκBα mRNA expression levels. This study showed that DAPTA has significant neuroprotective potential in EAE via the downregulation of inflammatory mediators and NF-κB/Notch signaling. Collectively, DAPTA might have potential therapeutic targets for use in MS treatment.
Collapse
Affiliation(s)
- Hanan Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed Ali Algonaiah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasseen A Alassmrry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Li B, Wang L, Qi X, Liu Y, Li J, Lv J, Zhou X, Cai X, Shan J, Ma X. NOTCH
signaling inhibition after
DAPT
treatment exacerbates alveolar echinococcosis hepatic fibrosis by blocking
M1
and enhancing
M2
polarization. FASEB J 2023; 37:e22901. [PMID: 37002884 DOI: 10.1096/fj.202202033r] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Alveolar echinococcosis (AE) is a lethal helminthic liver disease caused by persistent infection with Echinococcus multilocularis (E. multilocularis). Although more and more attention has been paid to the macrophages in E. multilocularis infection, the mechanism of macrophage polarization, a critical player in liver immunity, is seldom studied. NOTCH signaling is involved in cell survival and macrophage-mediated inflammation, but the role of NOTCH signaling in AE has been equally elusive. In this study, liver tissue samples from AE patients were collected and an E. multilocularis infected mouse model with or without blocking NOTCH signaling was established to analyze the NOTCH signaling, fibrotic and inflammatory response of the liver after E. multilocularis infection. Changes in polarization and origin of hepatic macrophages were analyzed by flow cytometry. In vitro qRT-PCR and Western blot assays were performed to analyze key receptors and ligands in NOTCH signaling. Our data demonstrated that hepatic fibrosis develops after AE, and the overall blockade of NOTCH signaling caused by DAPT treatment exacerbates the levels of hepatic fibrosis and alters the polarization and origin of hepatic macrophages. Blocking NOTCH signaling in macrophages after E. multilocularis infection downregulates M1 and upregulates M2 expression. The downregulation of NTCH3 and DLL-3 in the NOTCH signaling pathway is significant. Therefore, NOTCH3/DLL3 may be the key pathway in NOTCH signaling regulating macrophage polarization affecting fibrosis caused by AE.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center Tumor Hospital Affiliated to Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Liang Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center Tumor Hospital Affiliated to Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
- First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Xinwei Qi
- First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Yumei Liu
- Children's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang 830011 P.R. China
| | - Jiajun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center Tumor Hospital Affiliated to Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Jie Lv
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center Tumor Hospital Affiliated to Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Xuan Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center Tumor Hospital Affiliated to Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Xuanlin Cai
- First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Jiaoyu Shan
- College of Basic Medicine of Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center Tumor Hospital Affiliated to Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
- First Affiliated Hospital of Xinjiang Medical University Urumqi Xinjiang 830011 P.R. China
| |
Collapse
|
15
|
Microglia and Brain Macrophages as Drivers of Glioma Progression. Int J Mol Sci 2022; 23:ijms232415612. [PMID: 36555253 PMCID: PMC9779147 DOI: 10.3390/ijms232415612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Evidence is accumulating that the tumour microenvironment (TME) has a key role in the progression of gliomas. Non-neoplastic cells in addition to the tumour cells are therefore finding increasing attention. Microglia and other glioma-associated macrophages are at the centre of this interest especially in the context of therapeutic considerations. New ideas have emerged regarding the role of microglia and, more recently, blood-derived brain macrophages in glioblastoma (GBM) progression. We are now beginning to understand the mechanisms that allow malignant glioma cells to weaken microglia and brain macrophage defence mechanisms. Surface molecules and cytokines have a prominent role in microglia/macrophage-glioma cell interactions, and we discuss them in detail. The involvement of exosomes and microRNAs forms another focus of this review. In addition, certain microglia and glioma cell pathways deserve special attention. These "synergistic" (we suggest calling them "Janus") pathways are active in both glioma cells and microglia/macrophages where they act in concert supporting malignant glioma progression. Examples include CCN4 (WISP1)/Integrin α6β1/Akt and CHI3L1/PI3K/Akt/mTOR. They represent attractive therapeutic targets.
Collapse
|
16
|
Zhang J, Zhang N, Lei J, Jing B, Li M, Tian H, Xue B, Li X. Fluoxetine shows neuroprotective effects against LPS-induced neuroinflammation via the Notch signaling pathway. Int Immunopharmacol 2022; 113:109417. [DOI: 10.1016/j.intimp.2022.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
|
17
|
Kong Y, Kuss M, Shi Y, Fang F, Xue W, Shi W, Liu Y, Zhang C, Zhong P, Duan B. Exercise facilitates regeneration after severe nerve transection and further modulates neural plasticity. Brain Behav Immun Health 2022; 26:100556. [PMID: 36405423 PMCID: PMC9673108 DOI: 10.1016/j.bbih.2022.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with severe traumatic peripheral nerve injury (PNI) always suffer from incomplete recovery and poor functional outcome. Physical exercise-based rehabilitation, as a non-invasive interventional strategy, has been widely acknowledged to improve PNI recovery by promoting nerve regeneration and relieving pain. However, effects of exercise on chronic plastic changes following severe traumatic PNIs have been limitedly discussed. In this study, we created a long-gap sciatic nerve transection followed by autograft bridging in rats and tested the therapeutic functions of treadmill running with low intensity and late initiation. We demonstrated that treadmill running effectively facilitated nerve regeneration and prevented muscle atrophy and thus improved sensorimotor functions and walking performance. Furthermore, exercise could reduce inflammation at the injured nerve as well as prevent the overexpression of TRPV1, a pain sensor, in primary afferent sensory neurons. In the central nervous system, we found that PNI induced transcriptive changes at the ipsilateral lumber spinal dorsal horn, and exercise could reverse the differential expression for genes involved in the Notch signaling pathway. In addition, through neural imaging techniques, we found volumetric, microstructural, metabolite, and neuronal activity changes in supraspinal regions of interest (i.e., somatosensory cortex, motor cortex, hippocampus, etc.) after the PNI, some of which could be reversed through treadmill running. In summary, treadmill running with late initiation could promote recovery from long-gap nerve transection, and while it could reverse maladaptive plasticity after the PNI, exercise may also ameliorate comorbidities, such as chronic pain, mental depression, and anxiety in the long term.
Collapse
Affiliation(s)
- Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yu Shi
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
| | - Fang Fang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Peng Zhong
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
18
|
Brain milieu induces early microglial maturation through the BAX-Notch axis. Nat Commun 2022; 13:6117. [PMID: 36253375 PMCID: PMC9576735 DOI: 10.1038/s41467-022-33836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Microglia are derived from primitive myeloid cells and gain their early identity in the embryonic brains. However, the mechanism by which the brain milieu confers microglial maturation signature remains elusive. Here, we demonstrate that the baxcq55 zebrafish and Baxtm1Sjk mouse embryos exhibit similarly defective early microglial maturation. BAX, a typical pro-apoptotic factor, is highly enriched in neuronal cells and regulates microglial maturation through both pro-apoptotic and non-apoptotic mechanisms. BAX regulates dlb via the CaMKII-CREB axis calcium-dependently in living neurons while ensuring the efficient Notch activation in the immigrated pre-microglia by apoptotic neurons. Notch signaling is conserved in supporting embryonic microglia maturation. Compromised microglial development occurred in the Cx3cr1Cre/+Rbpjfl/fl embryonic mice; however, microglia acquire their appropriate signature when incubated with DLL3 in vitro. Thus, our findings elucidate a BAX-CaMKII-CREB-Notch network triggered by the neuronal milieu in microglial development, which may provide innovative insights for targeting microglia in neuronal disorder treatment.
Collapse
|
19
|
Pilotto E, Torresin T, Bacelle ML, De Mojà G, Ferrara AM, Zovato S, Midena G, Midena E. Hyper-reflective retinal foci as possible in vivo imaging biomarker of microglia activation in von Hippel-Lindau disease. PLoS One 2022; 17:e0272318. [PMID: 35960779 PMCID: PMC9374205 DOI: 10.1371/journal.pone.0272318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 07/17/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose von Hippel-Lindau (VHL) disease is caused by a mutation of the VHL gene and characterized by the development of retinal hemangioblastomas (RH). Current pathophysiologic mechanisms of RH development and progression are still insufficient to predict RH behavior. VHL gene is involved in the cellular response to hypoxia and in many intracellular signaling pathways expressed both in angiogenesis and inflammation. Optical coherence tomography (OCT) allows to identify hyper-reflective retinal foci (HRF) known as aggregates of activated microglial cells as possible in vivo biomarker of local inflammation. The aim of the present study was to investigate the presence of HRF in patients with genetically confirmed VHL disease. Methods In this cross-sectional study, patients with VHL underwent complete ophthalmological examination and OCT with HRA + OCT Spectralis. HRF were manually identified and calculated in inner (IR), outer (OR) and full retina. Age-matched healthy subjects were enrolled as controls. Results 113 eyes of 63 VHL patients and 56 eyes of 28 healthy subjects were evaluated. HRF number was significantly higher in VHL than in controls in IR (28.06 ± 7.50 vs 25.25 ± 6.64, p = 0.042). No difference was observed in OR and in full retina (OR: 7.73 ± 2.59 vs 7.95 ± 2.51, p = 0.599; full retina: 35.79 ± 8.77 vs 33.20 ± 7.47, p = 0.093). Conclusion The increase of HRF, which mirror retinal microglial activation, characterizes VHL eyes. The role of activated microglia in the retina of VHL eyes needs to be better investigated, mainly considering local VHL disease manifestations.
Collapse
Affiliation(s)
- Elisabetta Pilotto
- Department of Neuroscience—Ophthalmology, University of Padova, Padova, Italy
- * E-mail:
| | - Tommaso Torresin
- Department of Neuroscience—Ophthalmology, University of Padova, Padova, Italy
| | - Maria Laura Bacelle
- Department of Neuroscience—Ophthalmology, University of Padova, Padova, Italy
| | - Gilda De Mojà
- Department of Neuroscience—Ophthalmology, University of Padova, Padova, Italy
- Oftalmico Hospital, ASST Fatebenefratelli Sacco, Milano, Italy
| | | | - Stefania Zovato
- Familial Tumor Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Padova, Italy
| | | | - Edoardo Midena
- Department of Neuroscience—Ophthalmology, University of Padova, Padova, Italy
- IRCCS, Fondazione Bietti, Rome, Italy
| |
Collapse
|
20
|
Deng J, Feng X, Zhou L, He C, Li H, Xia J, Ge Y, Zhao Y, Song C, Chen L, Yang Z. Heterophyllin B, a cyclopeptide from Pseudostellaria heterophylla, improves memory via immunomodulation and neurite regeneration in i.c.v.Aβ-induced mice. Food Res Int 2022; 158:111576. [DOI: 10.1016/j.foodres.2022.111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
|
21
|
Wu C, Pan Y, Wang L, Liu M, Wu M, Wang J, Yang G, Guo Y, Ma Y. A new method for primary culture of microglia in rats with spinal cord injury. Biochem Biophys Res Commun 2022; 599:63-68. [PMID: 35176626 DOI: 10.1016/j.bbrc.2022.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
At present, the primary culture method of microglia is complicated, and the culture of spinal cord microglia is rare, so we will explore to establish a new and efficient primary culture method of microglia in rats with spinal cord injury (SCI). The SCI model of SD rats was established by modified A11en's method, and the model of SCI was performed on 1 d, 3 d, 7 d and 14 d respectively. Then the injured spinal cord was removed, mechanically separated and filtered. The morphology of microglia was observed the next day and its purity was identified by CD11b and Iba1 immunofluorescence labeling. According to the above results, the morphological changes of microglia after 3 d of SCI were observed at 1 d, 2 d and 4 d. The results showed that the purity of microglia was 98%. The number of microglia after 3 d of SCI was the most. After SCI, the migration ability of microglia was enhanced, the number of microglia in the injured area increased, and the number was the highest at 3 d, then gradually decreased. In addition, the microglia after SCI would gradually change from active state to resting state with the passage of time. Therefore, we can use a simple and efficient mechanical separation method to extract primary microglia, which provides the basis for the study of microglia.
Collapse
Affiliation(s)
- Chengjie Wu
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yalan Pan
- Laboratory of Chinese Medicine Nursing Intervention for Chronic Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing, China
| | - Mengmin Liu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing, China
| | - Mao Wu
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Jianwei Wang
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Guanglu Yang
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Guo
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yong Ma
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing, China.
| |
Collapse
|
22
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
23
|
Dhamodaran K, Baidouri H, Nartey A, Staverosky J, Keller K, Acott T, Vranka J, Raghunathan V. Endogenous expression of Notch pathway molecules in human trabecular meshwork cells. Exp Eye Res 2022; 216:108935. [PMID: 35033558 PMCID: PMC8885976 DOI: 10.1016/j.exer.2022.108935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Cells in the trabecular meshwork sense and respond to a myriad of physical forces through a process known as mechanotransduction. Whilst the effect of substratum stiffness or stretch on TM cells have been investigated in the context of transforming growth factor (TGF-β), Wnt and YAP/TAZ pathways, the role of Notch signaling, an evolutionarily conserved pathway, recently implicated in mechanotransduction, has not been investigated in trabecular meshwork (TM) cells. Here, we compare the endogenous expression of Notch pathway molecules in TM cells from glaucomatous and non-glaucomatous donors, segmental flow regions, and when subjected to cyclical strain, or grown on hydrogels of varying rigidity. METHODS Primary TM from glaucomatous (GTM), non-glaucomatous (NTM) donors, and from segmental flow regions [high flow (HF), low flow (LF)], were utilized between passages 2-6. Cells were (i) plated on tissue culture plastic, (ii) subjected to cyclical strain (6 h and 24 h), or (iii) cultured on 3 kPa and 80 kPa hydrogels. mRNA levels of Notch receptors/ligands/effectors in the TM cells was determined by qRT-PCR. Phagocytosis was determined as a function of substratum stiffness in NTM-HF/LF cells in the presence or absence of 100 nM Dexamethasone treatment. RESULTS Innate expression of Notch pathway genes were significantly overexpressed in GTM cells with no discernible differences observed between HF/LF cells in either NTM or GTM cells cultured on plastic substrates. With 6 h of cyclical strain, a subset of Notch pathway genes presented with altered expression. Expression of Notch receptors/ligands/receptors/inhibitors progressively declined with increasing stiffness and this correlated with phagocytic ability of NTM cells. Dexamethasone treatment decreased phagocytosis regardless of stiffness or cells isolated from segmental outflow regions. CONCLUSIONS We demonstrate here that the Notch expression in cultured TM cells differ intrinsically between GTM vs NTM, and by substratum cues (cyclical strain and stiffness). Of import, the most apparent differences in gene expression were observed as a function of substratum stiffness which closely followed phagocytic ability of cells. Interestingly, on soft substrates (mimicking normal TM stiffness) Notch expression and phagocytosis was highest, while both expression and phagocytosis was significantly lower on stiffer substrates (mimicking glaucomatous stiffness) regardless of DEX treatment. Such context dependent changes suggest Notch pathway may play differing roles in disease vs homeostasis. Studies focused on understanding the mechanistic role of Notch (if any) in outflow homeostasis are thus warranted.
Collapse
Affiliation(s)
- Kamesh Dhamodaran
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Hasna Baidouri
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Andrews Nartey
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Julia Staverosky
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Kate Keller
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Ted Acott
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA,Department of Biomedical Engineering, University of Houston, Houston, TX, USA,Correspondence should be sent to: VijayKrishna Raghunathan, Ph.D., University of Houston, College of Optometry, 4901 Calhoun Rd, Houston, TX, 77204, Phone: (713)-743-8331,
| |
Collapse
|
24
|
Huang Y, Zhu Z. Current status of sevoflurane anesthesia in association with microglia inflammation and neurodegenerative diseases. IBRAIN 2022; 10:217-224. [PMID: 38915946 PMCID: PMC11193866 DOI: 10.1002/ibra.12021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 06/26/2024]
Abstract
Sevoflurane is one of the most commonly used volatile anesthetics in clinical practice and is often used in pediatric anesthesia and intraoperative maintenance. Microglia exist in the central nervous system and are innate immune cells in the central nervous system. Under external stimulation, microglia are divided into two phenotypes: proinflammatory (M1 type) and anti-inflammatory (M2 type), maintaining the stability of the central nervous system through induction, housekeeping, and defense functions. Sevoflurane can activate microglia, increase the expression of inflammatory factors through various inflammatory signaling pathways, release inflammatory mediators to cause oxidative stress, damage nerve tissues, and eventually develop into neurodegenerative diseases. In this article, the relationship between sevoflurane anesthesia and microglia inflammation expression and the occurrence of neurodegenerative diseases is reviewed as follows.
Collapse
Affiliation(s)
- Yan‐Li Huang
- Department of AnesthesiologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGui ZhouChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiGui ZhouChina
| |
Collapse
|
25
|
Review of -omics studies on mosquito-borne viruses of the Flavivirus genus. Virus Res 2022; 307:198610. [PMID: 34718046 DOI: 10.1016/j.virusres.2021.198610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Arboviruses are transmitted by arthropods (arthropod-borne virus) which can be mosquitoes or other hematophagous arthropods, in which their life cycle occurs before transmission to other hosts. Arboviruses such as Dengue, Zika, Saint Louis Encephalitis, West Nile, Yellow Fever, Japanese Encephalitis, Rocio and Murray Valley Encephalitis viruses are some of the arboviruses transmitted biologically among vertebrate hosts by blood-taking vectors, mainly Aedes and Culex sp., and are associated with neurological, viscerotropic, and hemorrhagic reemerging diseases, posing as significant health and socioeconomic concern, as they become more and more adaptive to new environments, to arthropods vectors and human hosts. One of the main families that include mosquito-borne viruses is Flaviviridae, and here, we review the case of the Flavivirus genus, which comprises the viruses cited above, using a variety of research approaches published in literature, including genomics, transcriptomics, proteomics, metabolomics, etc., to better understand their structures as well as virus-host interactions, which are essential for development of future antiviral therapies.
Collapse
|
26
|
Retinal Glial Cells in Von Hippel-Lindau Disease: A Novel Approach in the Pathophysiology of Retinal Hemangioblastoma. Cancers (Basel) 2021; 14:cancers14010170. [PMID: 35008334 PMCID: PMC8750586 DOI: 10.3390/cancers14010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary The in vivo optical coherence tomography analysis of the biomarkers of retinal microglia and macroglia in Von Hippel–Lindau disease represents an innovative field of research. The different behavior of these glial cells in Von Hippel–Lindau patients provides new data regarding the pathophysiology of retinal hemangioblastoma, the most common ocular manifestation of this hereditary disorder. Moreover, these biomarkers show a different behavior in Von Hippel–Lindau patients in relation to the presence or absence of retinal hemangioblastoma. Therefore, we can hypothesize that retinal hemangioblastoma is mainly due to the activation of macroglia by previously activated microglial cells. Abstract Background: Von Hippel–Lindau (VHL) disease is a neoplastic syndrome caused by a mutation of the VHL tumor suppressor gene. Retinal hemangioblastoma (RH) is a vascularized tumor and represents the most common ocular manifestation of this disease. At the retinal level, VHL protein is able to regulate tumor growth, angiogenic factors, and neuroinflammation, probably stimulating retinal glial cells. The aim of the present study was to analyze in vivo the optical coherence tomography (OCT) biomarkers of retinal macroglia and microglia in a cohort of VHL patients. Methods: The mean thicknesses of macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), and peripapillary retinal nerve fiber layer (pRNFL) were measured with OCT as biomarkers of retinal macroglia. OCT images were also analyzed to detect and quantify hyperreflective retinal foci (HRF), a biomarker of retinal activated microglia. Results: 61 eyes of 61 VHL patients (22 eyes (36.07%) with peripheral RH and 39 eyes (63.93%) without RH) and 28 eyes of 28 controls were evaluated. pRNFL was thinner in VHL patients (p < 0.05) and in VHL without RH (p < 0.01) compared to controls, and thicker in VHL patients with RH than in those without RH (p < 0.05). The thickness of mRNFL (p < 0.0001) and GCL (p < 0.05) was reduced in VHL patients and in VHL without RH compared to controls, whereas mRNFL (p < 0.0001) and GCL (p < 0.05) were increased in VHL patients with RH compared to those without RH. HRF were significantly higher in number in VHL patients and in VHL without RH, than in controls, and significantly lower (p < 0.05) in the eyes of VHL patients with RH, than in those without RH. Conclusions: The OCT analysis, which detects and allows to quantify the biomarkers of retinal microglia (HRF) and macroglia (pRNFL, mRNFL and GCL), showed a different behavior of these two retinal glial cells populations in VHL patients, related to the presence or absence of peripheral RH. These data allow to hypothesize a novel pathophysiologic pathway of retinal hemangioblastoma in VHL disease.
Collapse
|
27
|
Notch1 Signaling Contributes to Mechanical Allodynia Associated with Cyclophosphamide-Induced Cystitis by Promoting Microglia Activation and Neuroinflammation. Mediators Inflamm 2021; 2021:1791222. [PMID: 34646085 PMCID: PMC8505104 DOI: 10.1155/2021/1791222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
Aims Notch1 signaling regulates microglia activation, which promotes neuroinflammation. Neuroinflammation plays an essential role in various kinds of pain sensation, including bladder-related pain in bladder pain syndrome/interstitial cystitis (BPS/IC). However, the impact of Notch1 signaling on mechanical allodynia in cyclophosphamide- (CYP-) induced cystitis is unclear. This study is aimed at determining whether and how Notch1 signaling modulates mechanical allodynia of CYP-induced cystitis. Methods CYP was peritoneally injected to establish a bladder pain syndrome/interstitial cystitis (BPS/IC) rat model. A γ-secretase inhibitor, DAPT, was intrathecally injected to modulate Notch1 signaling indirectly. Mechanical withdrawal threshold in the lower abdomen was measured with von Frey filaments using the up-down method. The expression of Notch1 signaling, Iba-1, OX-42, TNF-α, and IL-1β in the L6-S1 spinal dorsal horn (SDH) was measured with Western blotting analysis and immunofluorescence staining. Results Notch1 and Notch intracellular domain (NICD) were both upregulated in the SDH of the cystitis group. Moreover, the expression of Notch1 and NICD was negatively correlated with the mechanical withdrawal threshold of the cystitis rats. Furthermore, treatment with DAPT attenuated mechanical allodynia in CYP-induced cystitis and inhibited microglia activation, leading to decreased production of TNF-α and IL-1β. Conclusion Notch1 signaling contributes to mechanical allodynia associated with CYP-induced cystitis by promoting microglia activation and neuroinflammation. Our study showed that inhibition of Notch1 signaling might have therapeutic value for treating pain symptoms in BPS/IC.
Collapse
|
28
|
Ledo JH, Liebmann T, Zhang R, Chang JC, Azevedo EP, Wong E, Silva HM, Troyanskaya OG, Bustos V, Greengard P. Presenilin 1 phosphorylation regulates amyloid-β degradation by microglia. Mol Psychiatry 2021; 26:5620-5635. [PMID: 32792660 PMCID: PMC7881060 DOI: 10.1038/s41380-020-0856-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
Abstract
Amyloid-β peptide (Aβ) accumulation in the brain is a hallmark of Alzheimer's Disease. An important mechanism of Aβ clearance in the brain is uptake and degradation by microglia. Presenilin 1 (PS1) is the catalytic subunit of γ-secretase, an enzyme complex responsible for the maturation of multiple substrates, such as Aβ. Although PS1 has been extensively studied in neurons, the role of PS1 in microglia is incompletely understood. Here we report that microglia containing phospho-deficient mutant PS1 display a slower kinetic response to micro injury in the brain in vivo and the inability to degrade Aβ oligomers due to a phagolysosome dysfunction. An Alzheimer's mouse model containing phospho-deficient PS1 show severe Aβ accumulation in microglia as well as the postsynaptic protein PSD95. Our results demonstrate a novel mechanism by which PS1 modulates microglial function and contributes to Alzheimer's -associated phenotypes.
Collapse
Affiliation(s)
- Jose Henrique Ledo
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA.
| | - Thomas Liebmann
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| | - Ran Zhang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Jerry C Chang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| | - Estefania P Azevedo
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, 10065, USA
| | - Eitan Wong
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hernandez Moura Silva
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Olga G Troyanskaya
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
- Flatiron Institute, Simons Foundation, New York, NY, 10010, USA
| | - Victor Bustos
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
29
|
Ji A, Xu J. Neuropathic Pain: Biomolecular Intervention and Imaging via Targeting Microglia Activation. Biomolecules 2021; 11:1343. [PMID: 34572554 PMCID: PMC8466763 DOI: 10.3390/biom11091343] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
Many diseases, including cancer, can lead to neuropathic pain (NP). NP is one of the accompanying symptoms of suffering in many conditions and the life quality of NP patient is seriously affected. Due to complex causes, the effects of clinical treatments have been very unsatisfactory. Many experts have found that neuron-microglia interaction plays an essential role in NP occurrence and development. Therefore, the activation of microglia, related inflammatory mediators and molecular and cellular signaling pathways have become the focus of NP research. With the help of modern functional imaging technology, advanced pre-and clinical studies have been carried out and NP interventions have been attempted by using the different pharmaceuticals and the extracted active components of various traditional herbal medicines. In this communication, we review the mechanism of microglia on NP formation and treatment and molecular imaging technology's role in the clinical diagnosis and evaluation of NP therapies.
Collapse
Affiliation(s)
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA;
| |
Collapse
|
30
|
Jin GL, Hong LM, Liu HP, Yue RC, Shen ZC, Yang J, Xu Y, Huang HH, Li Y, Xiong BJ, Su YP, Yu CX. Koumine modulates spinal microglial M1 polarization and the inflammatory response through the Notch-RBP-Jκ signaling pathway, ameliorating diabetic neuropathic pain in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153640. [PMID: 34330066 DOI: 10.1016/j.phymed.2021.153640] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Diabetic neuropathic pain (DNP), a complication of diabetes, has serious impacts on human health. As the pathogenesis of DNP is very complex, clinical treatments for DNP is limited. Koumine (KM) is an active ingredient extracted from Gelsemium elegans Benth. that exerts an inhibitory effect on neuropathic pain (NP) in several animal models. PURPOSE To clarify the anti-NP effect of KM on rats with DNP and the molecular mechanisms involving the Notch- Jκ recombination signal binding protein (RBP-Jκ) signaling pathway. METHODS Male Sprague-Dawley rats were administered streptozocin (STZ) by intraperitoneal injection to induce DNP. The effect of KM on mechanical hyperalgesia in rats with DNP was evaluated using the Von Frey test. Microglial polarization in the spinal cord was examined using western blotting and quantitative real-time PCR. The Notch-RBP-Jκ signaling pathway was analysed using western blotting. RESULTS KM attenuated DNP during the observation period. In addition, KM alleviated M1 microglial polarization in STZ-induced rats. Subsequent experiments revealed that Notch-RBP-Jκ signaling pathway was activated in the spinal cord of rats with DNP, and the activation of this pathways was decreased by KM. Additionally, KM-mediated analgesia and deactivation of the Notch-RBP-Jκ signaling pathway were inhibited by the Notch signaling agonist jagged 1, indicating that the anti-DNP effect of KM may be regulated by the Notch-RBP-Jκ signaling pathway. CONCLUSIONS KM is a potentially desirable candidate treatment for DNP that may inhibit microglial M1 polarization through the Notch-RBP-Jκ signaling pathway.
Collapse
Affiliation(s)
- Gui-Lin Jin
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China.
| | - Li-Mian Hong
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China; Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Hai-Ping Liu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Rong-Cai Yue
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Zu-Cheng Shen
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Jian Yang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Ying Xu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Hui-Hui Huang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Yi Li
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Bo-Jun Xiong
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Yan-Ping Su
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Chang-Xi Yu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China.
| |
Collapse
|
31
|
Akkari L, Bowman RL, Tessier J, Klemm F, Handgraaf SM, de Groot M, Quail DF, Tillard L, Gadiot J, Huse JT, Brandsma D, Westerga J, Watts C, Joyce JA. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci Transl Med 2021; 12:12/552/eaaw7843. [PMID: 32669424 DOI: 10.1126/scitranslmed.aaw7843] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 01/31/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) and microglia (MG) are potent regulators of glioma development and progression. However, the dynamic alterations of distinct TAM populations during the course of therapeutic intervention, response, and recurrence have not yet been fully explored. Here, we investigated how radiotherapy changes the relative abundance and phenotypes of brain-resident MG and peripherally recruited monocyte-derived macrophages (MDMs) in glioblastoma. We identified radiation-specific, stage-dependent MG and MDM gene expression signatures in murine gliomas and confirmed altered expression of several genes and proteins in recurrent human glioblastoma. We found that targeting these TAM populations using a colony-stimulating factor-1 receptor (CSF-1R) inhibitor combined with radiotherapy substantially enhanced survival in preclinical models. Our findings reveal the dynamics and plasticity of distinct macrophage populations in the irradiated tumor microenvironment, which has translational relevance for enhancing the efficacy of standard-of-care treatment in gliomas.
Collapse
Affiliation(s)
- Leila Akkari
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland.,Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Robert L Bowman
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeremy Tessier
- Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Florian Klemm
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland.,Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
| | - Shanna M Handgraaf
- Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Marnix de Groot
- Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Daniela F Quail
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lucie Tillard
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland.,Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
| | - Jules Gadiot
- Tumor Biology and Immunology Division, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066CX, Netherlands
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dieta Brandsma
- Departments of Neuro-Oncology and Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam 1066CX, Netherlands
| | - Johan Westerga
- Departments of Neuro-Oncology and Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam 1066CX, Netherlands
| | - Colin Watts
- Birmingham Brain Cancer Program, Institute of Cancer Genome Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
| |
Collapse
|
32
|
Hydrogen sulfide alleviates the anxiety-like and depressive-like behaviors of type 1 diabetic mice via inhibiting inflammation and ferroptosis. Life Sci 2021; 278:119551. [PMID: 33945828 DOI: 10.1016/j.lfs.2021.119551] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/20/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022]
Abstract
Studies reported that sodium hydrosulfide (NaHS) can remit the depressive-like and anxiety-like behaviors induced by type 1 diabetes mellitus (T1DM). However, the mechanism is still unclear. In this study, we aimed to investigate the mechanism of NaHS on T1DM. Mice were randomly divided into four groups, including the control group (CON group), DM group, DM + 5.6 mg/kg NaHS group, and CON + 5.6 mg/kg NaHS group. Data showed that NaHS did attenuate the depressive-like and anxiety-like behaviors by OFT, EPM test, FST, and TST. Results suggest that NaHS markedly alleviated the ferroptosis in the prefrontal cortex (PFC) of diabetic mice by reducing iron deposition and oxidative stress, increasing the expression of GPX4 and SLC7A11. Moreover, NaHS could dampen the activation of microglias and the release of pro-inflammatory cytokines, enhance the protein expression of sirtuin 6 (Sirt6) and the interaction between Sirt6 and the acetylation of histoneH3 lysine9 (H3K9ac), and decrease the protein expressions of the Notch1 receptor and H3K9ac. In vitro experiment, NaHS ameliorated the ferroptosis via increasing the protein expressions of SLC7A11, glutathione peroxidase 4 (GPX4), and cystathionine β-synthase (CBS), reducing the pro-inflammatory cytokines, decreasing the levels of Fe2+, MDA, ROS, and lipid ROS. In conclusion, our results suggested that NaHS did alleviate anxiety-like and depressive-like behaviors. It can inhibit inflammation via modulating Sirt6 and was able to decrease the ferroptosis in the PFC of type 1 diabetic mice and the BV2 cells.
Collapse
|
33
|
Lin C, Huang Z, Zhou R, Zhou Y, Shentu Y, Yu K, Zhang Y. Notch3 and its CADASIL mutants differentially regulate cellular phenotypes. Exp Ther Med 2020; 21:117. [PMID: 33335580 PMCID: PMC7739825 DOI: 10.3892/etm.2020.9549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/21/2020] [Indexed: 11/05/2022] Open
Abstract
Notch3 is a member of the Notch family and its mutations are known to cause a hereditary human disorder called cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, the specific function and signaling cascade initiated by CADASIL mutants remain unknown. To gain further insight into mechanism of action of CADASIL mutants, the present study conducted several experiments on the effects of Notch3 mutants in multiple cell lines. The protein levels of Notch3, fibronectin, collagen, inducible nitric oxide synthase and DNA (cytosine-5)-methyltransferase 1 (DNMT1) were determined by western blotting. The mRNA levels of IL-1β and TNF-α were measured by reverse transcription semi-quantitative PCR and DNMT1 mRNA levels were determined by quantitative PCR. Trypan blue staining was used for proliferation analysis and wound healing assays were performed to determine cell migration capability. The present study reported that R90C and R169C Notch3 mutants, and wild-type Notch3 had different effects on several cell lines. In T/GHA-VSMC cells, following the transfection of the two mutants, collagen and fibronectin expression increased, whereas expression decreased in IMR-90 cells. In BV2 cells, the two mutants resulted in decreased nitric oxide and iNOS production. In HeLa cells, proliferation and migration increased significantly following the transfection of the two mutants, whereas in the MCF-7 and HCC1937 cell lines, cell proliferation and migration decreased. In addition, the two mutants suppressed the expression of DNMT1 in HeLa and IMR-90 cells. Overall, the present study provided novel insights that further explored the underlying mechanisms of CADASIL.
Collapse
Affiliation(s)
- Chunjing Lin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ziyang Huang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Riyong Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
34
|
Li YZ, Sun Z, Xu HR, Zhang QG, Zeng CQ. Osthole inhibits proliferation of kainic acid‑activated BV‑2 cells by modulating the Notch signaling pathway. Mol Med Rep 2020; 22:3759-3766. [PMID: 33000274 PMCID: PMC7533434 DOI: 10.3892/mmr.2020.11455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022] Open
Abstract
Epilepsy is a syndrome involving chronic recurrent transient brain dysfunction. Activation and proliferation of microglia serve important roles in epilepsy pathogenesis and may be targets for treatment. Although osthole, an active constituent isolated from Cnidium monnieri (L.) Cusson, has been demonstrated to improve epilepsy in rats, its underlying mechanism remains to be elucidated. The present study investigated the effect of osthole on proliferation of kainic acid (KA)‑activated BV‑2 cells and explored the molecular mechanism by which it inhibited their proliferation. Using Cell Counting Kit‑8, enzyme‑linked immunosorbent assay, reverse transcription‑quantitative PCR, western blot analysis and immunofluorescence staining, it was identified that following exposure of KA‑activated BV‑2 cells to 131.2 µM osthole for 24 h, cell proliferation and release of tumor necrosis factor α, interleukin 6 and nitric oxide synthase/induced nitric oxide synthase were significantly inhibited (P<0.05). Further experiments revealed that osthole significantly downregulated mRNA and protein levels of Notch signaling components in KA‑activated BV‑2 cells (P<0.05). Therefore, it was hypothesized that osthole inhibited the proliferation of microglia by modulating the Notch signaling pathway, which may be useful for the treatment of epilepsy and other neurodegenerative diseases characterized by Notch upregulation.
Collapse
Affiliation(s)
- Yu-Zhu Li
- Department of Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Zheng Sun
- Beijing International Travel Health Care Center of Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing 100088, P.R. China
| | - Hong-Rui Xu
- Department of Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Qing-Gao Zhang
- Department of Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Chang-Qian Zeng
- Department of Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| |
Collapse
|
35
|
Deng XL, Feng L, Wang ZX, Zhao YE, Zhan Q, Wu XM, Xiao B, Shu Y. The Runx1/Notch1 Signaling Pathway Participates in M1/M2 Microglia Polarization in a Mouse Model of Temporal Lobe Epilepsy and in BV-2 Cells. Neurochem Res 2020; 45:2204-2216. [PMID: 32632543 DOI: 10.1007/s11064-020-03082-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/03/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Microglial activation and phenotypic shift play vital roles in many neurological diseases. Runt-related transcription factor-1 (Runx1), which is localized on microglia, inhibits amoeboid microglial proliferation. Preliminary data have indicated that the interaction of Runx1 with the Notch1 pathway affects the hemogenic endothelial cell shift. However, little is known about the effect of Runx1 and the Notch1 signaling pathway on the phenotypic shift of microglia during neuroinflammation, especially in temporal lobe epilepsy (TLE). A mouse model of TLE induced by pilocarpine and the murine microglia cell line BV-2 were used in this study. The proportion of microglia was analyzed using flow cytometry. Western blot (WB) analysis and quantitative real-time polymerase chain reaction were used to analyze protein and gene transcript levels, respectively. Immunohistochemistry was used to show the distribution of Runx1. In the present study, we first found that in a male mouse model of TLE induced by pilocarpine, flow cytometry revealed a time-dependent M2-to-M1 microglial transition after status epilepticus. The dynamic expression patterns of Runx1 and the downstream Notch1/Jagged1/Hes5 signaling pathway molecules in the epileptic hippocampus were determined. Next, Runx1 knockdown by small interfering RNA in BV-2 cells strongly promoted an M2-to-M1 microglial phenotype shift and inhibited Notch1/Jagged1/Hes5 pathway expression. In conclusion, Runx1 may play a critical role in the M2-to-M1 microglial phenotype shift via the Notch1 signaling pathway during epileptogenesis in a TLE mouse model and in BV-2 cells.
Collapse
Affiliation(s)
- Xian-Lian Deng
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, 410008, Hunan, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, 410008, Hunan, China
| | - Zi-Xin Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Yue-E Zhao
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Qiong Zhan
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Xiao-Mei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, 410008, Hunan, China.
| | - Yi Shu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
36
|
Lin J, Hu J, Schlotterer A, Wang J, Kolibabka M, Awwad K, Dietrich N, Breitschopf K, Wohlfart P, Kannt A, Lorenz K, Feng Y, Popp R, Hoffmann S, Fleming I, Hammes HP. Protective effect of Soluble Epoxide Hydrolase Inhibition in Retinal Vasculopathy associated with Polycystic Kidney Disease. Am J Cancer Res 2020; 10:7857-7871. [PMID: 32685025 PMCID: PMC7359083 DOI: 10.7150/thno.43154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Vasoregression secondary to glial activation develops in various retinal diseases, including retinal degeneration and diabetic retinopathy. Photoreceptor degeneration and subsequent retinal vasoregression, characterized by pericyte loss and acellular capillary formation in the absence diabetes, are also seen in transgenic rats expressing the polycystic kidney disease (PKD) gene. Activated Müller glia contributes to retinal vasodegeneration, at least in part via the expression of the soluble epoxide hydrolase (sEH). Given that an increase in sEH expression triggered vascular destabilization in diabetes, and that vasoregression is similar in diabetic mice and PKD rats, the aim of the present study was to determine whether sEH inhibition could prevent retinal vasoregression in the PKD rat. Methods: One-month old male homozygous transgenic PKD rats were randomly allocated to receive vehicle or a sEH inhibitor (sEH-I; Sar5399, 30 mg/kg) for four weeks. Wild-type Sprague-Dawley (SD) littermates received vehicle as controls. Retinal sEH expression and activity were measured by Western blotting and LC-MS, and vasoregression was quantified in retinal digestion preparations. Microglial activation and immune response cytokines were assessed by immunofluorescence and quantitative PCR, respectively. 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP) mediated Notch signaling, microglial activation and migration were assessed in vivo and in vitro. Results: This study demonstrates that sEH expression and activity were increased in PKD retinae, which led to elevated production of 19,20-DHDP and the depression of Notch signaling. The latter changes elicited pericyte loss and the recruitment of CD11b+/CD74+ microglia to the perivascular region. Microglial activation increased the expression of immune-response cytokines, and reduced levels of Notch3 and delta-like ligand 4 (Dll4). Treatment with Sar5399 decreased 19,20-DHDP generation and increased Notch3 expression. Sar5399 also prevented vasoregression by reducing pericyte loss and suppressed microglial activation as well as the expression of immune-response cytokines. Mechanistically, the activation of Notch signaling by Dll4 maintained a quiescent microglial cell phenotype, i.e. reduced both the surface presentation of CD74 and microglial migration. In contrast, in retinal explants, 19,20-DHDP and Notch inhibition both promoted CD74 expression and reversed the Dll4-induced decrease in migration. Conclusions: Our data indicate that 19,20-DHDP-induced alterations in Notch-signaling result in microglia activation and pericyte loss and contribute to retinal vasoregression in polycystic kidney disease. Moreover, sEH inhibition can ameliorate vasoregression through reduced activity of inflammatory microglia. sEH inhibition is thus an attractive new therapeutic approach to prevent retinal vasoregression.
Collapse
|
37
|
Liao T, Zhang SL, Yuan X, Mo WQ, Wei F, Zhao SN, Yang W, Liu H, Rong X. Liraglutide Lowers Body Weight Set Point in DIO Rats and its Relationship with Hypothalamic Microglia Activation. Obesity (Silver Spring) 2020; 28:122-131. [PMID: 31773909 DOI: 10.1002/oby.22666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to investigate the effects of liraglutide on the body weight set point (BWSP) in diet-induced obese rats and to determine the relationship between BWSP and hypothalamic arcuate nucleus (ARC) microglial activation. METHODS Diet-induced obesity (DIO) rats were divided into three groups: continuous high-fat diet (HFD) plus saline, HFD with liraglutide, and HFD with liraglutide pair feeding. Body weight, BWSP, inflammatory cytokines, suppressor of cytokine signaling 3, orexigenic/anorexigenic proteins, apoptosis, and microglia in the ARC were assessed. The effect of liraglutide on the Notch-1 signaling pathway and its relationships with nuclear factor-κB and p38 mitogen-activated protein kinase were also investigated in a lipopolysaccharide (LPS)-induced microglia activation model. RESULTS Liraglutide reduced BWSP; reversed adverse changes in hypothalamic inflammation, suppressor of cytokine signaling 3, and apoptosis; and diminished microgliosis in DIO rats. The BWSP showed a linear correlation with ARC microglial density. Liraglutide inhibited LPS-induced M1 microglial polarization and promoted microglial polarization to the M2 phenotype, diminishing inflammatory cytokine expression. Liraglutide inhibited Notch-1 signaling pathway activation and decreased nuclear factor-κB and p38 mitogen-activated protein kinase pathway activation in LPS-stimulated microglia. CONCLUSIONS Liraglutide can reduce BWSP in DIO rats. There is a linear correlation between hypothalamic microgliosis and BWSP. Liraglutide reduces excessive microglial activation and inflammation, which may contribute to BWSP reduction.
Collapse
Affiliation(s)
- Ting Liao
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shan-Lei Zhang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Yuan
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wen-Qing Mo
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fang Wei
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sheng-Nan Zhao
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Yang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hong Liu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xi Rong
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
38
|
Qin B, Li Y, Liu X, Gong D, Zheng W. Notch activation enhances microglial CX3CR1/P38 MAPK pathway in rats model of vincristine-induced peripheral neuropathy. Neurosci Lett 2019; 715:134624. [PMID: 31726181 DOI: 10.1016/j.neulet.2019.134624] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) has a adverse impact to the living quality of cancer patients. This side effect of CIPN limit the dose of drug used in many chemotherapies, such as vincristine (VCR). The activation of microglia in the spinal dorsal horn is involved in the occurrence and development of neuropathic pain induced by VCR. Recent study has demonstrated that hypoxia induced microglia activation depends on Notch signaling, and it is involved in the release of many inflammatory related factors in microglia. In this work, we aimed to study that the role of Notch signaling pathway in microglia activation on a VCR-induced neuropathy rat model. Our results showed that the mechanical, thermal and cold pain threshold of rats was decreased by treatment of VCR, but N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor, relieved the hyperalgesia. Molecular analysis showed that activation of Notch signaling pathway increased after nerve injury and that DAPT could significantly inhibit the upregulation of Notch signaling pathway, the activation of microglia, and the release of pro-inflammatory cytokines in the spinal. Taking together, Notch signaling pathway could be a potential therapeutic target to alleviate neuropathic pain.
Collapse
Affiliation(s)
- Bingjie Qin
- Third-grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang 443002, PR China
| | - Yuxing Li
- Third-grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang 443002, PR China; The First People's Hospital Of Yidu, Pharmaceutical Preparation Section, Yichang 443300, PR China
| | - Xiaohu Liu
- Third-grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang 443002, PR China
| | - Denghui Gong
- Third-grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang 443002, PR China
| | - Weihong Zheng
- Third-grade Pharmacology Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical Science College of China Three Gorges University, Yichang 443002, PR China.
| |
Collapse
|
39
|
Jin Z, Guo P, Li X, Ke J, Wang Y, Wu H. Neuroprotective effects of irisin against cerebral ischemia/ reperfusion injury via Notch signaling pathway. Biomed Pharmacother 2019; 120:109452. [PMID: 31561067 DOI: 10.1016/j.biopha.2019.109452] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Irisin, a 112-amino acid peptide induced with exercise in mice and human is thought to have correlation with the short-term outcomes of patients in ischemic stroke. In the present study, the neuroprotective effects of irisin were evaluated in vivo and in vitro and its underlying mechanism was also explored. The global cerebral ischemia/reperfusion (I/R) model was established by bilateral common carotid artery occlusion for 20 min and reperfusion for 24 h in mice and oxygen-glucose deprivation/reperfusion in HT22 cells. Neurological function was scored and then the mice were sacrificed. The brains were harvested for HE staining and detection of brain water content (BWC). The percentage of neuronal apoptosis was evaluated by TUNEL and flow cytometry analysis. The mRNA expression of TNF-α and IL-1β was detected by RT-PCR analysis. The Notch intracellular domain (NICD) was detected by double immunofluorescence staining and western blot, and the protein expression of Notch1 and Hes 1 was detected by western blot. It was observed that irisin could alleviate morphological damage and improve neurological function after global cerebral I/R injury in mice. The apoptosis of hippocampal neurons reduced in the presence of irisin in vivo and in vitro. Additionally irisin could downregulate the expression of IL-1β and TNF-α and upregulate the expression of NICD, Notch1 and Hes 1 in vitro and in vivo. After the application of γ-secretase inhibitor DAPT, all the morphological, neurological and biochemical changes were reversed. Taken together, these results suggest that irisin could regulate the Notch signaling pathway that leads to the alleviation of transient global cerebral I/R injury.
Collapse
Affiliation(s)
- Zhao Jin
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Peipei Guo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianjuan Ke
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Huisheng Wu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
40
|
Sanna MD, Borgonetti V, Galeotti N. μ Opioid Receptor-Triggered Notch-1 Activation Contributes to Morphine Tolerance: Role of Neuron–Glia Communication. Mol Neurobiol 2019; 57:331-345. [DOI: 10.1007/s12035-019-01706-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/10/2019] [Indexed: 01/07/2023]
|
41
|
Cheng M, Yang L, Dong Z, Wang M, Sun Y, Liu H, Wang X, Sai N, Huang G, Zhang X. Folic acid deficiency enhanced microglial immune response via the Notch1/nuclear factor kappa B p65 pathway in hippocampus following rat brain I/R injury and BV2 cells. J Cell Mol Med 2019; 23:4795-4807. [PMID: 31087489 PMCID: PMC6584545 DOI: 10.1111/jcmm.14368] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/13/2019] [Accepted: 04/14/2019] [Indexed: 12/22/2022] Open
Abstract
Recent studies revealed that folic acid deficiency (FD) increased the likelihood of stroke and aggravated brain injury after focal cerebral ischaemia. The microglia-mediated inflammatory response plays a crucial role in the complicated pathologies that lead to ischaemic brain injury. However, whether FD is involved in the activation of microglia and the neuroinflammation after experimental stroke and the underlying mechanism is still unclear. The aim of the present study was to assess whether FD modulates the Notch1/nuclear factor kappa B (NF-κB) pathway and enhances microglial immune response in a rat middle cerebral artery occlusion-reperfusion (MCAO) model and oxygen-glucose deprivation (OGD)-treated BV-2 cells. Our results exhibited that FD worsened neuronal cell death and exaggerated microglia activation in the hippocampal CA1, CA3 and Dentate gyrus (DG) subregions after cerebral ischaemia/reperfusion. The hippocampal CA1 region was more sensitive to ischaemic injury and FD treatment. The protein expressions of proinflammatory cytokines such as tumour necrosis factor-α, interleukin-1β and interleukin-6 were also augmented by FD treatment in microglial cells of the post-ischaemic hippocampus and in vitro OGD-stressed microglia model. Moreover, FD not only dramatically enhanced the protein expression levels of Notch1 and NF-κB p65 but also promoted the phosphorylation of pIkBα and the nuclear translocation of NF-κB p65. Blocking of Notch1 with N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester partly attenuated the nuclear translocation of NF-κB p65 and the protein expression of neuroinflammatory cytokines in FD-treated hypoxic BV-2 microglia. These results suggested that Notch1/NF-κB p65 pathway-mediated microglial immune response may be a molecular mechanism underlying cerebral ischaemia-reperfusion injury worsened by FD treatment.
Collapse
Affiliation(s)
- Man Cheng
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Liu Yang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Zhiping Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Mengying Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Yan Sun
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Xuan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Na Sai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
42
|
Cheng Z, Yang Y, Duan F, Lou B, Zeng J, Huang Y, Luo Y, Lin X. Inhibition of Notch1 Signaling Alleviates Endotoxin-Induced Inflammation Through Modulating Retinal Microglia Polarization. Front Immunol 2019; 10:389. [PMID: 30930891 PMCID: PMC6423918 DOI: 10.3389/fimmu.2019.00389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Microglial cells are resident immune cells and play an important role in various cerebral and retinal inflammatory diseases. Notch1 signaling is involved in the microglia polarization and the control of cerebral inflammatory reactions. However, its role in endotoxin-induced uveitis (EIU) remains unknown. This study aimed to investigate the role of Notch1 signaling on retinal microglia polarization and inflammation in the cultured retinal microglial cells and EIU rat model. We found that Notch1 signaling blockade with N-[N-(3, 5-difluorophenacetyl)-1-alany1-S-phenyglycine t-butyl ester (DAPT) shifted retinal microglia phenotype from pro-inflammatory M1 phenotype (COX2+ and iNOS+) to anti-inflammatory M2 phenotype (Arg-1+) and reduced the release of pro-inflammatory cytokines both in vivo and in vitro. Moreover, DAPT treatment contributed to prevent retinal ganglion cells from apoptosis, reduce the intraocular infiltrating cells, and attenuate the impairment of retinal function. Taken together, these results suggest that inhibition of Notch1 signaling could alleviate the inflammatory response in EIU rat mainly through regulating the polarization of retinal microglia. Therefore, Notch1 signaling might be a promising therapeutic target in the treatment of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Zhixing Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Fang Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jieting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yanqiao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
43
|
Wu J, Ding DH, Li QQ, Wang XY, Sun YY, Li LJ. Lipoxin A4 Regulates Lipopolysaccharide-Induced BV2 Microglial Activation and Differentiation via the Notch Signaling Pathway. Front Cell Neurosci 2019; 13:19. [PMID: 30778288 PMCID: PMC6369213 DOI: 10.3389/fncel.2019.00019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory responses contribute to the pathogenesis of various neurological diseases, and microglia plays an important role in the process. Activated microglia can differentiate into the pro-inflammatory, tissue-damaging M1 phenotype or the anti-inflammatory, tissue-repairing M2 phenotype. Regulating microglia differentiation, hence limiting a harmful response, might help improve the prognosis of inflammation-related nervous system diseases. The present study aimed 1. to observe the anti-inflammatory effect of lipoxin A4 (LXA4) on the inflammatory response associated to lipopolysaccharide (LPS)-induced microglia activation, 2. to clarify that LXA4 modulates the activation and differentiation of microglia induced by LPS stimulation, 3. to determine whether LXA4 regulates the activation and differentiation of microglia through the Notch signaling pathway, 4. to provide a foundation for the use of LXA4 for the treatment of inflammatory related neurological diseases. To construct a model of cellular inflammation, immortalized murine BV2 microglia cells were provided 200 ng/ml LPS. To measure the mRNA and protein levels of inflammatory factors (interleukin [IL]-1β, IL-10, and tumor necrosis factor [TNF]-α) and M1 and M2 microglia markers (inducible nitric oxide synthase [iNOS], cluster of differentiation [CD]32, arginase [Arg]1, and CD206), we performed quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), immunofluorescence, or flow cytometry. To determine the mRNA and protein levels of Notch signaling components (Notch1, Hes1, and Hes5), we performed qRT-PCR and western blot. LXA4 inhibits the expression of Notch1 and Hes1 associated with M1 type microglial differentiation and decreases the M1 type microglia marker iNOS and related inflammatory factors IL-1β and TNF-α. Moreover, LXA4 upregulates the expression of the M2-associated Hes5, as well as the expression of the M2 microglia marker Arg1 and the associated inflammatory factor IL-10. These effects are blocked by the administration of the γ-secretase inhibitor DAPT, a specific blocker of the Notch signaling pathway. LXA4 inhibits the microglia activation induced by LPS and the differentiation into M1 type with pro-inflammatory effect, while promoting the differentiation to M2 type with anti-inflammatory effect. LXA4 downregulates the inflammatory mediators IL-1β, TNF-α, and iNOS, while upregulating the anti-inflammatory mediator IL-10, which acts through the Notch signaling pathway.
Collapse
Affiliation(s)
- Jun Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan-Hua Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian-Qian Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Yu Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Ying Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan-Jun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Younger D, Murugan M, Rama Rao KV, Wu LJ, Chandra N. Microglia Receptors in Animal Models of Traumatic Brain Injury. Mol Neurobiol 2018; 56:5202-5228. [DOI: 10.1007/s12035-018-1428-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
45
|
Nonneman A, Criem N, Lewandowski SA, Nuyts R, Thal DR, Pfrieger FW, Ravits J, Van Damme P, Zwijsen A, Van Den Bosch L, Robberecht W. Astrocyte-derived Jagged-1 mitigates deleterious Notch signaling in amyotrophic lateral sclerosis. Neurobiol Dis 2018; 119:26-40. [PMID: 30010003 DOI: 10.1016/j.nbd.2018.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/21/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset devastating degenerative disease mainly affecting motor neurons. Motor neuron degeneration is accompanied and aggravated by oligodendroglial pathology and the presence of reactive astrocytes and microglia. We studied the role of the Notch signaling pathway in ALS, as it is implicated in several processes that may contribute to this disease, including axonal retraction, microgliosis, astrocytosis, oligodendrocyte precursor cell proliferation and differentiation, and cell death. We observed abnormal activation of the Notch signaling pathway in the spinal cord of SOD1G93A mice, a well-established model for ALS, as well as in the spinal cord of patients with sporadic ALS (sALS). This increased activation was particularly evident in reactive GFAP-positive astrocytes. In addition, one of the main Notch ligands, Jagged-1, was ectopically expressed in reactive astrocytes in spinal cord from ALS mice and patients, but absent in resting astrocytes. Astrocyte-specific inactivation of Jagged-1 in presymptomatic SOD1G93A mice further exacerbated the activation of the Notch signaling pathway and aggravated the course of the disease in these animals without affecting disease onset. These data suggest that aberrant Notch signaling activation contributes to the pathogenesis of ALS, both in sALS patients and SOD1G93A mice, and that it is mitigated in part by the upregulation of astrocytic Jagged-1.
Collapse
Affiliation(s)
- Annelies Nonneman
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Nathan Criem
- VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Human Genetics, Herestraat 49, B-3000 Leuven, Belgium
| | - Sebastian A Lewandowski
- KTH-Royal Institute of Technology, Affinity Proteomics, SciLifeLab, 171 77 Stockholm, Sweden; Karolinska Institute, Department of Clinical Neuroscience, 171 77 Stockholm, Sweden
| | - Rik Nuyts
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Dietmar R Thal
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory for Neuropathology, Herestraat 49, B-3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, Herestraat 49, B-3000 Leuven, Belgium
| | - Frank W Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 67084 Strasbourg, France
| | - John Ravits
- University of California, Department of Neurosciences, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0624, USA
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, Herestraat 49, B-3000 Leuven, Belgium
| | - An Zwijsen
- VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Human Genetics, Herestraat 49, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Wim Robberecht
- KU Leuven - University of Leuven, Department of Neurosciences, Laboratory of Neurobiology and Experimental Neurology, and Leuven Brain Institute (LBI), Herestraat 49, B-3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Herestraat 49, B-3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
46
|
Wu F, Luo T, Mei Y, Liu H, Dong J, Fang Y, Peng J, Guo Y. Simvastatin alters M1/M2 polarization of murine BV2 microglia via Notch signaling. J Neuroimmunol 2018; 316:56-64. [DOI: 10.1016/j.jneuroim.2017.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 11/12/2017] [Accepted: 12/17/2017] [Indexed: 01/10/2023]
|
47
|
Walter J, Kemmerling N, Wunderlich P, Glebov K. γ-Secretase in microglia - implications for neurodegeneration and neuroinflammation. J Neurochem 2017; 143:445-454. [PMID: 28940294 DOI: 10.1111/jnc.14224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022]
Abstract
γ-Secretase is an intramembrane cleaving protease involved in the generation of the Alzheimer's disease (AD)-associated amyloid β peptide (Aβ). γ-Secretase is ubiquitously expressed in different organs, and also in different cell types of the human brain. Besides the involvement in the proteolytic generation of Aβ from the amyloid precursor protein, γ-secretase cleaves many additional protein substrates, suggesting pleiotropic functions under physiological and pathophysiological conditions. Microglia exert important functions during brain development and homeostasis in adulthood, and accumulating evidence indicates that microglia and neuroinflammatory processes contribute to the pathogenesis of neurodegenerative diseases. Recent studies demonstrate functional implications of γ-secretase in microglia, suggesting that alterations in γ-secretase activity could contribute to AD pathogenesis by modulation of microglia and related neuroinflammatory processes during neurodegeneration. In this review, we discuss the involvement of γ-secretase in the regulation of microglial functions, and the potential relevance of these processes under physiological and pathophysiological conditions. This article is part of the series "Beyond Amyloid".
Collapse
Affiliation(s)
- Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
48
|
Huang F, Zhao JL, Wang L, Gao CC, Liang SQ, An DJ, Bai J, Chen Y, Han H, Qin HY. miR-148a-3p Mediates Notch Signaling to Promote the Differentiation and M1 Activation of Macrophages. Front Immunol 2017; 8:1327. [PMID: 29085372 PMCID: PMC5650608 DOI: 10.3389/fimmu.2017.01327] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/29/2017] [Indexed: 12/27/2022] Open
Abstract
The Notch pathway plays critical roles in the differentiation and polarized activation of macrophages; however, the downstream molecular mechanisms underlying Notch activity in macrophages remain elusive. Our previous study has identified a group of microRNAs that mediate Notch signaling to regulate macrophage activation and tumor-associated macrophages (TAMs). In this study, we demonstrated that miR-148a-3p functions as a novel downstream molecule of Notch signaling to promote the differentiation of monocytes into macrophages in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF). Meanwhile, miR-148a-3p promoted M1 and inhibited M2 polarization of macrophages upon Notch activation. Macrophages overexpressing miR-148a-3p exhibited enhanced ability to engulf and kill bacteria, which was mediated by excessive production of reactive oxygen species (ROS). Further studies using reporter assay and Western blotting identified Pten as a direct target gene of miR-148a-3p in macrophages. Macrophages overexpressing miR-148a-3p increased their ROS production through the PTEN/AKT pathway, likely to defend against bacterial invasion. Moreover, miR-148a-3p also enhanced M1 macrophage polarization and pro-inflammatory responses through PTEN/AKT-mediated upregulation of NF-κB signaling. In summary, our data establish a novel molecular mechanism by which Notch signaling promotes monocyte differentiation and M1 macrophage activation through miR-148a-3p, and suggest that miR-148a-3p-modified monocytes or macrophages are potential new tools for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Fei Huang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China.,Department of Stomatology, PLA Navy General Hospital, Beijing, China
| | - Jun-Long Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Liang Wang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Chun-Chen Gao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Shi-Qian Liang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Dong-Jie An
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Jian Bai
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Yan Chen
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Hong-Yan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
49
|
Resveratrol reverses the adverse effects of bevacizumab on cultured ARPE-19 cells. Sci Rep 2017; 7:12242. [PMID: 28947815 PMCID: PMC5612947 DOI: 10.1038/s41598-017-12496-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) and proliferative diabetic retinopathy (PDR) are one of the major causes of blindness caused by neo-vascular changes in the retina. Intravitreal anti-VEGF injections are widely used in the treatment of wet-AMD and PDR. A significant percentage of treated patients have complications of repeated injections. Resveratrol (RES) is a polyphenol phytoalexin with anti-oxidative, anti-inflammatory and anti-proliferative properties. Hence, we hypothesized that if RES is used in combination with bevacizumab (BEV, anti-VEGF), it could reverse the adverse effects that precipitate fibrotic changes, drusen formation, tractional retinal detachment and so on. Human retinal pigment epithelial cells were treated with various combinations of BEV and RES. There was partial reduction in secreted VEGF levels compared to untreated controls. Epithelial-mesenchymal transition was lower in BEV + RES treated cultures compared to BEV treated cultures. The proliferation status was similar in BEV + RES as well as BEV treated cultures both groups. Phagocytosis was enhanced in the presence of BEV + RES compared to BEV. Furthermore, we observed that notch signaling was involved in reversing the adverse effects of BEV. This study paves way for a combinatorial strategy to treat as well as prevent adverse effects of therapy in patients with wet AMD and PDR.
Collapse
|
50
|
Zeng WX, Han YL, Zhu GF, Huang LQ, Deng YY, Wang QS, Jiang WQ, Wen MY, Han QP, Xie D, Zeng HK. Hypertonic saline attenuates expression of Notch signaling and proinflammatory mediators in activated microglia in experimentally induced cerebral ischemia and hypoxic BV-2 microglia. BMC Neurosci 2017; 18:32. [PMID: 28288585 PMCID: PMC5348816 DOI: 10.1186/s12868-017-0351-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/08/2017] [Indexed: 11/30/2022] Open
Abstract
Background Ischemic stroke is a major disease that threatens human health in ageing population. Increasing evidence has shown that neuroinflammatory mediators play crucial roles in the pathophysiology of cerebral ischemia injury. Notch signaling is recognized as the cell fate signaling but recent evidence indicates that it may be involved in the inflammatory response in activated microglia in cerebral ischemia. Previous report in our group demonstrated hypertonic saline (HS) could reduce the release of interleukin-1 beta and tumor necrosis factor-alpha in activated microglia, but the underlying molecular and cellular mechanisms have remained uncertain. This study was aimed to explore whether HS would partake in regulating production of proinflammatory mediators through Notch signaling. Results HS markedly attenuated the expression of Notch-1, NICD, RBP-JK and Hes-1 in activated microglia both in vivo and in vitro. Remarkably, HS also reduced the expression of iNOS in vivo, while the in vitro levels of inflammatory mediators Phos-NF-κB, iNOS and ROS were reduced by HS as well. Conclusion Our results suggest that HS may suppress of inflammatory mediators following ischemia/hypoxic through the Notch signaling which operates synergistically with NF-κB pathway in activated microglia. Our study has provided the morphological and biochemical evidence that HS can attenuate inflammation reaction and can be neuroprotective in cerebral ischemia, thus supporting the use of hypertonic saline by clinicians in patients with an ischemia stroke. Electronic supplementary material The online version of this article (doi:10.1186/s12868-017-0351-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Xin Zeng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Yong-Li Han
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.
| | - Gao-Feng Zhu
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Lin-Qiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Yi-Yu Deng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Qiao-Sheng Wang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Wen-Qiang Jiang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Miao-Yun Wen
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Qian-Peng Han
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Di Xie
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Hong-Ke Zeng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|