1
|
Chen B, Xie C, Shi T, Yue S, Li W, Huang G, Zhang Y, Liu W. Activation of Swell1 in microglia suppresses neuroinflammation and reduces brain damage in ischemic stroke. Neurobiol Dis 2023; 176:105936. [PMID: 36511337 DOI: 10.1016/j.nbd.2022.105936] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/17/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cl- movement and Cl--sensitive signal pathways contributes to the survival and switch of inflammatory phenotype of microglia and are believed to play a key role in the inflammatory brain injury after ischemic stroke. Here, we demonstrated an important role of Cl- transmembrane transporter Swell1, in the survival and M2-like polarization of microglia in ischemic stroke. Knockdown or overexpression of Swell1 in cultured microglia inhibited or increased hypotonic-activated Cl- currents, respectively, and these changes were completely blocked by the volume-regulated anion channels (VRACs) inhibitor DCPIB. Swell1 conditional knock-in mice promoted microglia survival in ischemic brain region and resulted in significant reductions in neural cell death, infarction volume and neurological deficits following transient middle cerebral artery occlusion (tMCAO). Using gene manipulating technique and pharmacological inhibitors, we further revealed that Swell1 opening led to SGK1 (a Cl--sensitive kinase)-mediated activation of FOXO3a/CREB as well as WNK1 (another Cl--sensitive kinase)-mediated SPAK/OSR1-CCCs activation, which promoted microglia survival and M2-like polarization, thereby attenuating neuroinflammation and ischemic brain injury. Taken together, our results demonstrated that Swell1 is an essential component of microglia VRACs and its activation protects against ischemic brain injury through promoting microglia survival and M2-like polarization.
Collapse
Affiliation(s)
- Baoyi Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Cong Xie
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China; Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen 518035, China
| | - Tengrui Shi
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Shiqin Yue
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China; School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518035, China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yuan Zhang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Wenlan Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| |
Collapse
|
2
|
The impact of the histone deacetylase inhibitor sodium butyrate on microglial polarization after oxygen and glucose deprivation. Pharmacol Rep 2022; 74:909-919. [PMID: 35796871 DOI: 10.1007/s43440-022-00384-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Microglia play a major role in the development of brain inflammation after central nervous system injury. On the other hand, microglia also participate in the repair process. The dualistic role of these cells results from the fact that various states of their activation are associated with specific phenotypes. The M1 phenotype is responsible for the production of proinflammatory mediators, whereas the M2 microglia release anti-inflammatory and trophic factors and take part in immunosuppressive and neuroprotective processes. The histone deacetylase inhibitor sodium butyrate (SB) shows anti-inflammatory and neuroprotective effects in some animal models of brain injury. The aim of this study was to examine the effects of sodium butyrate on the proliferation and M1/M2 polarization of primary microglial cells after oxygen and glucose deprivation (OGD) in vitro. METHODS Primary microglial cultures were prepared from 1-day-old rats, subjected to the OGD procedure and treated with SB (0.1 mM, 1 mM and 10 mM). The effect of OGD and SB on microglial proliferation was assessed by double immunofluorescence, and microglial phenotypes were evaluated by qPCR. RESULTS The OGD procedure stimulated the proliferation of microglia after 24 h of culturing, and SB treatment reduced the division of these cells. This effect was inversely proportional to the SB concentration. The OGD procedure increased proinflammatory CD86 and IL1β gene expression and reduced the expression of the anti-inflammatory M2 markers arginase and CD200 in microglia. CONCLUSIONS SB can change the polarization of microglia after OGD from an unfavourable M1 to a beneficial M2 phenotype. Our results show that SB is a potential immunosuppressive agent that can modulate microglial activation stimulated by ischaemic-like conditions.
Collapse
|
3
|
Cui Y, Zhang NN, Wang D, Meng WH, Chen HS. Modified Citrus Pectin Alleviates Cerebral Ischemia/Reperfusion Injury by Inhibiting NLRP3 Inflammasome Activation via TLR4/NF-ĸB Signaling Pathway in Microglia. J Inflamm Res 2022; 15:3369-3385. [PMID: 35706530 PMCID: PMC9191615 DOI: 10.2147/jir.s366927] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/28/2022] [Indexed: 12/19/2022] Open
Abstract
Background Galectin-3 acts as a mediator of microglial inflammatory response following stroke injury. However, it remains unclear whether inhibiting galectin-3 protects against cerebral ischemia/reperfusion injury. We aimed to investigate the neuroprotective effects of modified citrus pectin (MCP, a galectin-3 blocker) in ischemic stroke and underlying mechanisms. Methods The middle cerebral artery occlusion/reperfusion (MCAO/R) model in C57BL/6J mice and oxygen-glucose deprivation/reoxygenation (ODG/R) model in neuronal (HT-22) and microglial (BV-2) cells were utilized in the following experiments: 1) the neuroprotective effects of MCP with different concentrations were evaluated in vivo and in vitro through measuring neurological deficit scores, brain water content, infarction volume, cell viability, and cell apoptosis; 2) the mechanisms of its neuroprotection were explored in mice and microglial cells through detecting the expression of NLRP3 (NOD-like receptor 3) inflammasome-related proteins by immunofluorescence staining and Western blotting analyses. Results Among the tested concentrations, 800 mg/kg/d MCP in mice and 4 g/L MCP in cells, respectively, showed in vivo and in vitro neuroprotective effects on all the tests, compared with vehicle group. First, MCP significantly reduced neurological deficit scores, brain water content and infarction volume, and alleviated cell injury in the cerebral cortex of MCAO/R model. Second, MCP increased cell viability and reduced cell apoptosis in the neuronal OGD/R model. Third, MCP blocked galectin-3 and decreased the expression of TLR4 (Toll-like receptor 4)/NF-κBp65 (nuclear factor kappa-B)/NLRP3/cleaved-caspase-1/IL-1β (interleukin-1β) in microglial cells. Conclusion This is the first report that MCP exerts neuroprotective effects in ischemic stroke through blocking galectin-3, which may be mediated by inhibiting the activation of NLRP3 inflammasome via TLR4/NF-κB signaling pathway in microglia.
Collapse
Affiliation(s)
- Yu Cui
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China.,Department of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Nan-Nan Zhang
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Dan Wang
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Wei-Hong Meng
- Department of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| |
Collapse
|
4
|
Differential effects of the cell cycle inhibitor, olomoucine, on functional recovery and on responses of peri-infarct microglia and astrocytes following photothrombotic stroke in rats. J Neuroinflammation 2021; 18:168. [PMID: 34332596 PMCID: PMC8325288 DOI: 10.1186/s12974-021-02208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Background Following stroke, changes in neuronal connectivity in tissue surrounding the infarct play an important role in both spontaneous recovery of neurological function and in treatment-induced improvements in function. Microglia and astrocytes influence this process through direct interactions with the neurons and as major determinants of the local tissue environment. Subpopulations of peri-infarct glia proliferate early after stroke providing a possible target to modify recovery. Treatment with cell cycle inhibitors can reduce infarct volume and improve functional recovery. However, it is not known whether these inhibitors can influence neurological function or alter the responses of peri-infarct glia without reducing infarction. The present study aimed to address these issues by testing the effects of the cell cycle inhibitor, olomoucine, on recovery and peri-infarct changes following photothrombotic stroke. Methods Stroke was induced by photothrombosis in the forelimb sensorimotor cortex in Sprague-Dawley rats. Olomoucine was administered at 1 h and 24 h after stroke induction. Forelimb function was monitored up to 29 days. The effects of olomoucine on glial cell responses in peri-infarct tissue were evaluated using immunohistochemistry and Western blotting. Results Olomoucine treatment did not significantly affect maximal infarct volume. Recovery of the affected forelimb on a placing test was impaired in olomoucine-treated rats, whereas recovery in a skilled reaching test was substantially improved. Olomoucine treatment produced small changes in aspects of Iba1 immunolabelling and in the number of CD68-positive cells in cerebral cortex but did not selectively modify responses in peri-infarct tissue. The content of the astrocytic protein, vimentin, was reduced by 30% in the region of the lesion in olomoucine-treated rats. Conclusions Olomoucine treatment modified functional recovery in the absence of significant changes in infarct volume. The effects on recovery were markedly test dependent, adding to evidence that skilled tasks requiring specific training and general measures of motor function can be differentially modified by some interventions. The altered recovery was not associated with specific changes in key responses of peri-infarct microglia, even though these cells were considered a likely target for early olomoucine treatment. Changes detected in peri-infarct reactive astrogliosis could contribute to the altered patterns of functional recovery. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02208-w.
Collapse
|
5
|
Cellular and Molecular Mechanisms of R/S-Roscovitine and CDKs Related Inhibition under Both Focal and Global Cerebral Ischemia: A Focus on Neurovascular Unit and Immune Cells. Cells 2021; 10:cells10010104. [PMID: 33429982 PMCID: PMC7827530 DOI: 10.3390/cells10010104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is the second leading cause of death worldwide. Following ischemic stroke, Neurovascular Unit (NVU) inflammation and peripheral leucocytes infiltration are major contributors to the extension of brain lesions. For a long time restricted to neurons, the 10 past years have shown the emergence of an increasing number of studies focusing on the role of Cyclin-Dependent Kinases (CDKs) on the other cells of NVU, as well as on the leucocytes. The most widely used CDKs inhibitor, (R)-roscovitine, and its (S) isomer both decreased brain lesions in models of global and focal cerebral ischemia. We previously showed that (S)-roscovitine acted, at least, by modulating NVU response to ischemia. Interestingly, roscovitine was shown to decrease leucocytes-mediated inflammation in several inflammatory models. Specific inhibition of roscovitine majors target CDK 1, 2, 5, 7, and 9 showed that these CDKs played key roles in inflammatory processes of NVU cells and leucocytes after brain lesions, including ischemic stroke. The data summarized here support the investigation of roscovitine as a potential therapeutic agent for the treatment of ischemic stroke, and provide an overview of CDK 1, 2, 5, 7, and 9 functions in brain cells and leucocytes during cerebral ischemia.
Collapse
|
6
|
Le Roy L, Amara A, Le Roux C, Bocher O, Létondor A, Benz N, Timsit S. Principal component analysis, a useful tool to study cyclin-dependent kinase-inhibitor's effect on cerebral ischaemia. Brain Commun 2020; 2:fcaa136. [PMID: 33094284 PMCID: PMC7566348 DOI: 10.1093/braincomms/fcaa136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Stroke is a leading cause of acute death related in part to brain oedema, blood-brain barrier disruption and glial inflammation. A cyclin-dependant kinase inhibitor, (S)-roscovitine, was administered 90 min after onset on a model of rat focal cerebral ischaemia. Brain swelling and Evans Blue tissue extravasation were quantified after Evans Blue injection. Combined tissue Evans Blue fluorescence and immunofluorescence of endothelial cells (RECA1), microglia (isolectin-IB4) and astrocytes (glial fibrillary acidic protein) were analysed. Using a Student's t-test or Mann-Whitney test, (S)-roscovitine improved recovery by more than 50% compared to vehicle (Mann-Whitney, P < 0.001), decreased significantly brain swelling by 50% (t-test, P = 0.0128) mostly in the rostral part of the brain. Main analysis was therefore performed on rostral cut for immunofluorescence to maximize biological observations (cut B). Evans Blue fluorescence decreased in (S)-roscovitine group compared to vehicle (60%, t-test, P = 0.049) and was further supported by spectrophotometer analysis (Mann-Whitney, P = 0.0002) and Evans Blue macroscopic photonic analysis (t-test, P = 0.07). An increase of RECA-1 intensity was observed in the ischaemic hemisphere compared to non-ischaemic hemisphere. Further study showed, in the ischaemic hemisphere that (S)-roscovitine treated group compared to vehicle, showed a decrease of: (i) endothelial RECA-1 intensity of about 20% globally, mainly located in the cortex (-28.5%, t-test, P = 0.03); (ii) Microglia's number by 55% (t-test, P = 0.006) and modulated reactive astrocytes through a trend toward less astrocytes number (15%, t-test, P = 0.05) and astrogliosis (21%, t-test, P = 0.076). To decipher the complex relationship of these components, we analysed the six biological quantitative variables of our study by principal component analysis from immunofluorescence studies of the same animals. Principal component analysis differentiated treated from non-treated animals on dimension 1 with negative values in the treated animals, and positive values in the non-treated animals. Interestingly, stroke recovery presented a negative correlation with this dimension, while all other biological variables showed a positive correlation. Dimensions 1 and 2 allowed the identification of two groups of co-varying variables: endothelial cells, microglia number and Evans Blue with positive values on both dimensions, and astrocyte number, astrogliosis and brain swelling with negative values on dimension 2. This partition suggests different mechanisms. Correlation matrix analysis was concordant with principal component analysis results. Because of its pleiotropic complex action on different elements of the NeuroVascular Unit response, (S)-roscovitine may represent an effective treatment against oedema in stroke.
Collapse
Affiliation(s)
- Lucas Le Roy
- Univ Brest, Inserm, EFS, UMR 1078, Genetics, functional genomics and biotechnology (GGB), F-29200, Brest, France
| | - Ahmed Amara
- Univ Brest, Inserm, EFS, UMR 1078, Genetics, functional genomics and biotechnology (GGB), F-29200, Brest, France
| | - Cloé Le Roux
- Univ Brest, Inserm, EFS, UMR 1078, Genetics, functional genomics and biotechnology (GGB), F-29200, Brest, France
| | - Ozvan Bocher
- Univ Brest, Inserm, EFS, UMR 1078, Genetics, functional genomics and biotechnology (GGB), F-29200, Brest, France
| | - Anne Létondor
- Univ Brest, Inserm, EFS, UMR 1078, Genetics, functional genomics and biotechnology (GGB), F-29200, Brest, France
| | - Nathalie Benz
- Univ Brest, Inserm, EFS, UMR 1078, Genetics, functional genomics and biotechnology (GGB), F-29200, Brest, France
| | - Serge Timsit
- Univ Brest, Inserm, EFS, UMR 1078, Genetics, functional genomics and biotechnology (GGB), F-29200, Brest, France
- Neurology and Stroke Unit Department, CHRU de Brest, Université de Bretagne Occidentale, Inserm 1078, France
| |
Collapse
|
7
|
Down-regulation of cyclin-dependent kinase 5 attenuates p53-dependent apoptosis of hippocampal CA1 pyramidal neurons following transient cerebral ischemia. Sci Rep 2019; 9:13032. [PMID: 31506563 PMCID: PMC6737192 DOI: 10.1038/s41598-019-49623-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/10/2019] [Indexed: 01/09/2023] Open
Abstract
Abnormal activation of cyclin-dependent kinase 5 (Cdk5) is associated with pathophysiological conditions. Ischemic preconditioning (IPC) can provide neuroprotective effects against subsequent lethal ischemic insult. The objective of this study was to determine how Cdk5 and related molecules could affect neuroprotection in the hippocampus of gerbils after with IPC [a 2-min transient cerebral ischemia (TCI)] followed by 5-min subsequent TCI. Hippocampal CA1 pyramidal neurons were dead at 5 days post-TCI. However, treatment with roscovitine (a potent inhibitor of Cdk5) and IPC protected CA1 pyramidal neurons from TCI. Expression levels of Cdk5, p25, phospho (p)-Rb and p-p53 were increased in nuclei of CA1 pyramidal neurons at 1 and 2 days after TCI. However, these expressions were attenuated by roscovitine treatment and IPC. In particular, Cdk5, p-Rb and p-p53 immunoreactivities in their nuclei were decreased. Furthermore, TUNEL-positive CA1 pyramidal neurons were found at 5 days after TCI with increased expression levels of Bax, PUMA, and activated caspase-3. These TUNEL-positive cells and increased molecules were decreased by roscovitine treatment and IPC. Thus, roscovitine treatment and IPC could protect CA1 pyramidal neurons from TCI through down-regulating Cdk5, p25, and p-p53 in their nuclei. These findings indicate that down-regulating Cdk5 might be a key strategy to attenuate p53-dependent apoptosis of CA1 pyramidal neurons following TCI.
Collapse
|
8
|
Kim JE, Park H, Choi SH, Kong MJ, Kang TC. Roscovitine Attenuates Microglia Activation and Monocyte Infiltration via p38 MAPK Inhibition in the Rat Frontoparietal Cortex Following Status Epilepticus. Cells 2019; 8:E746. [PMID: 31331032 PMCID: PMC6678318 DOI: 10.3390/cells8070746] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 11/23/2022] Open
Abstract
Under physiological conditions, microglia are unique immune cells resident in the brain that is isolated from the systemic immune system by brain-blood barrier. Following status epilepticus (SE, a prolonged seizure activity), microglia are rapidly activated and blood-derived monocytes that infiltrate the brain; therefore, the regulations of microglia activation and monocyte infiltration are one of the primary therapeutic strategies for inhibition of undesirable consequences from SE. Roscovitine, a potent (but not selective) cyclin-dependent kinase 5 (CDK5) inhibitor, has been found to exert anti-inflammatory and microglia-inhibiting actions in several in vivo models, although the underlying mechanisms have not been clarified. In the present study, roscovitine attenuated SE-induces monocyte infiltration without vasogenic edema formation in the frontoparietal cortex (FPC), accompanied by reducing expressions of monocyte chemotactic protein-1 (MCP-1) and lysosome-associated membrane protein 1 (LAMP1) in resident microglia, while it did not affect microglia transformation to amoeboid form. Furthermore, roscovitine ameliorated the up-regulation of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation, but not nuclear factor-κB-S276 phosphorylation. Similar to roscovitine, SB202190, a p38 MAPK inhibitor, mitigated monocyte infiltration and microglial expressions of MCP-1 and LAMP1 in the FPC following SE. Therefore, these findings suggest for the first time that roscovitine may inhibit SE-induced neuroinflammation via regulating p38 MAPK-mediated microglial responses.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Seo-Hyeon Choi
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Min-Jeong Kong
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea.
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea.
| |
Collapse
|
9
|
Zeb A, Kim D, Alam SI, Son M, Kumar R, Rampogu S, Parameswaran S, Shelake RM, Rana RM, Parate S, Kim JY, Lee KW. Computational Simulations Identify Pyrrolidine-2,3-Dione Derivatives as Novel Inhibitors of Cdk5/p25 Complex to Attenuate Alzheimer's Pathology. J Clin Med 2019; 8:E746. [PMID: 31137734 PMCID: PMC6572193 DOI: 10.3390/jcm8050746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
: Mechanistically, neurotoxic insults provoke Ca2+-mediated calpain activation, which cleaves the cytoplasmic region of membrane-embedded p35 and produces its truncated form p25. Upon physical interaction, cyclin-dependent kinase 5 (Cdk5) and p25 forms hyperactivated Cdk5/p25 complex and causes severe neuropathological aberrations including hyperphosphorylated tau-mediated neurofibrillary tangles formation, Alzheimer's symptoms, and neuronal death. Therefore, the inhibition of Cdk5/p25 complex may relieve p-tau-mediated Alzheimer's pathology. Herein, computational simulations have identified pyrrolidine-2,3-dione derivatives as novel inhibitors of Cdk5/p25 complex. A ligand-based pharmacophore was designed and employed as 3D query to retrieve drug-like molecules from chemical databases. By molecular docking, drug-like molecules obtaining dock score > 67.67 (Goldcore of the reference compound) were identified. Molecular dynamics simulation and binding free energy calculation retrieved four pyrrolidine-2,3-dione derivatives as novel candidate inhibitors of Cdk5/p25. The root means square deviation of Cdk5/p25 in complex with candidate inhibitors obtained an average value of ~2.15 Å during the 30 ns simulation period. Molecular interactions analysis suggested that each inhibitor occupied the ATP-binding site of Cdk5/p25 and formed stable interactions. Finally, the binding free energy estimation suggested that each inhibitor had lowest binding energy than the reference compound (-113.10 kJ/mol) to recapitulate their strong binding with Cdk5/p25. Overall, these inhibitors could mitigate tau-mediated Alzheimer's phenotype.
Collapse
Affiliation(s)
- Amir Zeb
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Donghwan Kim
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Sayed Ibrar Alam
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Sciences, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Minky Son
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Raj Kumar
- Institute of Chemical Processes (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Shailima Rampogu
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Saravanan Parameswaran
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Rahul Mahadev Shelake
- Division of Applied Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
| | - Rabia Mukhtar Rana
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Shraddha Parate
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Jae-Yean Kim
- Division of Applied Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| |
Collapse
|
10
|
Zeb A, Son M, Yoon S, Kim JH, Park SJ, Lee KW. Computational Simulations Identified Two Candidate Inhibitors of Cdk5/p25 to Abrogate Tau-associated Neurological Disorders. Comput Struct Biotechnol J 2019; 17:579-590. [PMID: 31073393 PMCID: PMC6495220 DOI: 10.1016/j.csbj.2019.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 01/26/2023] Open
Abstract
Deregulation of Cdk5 is a hallmark in neurodegenerative diseases and its complex with p25 forms Cdk5/p25, thereby causes severe neuropathological insults. Cdk5/p25 abnormally phosphorylates tau protein, and induces tau-associated neurofibrillary tangles in neurological disorders. Therefore, the pharmacological inhibition of Cdk5/p25 alleviates tau-associated neurological disorders. Herein, computational simulations probed two candidate inhibitors of Cdk5/p25. Structure-based pharmacophore investigated the essential complementary chemical features of ATP-binding site of Cdk5 in complex with roscovitine. Resultant pharmacophore harbored polar interactions with Cys83 and Asp86 residues and non-polar interactions with Ile10, Phe80, and Lys133 residues of Cdk5. The chemical space of selected pharmacophore was comprised of two hydrogen bond donors, one hydrogen bond acceptor, and three hydrophobic features. Decoy test validation of pharmacophore obtained highest Guner-Henry score (0.88) and enrichment factor score (7.23). The screening of natural product drug-like databases by validated pharmacophore retrieved 1126 compounds as candidate inhibitors of Cdk5/p25. The docking of candidate inhibitors filtered 10 molecules with docking score >80.00 and established polar and non-polar interactions with the ATP-binding site residues of Cdk5/p25. Finally, molecular dynamics simulation and binding free energy analyses identified two candidate inhibitors of Cdk5/p25. During 30 ns simulation, the candidate inhibitors established <3.0 Å root mean square deviation and stable hydrogen bond interactions with the ATP-binding site residues of Cdk5/p25. The final candidate inhibitors obtained lowest binding free energies of -122.18 kJ/mol and - 117.26 kJ/mol with Cdk5/p25. Overall, we recommend two natural product candidate inhibitors to target the pharmacological inhibition of Cdk5/p25 in tau-associated neurological disorders.
Collapse
Key Words
- 2D, Two-dimentional
- 3D, Three-dimentional
- AD, Alzheimer's disease
- ADMET, Absorption, distribution, metabolism, excretion, and toxicity
- ASP, Astex statistical potential
- Aβ, Amyloid beta
- BBB, Blood-brain barrier
- CGMC, Cyclin-dependent kinases, mitogen-activated protein kinases, glycogen synthase kinases, and Cdk-like kinases
- Cdk5, Cyclin-dependent kinase 5
- Cdk5/p25 inhibitors
- Cdks, Cyclin-dependent kinases
- DS, Discovery Studio
- EF, Enrichment factor
- GA, Genetic algorithm
- GFA, Genetic Function Approximation
- GH, Guner-Henry
- GOLD, Genetic optimization of ligand docking
- GROMACS, Groningen Machine for Chemical Simulation
- H-bond, Hydrogen bond
- HBA, Hydrogen bond acceptor
- HBD, Hydrogen bond donor
- HD, Hungtington's disease
- HYP, Hydrophobic
- IBS, InterBioScreen
- K, kelvin
- MD, Molecular dynamics
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Molecular docking
- Molecular dynamics simulation
- NPT, Number particle, pressure, and temperature
- NVT, Number of particles, volume, and temperature
- P5, A 24-residues mimetic peptide of p35
- PD, Parkinson's disease
- PDB, Protein databank
- PLP, Piecewise linear potential
- PME, Particle mesh ewald
- RMSD, Root mean square deviation
- ROF, Rule of five
- Structure-based pharmacophore modeling
- TAT, Twin-arginine targeting
- TIP3P, Transferable intermolecular potential with 3 points
- Tau-pathogenesis
- ZNPD, Zinc Natural Product Database
Collapse
Affiliation(s)
- Amir Zeb
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Minky Son
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Sanghwa Yoon
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Plus), Research Institute of Natural Science (RINS), Geyongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Seok Ju Park
- Department of Internal Medicine, College of Medicine, Busan Paik Hospital, Inje University, Busan 47392, Republic of Korea
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| |
Collapse
|
11
|
Rousselet E, Létondor A, Menn B, Courbebaisse Y, Quillé ML, Timsit S. Sustained (S)-roscovitine delivery promotes neuroprotection associated with functional recovery and decrease in brain edema in a randomized blind focal cerebral ischemia study. J Cereb Blood Flow Metab 2018; 38:1070-1084. [PMID: 28569655 PMCID: PMC5998998 DOI: 10.1177/0271678x17712163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/13/2017] [Accepted: 04/25/2017] [Indexed: 01/07/2023]
Abstract
Stroke is a devastating disorder that significantly contributes to death, disability and healthcare costs. In ischemic stroke, the only current acute therapy is recanalization, but the narrow therapeutic window less than 6 h limits its application. The current challenge is to prevent late cell death, with concomitant therapy targeting the ischemic cascade to widen the therapeutic window. Among potential neuroprotective drugs, cyclin-dependent kinase inhibitors such as (S)-roscovitine are of particular relevance. We previously showed that (S)-roscovitine crossed the blood-brain barrier and was neuroprotective in a dose-dependent manner in two models of middle cerebral artery occlusion (MCAo). According to the Stroke Therapy Academic Industry Roundtable guidelines, the pharmacokinetics of (S)-roscovitine and the optimal mode of delivery and therapeutic dose in rats were investigated. Combination of intravenous (IV) and continuous sub-cutaneous (SC) infusion led to early and sustained delivery of (S)-roscovitine. Furthermore, in a randomized blind study on a transient MCAo rat model, we showed that this mode of delivery reduced both infarct and edema volume and was beneficial to neurological outcome. Within the framework of preclinical studies for stroke therapy development, we here provide data to improve translation of pre-clinical studies into successful clinical human trials.
Collapse
Affiliation(s)
- Estelle Rousselet
- Institut National de la Santé et de la
Recherche Médicale (INSERM), U1078 Brest, France
- Faculté de médecine et des Sciences de
la Santé, Université de Bretagne Occidentale (UBO), Brest, France
- Neurokin S.A., Institut de Neurobiologie
de la Méditerranée, Parc Scientifique de Luminy, Marseille, France
| | - Anne Létondor
- Institut National de la Santé et de la
Recherche Médicale (INSERM), U1078 Brest, France
- Faculté de médecine et des Sciences de
la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - Bénédicte Menn
- Neurokin S.A., Institut de Neurobiologie
de la Méditerranée, Parc Scientifique de Luminy, Marseille, France
| | | | - Marie-Lise Quillé
- Institut National de la Santé et de la
Recherche Médicale (INSERM), U1078 Brest, France
- Faculté de médecine et des Sciences de
la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - Serge Timsit
- Institut National de la Santé et de la
Recherche Médicale (INSERM), U1078 Brest, France
- Faculté de médecine et des Sciences de
la Santé, Université de Bretagne Occidentale (UBO), Brest, France
- CHRU Brest, Department of Neurology and
Stroke Unit, Hôpital de la Cavale Blanche, Brest, France
| |
Collapse
|
12
|
Rayasam A, Hsu M, Kijak JA, Kissel L, Hernandez G, Sandor M, Fabry Z. Immune responses in stroke: how the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures? Immunology 2018; 154:363-376. [PMID: 29494762 DOI: 10.1111/imm.12918] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/15/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. The long-standing dogma that stroke is exclusively a vascular disease has been questioned by extensive clinical findings of immune factors that are associated mostly with inflammation after stroke. These have been confirmed in preclinical studies using experimental animal models. It is now accepted that inflammation and immune mediators are critical in acute and long-term neuronal tissue damage and healing following thrombotic and ischaemic stroke. Despite mounting information delineating the role of the immune system in stroke, the mechanisms of how inflammatory cells and their mediators are involved in stroke-induced neuroinflammation are still not fully understood. Currently, there is no available treatment for targeting the acute immune response that develops in the brain during cerebral ischaemia. No new treatment has been introduced to stroke therapy since the discovery of tissue plasminogen activator therapy in 1996. Here, we review current knowledge of the immunity of stroke and identify critical gaps that hinder current therapies. We will discuss advances in the understanding of the complex innate and adaptive immune responses in stroke; mechanisms of immune cell-mediated and factor-mediated vascular and tissue injury; immunity-induced tissue repair; and the importance of modulating immunity in stroke.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin Hsu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie A Kijak
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lee Kissel
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gianna Hernandez
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Zhang Q, Xiong Y, Zhu B, Zhu B, Tian D, Wang W. Low-dose fractionated irradiation promotes axonal regeneration beyond reactive gliosis and facilitates locomotor function recovery after spinal cord injury in beagle dogs. Eur J Neurosci 2017; 46:2507-2518. [PMID: 28921700 DOI: 10.1111/ejn.13714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 01/06/2023]
Abstract
Injury to the adult central nervous system (CNS) results in the formation of glial scar tissues. Glial scar-induced failure of regenerative axon pathfinding may limit axon regrowth beyond the lesion site and cause incorrect reinnervation and dystrophic appearance of stalled growth after CNS trauma. Glial scars also upregulate chondroitin sulphate proteoglycans (CSPGs) and expression of proinflammatory factor(s) that form a barrier to axonal regeneration. Therefore, interventions for glial scarring are an attractive strategy for augmenting axonal sprouting and regeneration and overcoming the physical and molecular barriers impeding functional repair. The glial reaction occurs shortly after spinal cord injury (SCI) and can persist for days or weeks with upregulation of cell cycle proteins. In this study, we utilised Beagle dogs to establish a preclinical SCI model and examine the efficacy of low-dose fractionated irradiation (LDI) treatment, which was performed once a day for 14 days (2 Gy per dose, 28 Gy in total). Low-dose fractionated irradiation is a stable method for suppressing cell activation and proliferation through interference in the cell cycle. Our results demonstrated that LDI could reduce astrocyte and microglia activation/proliferation and attenuate CSPGs and IL-1β expression. Low-dose fractionated irradiation also promoted and provided a pathway for long-distance axon regeneration beyond the lesion site, induced reinnervation of axonal targets and restored locomotor function after SCI in Beagle dogs. Taken together, our findings suggest that LDI would be a promising therapeutic strategy for targeting glial scarring, promoting axon regeneration and facilitating reconstruction of functional circuits after SCI.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Xiong
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bifeng Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Daishi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
14
|
Reactive astrogliosis in stroke: Contributions of astrocytes to recovery of neurological function. Neurochem Int 2017; 107:88-103. [PMID: 28057555 DOI: 10.1016/j.neuint.2016.12.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/26/2016] [Accepted: 12/30/2016] [Indexed: 12/31/2022]
Abstract
Alterations in neuronal connectivity, particularly in the "peri-infarct" tissue adjacent to the region of ischemic damage, are important contributors to the spontaneous recovery of function that commonly follows stroke. Peri-infarct astrocytes undergo reactive astrogliosis and play key roles in modulating the adaptive responses in neurons. This reactive astrogliosis shares many features with that induced by other forms of damage to the central nervous system but also differs in details that potentially influence neurological recovery. A subpopulation of astrocytes within a few hundred micrometers of the infarct proliferate and are centrally involved in the development of the glial scar that separates the damaged tissue in the infarct from surrounding normal brain. The intertwined processes of astrocytes adjacent to the infarct provide the core structural component of the mature scar. Interventions that cause early disruption of glial scar formation typically impede restoration of neurological function. Marked reactive astrogliosis also develops in cells more distant from the infarct but these cells largely remain in the spatial territories they occupied prior to stroke. These cells play important roles in controlling the extracellular environment and release proteins and other molecules that are able to promote neuronal plasticity and improve functional recovery. Treatments manipulating aspects of reactive astrogliosis can enhance neuronal plasticity following stroke. Optimising these treatments for use in human stroke would benefit from a more complete characterization of the specific responses of peri-infarct astrocytes to stroke as well as a better understanding of the influence of other factors including age, sex, comorbidities and reperfusion of the ischemic tissue.
Collapse
|
15
|
Zhou JM, Gu SS, Mei WH, Zhou J, Wang ZZ, Xiao W. Ginkgolides and bilobalide protect BV2 microglia cells against OGD/reoxygenation injury by inhibiting TLR2/4 signaling pathways. Cell Stress Chaperones 2016; 21:1037-1053. [PMID: 27562518 PMCID: PMC5083673 DOI: 10.1007/s12192-016-0728-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/06/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
Ginkgolide and bilobalide are major trilactone constituent of Ginkgo biloba leaves and have been shown to exert powerful neuroprotective properties. The aims of this study were to observe the inhibitory effects of ginkgolide and bilobalide on the activation of microglial cells induced by oxygen-glucose deprivation and reoxygenation (OGD/R) and the specific mechanisms by which these effects are mediated. For detecting whether ginkgolide and bilobalide increased cell viability in a dose-dependent manner, BV2 cells were subjected to oxygen-glucose deprivation for 4 h followed by 3 h reoxygenation with various concentrations of drugs (6.25, 12.5, 25, 50, and 100 μg/ml). The extent of apoptosis effect of OGD/R with or without ginkgolide and bilobalide treatment were also measured by Annexin V-FITC/PI staining. Similarly, the levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-8, and IL-10 were detected using a specific Bio-Plex Pro™ Reagent Kit. The effects of ginkgolide and bilobalide on protein levels of TLR2/4, MyD88, p-TAK1, p-IKKβ, p-IkBα, NF-κB p65, Bcl-2, Bax, Bak, RIP3, cleaved-Caspase-3, cleaved PARP-1 and cellular localization of NF-κB p65 were evaluated by Western blot and double-labeled immunofluorescence staining, respectively. OGD/R significantly decreased the cell viability and increased the release of IL-1β, IL-6, IL-8, IL-10, TNF-α in BV2 microglia cells; these effects were suppressed by ginkgolide and bilobalide. Meanwhile, ginkgolide and bilobalide also attenuated the OGD/R-induced increases in TLR2, TLR4, MyD88, Bak, RIP3 levels and reversed cleaved caspase-3/caspase-3, Bax/Bcl-2 and cleaved PARP-1/PARP-1 ratio. Furthermore, ginkgolide and bilobalide also downregulated p-TAK1, p-IkBα, and p-IKKβ and inhibited the OGD/R-induced transfer of NF-κB p65 from cytoplasm to nucleus in BV2 microglia cells. The results showed that ginkgolide and bilobalide can inhibit OGD/R-induced production of inflammatory factors in BV2 microglia cells by regulating the TLRs/MyD88/NF-κB signaling pathways and attenuating inflammatory response. The possible mechanism of anti-inflammatory and neuroprotective effects of ginkgolides results from the synergistic reaction among each monomer constituents.
Collapse
Affiliation(s)
- Jian-Ming Zhou
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern TCM Research Institute, Lianyungang, 222001, China.
| | - Sha-Sha Gu
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern TCM Research Institute, Lianyungang, 222001, China
| | - Wang Hong Mei
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern TCM Research Institute, Lianyungang, 222001, China
| | - Jun Zhou
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern TCM Research Institute, Lianyungang, 222001, China
| | - Zhen Zhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern TCM Research Institute, Lianyungang, 222001, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern TCM Research Institute, Lianyungang, 222001, China
| |
Collapse
|
16
|
Mushtaq G, Greig NH, Anwar F, Al-Abbasi FA, Zamzami MA, Al-Talhi HA, Kamal MA. Neuroprotective Mechanisms Mediated by CDK5 Inhibition. Curr Pharm Des 2016; 22:527-34. [PMID: 26601962 DOI: 10.2174/1381612822666151124235028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/24/2015] [Indexed: 12/30/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a proline-directed serine/threonine kinase belonging to the family of cyclin-dependent kinases. In addition to maintaining the neuronal architecture, CDK5 plays an important role in the regulation of synaptic plasticity, neurotransmitter release, neuron migration and neurite outgrowth. Although various reports have shown links between neurodegeneration and deregulation of cyclin-dependent kinases, the specific role of CDK5 inhibition in causing neuroprotection in cases of neuronal insult or in neurodegenerative diseases is not wellunderstood. This article discusses current evidence for the involvement of CDK5 deregulation in neurodegenerative disorders and neurodegeneration associated with stroke through various mechanisms. These include upregulation of cyclin D1 and overactivation of CDK5 mediated neuronal cell death pathways, aberrant hyperphosphorylation of human tau proteins and/or neurofilament proteins, formation of neurofibrillary lesions, excitotoxicity, cytoskeletal disruption, motor neuron death (due to abnormally high levels of CDK5/p25) and colchicine- induced apoptosis in cerebellar granule neurons. A better understanding of the role of CDK5 inhibition in neuroprotective mechanisms will help scientists and researchers to develop selective, safe and efficacious pharmacological inhibitors of CDK5 for therapeutic use against human neurodegenerative disorders, such as Alzheimer's disease, amyotrophic lateral sclerosis and neuronal loss associated with stroke.
Collapse
Affiliation(s)
- Gohar Mushtaq
- Department of Biochemistry, College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National, Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Ye J, Jiang Z, Chen X, Liu M, Li J, Liu N. Electron transport chain inhibitors induce microglia activation through enhancing mitochondrial reactive oxygen species production. Exp Cell Res 2016; 340:315-26. [DOI: 10.1016/j.yexcr.2015.10.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
|
18
|
Sawano T, Watanabe F, Ishiguchi M, Doe N, Furuyama T, Inagaki S. Effect of Sema4D on microglial function in middle cerebral artery occlusion mice. Glia 2015. [PMID: 26202989 DOI: 10.1002/glia.22890] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia evokes neuroinflammatory response. Inflammatory stimulation induces microglial activation, such as changes of their morphology from ramified to ameboid, expression of iNOS and cytokines, and the elevation of proliferative activity. Activated microglia play important roles in pathogenesis of cerebral ischemia. A previous study indicated that Sema4D promoted iNOS expression in cultured microglia; however, roles of Sema4D on microglial activation in ischemic injury remains unclear. We investigated the effect of Sema4D-deficiency on microglial activation by using permanent middle cerebral artery occlusion (MCAO) in mice. In this study, ischemia-induced activated microglia were classified into activated-ramified microglia and ameboid microglia based on their morphology. We demonstrated that the rate of iNOS expression in activated-ramified microglia was lower than that in ameboid microglia, while the most proliferating microglia were activated-ramified microglia but not ameboid microglia after cerebral ischemia. Sema4D-deficiency decreased the number of ameboid microglia and iNOS-expressing activated-ramified microglia in the peri-ischemic cortex. These changes by Sema4D-deficiency contributed to the reduction of NO production that was estimated by nitrite concentration in ischemic cortex. On the other hand, Sema4D-deficiency promoted proliferation of microglia in the peri-ischemic cortex. Importantly, ischemia-induced apoptosis and postischemic behavioral abnormality were moderated in Sema4D(-/-) mice. These findings suggest that Sema4D promotes cytotoxic activation of microglia and inhibits functional recovery after cerebral ischemia.
Collapse
Affiliation(s)
- Toshinori Sawano
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Fumiya Watanabe
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mitsuko Ishiguchi
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan.,Division of Pathogenesis and Control of Oral Diseases, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Nobutaka Doe
- General Education Center, Hyogo University of Health Sciences, Kobe, Japan
| | - Tatsuo Furuyama
- Department of Liberal Arts and Sciences, Kagawa Prefectural University of Health Sciences, Kagawa, Japan
| | - Shinobu Inagaki
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
19
|
Ritzel RM, Patel AR, Grenier JM, Crapser J, Verma R, Jellison ER, McCullough LD. Functional differences between microglia and monocytes after ischemic stroke. J Neuroinflammation 2015; 12:106. [PMID: 26022493 PMCID: PMC4465481 DOI: 10.1186/s12974-015-0329-1] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/20/2015] [Indexed: 01/16/2023] Open
Abstract
Background The brain’s initial innate response to stroke is primarily mediated by microglia, the resident macrophage of the CNS. However, as early as 4 h after stroke, the blood–brain barrier is compromised and monocyte infiltration occurs. The lack of discriminating markers between these two myeloid populations has led many studies to generate conclusions based on the grouping of these two populations. A growing body of evidence now supports the distinct roles played by microglia and monocytes in many disease models. Methods Using a flow cytometry approach, combined with ex-vivo functional assays, we were able to distinguish microglia from monocytes using the relative expression of CD45 and assess the function of each cell type following stroke over the course of 7 days. Results We found that at 72 h after a 90-min middle cerebral artery occlusion (MCAO), microglia populations decrease whereas monocytes significantly increase in the stroke brain compared to sham. After stroke, BRDU incorporation into monocytes in the bone marrow increased. After recruitment to the ischemic brain, these monocytes accounted for nearly all BRDU-positive macrophages. Inflammatory activity peaked at 72 h. Microglia produced relatively higher reactive oxygen species and TNF, whereas monocytes were the predominant IL-1β producer. Although microglia showed enhanced phagocytic activity after stroke, monocytes had significantly higher phagocytic capacity at 72 h. Interestingly, we found a positive correlation between TNF expression levels and phagocytic activity of microglia after stroke. Conclusions In summary, the resident microglia population is vulnerable to the effects of severe ischemia, show compromised cell cycle progression, and adopt a largely pro-inflammatory phenotype after stroke. Infiltrating monocytes are primarily involved with early debris clearance of dying cells. These findings suggest that the early wave of infiltrating monocytes may be beneficial to stroke repair and future therapies aimed at mitigating microglia cell death may prove more effective than attempting to elicit targeted anti-inflammatory responses from damaged cells. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0329-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Department of Neurology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Anita R Patel
- Department of Neurology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Jeremy M Grenier
- Department of Neurology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Joshua Crapser
- Department of Neurology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Rajkumar Verma
- Department of Neurology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Evan R Jellison
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA.
| | - Louise D McCullough
- Department of Neurology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
20
|
Li CY, Li X, Liu SF, Qu WS, Wang W, Tian DS. Inhibition of mTOR pathway restrains astrocyte proliferation, migration and production of inflammatory mediators after oxygen–glucose deprivation and reoxygenation. Neurochem Int 2015; 83-84:9-18. [DOI: 10.1016/j.neuint.2015.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 12/01/2022]
|
21
|
Wang LY, Liu J, Li Y, Li B, Zhang YY, Jing ZW, Yu YN, Li HX, Guo SS, Zhao YJ, Wang Z, Wang YY. Time-dependent variation of pathways and networks in a 24-hour window after cerebral ischemia-reperfusion injury. BMC SYSTEMS BIOLOGY 2015; 9:11. [PMID: 25884595 PMCID: PMC4355473 DOI: 10.1186/s12918-015-0152-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 02/17/2015] [Indexed: 12/04/2022]
Abstract
Background Cerebral ischemia-reperfusion injury may simultaneously result in functional variation of multiple genes/pathways. However, most prior time-sequence studies on its pathomechanism only focused on a single gene or pathway. Our study aimed to systematically analyze the time-dependent variation in the expression of multiple pathways and networks within 24 h after cerebral ischemia-reperfusion injury. Results By uploading 374 ischemia-related genes into the MetaCore software, the variation in the expression of multiple pathways and networks in 3 h, 12 h, and 24 h after cerebral ischemia-reperfusion injury had been analyzed. The conserved TNFR1-signaling pathway, among the top 10 pathways, was consistently enriched in 3 h, 12 h, and 24 h groups. Three overlapping pathways were found between 3 h and 12 h groups; 2 between 12 h and 24 h groups; and 1 between 3 h and 24 h groups. Five, 4, and 6 non-overlapping pathways were observed in 3 h, 12 h, and 24 h groups, respectively. Apart from pathways reported by earlier studies, we identified a novel pathway related to the time-dependent development of cerebral ischemia pathogenesis. The process of apoptosis stimulation by external signals, among the top 10 processes, was consistently enriched in 3 h, 12 h, and 24 h groups; 2, 1, and 2 processes overlapped between 3 h and 12 h groups, 12 h and 24 h groups, and 3 h and 24 h groups, respectively. Four, 5, and 5 non-overlapping processes were found in 3 h, 12 h and 24 h groups, respectively. The presence of apoptotic processes was observed in all the 3 groups; while anti-apoptotic processes only existed in 3 h and 12 h groups. Additionally, according to node degree, network comparison identified 1, 8,and 5 important genes or proteins (e.g. Pyk2, PKC, E2F1, and VEGF-A) in 3 h, 12 h, and 24 h groups, respectively. The Jaccard similarity index revealed a higher level of similarity between 12 h and 24 h groups than that between 3 h and 12 h groups. Conclusion Time-dependent treatment can be utilized to reduce apoptosis, which may activate anti-apoptotic pathways within 12 h after cerebral ischemia-reperfusion injury. Pathway and network analyses may help identify novel pathways and genes implicated in disease pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0152-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Ying Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Yuan Li
- Beijing University of Chinese Medicine, No. 11 East Road, North of 3rd Ring Road, Beijing, 100029, China.
| | - Bing Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Ying-Ying Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Zhi-Wei Jing
- China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Ya-Nan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Hai-Xia Li
- Guang'anmen Hospital, China Academy of China Medical Sciences, No.5 Beixiange, Beijing, 100053, China.
| | - Shan-Shan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Yi-Jun Zhao
- China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Yong-Yan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| |
Collapse
|
22
|
Yan K, Zhang R, Chen L, Chen F, Liu Y, Peng L, Sun H, Huang W, Sun C, Lv B, Li F, Cai Y, Tang Y, Zou Y, Du M, Qin L, Zhang H, Jiang X. Nitric oxide-mediated immunosuppressive effect of human amniotic membrane-derived mesenchymal stem cells on the viability and migration of microglia. Brain Res 2014; 1590:1-9. [PMID: 24909791 DOI: 10.1016/j.brainres.2014.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/07/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023]
Abstract
Human amniotic membrane-derived mesenchymal stem cells (AMSCs) are considered a novel and promising source of stem cells for cell replacement-based therapy. Current research is mostly limited to investigating the cellular differentiation potential of AMSCs, while few have focused on their immunosuppressive properties. This study is aimed at exploring and evaluating the immunosuppressive effect of human AMSCs on the viability and migratory properties of microglia. We found, from results of cell viability assays, that AMSCs can reduce the activity of inflammatory cells by secreting nitric oxide (NO). Also, based on results from wound healing and transwell migration assays, we show that AMSCs can inhibit the migration of human microglia as well as the mouse microglial cell line BV2, suggesting that they have the ability to inhibit the recruitment of certain immune cells to injury sites. Furthermore, we found that NO contributes significantly to this inhibitory effect. Our study provides evidence that human AMSCs can have detrimental effects on the viability and migration of microglia, through secretion of NO. This mechanism may contribute to anti-inflammatory processes in the central nervous system.
Collapse
Affiliation(s)
- Ke Yan
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China; Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Run Zhang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Lei Chen
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Fanfan Chen
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yi Liu
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Lingmei Peng
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Haitao Sun
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Weiyi Huang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Chengmei Sun
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Bingke Lv
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Feng Li
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yingqian Cai
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yanping Tang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Yuxi Zou
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Mouxuan Du
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Lingsha Qin
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Xiaodan Jiang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China.
| |
Collapse
|
23
|
Xiong Y, Zhu WZ, Zhang Q, Wang W. Observation of post-MCAO cortical inflammatory edema in rats by 7.0 Tesla MRI. ACTA ACUST UNITED AC 2014; 34:120-124. [PMID: 24496690 DOI: 10.1007/s11596-014-1242-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 01/10/2014] [Indexed: 12/01/2022]
Abstract
This study aimed to investigate inflammatory edema after cerebral ischemia through 7.0T MRI and proton magnetic resonance spectroscopy (MRS). All SD rats were randomly divided into sham operated group and middle cerebral artery occlusion (MCAO)-1 day, -3 day and -7 day groups. MRI scan of the brain was performed on a 7.0 Tesla MRI scanner. The volume of positive signals in the ischemic side was detected by using a T2 weighted spinecho multislice sequence; the changes in the height of water-peak were measured with point resolved spectroscopy (PRESS) sequences; cortical edema was detected by using wet-dry weight method; the degrees of nerve injury were evaluated by Bederson neurological score system; double-labeling immunofluorescence technique was used to explore the molecular mechanisms of post-ischemia cerebral edema. The results showed that high T2WI signals were observed in MCAO-1 day, -3 day and -7 day groups, and the water-peak height and water-peak area of MCAO groups were higher than those of sham operated group (P<0.05). Neurological score results were consistent with the degree of brain edema, and a large number of microglia accumulated in the ischemic cortex. Our results suggested that non-invasive MRI technology with the advantage of high spatial resolution and tissue resolution can comprehensively and dynamically observe inflammatory edema after cerebral ischemia from a three-dimensional space, and contribute to evaluation and treatments in clinic.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong Universitiy of Science and Technology, Wuhan, 430030, China
| | - Wen-Zhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong Universitiy of Science and Technology, Wuhan, 430030, China
| | - Qiang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong Universitiy of Science and Technology, Wuhan, 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong Universitiy of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
24
|
Han Q, Liu S, Li Z, Hu F, Zhang Q, Zhou M, Chen J, Lei T, Zhang H. DCPIB, a potent volume-regulated anion channel antagonist, Attenuates microglia-mediated inflammatory response and neuronal injury following focal cerebral ischemia. Brain Res 2014; 1542:176-85. [DOI: 10.1016/j.brainres.2013.10.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/10/2013] [Accepted: 10/16/2013] [Indexed: 12/31/2022]
|
25
|
An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, Leak RK, Gao Y, Sun BL, Zheng P, Chen J. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol 2013; 115:6-24. [PMID: 24374228 DOI: 10.1016/j.pneurobio.2013.12.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/28/2013] [Accepted: 12/17/2013] [Indexed: 12/26/2022]
Abstract
Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialog between the brain and peripheral immune system show promise as potential novel treatments for stroke.
Collapse
Affiliation(s)
- Chengrui An
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yejie Shi
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ruth A Stetler
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Bao-Liang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, China.
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
26
|
Zhang YY, Li HX, Chen YY, Fang H, Yu YN, Liu J, Jing ZW, Wang Z, Wang YY. Convergent and divergent pathways decoding hierarchical additive mechanisms in treating cerebral ischemia-reperfusion injury. CNS Neurosci Ther 2013; 20:253-63. [PMID: 24351012 DOI: 10.1111/cns.12205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Cerebral ischemia is considered to be a highly complex disease resulting from the complicated interplay of multiple pathways. Disappointedly, most of the previous studies were limited to a single gene or a single pathway. The extent to which all involved pathways are translated into fusing mechanisms of a combination therapy is of fundamental importance. AIMS We report an integrative strategy to reveal the additive mechanism that a combination (BJ) of compound baicalin (BA) and jasminoidin (JA) fights against cerebral ischemia based on variation of pathways and functional communities. RESULTS We identified six pathways of BJ group that shared diverse additive index from 0.09 to 1, which assembled broad cross talks from seven pathways of BA and 16 pathways of JA both at horizontal and vertical levels. Besides a total of 60 overlapping functions as a robust integration background among the three groups based on significantly differential subnetworks, additive mechanism with strong confidence by networks altered functions. CONCLUSIONS These results provide strong evidence that the additive mechanism is more complex than previously appreciated, and an integrative analysis of pathways may suggest an important paradigm for revealing pharmacological mechanisms underlying drug combinations.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhao H, Wang J, Gao L, Wang R, Liu X, Gao Z, Tao Z, Xu C, Song J, Ji X, Luo Y. MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 2013; 44:1706-13. [PMID: 23613494 DOI: 10.1161/strokeaha.111.000504] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE We observed that microRNA-424 (miR-424) significantly decreased in an miRNA profile of circulating lymphocytes of patients with ischemic stroke. The present study focused on the potential and mechanism of miR-424 in protecting ischemic brain injury in mice. METHODS Cerebral ischemia was induced by middle cerebral artery occlusion in C57/BL6 mice. Cerebral infarction volume, neuronal apoptosis, and microglia activation were determined by 2,3,5-triphenyltetrazolium chloride staining, immunofluorescence, and Western blot. BV2 microglial cell activity, cell cycle, mRNA, and protein levels of miR-424 targets were accessed by enzyme-linked immunosorbent assay, flow cytometry, real-time polymerase chain reaction, and Western blot, respectively. RESULTS MiR-424 levels were decreased in the plasma of patients with acute ischemic stroke, as well as in mouse plasma and ipsilateral brain tissue at 4, 8, and 24 hours after ischemia, likewise, in the cortex, hippocampus, and basal ganglia, respectively, after 8-hour ischemia. Interestingly, pre- and post-treatment with overexpression of miR-424 both decreased cerebral infarction size and brain edema after middle cerebral artery occlusion. Meanwhile, lentiviral overexpression of miR-424 inhibited neuronal apoptosis and microglia activation, including suppressing ionized calcium binding adaptor molecule-1 immunoreactivity and protein level, and reduced tumor necrosis factor-α production. In vitro study demonstrated that miR-424 mimics caused G1 phase cell-cycle arrest, inhibited BV2 microglia activity, and reduced the mRNA and protein levels of CDC25A, cyclin D1, and CDK6 in BV2 microglial cells, which were upregulated in brain of middle cerebral artery occlusion mice. CONCLUSIONS MiR-424 overexpression lessened the ischemic brain injury through suppressing microglia activation by translational depression of key activators of G1/S transition, suggesting a novel miR-based intervention strategy for stroke.
Collapse
Affiliation(s)
- Haiping Zhao
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, 45 Changchun St, Beijing 100053, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wu J, Pajoohesh-Ganji A, Stoica BA, Dinizo M, Guanciale K, Faden AI. Delayed expression of cell cycle proteins contributes to astroglial scar formation and chronic inflammation after rat spinal cord contusion. J Neuroinflammation 2012; 9:169. [PMID: 22784881 PMCID: PMC3410790 DOI: 10.1186/1742-2094-9-169] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/11/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) induces secondary tissue damage that is associated with astrogliosis and inflammation. We previously reported that acute upregulation of a cluster of cell-cycle-related genes contributes to post-mitotic cell death and secondary damage after SCI. However, it remains unclear whether cell cycle activation continues more chronically and contributes to more delayed glial change. Here we examined expression of cell cycle-related proteins up to 4 months following SCI, as well as the effects of the selective cyclin-dependent kinase (CDKs) inhibitor CR8, on astrogliosis and microglial activation in a rat SCI contusion model. METHODS Adult male rats were subjected to moderate spinal cord contusion injury at T8 using a well-characterized weight-drop model. Tissue from the lesion epicenter was obtained 4 weeks or 4 months post-injury, and processed for protein expression and lesion volume. Functional recovery was assessed over the 4 months after injury. RESULTS Immunoblot analysis demonstrated a marked continued upregulation of cell cycle-related proteins - including cyclin D1 and E, CDK4, E2F5 and PCNA - for 4 months post-injury that were highly expressed by GFAP+ astrocytes and microglia, and co-localized with inflammatory-related proteins. CR8 administrated systemically 3 h post-injury and continued for 7 days limited the sustained elevation of cell cycle proteins and immunoreactivity of GFAP, Iba-1 and p22PHOX - a key component of NADPH oxidase - up to 4 months after SCI. CR8 treatment significantly reduced lesion volume, which typically progressed in untreated animals between 1 and 4 months after trauma. Functional recovery was also significantly improved by CR8 treatment after SCI from week 2 through week 16. CONCLUSIONS These data demonstrate that cell cycle-related proteins are chronically upregulated after SCI and may contribute to astroglial scar formation, chronic inflammation and further tissue loss.
Collapse
Affiliation(s)
- Junfang Wu
- Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland, School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Barreto G, White RE, Ouyang Y, Xu L, Giffard RG. Astrocytes: targets for neuroprotection in stroke. Cent Nerv Syst Agents Med Chem 2012; 11:164-73. [PMID: 21521168 DOI: 10.2174/187152411796011303] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/05/2011] [Accepted: 03/09/2011] [Indexed: 02/08/2023]
Abstract
In the past two decades, over 1000 clinical trials have failed to demonstrate a benefit in treating stroke, with the exception of thrombolytics. Although many targets have been pursued, including antioxidants, calcium channel blockers, glutamate receptor blockers, and neurotrophic factors, often the focus has been on neuronal mechanisms of injury. Broader attention to loss and dysfunction of non-neuronal cell types is now required to increase the chance of success. Of the several glial cell types, this review will focus on astrocytes. Astrocytes are the most abundant cell type in the higher mammalian nervous system, and they play key roles in normal CNS physiology and in central nervous system injury and pathology. In the setting of ischemia astrocytes perform multiple functions, some beneficial and some potentially detrimental, making them excellent candidates as therapeutic targets to improve outcome following stroke and in other central nervous system injuries. The older neurocentric view of the central nervous system has changed radically with the growing understanding of the many essential functions of astrocytes. These include K+ buffering, glutamate clearance, brain antioxidant defense, close metabolic coupling with neurons, and modulation of neuronal excitability. In this review, we will focus on those functions of astrocytes that can both protect and endanger neurons, and discuss how manipulating these functions provides a novel and important strategy to enhance neuronal survival and improve outcome following cerebral ischemia.
Collapse
Affiliation(s)
- George Barreto
- Department of Anesthesia, Stanford University School of Medicine, S272, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
30
|
Timsit S, Menn B. Cyclin-dependent kinase inhibition with roscovitine: neuroprotection in acute ischemic stroke. Clin Pharmacol Ther 2012; 91:327-32. [PMID: 22218073 DOI: 10.1038/clpt.2011.312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stroke is the third most common cause of mortality and the leading cause of disability in industrialized country. According to population based-studies, ischemic stroke accounts for 67-80% of all strokes. Thrombolysis is used during the acute phase in only 2-5% of ischemic patients. Clinical trials of candidate neuroprotective agents have failed to identify viable therapies for ischemic stroke in humans. There is therefore a great need for new therapeutic strategies, considering that not all brain cells die immediately after ischemic stroke.
Collapse
Affiliation(s)
- S Timsit
- CHRU Brest, Hôpital de la Cavale Blanche, Département de Neurologie, Faculté de Médecine et des Sciences de la Santé, INSERM U-613 de Brest, Brest, France.
| | | |
Collapse
|
31
|
Yang Q, Wang EY, Huang XJ, Qu WS, Zhang L, Xu JZ, Wang W, Tian DS. Blocking epidermal growth factor receptor attenuates reactive astrogliosis through inhibiting cell cycle progression and protects against ischemic brain injury in rats. J Neurochem 2011; 119:644-53. [DOI: 10.1111/j.1471-4159.2011.07446.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Wang Y, Yang YS, Tang XC, Zhang HY. T33, a novel peroxisome proliferator-activated receptor γ/α agonist, exerts neuroprotective action via its anti-inflammatory activities. Acta Pharmacol Sin 2011; 32:1100-8. [PMID: 21804572 DOI: 10.1038/aps.2011.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To examine the neuroprotective effects of T33, a peroxisome proliferator-activated receptor gamma/alpha (PPARγ/α) agonist, in acute ischemic models in vitro and in vivo. METHODS Primary astrocytes subjected to oxygen-glucose deprivation/reperfusion (O/R) and BV-2 cells subjected to hypoxia were used as a model simulating the ischemic core and penumbra, respectively. The mRNA levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were measured using qPCR. The levels of TNF-α secreted by BV-2 cells were measured using ELISA. Protein levels of cyclooxygenase-2 (COX-2), p65, phosphorylated I-κBα/I-κBα, phosphorylated I-κB kinase (pIKK), phosphorylated eukaryote initiation factor 2α (p-eIF-2α)/eIF-2α and p-p38/p38 were detected using Western blot. PPARγ activity was measured using EMSA. The neuroprotection in vivo was examined in rat middle cerebral artery occlusion (MCAO) model with neurological scoring and TTC staining. RESULTS Addition of T33 (0.5 μmol/L) increased the level of I-κBα protein in primary astrocytes subjected to O/R, which was due to promoting protein synthesis without affecting degradation. In primary astrocytes subjected to O/R, addition of T33 amplified I-κBα gene transcription and mRNA translation, thus suppressing the nuclear factor-kappa B (NF-κB) pathway and reducing inflammatory mediators (TNF-α, IL-1β, and COX-2). In BV-2 cells subjected to hypoxia, T33 (0.5 μmol/L) reduced TNF-α, COX-2, and p-P38 production, which was antagonized by pre-administration of the specific PPARγ antagonist GW9662 (30 μmol/L). T33 (2 mg/kg, ip) attenuated MCAO-induced inflammatory responses and brain infarction, which was antagonized by pre-administered GW9662 (4 mg/kg, ip). CONCLUSION T33 exerted anti-inflammatory effects in the ischemic core and penumbra via PPARγ activation, which contributed to its neuroprotective action.
Collapse
|
33
|
Twice switched at birth: cell cycle-independent roles of the "neuron-specific" cyclin-dependent kinase 5 (Cdk5) in non-neuronal cells. Cell Signal 2011; 23:1698-707. [PMID: 21741478 DOI: 10.1016/j.cellsig.2011.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 01/21/2023]
Abstract
Cdk5 (cyclin-dependent kinase 5 or initially NCLK for neuronal CDC2-like kinase) was switched twice at its birth nearly twenty years ago: first it was thought to be cyclin-dependent, second it was assumed to be primarily of importance in neuronal cells-both turned out not to be the case. In this review we want to discuss issues of pharmacological inhibition, to highlight the versatile roles, and to summarize the growing evidence for the functional importance of Cdk5 in non-neuronal tissues, such as blood cells, tumor cells, epithelial cells, the vascular endothelium, testis, adipose and endocrine tissues. The organizing principles we follow are apoptosis/cell death, migration/motility, aspects of inflammation, and, finally, secretion/metabolism.
Collapse
|
34
|
Menn B, Bach S, Blevins TL, Campbell M, Meijer L, Timsit S. Delayed treatment with systemic (S)-roscovitine provides neuroprotection and inhibits in vivo CDK5 activity increase in animal stroke models. PLoS One 2010; 5:e12117. [PMID: 20711428 PMCID: PMC2920814 DOI: 10.1371/journal.pone.0012117] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 07/17/2010] [Indexed: 01/20/2023] Open
Abstract
Background Although quite challenging, neuroprotective therapies in ischemic stroke remain an interesting strategy to counter mechanisms of ischemic injury and reduce brain tissue damage. Among potential neuroprotective drug, cyclin-dependent kinases (CDK) inhibitors represent interesting therapeutic candidates. Increasing evidence indisputably links cell cycle CDKs and CDK5 to the pathogenesis of stroke. Although recent studies have demonstrated promising neuroprotective efficacies of pharmacological CDK inhibitors in related animal models, none of them were however clinically relevant to human treatment. Methodology/Principal Findings In the present study, we report that systemic delivery of (S)-roscovitine, a well known inhibitor of mitotic CDKs and CDK5, was neuroprotective in a dose-dependent manner in two models of focal ischemia, as recommended by STAIR guidelines. We show that (S)-roscovitine was able to cross the blood brain barrier. (S)-roscovitine significant in vivo positive effect remained when the compound was systemically administered 2 hrs after the insult. Moreover, we validate one of (S)-roscovitine in vivo target after ischemia. Cerebral increase of CDK5/p25 activity was observed 3 hrs after the insult and prevented by systemic (S)-roscovitine administration. Our results show therefore that roscovitine protects in vivo neurons possibly through CDK5 dependent mechanisms. Conclusions/Significance Altogether, our data bring new evidences for the further development of pharmacological CDK inhibitors in stroke therapy.
Collapse
Affiliation(s)
- Bénédicte Menn
- Neurokin S.A., Institut de Neurobiologie de la Méditerranée, Marseille, France
| | - Stéphane Bach
- USR3151, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Teri L. Blevins
- Efficacy Pharmacology, MDS Pharma Services, Bothell, Washington, United States of America
| | - Mark Campbell
- Efficacy Pharmacology, MDS Pharma Services, Bothell, Washington, United States of America
| | - Laurent Meijer
- USR3151, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Serge Timsit
- Département de Neurologie, CHRU Brest, Faculté de Médecine et des Sciences de la Santé de Brest, Brest, France
- * E-mail:
| |
Collapse
|
35
|
Progress in glial cell studies in some laboratories in China. SCIENCE CHINA-LIFE SCIENCES 2010; 53:330-337. [DOI: 10.1007/s11427-010-0067-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/26/2010] [Indexed: 01/12/2023]
|
36
|
Adibhatla RM, Hatcher JF. Protection by D609 through cell-cycle regulation after stroke. Mol Neurobiol 2010; 41:206-17. [PMID: 20148315 DOI: 10.1007/s12035-010-8100-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/08/2010] [Indexed: 12/13/2022]
Abstract
Expressions of cell-cycle regulating proteins are altered after stroke. Cell-cycle inhibition has shown dramatic reduction in infarction after stroke. Ceramide can induce cell-cycle arrest by up-regulation of cyclin-dependent kinase (Cdk) inhibitors p21 and p27 through activation of protein phosphatase 2A (PP2A). Tricyclodecan-9-yl-xanthogenate (D609)-increased ceramide levels after transient middle cerebral artery occlusion (tMCAO) in spontaneously hypertensive rat (SHR) probably by inhibiting sphingomyelin synthase (SMS). D609 significantly reduced cerebral infarction and up-regulated Cdk inhibitor p21 and down-regulated phospho-retinoblastoma (pRb) expression after tMCAO in rat. Others have suggested bFGF-induced astrocyte proliferation is attenuated by D609 due to an increase in ceramide by SMS inhibition. D609 also reduced the formation of oxidized phosphatidylcholine (OxPC) protein adducts. D609 may attenuate generation of reactive oxygen species and formation of OxPC by inhibiting microglia/macrophage proliferation after tMCAO (please also see note added in proof: D609 may prevent mature neurons from entering the cell cycle at the early reperfusion, however may not interfere with later proliferation of microglia/ macrophages that are the source of brain derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1) in offering protection). It has been proposed that D609 provides benefit after tMCAO by attenuating hypoxia-inducible factor-1alpha and Bcl2/adenovirus E1B 19 kDa interacting protein 3 expressions. Our data suggest that D609 provides benefit after stoke through inhibition of SMS, increased ceramide levels, and induction of cell-cycle arrest by up-regulating p21 and causing hypophosphorylation of Rb (through increased protein phosphatase activity and/or Cdk inhibition).
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3232, USA.
| | | |
Collapse
|
37
|
Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial inflammatory response in vitro and in vivo. Brain Res 2010; 1316:101-11. [PMID: 20044983 DOI: 10.1016/j.brainres.2009.12.055] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 12/16/2009] [Accepted: 12/18/2009] [Indexed: 01/01/2023]
Abstract
Irradiation-induced brain injury, leading to cognitive impairment several months to years after whole brain irradiation (WBI) therapy, is a common health problem in patients with primary or metastatic brain tumor and greatly impairs quality of life for tumor survivors. Recently, it has been demonstrated that a rapid and sustained increase in activated microglia following WBI led to a chronic inflammatory response and a corresponding decrease in hippocampal neurogenesis. Tamoxifen, serving as a radiosensitizer and a useful agent in combination therapy of glioma, has been found to exert anti-inflammatory response both in cultured microglial cells and in a spinal cord injury model. In the present study, we investigated whether tamoxifen alleviated inflammatory damage seen in the irradiated microglia in vitro and in the irradiated brain. Irradiating BV-2 cells (a murine microglial cell line) with various radiation doses (2-10 Gy) led to the increase in IL-1 beta and TNF-alpha expression determined by ELISA, and the conditioned culture medium of irradiated microglia with 10 Gy radiation dose initiated astroglial activation and decreased the number of neuronal cells in vitro. Incubation BV-2 cells with tamoxifen (1 microM) for 45 min significantly inhibited the radiation-induced microglial inflammatory response. In the irradiated brain, WBI induced the breakdown of the blood-brain barrier permeability at day 1 post irradiation and tissue edema formation at day 3 post-radiation. Furthermore, WBI led to microglial activation and reactive astrogliosis in the cerebral cortex and neuronal apoptosis in the CA1 hippocampus at day 3 post-radiation. Tamoxifen administration (i.p., 5 mg/kg) immediately post radiation reduced the irradiation-induced brain damage after WBI. Taken together, these data support that tamoxifen can decrease the irradiation-induced brain damage via attenuating the microglial inflammatory response.
Collapse
|
38
|
Wang W, Bu B, Xie M, Zhang M, Yu Z, Tao D. Neural cell cycle dysregulation and central nervous system diseases. Prog Neurobiol 2009; 89:1-17. [DOI: 10.1016/j.pneurobio.2009.01.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/04/2008] [Accepted: 01/27/2009] [Indexed: 01/19/2023]
|