1
|
Burato A, Legname G. Comparing Prion Proteins Across Species: Is Zebrafish a Useful Model? Mol Neurobiol 2024:10.1007/s12035-024-04324-z. [PMID: 38918277 DOI: 10.1007/s12035-024-04324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Despite the considerable body of research dedicated to the field of neurodegeneration, the gap in knowledge on the prion protein and its intricate involvement in brain diseases remains substantial. However, in the past decades, many steps forward have been taken toward a better understanding of the molecular mechanisms underlying both the physiological role of the prion protein and the misfolding event converting it into its pathological counterpart, the prion. This review aims to provide an overview of the main findings regarding this protein, highlighting the advantages of many different animal models that share a conserved amino acid sequence and/or structure with the human prion protein. A particular focus will be given to the species Danio rerio, a compelling research organism for the investigation of prion biology, thanks to its conserved orthologs, ease of genetic manipulation, and cost-effectiveness of high-throughput experimentation. We will explore its potential in filling some of the gaps on physiological and pathological aspects of the prion protein, with the aim of directing the future development of therapeutic interventions.
Collapse
Affiliation(s)
- Anna Burato
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
2
|
Bagnall-Moreau C, Spielman B, Brimberg L. Maternal brain reactive antibodies profile in autism spectrum disorder: an update. Transl Psychiatry 2023; 13:37. [PMID: 36737600 PMCID: PMC9898547 DOI: 10.1038/s41398-023-02335-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with multifactorial etiologies involving both genetic and environmental factors. In the past two decades it has become clear that in utero exposure to toxins, inflammation, microbiome, and antibodies (Abs), may play a role in the etiology of ASD. Maternal brain-reactive Abs, present in 10-20% of mothers of a child with ASD, pose a potential risk to the developing brain because they can gain access to the brain during gestation, altering brain development during a critical period. Different maternal anti-brain Abs have been associated with ASD and have been suggested to bind extracellular or intracellular neuronal antigens. Clinical data from various cohorts support the increase in prevalence of such maternal brain-reactive Abs in mothers of a child with ASD compared to mothers of a typically developing child. Animal models of both non-human primates and rodents have provided compelling evidence supporting a pathogenic role of these Abs. In this review we summarize the data from clinical and animal models addressing the role of pathogenic maternal Abs in ASD. We propose that maternal brain-reactive Abs are an overlooked and promising field of research, representing a modifiable risk factor that may account for up to 20% of cases of ASD. More studies are needed to better characterize the Abs that contribute to the risk of having a child with ASD, to understand whether we can we predict such cases of ASD, and to better pinpoint the antigenic specificity of these Abs and their mechanisms of pathogenicity.
Collapse
Affiliation(s)
- Ciara Bagnall-Moreau
- grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, New York, NY USA
| | - Benjamin Spielman
- grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, New York, NY USA ,grid.512756.20000 0004 0370 4759Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Lior Brimberg
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, New York, NY, USA. .,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
3
|
Hsp70/Hsp90 Organising Protein (Hop): Coordinating Much More than Chaperones. Subcell Biochem 2023; 101:81-125. [PMID: 36520304 DOI: 10.1007/978-3-031-14740-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hsp70/Hsp90 organising protein (Hop, also known as stress-inducible protein 1/STI1/STIP1) has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins, although recent evidence suggests that eukaryotic Hop is regulatory within chaperone complexes rather than essential. Consequently, Hop is implicated in many key signalling pathways, including aberrant pathways leading to cancer. Hop is also secreted, and it is now well established that Hop interacts with the prion protein, PrPC, to mediate multiple signalling events. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While the various cellular functions of Hop have been described, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseased states.
Collapse
|
4
|
Grimaldi I, Leser FS, Janeiro JM, da Rosa BG, Campanelli AC, Romão L, Lima FRS. The multiple functions of PrP C in physiological, cancer, and neurodegenerative contexts. J Mol Med (Berl) 2022; 100:1405-1425. [PMID: 36056255 DOI: 10.1007/s00109-022-02245-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
Cellular prion protein (PrPC) is a highly conserved glycoprotein, present both anchored in the cell membrane and soluble in the extracellular medium. It has a diversity of ligands and is variably expressed in numerous tissues and cell subtypes, most notably in the central nervous system (CNS). Its importance has been brought to light over the years both under physiological conditions, such as embryogenesis and immune system homeostasis, and in pathologies, such as cancer and neurodegenerative diseases. During development, PrPC plays an important role in CNS, participating in axonal growth and guidance and differentiation of glial cells, but also in other organs such as the heart, lung, and digestive system. In diseases, PrPC has been related to several types of tumors, modulating cancer stem cells, enhancing malignant properties, and inducing drug resistance. Also, in non-neoplastic diseases, such as Alzheimer's and Parkinson's diseases, PrPC seems to alter the dynamics of neurotoxic aggregate formation and, consequently, the progression of the disease. In this review, we explore in detail the multiple functions of this protein, which proved to be relevant for understanding the dynamics of organism homeostasis, as well as a promising target in the treatment of both neoplastic and degenerative diseases.
Collapse
Affiliation(s)
- Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Marcos Janeiro
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bárbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Clara Campanelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luciana Romão
- Cell Morphogenesis Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Shafiq M, Da Vela S, Amin L, Younas N, Harris DA, Zerr I, Altmeppen HC, Svergun D, Glatzel M. The prion protein and its ligands: Insights into structure-function relationships. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119240. [PMID: 35192891 DOI: 10.1016/j.bbamcr.2022.119240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The prion protein is a multifunctional protein that exists in at least two different folding states. It is subject to diverse proteolytic processing steps that lead to prion protein fragments some of which are membrane-bound whereas others are soluble. A multitude of ligands bind to the prion protein and besides proteinaceous binding partners, interaction with metal ions and nucleic acids occurs. Although of great importance, information on structural and functional consequences of prion protein binding to its partners is limited. Here, we will reflect on the structure-function relationship of the prion protein and its binding partners considering the different folding states and prion protein fragments.
Collapse
Affiliation(s)
- Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Neelam Younas
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Inga Zerr
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
6
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|
7
|
Singh N, Chaudhary S, Ashok A, Lindner E. Prions and prion diseases: Insights from the eye. Exp Eye Res 2020; 199:108200. [PMID: 32858007 DOI: 10.1016/j.exer.2020.108200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 12/30/2022]
Abstract
Prion diseases are invariably fatal neurodegenerative disorders that have gained much publicity due to their transmissible nature. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common human prion disorder, with an incidence of 1 in a million. Inherited prion disorders are relatively rare, and associated with mutations in the prion protein gene. More than 50 different point mutations, deletions, and insertions have been identified so far. Most are autosomal dominant and fully penetrant. Prion disorders also occur in animals, and are of major concern because of the potential for spreading to humans. The principal pathogenic event underlying all prion disorders is a change in the conformation of prion protein (PrPC) from a mainly α-helical to a β-sheet rich isoform, PrP-scrapie (PrPSc). Accumulation of PrPSc in the brain parenchyma is the major cause of neuronal degeneration. The mechanism by which PrPSc is transmitted, propagates, and causes neurodegenerative changes has been investigated over the years, and several clues have emerged. Efforts are also ongoing for identifying specific and sensitive diagnostic tests for sCJD and animal prion disorders, but success has been limited. The eye is suitable for these evaluations because it shares several anatomical and physiological features with the brain, and can be observed in vivo during disease progression. The retina, considered an extension of the central nervous system, is involved extensively in prion disorders. Accordingly, Optical Coherence Tomography and electroretinogram have shown some promise as pre-mortem diagnostic tests for human and animal prion disorders. However, a complete understanding of the physiology of PrPC and pathobiology of PrPSc in the eye is essential for developing specific and sensitive tests. Below, we summarize recent progress in ocular physiology and pathology in prion disorders, and the eye as an anatomically accessible site to diagnose, monitor disease progression, and test therapeutic options.
Collapse
Affiliation(s)
- Neena Singh
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Suman Chaudhary
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ajay Ashok
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ewald Lindner
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| |
Collapse
|
8
|
da Fonseca ACC, Matias D, Geraldo LHM, Leser FS, Pagnoncelli I, Garcia C, do Amaral RF, da Rosa BG, Grimaldi I, de Camargo Magalhães ES, Cóppola-Segovia V, de Azevedo EM, Zanata SM, Lima FRS. The multiple functions of the co-chaperone stress inducible protein 1. Cytokine Growth Factor Rev 2020; 57:73-84. [PMID: 32561134 DOI: 10.1016/j.cytogfr.2020.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
Stress inducible protein 1 (STI1) is a co-chaperone acting with Hsp70 and Hsp90 for the correct client proteins' folding and therefore for the maintenance of cellular homeostasis. Besides being expressed in the cytosol, STI1 can also be found both in the cell membrane and the extracellular medium playing several relevant roles in the central nervous system (CNS) and tumor microenvironment. During CNS development, in association with cellular prion protein (PrPc), STI1 regulates crucial events such as neuroprotection, neuritogenesis, astrocyte differentiation and survival. In cancer, STI1 is involved with tumor growth and invasion, is undoubtedly a pro-tumor factor, being considered as a biomarker and possibly therapeutic target for several malignancies. In this review, we discuss current knowledge and new findings on STI1 function as well as its role in tissue homeostasis, CNS and tumor progression.
Collapse
Affiliation(s)
| | - Diana Matias
- Molecular Bionics Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Luiz Henrique Medeiros Geraldo
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; Université de Paris, PARCC, INSERM, Paris, 75015, France
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Iohana Pagnoncelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Celina Garcia
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Rackele Ferreira do Amaral
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Barbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Eduardo Sabino de Camargo Magalhães
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; European Research Institute for the Biology of Aging, University of Groningen, Groningen, 9713 AV, Netherlands
| | - Valentín Cóppola-Segovia
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Evellyn Mayla de Azevedo
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Silvio Marques Zanata
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil.
| |
Collapse
|
9
|
da Luz MHM, Pino JMV, Santos TG, Antunes HKM, Martins VR, de Souza AAL, Torquato RJS, Lee KS. Sleep deprivation regulates availability of PrP C and Aβ peptides which can impair interaction between PrP C and laminin and neuronal plasticity. J Neurochem 2020; 153:377-389. [PMID: 31950499 PMCID: PMC7383904 DOI: 10.1111/jnc.14960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022]
Abstract
PrPC is a glycoprotein capable to interact with several molecules and mediates diverse signaling pathways. Among numerous ligands, laminin (LN) is known to promote neurite outgrowth and memory consolidation, while amyloid‐beta oligomers (Aβo) trigger synaptic dysfunction. In both pathways, mGluR1 is recruited as co‐receptor. The involvement of PrPC/mGluR1 in these opposite functions suggests that this complex is a key element in the regulation of synaptic activity. Considering that sleep‐wake cycle is important for synaptic homeostasis, we aimed to investigate how sleep deprivation affects the expression of PrPC and its ligands, laminin, Aβo, and mGluR1, a multicomplex that can interfere with neuronal plasticity. To address this question, hippocampi of control (CT) and sleep deprived (SD) C57BL/6 mice were collected at two time points of circadian period (13 hr and 21 hr). We observed that sleep deprivation reduced PrPC and mGluR1 levels with higher effect in active state (21 hr). Sleep deprivation also caused accumulation of Aβ peptides in rest period (13 hr), while laminin levels were not affected. In vitro binding assay showed that Aβo can compete with LN for PrPC binding. The influence of Aβo was also observed in neuritogenesis. LN alone promoted longer neurite outgrowth than non‐treated cells in both Prnp+/+ and Prnp0/0 genotypes. Aβo alone did not show any effects, but when added together with LN, it attenuated the effects of LN only in Prnp+/+ cells. Altogether, our findings indicate that sleep deprivation regulates the availability of PrPC and Aβ peptides, and based on our in vitro assays, these alterations induced by sleep deprivation can negatively affect LN–PrPC interaction, which is known to play roles in neuronal plasticity. ![]()
Collapse
Affiliation(s)
- Marcio H M da Luz
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jessica M V Pino
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tiago G Santos
- International Research Center. A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Hanna K M Antunes
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vilma R Martins
- International Research Center. A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Altay A L de Souza
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo J S Torquato
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Kil S Lee
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Ryskalin L, Busceti CL, Biagioni F, Limanaqi F, Familiari P, Frati A, Fornai F. Prion Protein in Glioblastoma Multiforme. Int J Mol Sci 2019; 20:ijms20205107. [PMID: 31618844 PMCID: PMC6834196 DOI: 10.3390/ijms20205107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
The cellular prion protein (PrPc) is an evolutionarily conserved cell surface protein encoded by the PRNP gene. PrPc is ubiquitously expressed within nearly all mammalian cells, though most abundantly within the CNS. Besides being implicated in the pathogenesis and transmission of prion diseases, recent studies have demonstrated that PrPc contributes to tumorigenesis by regulating tumor growth, differentiation, and resistance to conventional therapies. In particular, PrPc over-expression has been related to the acquisition of a malignant phenotype of cancer stem cells (CSCs) in a variety of solid tumors, encompassing pancreatic ductal adenocarcinoma (PDAC), osteosarcoma, breast cancer, gastric cancer, and primary brain tumors, mostly glioblastoma multiforme (GBM). Thus, PrPc is emerging as a key in maintaining glioblastoma cancer stem cells’ (GSCs) phenotype, thereby strongly affecting GBM infiltration and relapse. In fact, PrPc contributes to GSCs niche’s maintenance by modulating GSCs’ stem cell-like properties while restraining them from differentiation. This is the first review that discusses the role of PrPc in GBM. The manuscript focuses on how PrPc may act on GSCs to modify their expression and translational profile while making the micro-environment surrounding the GSCs niche more favorable to GBM growth and infiltration.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy.
| | - Carla L Busceti
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli, Italy.
| | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy.
| | - Pietro Familiari
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy.
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli, Italy.
| |
Collapse
|
11
|
Bohush A, Bieganowski P, Filipek A. Hsp90 and Its Co-Chaperones in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20204976. [PMID: 31600883 PMCID: PMC6834326 DOI: 10.3390/ijms20204976] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Proper folding is crucial for proteins to achieve functional activity in the cell. However, it often occurs that proteins are improperly folded (misfolded) and form aggregates, which are the main hallmark of many diseases including cancers, neurodegenerative diseases and many others. Proteins that assist other proteins in proper folding into three-dimensional structures are chaperones and co-chaperones. The key role of chaperones/co-chaperones is to prevent protein aggregation, especially under stress. An imbalance between chaperone/co-chaperone levels has been documented in neurons, and suggested to contribute to protein misfolding. An essential protein and a major regulator of protein folding in all eukaryotic cells is the heat shock protein 90 (Hsp90). The function of Hsp90 is tightly regulated by many factors, including co-chaperones. In this review we summarize results regarding the role of Hsp90 and its co-chaperones in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and prionopathies.
Collapse
Affiliation(s)
- Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Paweł Bieganowski
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland.
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
12
|
Lee YH, Lee HT, Chen CL, Chang CH, Hsu CY, Shyu WC. Role of FOXC1 in regulating APSCs self-renewal via STI-1/PrP C signaling. Am J Cancer Res 2019; 9:6443-6465. [PMID: 31588228 PMCID: PMC6771253 DOI: 10.7150/thno.35619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/20/2019] [Indexed: 01/03/2023] Open
Abstract
Forkhead box protein C1 (FOXC1) is known to regulate developmental processes in the skull and brain. Methods: The unique multipotent arachnoid-pia stem cells (APSCs) isolated from human and mouse arachnoid-pia membranes of meninges were grown as 3D spheres and displayed a capacity for self-renewal. Additionally, APSCs also expressed the surface antigens as mesenchymal stem cells. By applying the FOXC1 knockout mice and mouse brain explants, signaling cascade of FOXC1-STI-1-PrPC was investigated to demonstrate the molecular regulatory pathway for APSCs self-renewal. Moreover, APSCs implantation in stroke model was also verified whether neurogenic property of APSCs could repair the ischemic insult of the stroke brain. Results: Activated FOXC1 regulated the proliferation of APSCs in a cell cycle-dependent manner, whereas FOXC1-mediated APSCs self-renewal was abolished in FOXC1 knockout mice (FOXC1-/- mice). Moreover, upregulation of STI-1 regulated by FOXC1 enhanced cell survival and self-renewal of APSCs through autocrine signaling of cellular prion protein (PrPC). Mouse brain explants STI-1 rescues the cortical phenotype in vitro and induces neurogenesis in the FOXC1 -/- mouse brain. Furthermore, administration of APSCs in ischemic brain restored the neuroglial microenvironment and improved neurological dysfunction. Conclusion: We identified a novel role for FOXC1 in the direct regulation of the STI-1-PrPC signaling pathway to promote cell proliferation and self-renewal of APSCs.
Collapse
|
13
|
Down-regulation of STIP1 regulate apoptosis and invasion of glioma cells via TRAP1/AKT signaling pathway. Cancer Genet 2019; 237:1-9. [PMID: 31447061 DOI: 10.1016/j.cancergen.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/15/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND In recent years, many studies have confirmed that STIP1 (phosphorylation-induced protein 1) is involved in the development and progression of various tumors. However, its potential role in glioma progression and the underlying mechanisms of glioma development remain unclear. METHODS We analyzed the expression of STIP1 in 35 human glioma tissue specimens of different grades, using 6 normal brain tissues for comparison. We transfected U87 and U251 cell lines with small interfering RNA (siRNA) to downregulate STIP1, and set up a negative control group and a blank group for comparison. The MTT assay was used to detect cell proliferation, and cell cycle progression and apoptosis were analyzed through flow cytometry. Transwell experiments were employed to detect the invasion and migration of STIP1-depleted and control U87 and U251 cells and western blotting was used to detect the expression of TRAP1/Akt pathway proteins. In addition, immunohistochemical analysis was used to reveal differences in expression and localization between transplanted tumor specimens of each group. RESULTS We observed a high expression of STIP1 in glioblastoma, MTT assay revealed a decreased cell proliferation rate in the STIP1-downregulated cells. Cell cycle analysis revealed an increased proportion of cells in G1 phase, as well as an increase in apoptosis, upon STIP1 downregulation. Western blotting showed that TRAP1, pAkt, and MMP2 expression was decreased upon STIP1 downregulation. In addition, TRAP1, ki-67, and MMP2 displayed a decreased expression in vivo. CONCLUSIONS STIP1 is highly expressed in glioblastoma compared to normal brain tissues. Downregulation of STIP1 in glioma cells reduces cell proliferation rate and invasion and increases cell apoptosis.
Collapse
|
14
|
Salvesen Ø, Tatzelt J, Tranulis MA. The prion protein in neuroimmune crosstalk. Neurochem Int 2018; 130:104335. [PMID: 30448564 DOI: 10.1016/j.neuint.2018.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/04/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023]
Abstract
The cellular prion protein (PrPC) is a medium-sized glycoprotein, attached to the cell surface by a glycosylphosphatidylinositol anchor. PrPC is encoded by a single-copy gene, PRNP, which is abundantly expressed in the central nervous system and at lower levels in non-neuronal cells, including those of the immune system. Evidence from experimental knockout of PRNP in rodents, goats, and cattle and the occurrence of a nonsense mutation in goat that prevents synthesis of PrPC, have shown that the molecule is non-essential for life. Indeed, no easily recognizable phenotypes are associate with a lack of PrPC, except the potentially advantageous trait that animals without PrPC cannot develop prion disease. This is because, in prion diseases, PrPC converts to a pathogenic "scrapie" conformer, PrPSc, which aggregates and eventually induces neurodegeneration. In addition, endogenous neuronal PrPC serves as a toxic receptor to mediate prion-induced neurotoxicity. Thus, PrPC is an interesting target for treatment of prion diseases. Although loss of PrPC has no discernable effect, alteration of its normal physiological function can have very harmful consequences. It is therefore important to understand cellular processes involving PrPC, and research of this topic has advanced considerably in the past decade. Here, we summarize data that indicate the role of PrPC in modulating immune signaling, with emphasis on neuroimmune crosstalk both under basal conditions and during inflammatory stress.
Collapse
Affiliation(s)
- Øyvind Salvesen
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway.
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany.
| | - Michael A Tranulis
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
15
|
Aiello FB, Guszczynski T, Li W, Hixon JA, Jiang Q, Hodge DL, Massignan T, Di Lisio C, Merchant A, Procopio AD, Bonetto V, Durum SK. IL-7-induced phosphorylation of the adaptor Crk-like and other targets. Cell Signal 2018; 47:131-141. [PMID: 29581031 DOI: 10.1016/j.cellsig.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
IL-7 is required for T cell differentiation and mature T cell homeostasis and promotes pro-B cell proliferation and survival. Tyrosine phosphorylation plays a central role in IL-7 signaling. We identified by two-dimensional electrophoresis followed by anti-phosphotyrosine immunoblotting and mass spectrometry sixteen tyrosine phosphorylated proteins from the IL-7-dependent cell line D1. IL-7 stimulation induced the phosphorylation of the proteins STI1, ATIC and hnRNPH, involved in pathways related to survival, proliferation and gene expression, respectively, and increased the phosphorylation of CrkL, a member of a family of adaptors including the highly homologous Crk isoforms CrkII and CrkI, important in multiple signaling pathways. We observed an increased phosphorylation of CrkL in murine pro-B cells and in murine and human T cells. In addition, IL-7 increased the association of CrkL with the transcription factor Stat5, essential for IL-7 pro-survival activity. The selective tyrosine kinase inhibitor Imatinib. counteracted the IL-7 pro-survival effect in D1 cells and decreased CrkL phosphorylation. These data suggested that CrkL could play a pro-survival role in IL-7-mediated signaling. We observed that pro-B cells also expressed, in addition to CrkL, the Crk isoforms CrkII and CrkI and therefore utilized pro-B cells conditionally deficient in all three to evaluate the role of these proteins. The observation that the IL-7 pro-survival effect was reduced in Crk/CrkL conditionally-deficient pro-B cells further pointed to a pro-survival role of these adaptors. To further evaluate the role of these proteins, gene expression studies were performed in Crk/CrkL conditionally-deficient pro-B cells. IL-7 decreased the transcription of the receptor LAIR1, which inhibits B cell proliferation, in a Crk/CrkL-dependent manner, suggesting that the Crk family of proteins may promote pro-B cell proliferation. Our data contribute to the understanding of IL-7 signaling and suggest the involvement of Crk family proteins in pathways promoting survival and proliferation.
Collapse
Affiliation(s)
- Francesca B Aiello
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| | - Tad Guszczynski
- Molecular Targets Laboratory, FCRDC, Bldg 560, Frederick, MD 21702, USA.
| | - Wenqing Li
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| | - Julie A Hixon
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| | - Qiong Jiang
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| | - Deborah L Hodge
- Laboratory of Experimental Medicine, FCRDC, Bldg 560, Frederick, MD 21702, USA.
| | - Tania Massignan
- Dulbecco Telethon Institute, IRCCS-Istituto di Ricerche Farmacologiche M. Negri, via La Masa 19, 20156 Milano, Italy
| | - Chiara Di Lisio
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, via dei Vestini, 66013 Chieti, Italy.
| | - Anand Merchant
- Center for Cancer Research, NIH, Bethesda, MD 20892, USA.
| | - Antonio D Procopio
- Department of Clinical and Medical Sciences, Marche Polytechnic University, via Tronto 10, 60100 Ancona, Italy.
| | - Valentina Bonetto
- Dulbecco Telethon Institute, IRCCS-Istituto di Ricerche Farmacologiche M. Negri, via La Masa 19, 20156 Milano, Italy.
| | - Scott K Durum
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| |
Collapse
|
16
|
Schmidt JC, Manhães L, Fragoso SP, Pavoni DP, Krieger MA. Involvement of STI1 protein in the differentiation process of Trypanosoma cruzi. Parasitol Int 2017; 67:131-139. [PMID: 29081390 DOI: 10.1016/j.parint.2017.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022]
Abstract
The protozoan Trypanosoma cruzi is a parasite exposed to several environmental stressors inside its invertebrate and vertebrate hosts. Although stress conditions are involved in its differentiation processes, little information is available about the stress response proteins engaged in these activities. This work reports the first known association of the stress-inducible protein 1 (STI1) with the cellular differentiation process in a unicellular eukaryote. Albeit STI1 expression is constitutive in epimastigotes and metacyclic trypomastigotes, higher protein levels were observed in late growth phase epimastigotes subjected to nutritional stress. Analysis by indirect immunofluorescence revealed that T. cruzi STI1 (TcSTI1) is located throughout the cell cytoplasm, with some cytoplasmic granules appearing in greater numbers in late growing epimastigotes and late growing epimastigotes subjected to nutritional stress. We observed that part of the fluorescence signal from both TcSTI1 and TcHSP70 colocalized around the nucleus. Gene silencing of sti1 in Trypanosoma brucei did not affect cell growth. Similarly, the growth of T. cruzi mutant parasites with a single allele sti1 gene knockout was not affected. However, the differentiation of epimastigotes in metacyclic trypomastigotes (metacyclogenesis) was compromised. Lower production rates and numbers of metacyclic trypomastigotes were obtained from the mutant parasites compared with the wild-type parasites. These data indicate that reduced levels of TcSTI1 decrease the rate of in vitro metacyclogenesis, suggesting that this protein may participate in the differentiation process of T. cruzi.
Collapse
Affiliation(s)
- Juliana C Schmidt
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil; Health Science Department, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, Santa Catarina, Brazil
| | - Lauro Manhães
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil
| | - Stenio P Fragoso
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil
| | - Daniela P Pavoni
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil.
| | - Marco A Krieger
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil; Instituto de Biologia Molecular do Paraná (IBMP), Curitiba, Paraná, Brazil
| |
Collapse
|
17
|
Ariza J, Hurtado J, Rogers H, Ikeda R, Dill M, Steward C, Creary D, Van de Water J, Martínez-Cerdeño V. Maternal autoimmune antibodies alter the dendritic arbor and spine numbers in the infragranular layers of the cortex. PLoS One 2017; 12:e0183443. [PMID: 28820892 PMCID: PMC5562324 DOI: 10.1371/journal.pone.0183443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
An association between maternal IgG antibodies reactive against proteins in fetal brain and an outcome of autism in the child has been identified. Using a mouse model of prenatal intraventricular administration of autism-specific maternal IgG, we demonstrated that these antibodies produce behavioral alterations similar to those in children with ASD. We previously demonstrated that these antibodies bind to radial glial stem cells (RG) and observed an increase in the number of divisions of translocating RG in the developing cortex. We also showed an alteration in brain size and as well as a generalized increased of neuronal volume in adult mice. Here, we used our intraventricular mouse model of antibody administration, followed by Golgi and Neurolucida analysis to demonstrate that during midstages of neurogenesis these maternal autism-specific antibodies produced a consistent decrease in the number of spines in the infragranular layers in the adult cortical areas analyzed. Specifically, in the frontal cortex basal dendrites of layer V neurons were decreased in length and volume, and both the total number of spines-mature and immature-and the spine density were lower than in the control neurons from the same region. Further, in the occipital cortex layer VI neurons presented with a decrease in the total number of spines and in the spine density in the apical dendrite, as well as decrease in the number of mature spines in the apical and basal dendrites. Interestingly, the time of exposure to these antibodies (E14.5) coincides with the generation of pyramidal neurons in layer V in the frontal cortex and in layer VI in the occipital cortex, following the normal rostro-caudal pattern of cortical cell generation. We recently demonstrated that one of the primary antigens recognized by these antibodies corresponds to stress-induced phosphoprotein 1 (STIP1). Here we hypothesize that the reduction in the access of newborn cells to STIP1 in the developing cortex may be responsible for the reduced dendritic arborization and number of spines we noted in the adult cortex.
Collapse
Affiliation(s)
- Jeanelle Ariza
- Department of Pathology and Laboratory Medicine, Sacramento, CA, United States of America
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, United States of America
| | - Jesus Hurtado
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, United States of America
| | - Haille Rogers
- Department of Pathology and Laboratory Medicine, Sacramento, CA, United States of America
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, United States of America
| | - Raymond Ikeda
- Department of Pathology and Laboratory Medicine, Sacramento, CA, United States of America
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, United States of America
| | - Michael Dill
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, United States of America
| | - Craig Steward
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, United States of America
| | - Donnay Creary
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, United States of America
| | - Judy Van de Water
- MIND Institute, Sacramento, CA, United States of America
- Department of Rheumatology/Allergy and Clinical Immunology, UC Davis, Davis, United States of America
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, Sacramento, CA, United States of America
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, United States of America
- MIND Institute, Sacramento, CA, United States of America
| |
Collapse
|
18
|
Miyakoshi LM, Marques-Coelho D, De Souza LER, Lima FRS, Martins VR, Zanata SM, Hedin-Pereira C. Evidence of a Cell Surface Role for Hsp90 Complex Proteins Mediating Neuroblast Migration in the Subventricular Zone. Front Cell Neurosci 2017; 11:138. [PMID: 28567003 PMCID: PMC5434112 DOI: 10.3389/fncel.2017.00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/26/2017] [Indexed: 11/30/2022] Open
Abstract
In most mammalian brains, the subventricular zone (SVZ) is a germinative layer that maintains neurogenic activity throughout adulthood. Neuronal precursors arising from this region migrate through the rostral migratory stream (RMS) and reach the olfactory bulbs where they differentiate and integrate into the local circuitry. Recently, studies have shown that heat shock proteins have an important role in cancer cell migration and blocking Hsp90 function was shown to hinder cell migration in the developing cerebellum. In this work, we hypothesize that chaperone complexes may have an important function regulating migration of neuronal precursors from the subventricular zone. Proteins from the Hsp90 complex are present in the postnatal SVZ as well as in the RMS. Using an in vitro SVZ explant model, we have demonstrated the expression of Hsp90 and Hop/STI1 by migrating neuroblasts. Treatment with antibodies against Hsp90 and co-chaperone Hop/STI1, as well as Hsp90 and Hsp70 inhibitors hinder neuroblast chain migration. Time-lapse videomicroscopy analysis revealed that cell motility and average migratory speed was decreased after exposure to both antibodies and inhibitors. Antibodies recognizing Hsp90, Hsp70, and Hop/STI1 were found bound to the membranes of cells from primary SVZ cultures and biotinylation assays demonstrated that Hsp70 and Hop/STI1 could be found on the external leaflet of neuroblast membranes. The latter could also be detected in conditioned medium samples obtained from cultivated SVZ cells. Our results suggest that chaperones Hsp90, Hsp70, and co-chaperone Hop/STI1, components of the Hsp90 complex, regulate SVZ neuroblast migration in a concerted manner through an extracellular mechanism.
Collapse
Affiliation(s)
- Leo M Miyakoshi
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Laboratory of Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Diego Marques-Coelho
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Laboratory of Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Luiz E R De Souza
- Department of Basic Pathology, Federal University of ParanáParaná, Brazil
| | - Flavia R S Lima
- Institute for Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Vilma R Martins
- International Research Center, A.C. Camargo Cancer CenterSão Paulo, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Federal University of ParanáParaná, Brazil
| | - Cecilia Hedin-Pereira
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Laboratory of Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,VPPLR-Fundação Oswaldo Cruz (Fiocruz)Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Lackie RE, Maciejewski A, Ostapchenko VG, Marques-Lopes J, Choy WY, Duennwald ML, Prado VF, Prado MAM. The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases. Front Neurosci 2017; 11:254. [PMID: 28559789 PMCID: PMC5433227 DOI: 10.3389/fnins.2017.00254] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
The accumulation of misfolded proteins in the human brain is one of the critical features of many neurodegenerative diseases, including Alzheimer's disease (AD). Assembles of beta-amyloid (Aβ) peptide—either soluble (oligomers) or insoluble (plaques) and of tau protein, which form neurofibrillary tangles, are the major hallmarks of AD. Chaperones and co-chaperones regulate protein folding and client maturation, but they also target misfolded or aggregated proteins for refolding or for degradation, mostly by the proteasome. They form an important line of defense against misfolded proteins and are part of the cellular quality control system. The heat shock protein (Hsp) family, particularly Hsp70 and Hsp90, plays a major part in this process and it is well-known to regulate protein misfolding in a variety of diseases, including tau levels and toxicity in AD. However, the role of Hsp90 in regulating protein misfolding is not yet fully understood. For example, knockdown of Hsp90 and its co-chaperones in a Caenorhabditis elegans model of Aβ misfolding leads to increased toxicity. On the other hand, the use of Hsp90 inhibitors in AD mouse models reduces Aβ toxicity, and normalizes synaptic function. Stress-inducible phosphoprotein 1 (STI1), an intracellular co-chaperone, mediates the transfer of clients from Hsp70 to Hsp90. Importantly, STI1 has been shown to regulate aggregation of amyloid-like proteins in yeast. In addition to its intracellular function, STI1 can be secreted by diverse cell types, including astrocytes and microglia and function as a neurotrophic ligand by triggering signaling via the cellular prion protein (PrPC). Extracellular STI1 can prevent Aβ toxic signaling by (i) interfering with Aβ binding to PrPC and (ii) triggering pro-survival signaling cascades. Interestingly, decreased levels of STI1 in C. elegans can also increase toxicity in an amyloid model. In this review, we will discuss the role of intracellular and extracellular STI1 and the Hsp70/Hsp90 chaperone network in mechanisms underlying protein misfolding in neurodegenerative diseases, with particular focus on AD.
Collapse
Affiliation(s)
- Rachel E Lackie
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Program in Neuroscience, University of Western OntarioLondon, ON, Canada
| | - Andrzej Maciejewski
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Department of Biochemistry, University of Western OntarioLondon, ON, Canada
| | - Valeriy G Ostapchenko
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada
| | - Jose Marques-Lopes
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, University of Western OntarioLondon, ON, Canada
| | - Martin L Duennwald
- Department of Pathology and Laboratory Medicine, University of Western OntarioLondon, ON, Canada
| | - Vania F Prado
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Program in Neuroscience, University of Western OntarioLondon, ON, Canada.,Department of Physiology and Pharmacology, University of Western OntarioLondon, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, ON, Canada
| | - Marco A M Prado
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Program in Neuroscience, University of Western OntarioLondon, ON, Canada.,Department of Physiology and Pharmacology, University of Western OntarioLondon, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
20
|
Abstract
The misfolding of the cellular prion protein (PrPC) causes fatal neurodegenerative diseases. Yet PrPC is highly conserved in mammals, suggesting that it exerts beneficial functions preventing its evolutionary elimination. Ablation of PrPC in mice results in well-defined structural and functional alterations in the peripheral nervous system. Many additional phenotypes were ascribed to the lack of PrPC, but some of these were found to arise from genetic artifacts of the underlying mouse models. Here, we revisit the proposed physiological roles of PrPC in the central and peripheral nervous systems and highlight the need for their critical reassessment using new, rigorously controlled animal models.
Collapse
Affiliation(s)
- Marie-Angela Wulf
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland
| | - Assunta Senatore
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| |
Collapse
|
21
|
Dias MVS, Teixeira BL, Rodrigues BR, Sinigaglia-Coimbra R, Porto-Carreiro I, Roffé M, Hajj GNM, Martins VR. PRNP/prion protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy. Autophagy 2016; 12:2113-2128. [PMID: 27629560 DOI: 10.1080/15548627.2016.1226735] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prion protein modulates many cellular functions including the secretion of trophic factors by astrocytes. Some of these factors are found in exosomes, which are formed within multivesicular bodies (MVBs) and secreted into the extracellular space to modulate cell-cell communication. The mechanisms underlying exosome biogenesis were not completely deciphered. Here, we demonstrate that primary cultures of astrocytes and fibroblasts from prnp-null mice secreted lower levels of exosomes than wild-type cells. Furthermore, prnp-null astrocytes exhibited reduced MVB formation and increased autophagosome formation. The reconstitution of PRNP expression at the cell membrane restored exosome secretion in PRNP-deficient astrocytes, whereas macroautophagy/autophagy inhibition via BECN1 depletion reestablished exosome release in these cells. Moreover, the PRNP octapeptide repeat domain was necessary to promote exosome secretion and to impair the formation of the CAV1-dependent ATG12-ATG5 cytoplasmic complex that drives autophagosome formation. Accordingly, higher levels of CAV1 were found in lipid raft domains instead of in the cytoplasm in prnp-null cells. Collectively, these findings demonstrate that PRNP supports CAV1-suppressed autophagy to protect MVBs from sequestration into phagophores, thus facilitating exosome secretion.
Collapse
Affiliation(s)
- Marcos V S Dias
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Bianca L Teixeira
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Bruna R Rodrigues
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | | | | | - Martín Roffé
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Glaucia N M Hajj
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Vilma R Martins
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| |
Collapse
|
22
|
Peggion C, Bertoli A, Sorgato MC. Almost a century of prion protein(s): From pathology to physiology, and back to pathology. Biochem Biophys Res Commun 2016; 483:1148-1155. [PMID: 27581199 DOI: 10.1016/j.bbrc.2016.07.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022]
Abstract
Prions are one of the few pathogens whose name is renowned at all population levels, after the dramatic years pervaded by the fear of eating prion-infected food. If now this, somehow irrational, scare of bovine meat inexorably transmitting devastating brain disorders is largely subdued, several prion-related issues are still unsolved, precluding the design of therapeutic approaches that could slow, if not halt, prion diseases. One unsolved issue is, for example, the role of the prion protein (PrPC), whole conformational misfolding originates the prion but whose physiologic reason d'etre in neurons, and in cells at large, remains enigmatic. Preceded by a historical outline, the present review will discuss the functional pleiotropicity ascribed to PrPC, and whether this aspect could fall, at least in part, into a more concise framework. It will also be devoted to radically different perspectives for PrPC, which have been recently brought to the attention of the scientific world with unexpected force. Finally, it will discuss the possible reasons allowing an evolutionary conserved and benign protein, as PrPC is, to turn into a high affinity receptor for pathologic misfolded oligomers, and to transmit their toxic message into neurons.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, Via Bassi 58/B, 35131 Padova, Italy.
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - M Catia Sorgato
- Department of Biomedical Sciences, University of Padova, Via Bassi 58/B, 35131 Padova, Italy; C.N.R. Institute of Neuroscience, University of Padova, Via Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
23
|
de Lacerda TCS, Costa-Silva B, Giudice FS, Dias MVS, de Oliveira GP, Teixeira BL, Dos Santos TG, Martins VR. Prion protein binding to HOP modulates the migration and invasion of colorectal cancer cells. Clin Exp Metastasis 2016; 33:441-51. [PMID: 27112151 DOI: 10.1007/s10585-016-9788-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/29/2016] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed malignancies. The generation of conventional treatments has improved, but approximately 50 % of patients with CRC who undergo potentially curative surgery ultimately relapse and die, usually as a consequence of metastatic disease. Our previous findings showed that engagement of the cellular prion protein (PrP(C)) to its ligand HSP70/90 heat shock organizing protein (HOP) induces proliferation of glioblastomas. In addition, PrP(C) has been described as an important modulator of colorectal tumor growth. Here, we investigated the biological relevance of the PrP(C)-HOP interaction in CRC cells. We demonstrate that HOP induced the migration and invasion of CRC cell lines in a PrP(C)-dependent manner and that phosphorylation of the ERK1/2 pathway is a downstream mediator of these effects. Additionally, we show that a HOP peptide with the ability to bind PrP(C) and abolish the PrP(C)-HOP interaction inhibited the migration and invasion of CRC cells. Together, these data indicate that the disruption of the PrP(C)-HOP complex could be a potential therapeutic target for modulating the migratory and invasive cellular properties that lead to metastatic CRC.
Collapse
Affiliation(s)
- Tonielli Cristina Sousa de Lacerda
- International Research Center, A.C.Camargo Cancer Center, Rua Taguá, 440 - Liberdade, São Paulo, SP, 01508-010, Brazil.,Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Av. Prof. Lineu Prestes, 748 - Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Bruno Costa-Silva
- International Research Center, A.C.Camargo Cancer Center, Rua Taguá, 440 - Liberdade, São Paulo, SP, 01508-010, Brazil.,Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medical College, New York, NY, 10021, USA.,Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, Doca de Pedrouços, 1400-038, Lisbon, Portugal
| | - Fernanda Salgueiredo Giudice
- International Research Center, A.C.Camargo Cancer Center, Rua Taguá, 440 - Liberdade, São Paulo, SP, 01508-010, Brazil
| | - Marcos Vinicios Salles Dias
- International Research Center, A.C.Camargo Cancer Center, Rua Taguá, 440 - Liberdade, São Paulo, SP, 01508-010, Brazil
| | - Gabriela Pintar de Oliveira
- International Research Center, A.C.Camargo Cancer Center, Rua Taguá, 440 - Liberdade, São Paulo, SP, 01508-010, Brazil
| | - Bianca Luise Teixeira
- International Research Center, A.C.Camargo Cancer Center, Rua Taguá, 440 - Liberdade, São Paulo, SP, 01508-010, Brazil
| | - Tiago Goss Dos Santos
- International Research Center, A.C.Camargo Cancer Center, Rua Taguá, 440 - Liberdade, São Paulo, SP, 01508-010, Brazil
| | - Vilma Regina Martins
- International Research Center, A.C.Camargo Cancer Center, Rua Taguá, 440 - Liberdade, São Paulo, SP, 01508-010, Brazil.
| |
Collapse
|
24
|
Bakkebø MK, Mouillet-Richard S, Espenes A, Goldmann W, Tatzelt J, Tranulis MA. The Cellular Prion Protein: A Player in Immunological Quiescence. Front Immunol 2015; 6:450. [PMID: 26388873 PMCID: PMC4557099 DOI: 10.3389/fimmu.2015.00450] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/19/2015] [Indexed: 01/09/2023] Open
Abstract
Despite intensive studies since the 1990s, the physiological role of the cellular prion protein (PrP(C)) remains elusive. Here, we present a novel concept suggesting that PrP(C) contributes to immunological quiescence in addition to cell protection. PrP(C) is highly expressed in diverse organs that by multiple means are particularly protected from inflammation, such as the brain, eye, placenta, pregnant uterus, and testes, while at the same time it is expressed in most cells of the lymphoreticular system. In this paradigm, PrP(C) serves two principal roles: to modulate the inflammatory potential of immune cells and to protect vulnerable parenchymal cells against noxious insults generated through inflammation. Here, we review studies of PrP(C) physiology in view of this concept.
Collapse
Affiliation(s)
- Maren K. Bakkebø
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Arild Espenes
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Wilfred Goldmann
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Jörg Tatzelt
- Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael A. Tranulis
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway,*Correspondence: Michael A. Tranulis, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Campus Adamstuen, Oslo 0033, Norway,
| |
Collapse
|
25
|
Vilches S, Vergara C, Nicolás O, Mata Á, Del Río JA, Gavín R. Domain-Specific Activation of Death-Associated Intracellular Signalling Cascades by the Cellular Prion Protein in Neuroblastoma Cells. Mol Neurobiol 2015; 53:4438-48. [PMID: 26250617 DOI: 10.1007/s12035-015-9360-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
The biological functions of the cellular prion protein remain poorly understood. In fact, numerous studies have aimed to determine specific functions for the different protein domains. Studies of cellular prion protein (PrP(C)) domains through in vivo expression of molecules carrying internal deletions in a mouse Prnp null background have provided helpful data on the implication of the protein in signalling cascades in affected neurons. Nevertheless, understanding of the mechanisms underlying the neurotoxicity induced by these PrP(C) deleted forms is far from complete. To better define the neurotoxic or neuroprotective potential of PrP(C) N-terminal domains, and to overcome the heterogeneity of results due to the lack of a standardized model, we used neuroblastoma cells to analyse the effects of overexpressing PrP(C) deleted forms. Results indicate that PrP(C) N-terminal deleted forms were properly processed through the secretory pathway. However, PrPΔF35 and PrPΔCD mutants led to death by different mechanisms sharing loss of alpha-cleavage and activation of caspase-3. Our data suggest that both gain-of-function and loss-of-function pathogenic mechanisms may be associated with N-terminal domains and may therefore contribute to neurotoxicity in prion disease. Dissecting the molecular response induced by PrPΔF35 may be the key to unravelling the physiological and pathological functions of the prion protein.
Collapse
Affiliation(s)
- Silvia Vilches
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Vergara
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Oriol Nicolás
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ágata Mata
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José A Del Río
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
26
|
Baindur-Hudson S, Edkins AL, Blatch GL. Hsp70/Hsp90 organising protein (hop): beyond interactions with chaperones and prion proteins. Subcell Biochem 2015; 78:69-90. [PMID: 25487016 DOI: 10.1007/978-3-319-11731-7_3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Hsp70/Hsp90 organising protein (Hop), also known as stress-inducible protein 1 (STI1), has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins. Consequently, Hop is implicated in a number of key signalling pathways, including aberrant pathways leading to cancer. However, Hop is also secreted and it is now well established that Hop also serves as a receptor for the prion protein, PrP(C). The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrP(C). While Hop has been shown to have various cellular functions, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseases states.
Collapse
Affiliation(s)
- Swati Baindur-Hudson
- College of Health and Biomedicine, Victoria University, VIC 8001, Melbourne, Australia,
| | | | | |
Collapse
|
27
|
Martínez-Cerdeño V, Camacho J, Fox E, Miller E, Ariza J, Kienzle D, Plank K, Noctor SC, Van de Water J. Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals. Cereb Cortex 2014; 26:374-383. [PMID: 25535268 DOI: 10.1093/cercor/bhu291] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine
- MIND Institute
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Jasmin Camacho
- Department of Pathology and Laboratory Medicine
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Elizabeth Fox
- MIND Institute
- Department of Rheumatology/Allergy and Clinical Immunology, UC Davis, Davis, CA 95616, USA
| | - Elaine Miller
- Department of Pathology and Laboratory Medicine
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Jeanelle Ariza
- Department of Pathology and Laboratory Medicine
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Devon Kienzle
- Department of Pathology and Laboratory Medicine
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Kaela Plank
- Department of Pathology and Laboratory Medicine
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Stephen C Noctor
- MIND Institute
- Department of Psychiatry and Behavioral Sciences, UC Davis, Sacramento, CA 95817, USA
| | - Judy Van de Water
- MIND Institute
- Department of Rheumatology/Allergy and Clinical Immunology, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
28
|
Liebert A, Bicknell B, Adams R. Prion Protein Signaling in the Nervous System—A Review and Perspective. ACTA ACUST UNITED AC 2014. [DOI: 10.4137/sti.s12319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Prion protein (PrPC) was originally known as the causative agent of transmissible spongiform encephalopathy (TSE) but with recent research, its true function in cells is becoming clearer. It is known to act as a scaffolding protein, binding multiple ligands at the cell membrane and to be involved in signal transduction, passing information from the extracellular matrix (ECM) to the cytoplasm. Its role in the coordination of transmitters at the synapse, glyapse, and gap junction and in short- and long-range neurotrophic signaling gives PrPC a major part in neural transmission and nervous system signaling. It acts to regulate cellular function in multiple targets through its role as a controller of redox status and calcium ion flux. Given the importance of PrPC in cell physiology, this review considers its potential role in disease apart from TSE. The putative functions of PrPC point to involvement in neurodegenerative disease, neuropathic pain, chronic headache, and inflammatory disease including neuroinflammatory disease of the nervous system. Potential targets for the treatment of disease influenced by PrPC are discussed.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Health Science, University of Sydney, Australia
| | - Brian Bicknell
- Faculty of Health Science, Australian Catholic University, Australia
| | | |
Collapse
|
29
|
Lee YJ, Baskakov IV. The cellular form of the prion protein guides the differentiation of human embryonic stem cells into neuron-, oligodendrocyte-, and astrocyte-committed lineages. Prion 2014; 8:266-75. [PMID: 25486050 DOI: 10.4161/pri.32079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prion protein, PrP(C), is a glycoprotein that is expressed on the cell surface beginning with the early stages of embryonic stem cell differentiation. Previously, we showed that ectopic expression of PrP(C) in human embryonic stem cells (hESCs) triggered differentiation toward endodermal, mesodermal, and ectodermal lineages, whereas silencing of PrP(C) suppressed differentiation toward ectodermal but not endodermal or mesodermal lineages. Considering that PrP(C) might be involved in controlling the balance between cells of different lineages, the current study was designed to test whether PrP(C) controls differentiation of hESCs into cells of neuron-, oligodendrocyte-, and astrocyte-committed lineages. PrP(C) was silenced in hESCs cultured under three sets of conditions that were previously shown to induce hESCs differentiation into predominantly neuron-, oligodendrocyte-, and astrocyte-committed lineages. We found that silencing of PrP(C) suppressed differentiation toward all three lineages. Similar results were observed in all three protocols, arguing that the effect of PrP(C) was independent of differentiation conditions employed. Moreover, switching PrP(C) expression during a differentiation time course revealed that silencing PrP(C) expression during the very initial stage that corresponds to embryonic bodies has a more significant impact than silencing at later stages of differentiation. The current work illustrates that PrP(C) controls differentiation of hESCs toward neuron-, oligodendrocyte-, and astrocyte-committed lineages and is likely involved at the stage of uncommitted neural progenitor cells rather than lineage-committed neural progenitors.
Collapse
Key Words
- CNTF, ciliary neurotrophic factor
- EBs, embryoid bodies
- EFG, epidermal growth factor
- ESCs, embryonic stem cells
- GFAP, glial fibrillary acidic protein
- GRM, glial restrictive medium
- Lenti-ShPrPC, lentiviral vector expressing short hairpin RNA against PrPC
- Lenti-ShScram, lentiviral vector expressing scrambled shRNA
- Lenti-TetR, lentiviral vector expressing tetracycline repressor
- MEF-CM, mouse embryonic feeder-conditioned medium
- MEFs, mouse embryonic fibroblasts
- NDM, neuronal differentiation medium
- NIM, neural induction medium
- NPM, neural proliferation medium
- Olig1, a marker of oligodendrocyte-committed lineages
- PrPC, normal, cellular isoform of the prion protein
- RA, retinoic acid
- Syn, synapsin I
- TH, tyrosine hydroxylase
- Tet, tetracycline
- TetR, tetracycline repressor
- bFGF, basic fibroblast growth factor
- hES+TetR+ShPrPC, hESCs transfected with Lenti-TetR and Lenti-ShPrPC
- hES+TetR+ShScram, hESCs transfected with Lenti-TetR and Lenti-ShScram
- hESCs, human ESCs
- human embryonic stem cells
- neural progenitor cells
- neuron-committed lineages
- prion protein
- stem cell differentiation
Collapse
Affiliation(s)
- Young Jin Lee
- a Center for Biomedical Engineering and; Technology Department of Anatomy and Neurobiology ; University of Maryland School of Medicine ; Baltimore , MD USA
| | | |
Collapse
|
30
|
Halliez S, Passet B, Martin-Lannerée S, Hernandez-Rapp J, Laude H, Mouillet-Richard S, Vilotte JL, Béringue V. To develop with or without the prion protein. Front Cell Dev Biol 2014; 2:58. [PMID: 25364763 PMCID: PMC4207017 DOI: 10.3389/fcell.2014.00058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/22/2014] [Indexed: 12/23/2022] Open
Abstract
The deletion of the cellular form of the prion protein (PrPC) in mouse, goat, and cattle has no drastic phenotypic consequence. This stands in apparent contradiction with PrPC quasi-ubiquitous expression and conserved primary and tertiary structures in mammals, and its pivotal role in neurodegenerative diseases such as prion and Alzheimer's diseases. In zebrafish embryos, depletion of PrP ortholog leads to a severe loss-of-function phenotype. This raises the question of a potential role of PrPC in the development of all vertebrates. This view is further supported by the early expression of the PrPC encoding gene (Prnp) in many tissues of the mouse embryo, the transient disruption of a broad number of cellular pathways in early Prnp−/− mouse embryos, and a growing body of evidence for PrPC involvement in the regulation of cell proliferation and differentiation in various types of mammalian stem cells and progenitors. Finally, several studies in both zebrafish embryos and in mammalian cells and tissues in formation support a role for PrPC in cell adhesion, extra-cellular matrix interactions and cytoskeleton. In this review, we summarize and compare the different models used to decipher PrPC functions at early developmental stages during embryo- and organo-genesis and discuss their relevance.
Collapse
Affiliation(s)
- Sophie Halliez
- Institut National de la Recherche Agronomique, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Bruno Passet
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Séverine Martin-Lannerée
- Institut National de la Santé et de la Recherche Médicale, UMR-S1124 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Julia Hernandez-Rapp
- Institut National de la Santé et de la Recherche Médicale, UMR-S1124 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Hubert Laude
- Institut National de la Recherche Agronomique, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Sophie Mouillet-Richard
- Institut National de la Santé et de la Recherche Médicale, UMR-S1124 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Jean-Luc Vilotte
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Vincent Béringue
- Institut National de la Recherche Agronomique, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| |
Collapse
|
31
|
Martin-Lannerée S, Hirsch TZ, Hernandez-Rapp J, Halliez S, Vilotte JL, Launay JM, Mouillet-Richard S. PrP(C) from stem cells to cancer. Front Cell Dev Biol 2014; 2:55. [PMID: 25364760 PMCID: PMC4207012 DOI: 10.3389/fcell.2014.00055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/11/2014] [Indexed: 12/23/2022] Open
Abstract
The cellular prion protein PrP(C) was initially discovered as the normal counterpart of the pathological scrapie prion protein PrP(Sc), the main component of the infectious agent of Transmissible Spongiform Encephalopathies. While clues as to the physiological function of this ubiquitous protein were greatly anticipated from the development of knockout animals, PrP-null mice turned out to be viable and to develop without major phenotypic abnormalities. Notwithstanding, the discovery that hematopoietic stem cells from PrP-null mice have impaired long-term repopulating potential has set the stage for investigating into the role of PrP(C) in stem cell biology. A wealth of data have now exemplified that PrP(C) is expressed in distinct types of stem cells and regulates their self-renewal as well as their differentiation potential. A role for PrP(C) in the fate restriction of embryonic stem cells has further been proposed. Paralleling these observations, an overexpression of PrP(C) has been documented in various types of tumors. In line with the contribution of PrP(C) to stemness and to the proliferation of cancer cells, PrP(C) was recently found to be enriched in subpopulations of tumor-initiating cells. In the present review, we summarize the current knowledge of the role played by PrP(C) in stem cell biology and discuss how the subversion of its function may contribute to cancer progression.
Collapse
Affiliation(s)
- Séverine Martin-Lannerée
- Toxicology, Pharmacology and Cellular Signaling, INSERM UMR-S1124 Paris, France ; Toxicology, Pharmacology and Cellular Signaling, Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Théo Z Hirsch
- Toxicology, Pharmacology and Cellular Signaling, INSERM UMR-S1124 Paris, France ; Toxicology, Pharmacology and Cellular Signaling, Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Julia Hernandez-Rapp
- Toxicology, Pharmacology and Cellular Signaling, INSERM UMR-S1124 Paris, France ; Toxicology, Pharmacology and Cellular Signaling, Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France ; Université Paris Sud 11, ED419 Biosigne Orsay, France
| | - Sophie Halliez
- U892 Virologie et Immunologie Moléculaires, INRA Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- UMR1313 Génétique Animale et Biologie Intégrative, INRA Jouy-en-Josas, France
| | - Jean-Marie Launay
- AP-HP Service de Biochimie, Fondation FondaMental, INSERM U942 Hôpital Lariboisière Paris, France ; Pharma Research Department, F. Hoffmann-La-Roche Ltd. Basel, Switzerland
| | - Sophie Mouillet-Richard
- Toxicology, Pharmacology and Cellular Signaling, INSERM UMR-S1124 Paris, France ; Toxicology, Pharmacology and Cellular Signaling, Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| |
Collapse
|
32
|
Zhang S, Wu D, Wang J, Wang Y, Wang G, Yang M, Yang X. Stress protein expression in early phase spinal cord ischemia/reperfusion injury. Neural Regen Res 2014; 8:2225-35. [PMID: 25206532 PMCID: PMC4146036 DOI: 10.3969/j.issn.1673-5374.2013.24.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/17/2013] [Indexed: 12/05/2022] Open
Abstract
Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n > 2) in rabbits with spinal cord ischemia/reperfusion injury. Of these proteins, stress-related proteins included protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70. In this study, we established New Zealand rabbit models of spinal cord ischemia/reperfusion injury by abdominal aorta occlusion. Results demonstrated that hind limb function initially improved after spinal cord ischemia/reperfusion injury, but then deteriorated. The pathological morphology of the spinal cord became aggravated, but lessened 24 hours after reperfusion. However, the numbers of motor neurons and interneurons in the spinal cord gradually decreased. The expression of protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70 was induced by ischemia/reperfusion injury. The expression of these proteins increased within 12 hours after reperfusion, and then decreased, reached a minimum at 24 hours, but subsequently increased again to similar levels seen at 6–12 hours, showing a characterization of induction-inhibition-induction. These three proteins were expressed only in cytoplasm but not in the nuclei. Moreover, the expression was higher in interneurons than in motor neurons, and the survival rate of interneurons was greater than that of motor neurons. It is assumed that the expression of stress-related proteins exhibited a protective effect on neurons.
Collapse
Affiliation(s)
- Shanyong Zhang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Dankai Wu
- Team of Skeletal Trauma, Department of Orthopedics, the Second Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Jincheng Wang
- Team of Skeletal Trauma, Department of Orthopedics, the Second Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yongming Wang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Guoxiang Wang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Maoguang Yang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Xiaoyu Yang
- Team of Spine and Spinal Cord, Department of Orthopedics, China-Japan Friendship Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
33
|
Carvalho da Fonseca AC, Wang H, Fan H, Chen X, Zhang I, Zhang L, Lima FRS, Badie B. Increased expression of stress inducible protein 1 in glioma-associated microglia/macrophages. J Neuroimmunol 2014; 274:71-7. [PMID: 25042352 DOI: 10.1016/j.jneuroim.2014.06.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/25/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Factors released by glioma-associated microglia/macrophages (GAMs) play an important role in the growth and infiltration of tumors. We have previously demonstrated that the co-chaperone stress-inducible protein 1 (STI1) secreted by microglia promotes proliferation and migration of human glioblastoma (GBM) cell lines in vitro. In the present study, in order to investigate the role of STI1 in a physiological context, we used a glioma model to evaluate STI1 expression in vivo. Here, we demonstrate that STI1 expression in both the tumor and in the infiltrating GAMs and lymphocytes significantly increased with tumor progression. Interestingly, high expression of STI1 was observed in macrophages and lymphocytes that infiltrated brain tumors, whereas STI1 expression in the circulating blood monocytes and lymphocytes remained unchanged. Our results correlate, for the first time, the expression of STI1 and glioma progression, and suggest that STI1 expression in GAMs and infiltrating lymphocytes is modulated by the brain tumor microenvironment.
Collapse
Affiliation(s)
| | - Huaqing Wang
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Haitao Fan
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Xuebo Chen
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, PR China
| | - Ian Zhang
- Division of Neurosurgery, Department of Cancer Immunotherapeutics & Tumor Immunology, City of Hope Beckman Research Institute, Duarte, CA 91010, United States
| | - Leying Zhang
- Division of Neurosurgery, Department of Cancer Immunotherapeutics & Tumor Immunology, City of Hope Beckman Research Institute, Duarte, CA 91010, United States
| | - Flavia Regina Souza Lima
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Behnam Badie
- Division of Neurosurgery, Department of Cancer Immunotherapeutics & Tumor Immunology, City of Hope Beckman Research Institute, Duarte, CA 91010, United States.
| |
Collapse
|
34
|
STI1 antagonizes cytoskeleton collapse mediated by small GTPase Rnd1 and regulates neurite growth. Exp Cell Res 2014; 324:84-91. [PMID: 24690281 DOI: 10.1016/j.yexcr.2014.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/19/2014] [Accepted: 03/22/2014] [Indexed: 01/10/2023]
Abstract
Rnd proteins comprise a branch of the Rho family of small GTP-binding proteins, which have been implicated in rearrangements of the actin cytoskeleton and microtubule dynamics. Particularly in the nervous system, Rnd family proteins regulate neurite formation, dendrite development and axonal branching. A secreted form of the co-chaperone Stress-Inducible Protein 1 (STI1) has been described as a prion protein partner that is involved in several processes of the nervous system, such as neurite outgrowth, neuroprotection, astrocyte development, and the self-renewal of neural progenitor cells. We show that cytoplasmic STI1 directly interacts with the GTPase Rnd1. This interaction is specific for the Rnd1 member of the Rnd family. In the COS collapse assay, overexpression of STI1 prevents Rnd1-plexin-A1-mediated cytoskeleton retraction. In PC-12 cells, overexpression of STI1 enhances neurite outgrowth in cellular processes initially established by Rnd1. Therefore, we propose that STI1 participates in Rnd1-induced signal transduction pathways that are involved in the dynamics of the actin cytoskeleton.
Collapse
|
35
|
Mick E, McGough J, Deutsch CK, Frazier JA, Kennedy D, Goldberg RJ. Genome-wide association study of proneness to anger. PLoS One 2014; 9:e87257. [PMID: 24489884 PMCID: PMC3905014 DOI: 10.1371/journal.pone.0087257] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 12/27/2013] [Indexed: 11/19/2022] Open
Abstract
Background Community samples suggest that approximately 1 in 20 children and adults exhibit clinically significant anger, hostility, and aggression. Individuals with dysregulated emotional control have a greater lifetime burden of psychiatric morbidity, severe impairment in role functioning, and premature mortality due to cardiovascular disease. Methods With publically available data secured from dbGaP, we conducted a genome-wide association study of proneness to anger using the Spielberger State-Trait Anger Scale in the Atherosclerosis Risk in Communities (ARIC) study (n = 8,747). Results Subjects were, on average, 54 (range 45–64) years old at baseline enrollment, 47% (n = 4,117) were male, and all were of European descent by self-report. The mean Angry Temperament and Angry Reaction scores were 5.8±1.8 and 7.6±2.2. We observed a nominally significant finding (p = 2.9E-08, λ = 1.027 - corrected pgc = 2.2E-07, λ = 1.0015) on chromosome 6q21 in the gene coding for the non-receptor protein-tyrosine kinase, Fyn. Conclusions Fyn interacts with NDMA receptors and inositol-1,4,5-trisphosphate (IP3)-gated channels to regulate calcium influx and intracellular release in the post-synaptic density. These results suggest that signaling pathways regulating intracellular calcium homeostasis, which are relevant to memory, learning, and neuronal survival, may in part underlie the expression of Angry Temperament.
Collapse
Affiliation(s)
- Eric Mick
- Department of Quantitative Health Sciences and the Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| | - James McGough
- Division of Child and Adolescent Psychiatry, University of California, Los Angeles Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Los Angeles California, United States of America
| | - Curtis K. Deutsch
- Eunice Kennedy Shriver Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jean A. Frazier
- Psychiatry Department, Division of Child and Adolescent Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - David Kennedy
- Psychiatry Department, Division of Neuroinformatics and the Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robert J. Goldberg
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
36
|
Hajj GNM, Arantes CP, Dias MVS, Roffé M, Costa-Silva B, Lopes MH, Porto-Carreiro I, Rabachini T, Lima FR, Beraldo FH, Prado MMA, Linden R, Martins VR. The unconventional secretion of stress-inducible protein 1 by a heterogeneous population of extracellular vesicles. Cell Mol Life Sci 2013; 70:3211-27. [PMID: 23543276 PMCID: PMC11113396 DOI: 10.1007/s00018-013-1328-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 01/03/2023]
Abstract
The co-chaperone stress-inducible protein 1 (STI1) is released by astrocytes, and has important neurotrophic properties upon binding to prion protein (PrP(C)). However, STI1 lacks a signal peptide and pharmacological approaches pointed that it does not follow a classical secretion mechanism. Ultracentrifugation, size exclusion chromatography, electron microscopy, vesicle labeling, and particle tracking analysis were used to identify three major types of extracellular vesicles (EVs) released from astrocytes with sizes ranging from 20-50, 100-200, and 300-400 nm. These EVs carry STI1 and present many exosomal markers, even though only a subpopulation had the typical exosomal morphology. The only protein, from those evaluated here, present exclusively in vesicles that have exosomal morphology was PrP(C). STI1 partially co-localized with Rab5 and Rab7 in endosomal compartments, and a dominant-negative for vacuolar protein sorting 4A (VPS4A), required for formation of multivesicular bodies (MVBs), impaired EV and STI1 release. Flow cytometry and PK digestion demonstrated that STI1 localized to the outer leaflet of EVs, and its association with EVs greatly increased STI1 activity upon PrP(C)-dependent neuronal signaling. These results indicate that astrocytes secrete a diverse population of EVs derived from MVBs that contain STI1 and suggest that the interaction between EVs and neuronal surface components enhances STI1-PrP(C) signaling.
Collapse
Affiliation(s)
- Glaucia N. M. Hajj
- International Research Center, A.C. Camargo Hospital, Rua Taguá 540, São Paulo, 01508-010 Brazil
- National Institute for Translational Neuroscience and National Institute of Oncogenomics, São Paulo, Brazil
| | - Camila P. Arantes
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Marcos Vinicios Salles Dias
- International Research Center, A.C. Camargo Hospital, Rua Taguá 540, São Paulo, 01508-010 Brazil
- National Institute for Translational Neuroscience and National Institute of Oncogenomics, São Paulo, Brazil
| | - Martín Roffé
- International Research Center, A.C. Camargo Hospital, Rua Taguá 540, São Paulo, 01508-010 Brazil
- National Institute for Translational Neuroscience and National Institute of Oncogenomics, São Paulo, Brazil
| | - Bruno Costa-Silva
- International Research Center, A.C. Camargo Hospital, Rua Taguá 540, São Paulo, 01508-010 Brazil
- National Institute for Translational Neuroscience and National Institute of Oncogenomics, São Paulo, Brazil
| | - Marilene H. Lopes
- Department of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isabel Porto-Carreiro
- Instituto de Biofisica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Flávia R. Lima
- Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávio H. Beraldo
- Department of Anatomy and Cell Biology and Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, Canada
| | - Marco M. A. Prado
- Department of Anatomy and Cell Biology and Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, Canada
| | - Rafael Linden
- Instituto de Biofisica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vilma R. Martins
- International Research Center, A.C. Camargo Hospital, Rua Taguá 540, São Paulo, 01508-010 Brazil
- National Institute for Translational Neuroscience and National Institute of Oncogenomics, São Paulo, Brazil
| |
Collapse
|
37
|
Soares IN, Caetano FA, Pinder J, Rodrigues BR, Beraldo FH, Ostapchenko VG, Durette C, Pereira GS, Lopes MH, Queiroz-Hazarbassanov N, Cunha IW, Sanematsu PI, Suzuki S, Bleggi-Torres LF, Schild-Poulter C, Thibault P, Dellaire G, Martins VR, Prado VF, Prado MAM. Regulation of stress-inducible phosphoprotein 1 nuclear retention by protein inhibitor of activated STAT PIAS1. Mol Cell Proteomics 2013; 12:3253-70. [PMID: 23938469 DOI: 10.1074/mcp.m113.031005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stress-inducible phosphoprotein 1 (STI1), a cochaperone for Hsp90, has been shown to regulate multiple pathways in astrocytes, but its contributions to cellular stress responses are not fully understood. We show that in response to irradiation-mediated DNA damage stress STI1 accumulates in the nucleus of astrocytes. Also, STI1 haploinsufficiency decreases astrocyte survival after irradiation. Using yeast two-hybrid screenings we identified several nuclear proteins as STI1 interactors. Overexpression of one of these interactors, PIAS1, seems to be specifically involved in STI1 nuclear retention and in directing STI1 and Hsp90 to specific sub-nuclear regions. PIAS1 and STI1 co-immunoprecipitate and PIAS1 can function as an E3 SUMO ligase for STI. Using mass spectrometry we identified five SUMOylation sites in STI1. A STI1 mutant lacking these five sites is not SUMOylated, but still accumulates in the nucleus in response to increased expression of PIAS1, suggesting the possibility that a direct interaction with PIAS1 could be responsible for STI1 nuclear retention. To test this possibility, we mapped the interaction sites between PIAS1 and STI1 using yeast-two hybrid assays and surface plasmon resonance and found that a large domain in the N-terminal region of STI1 interacts with high affinity with amino acids 450-480 of PIAS1. Knockdown of PIAS1 in astrocytes impairs the accumulation of nuclear STI1 in response to irradiation. Moreover, a PIAS1 mutant lacking the STI1 binding site is unable to increase STI1 nuclear retention. Interestingly, in human glioblastoma multiforme PIAS1 expression is increased and we found a significant correlation between increased PIAS1 expression and STI1 nuclear localization. These experiments provide evidence that direct interaction between STI1 and PIAS1 is involved in the accumulation of nuclear STI1. This retention mechanism could facilitate nuclear chaperone activity.
Collapse
Affiliation(s)
- Iaci N Soares
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Beraldo FH, Soares IN, Goncalves DF, Fan J, Thomas AA, Santos TG, Mohammad AH, Roffé M, Calder MD, Nikolova S, Hajj GN, Guimaraes AL, Massensini AR, Welch I, Betts DH, Gros R, Drangova M, Watson AJ, Bartha R, Prado VF, Martins VR, Prado MAM. Stress-inducible phosphoprotein 1 has unique cochaperone activity during development and regulates cellular response to ischemia via the prion protein. FASEB J 2013; 27:3594-607. [PMID: 23729591 DOI: 10.1096/fj.13-232280] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Stress-inducible phosphoprotein 1 (STI1) is part of the chaperone machinery, but it also functions as an extracellular ligand for the prion protein. However, the physiological relevance of these STI1 activities in vivo is unknown. Here, we show that in the absence of embryonic STI1, several Hsp90 client proteins are decreased by 50%, although Hsp90 levels are unaffected. Mutant STI1 mice showed increased caspase-3 activation and 50% impairment in cellular proliferation. Moreover, placental disruption and lack of cellular viability were linked to embryonic death by E10.5 in STI1-mutant mice. Rescue of embryonic lethality in these mutants, by transgenic expression of the STI1 gene, supported a unique role for STI1 during embryonic development. The response of STI1 haploinsufficient mice to cellular stress seemed compromised, and mutant mice showed increased vulnerability to ischemic insult. At the cellular level, ischemia increased the secretion of STI1 from wild-type astrocytes by 3-fold, whereas STI1 haploinsufficient mice secreted half as much STI1. Interesting, extracellular STI1 prevented ischemia-mediated neuronal death in a prion protein-dependent way. Our study reveals essential roles for intracellular and extracellular STI1 in cellular resilience.
Collapse
Affiliation(s)
- Flavio H Beraldo
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Proteomic Analysis of Differential Proteins Related to Anti-nociceptive Effect of Electroacupuncture in the Hypothalamus Following Neuropathic Pain in Rats. Neurochem Res 2013; 38:1467-78. [DOI: 10.1007/s11064-013-1047-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/21/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022]
|
40
|
High levels of Cellular Prion Protein improve astrocyte development. FEBS Lett 2012; 587:238-44. [DOI: 10.1016/j.febslet.2012.11.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/31/2012] [Accepted: 11/28/2012] [Indexed: 11/21/2022]
|
41
|
Santos TG, Beraldo FH, Hajj GNM, Lopes MH, Roffe M, Lupinacci FCS, Ostapchenko VG, Prado VF, Prado MAM, Martins VR. Laminin-γ1 chain and stress inducible protein 1 synergistically mediate PrPC-dependent axonal growth via Ca2+ mobilization in dorsal root ganglia neurons. J Neurochem 2012; 124:210-23. [PMID: 23145988 DOI: 10.1111/jnc.12091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 12/01/2022]
Abstract
Prion protein (PrP(C)) is a cell surface glycoprotein that is abundantly expressed in nervous system. The elucidation of the PrP(C) interactome network and its significance on neural physiology is crucial to understanding neurodegenerative events associated with prion and Alzheimer's diseases. PrP(C) co-opts stress inducible protein 1/alpha7 nicotinic acetylcholine receptor (STI1/α7nAChR) or laminin/Type I metabotropic glutamate receptors (mGluR1/5) to modulate hippocampal neuronal survival and differentiation. However, potential cross-talk between these protein complexes and their role in peripheral neurons has never been addressed. To explore this issue, we investigated PrP(C)-mediated axonogenesis in peripheral neurons in response to STI1 and laminin-γ1 chain-derived peptide (Ln-γ1). STI1 and Ln-γ1 promoted robust axonogenesis in wild-type neurons, whereas no effect was observed in neurons from PrP(C) -null mice. PrP(C) binding to Ln-γ1 or STI1 led to an increase in intracellular Ca(2+) levels via distinct mechanisms: STI1 promoted extracellular Ca(2+) influx, and Ln-γ1 released calcium from intracellular stores. Both effects depend on phospholipase C activation, which is modulated by mGluR1/5 for Ln-γ1, but depends on, C-type transient receptor potential (TRPC) channels rather than α7nAChR for STI1. Treatment of neurons with suboptimal concentrations of both ligands led to synergistic actions on PrP(C)-mediated calcium response and axonogenesis. This effect was likely mediated by simultaneous binding of the two ligands to PrP(C). These results suggest a role for PrP(C) as an organizer of diverse multiprotein complexes, triggering specific signaling pathways and promoting axonogenesis in the peripheral nervous system.
Collapse
Affiliation(s)
- Tiago G Santos
- International Research Center, A.C. Camargo Hospital, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee YJ, Baskakov IV. The cellular form of the prion protein is involved in controlling cell cycle dynamics, self-renewal, and the fate of human embryonic stem cell differentiation. J Neurochem 2012; 124:310-22. [PMID: 22860629 DOI: 10.1111/j.1471-4159.2012.07913.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 11/27/2022]
Abstract
Prion protein (PrP(C) ), is a glycoprotein that is expressed on the cell surface. The current study examines the role of PrP(C) in early human embryogenesis using human embryonic stem cells (hESCs) and tetracycline-regulated lentiviral vectors that up-regulate or suppresses PrP(C) expression. Here, we show that expression of PrP(C) in pluripotent hESCs cultured under self-renewal conditions induced cell differentiation toward lineages of three germ layers. Silencing of PrP(C) in hESCs undergoing spontaneous differentiation altered the dynamics of the cell cycle and changed the balance between the lineages of the three germ layers, where differentiation toward ectodermal lineages was suppressed. Moreover, over-expression of PrP(C) in hESCs undergoing spontaneous differentiation inhibited differentiation toward lineages of all three germ layers and helped to preserve high proliferation activity. These results illustrate that PrP(C) is involved in key activities that dictate the status of hESCs including regulation of cell cycle dynamics, controlling the switch between self-renewal and differentiation, and determining the fate of hESCs differentiation. This study suggests that PrP(C) is at the crossroads of several signaling pathways that regulate the switch between preservation of or departure from the self-renewal state, control cell proliferation activity, and define stem cell fate.
Collapse
Affiliation(s)
- Young Jin Lee
- Center for Biomedical Engineering and Technology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
43
|
Abstract
Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation, and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.
Collapse
Affiliation(s)
- Marilene H Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil.
| | | |
Collapse
|
44
|
Linden R, Cordeiro Y, Lima LMTR. Allosteric function and dysfunction of the prion protein. Cell Mol Life Sci 2012; 69:1105-24. [PMID: 21984610 PMCID: PMC11114699 DOI: 10.1007/s00018-011-0847-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/30/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases associated with progressive oligo- and multimerization of the prion protein (PrP(C)), its conformational conversion, aggregation and precipitation. We recently proposed that PrP(C) serves as a cell surface scaffold protein for a variety of signaling modules, the effects of which translate into wide-range functional consequences. Here we review evidence for allosteric functions of PrP(C), which constitute a common property of scaffold proteins. The available data suggest that allosteric effects among PrP(C) and its partners are involved in the assembly of multi-component signaling modules at the cell surface, impose upon both physiological and pathological conformational responses of PrP(C), and that allosteric dysfunction of PrP(C) has the potential to entail progressive signal corruption. These properties may be germane both to physiological roles of PrP(C), as well as to the pathogenesis of the TSEs and other degenerative/non-communicable diseases.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, CCS, Cidade Universitária, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
45
|
Laux A, Delalande F, Mouheiche J, Stuber D, Van Dorsselaer A, Bianchi E, Bezard E, Poisbeau P, Goumon Y. Localization of endogenous morphine-like compounds in the mouse spinal cord. J Comp Neurol 2012; 520:1547-61. [DOI: 10.1002/cne.22811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
da Fonseca A, Romão L, Amaral R, Assad Kahn S, Lobo D, Martins S, Marcondes de Souza J, Moura-Neto V, Lima F. Microglial stress inducible protein 1 promotes proliferation and migration in human glioblastoma cells. Neuroscience 2012; 200:130-41. [DOI: 10.1016/j.neuroscience.2011.10.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/10/2011] [Accepted: 10/14/2011] [Indexed: 12/26/2022]
|
47
|
Santos TG, Silva IR, Costa-Silva B, Lepique AP, Martins VR, Lopes MH. Enhanced neural progenitor/stem cells self-renewal via the interaction of stress-inducible protein 1 with the prion protein. Stem Cells 2011; 29:1126-36. [PMID: 21608082 DOI: 10.1002/stem.664] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prion protein (PrP(C) ), when associated with the secreted form of the stress-inducible protein 1 (STI1), plays an important role in neural survival, neuritogenesis, and memory formation. However, the role of the PrP(C) -STI1 complex in the physiology of neural progenitor/stem cells is unknown. In this article, we observed that neurospheres cultured from fetal forebrain of wild-type (Prnp(+/+) ) and PrP(C) -null (Prnp(0/0) ) mice were maintained for several passages without the loss of self-renewal or multipotentiality, as assessed by their continued capacity to generate neurons, astrocytes, and oligodendrocytes. The homogeneous expression and colocalization of STI1 and PrP(C) suggest that they may associate and function as a complex in neurosphere-derived stem cells. The formation of neurospheres from Prnp(0/0) mice was reduced significantly when compared with their wild-type counterparts. In addition, blockade of secreted STI1, and its cell surface ligand, PrP(C) , with specific antibodies, impaired Prnp(+/+) neurosphere formation without further impairing the formation of Prnp(0/0) neurospheres. Alternatively, neurosphere formation was enhanced by recombinant STI1 application in cells expressing PrP(C) but not in cells from Prnp(0/0) mice. The STI1-PrP(C) interaction was able to stimulate cell proliferation in the neurosphere-forming assay, while no effect on cell survival or the expression of neural markers was observed. These data suggest that the STI1-PrP(C) complex may play a critical role in neural progenitor/stem cells self-renewal via the modulation of cell proliferation, leading to the control of the stemness capacity of these cells during nervous system development.
Collapse
Affiliation(s)
- Tiago G Santos
- Department of Molecular and Cell Biology, International Center for Research and Education, Antonio Prudente Foundation, A. C. Camargo Hospital and National Institute for Translational Neuroscience (CNPq/MCT), São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
48
|
Laux A, Muller AH, Miehe M, Dirrig-Grosch S, Deloulme JC, Delalande F, Stuber D, Sage D, Van Dorsselaer A, Poisbeau P, Aunis D, Goumon Y. Mapping of endogenous morphine-like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells. J Comp Neurol 2011; 519:2390-416. [PMID: 21456021 DOI: 10.1002/cne.22633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endogenous morphine, morphine-6-glucuronide, and codeine, which are structurally identical to vegetal alkaloids, can be synthesized by mammalian cells from dopamine. However, the role of brain endogenous morphine and its derivative compounds is a matter of debate, and knowledge about its distribution is lacking. In this study, by using a validated antibody, we describe a precise mapping of endogenous morphine-like compounds (morphine and/or its glucuronides and/or codeine) in the mouse brain. First, a mass spectrometry approach confirmed the presence of morphine and codeine in mouse brain, but also, of morphine-6-glucuronide and morphine-3-glucuronide representing two metabolites of morphine. Second, light microscopy allowed us to observe immunopositive cell somas and cytoplasmic processes throughout the mouse brain. Morphine-like immunoreactivity was present in various structures including the hippocampus, olfactory bulb, band of Broca, basal ganglia, and cerebellum. Third, by using confocal microscopy and immunofluroscence co-localization, we characterized cell types containing endogenous opiates. Interestingly, we observed that morphine-like immunoreactivity throughout the encephalon is mainly present in γ-aminobutyric acid (GABA)ergic neurons. Astrocytes were also labeled throughout the entire brain, in the cell body, in the cytoplasmic processes, and in astrocytic feet surrounding blood vessels. Finally, ultrastructural localization of morphine-like immunoreactivity was determined by electron microscopy and showed the presence of morphine-like label in presynaptic terminals in the cerebellum and postsynaptic terminals in the rest of the mouse brain. In conclusion, the presence of endogenous morphine-like compounds in brain regions not usually involved in pain modulation opens the exciting opportunity to extend the role and function of endogenous alkaloids far beyond their analgesic functions.
Collapse
Affiliation(s)
- Alexis Laux
- Nociception and Pain Department, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, F-67084 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mick E, McGough J, Loo S, Doyle AE, Wozniak J, Wilens TE, Smalley S, McCracken J, Biederman J, Faraone SV. Genome-wide association study of the child behavior checklist dysregulation profile. J Am Acad Child Adolesc Psychiatry 2011; 50:807-17.e8. [PMID: 21784300 PMCID: PMC3143361 DOI: 10.1016/j.jaac.2011.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 04/27/2011] [Accepted: 05/05/2011] [Indexed: 12/13/2022]
Abstract
OBJECTIVE A potentially useful tool for understanding the distribution and determinants of emotional dysregulation in children is a Child Behavior Checklist profile, comprising the Attention Problems, Anxious/Depressed, and Aggressive Behavior clinical subscales (CBCL-DP). The CBCL-DP indexes a heritable trait that increases susceptibility for later psychopathology, including severe mood problems and aggressive behavior. We have conducted a genome-wide association study of the CBCL-DP in children with attention-deficit/hyperactivity disorder (ADHD). METHOD Families were ascertained at Massachusetts General Hospital and University of California, Los Angeles. Genotyping was conducted with the Illumina Human1M or Human1M-Duo BeadChip platforms. Genome-wide association analyses were conducted with the MQFAM multivariate extension of PLINK. RESULTS CBCL data were available for 341 ADHD offspring from 339 ADHD affected trio families from the UCLA (N = 128) and the MGH (N = 213) sites. We found no genome-wide statistically significant associations but identified several plausible candidate genes among findings at p < 5E-05: TMEM132D, LRRC7, SEMA3A, ALK, and STIP1. CONCLUSIONS We found suggestive evidence for developmentally expressed genes operant in hippocampal dependent memory and learning with the CBCL-DP.
Collapse
Affiliation(s)
- Eric Mick
- University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schmidt JC, Soares MJ, Goldenberg S, Pavoni DP, Krieger MA. Characterization of TcSTI-1, a homologue of stress-induced protein-1, in Trypanosoma cruzi. Mem Inst Oswaldo Cruz 2011; 106:70-7. [PMID: 21340359 DOI: 10.1590/s0074-02762011000100012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/21/2010] [Indexed: 11/21/2022] Open
Abstract
The life cycle of the protozoan Trypanosoma cruzi exposes it to several environmental stresses in its invertebrate and vertebrate hosts. Stress conditions are involved in parasite differentiation, but little is known about the stress response proteins involved. We report here the first characterization of stress-induced protein-1 (STI-1) in T. cruzi (TcSTI-1). This co-chaperone is produced in response to stress and mediates the formation of a complex between the stress proteins HSP70 and HSP90 in other organisms. Despite the similarity of TcSTI-1 to STI-1 proteins in other organisms, its expression profile in response to various stress conditions, such as heat shock, acidic pH or nutrient starvation, is quite different. Neither polysomal mRNA nor protein levels changed in exponentially growing epimastigotes cultured under any of the stress conditions studied. Increased levels of TcSTI-1 were observed in epimastigotes subjected to nutritional stress in the late growth phase. Co-immunoprecipitation assays revealed an association between TcSTI-1 and TcHSP70 in T. cruzi epimastigotes. Immunolocalization demonstrated that TcSTI-1 was distributed throughout the cytoplasm and there was some colocalization of TcSTI-1 and TcHSP70 around the nucleus. Thus, TcSTI-1 associates with TcHSP70 and TcSTI-1 expression is induced when the parasites are subjected to stress conditions during specific growth phase.
Collapse
|