1
|
Simons M, Gibson EM, Nave KA. Oligodendrocytes: Myelination, Plasticity, and Axonal Support. Cold Spring Harb Perspect Biol 2024; 16:a041359. [PMID: 38621824 PMCID: PMC11444305 DOI: 10.1101/cshperspect.a041359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The myelination of axons has evolved to enable fast and efficient transduction of electrical signals in the vertebrate nervous system. Acting as an electric insulator, the myelin sheath is a multilamellar membrane structure around axonal segments generated by the spiral wrapping and subsequent compaction of oligodendroglial plasma membranes. These oligodendrocytes are metabolically active and remain functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of metabolites and macromolecules to and from the internodal periaxonal space under the myelin sheath. Increasing evidence indicates that oligodendrocyte numbers, specifically in the forebrain, and myelin as a dynamic cellular compartment can both respond to physiological demands, collectively referred to as adaptive myelination. This review summarizes our current understanding of how myelin is generated, how its function is dynamically regulated, and how oligodendrocytes support the long-term integrity of myelinated axons.
Collapse
Affiliation(s)
- Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich 80802, Germany
- German Center for Neurodegenerative Diseases, Munich Cluster of Systems Neurology (SyNergy), Institute for Stroke and Dementia Research, Munich 81377, Germany
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford 94305, California, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37075, Germany
| |
Collapse
|
2
|
Siems SB, Gargareta VI, Schadt LC, Daguano Gastaldi V, Jung RB, Piepkorn L, Casaccia P, Sun T, Jahn O, Werner HB. Developmental maturation and regional heterogeneity but no sexual dimorphism of the murine CNS myelin proteome. Glia 2024. [PMID: 39344832 DOI: 10.1002/glia.24614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
The molecules that constitute myelin are critical for the integrity of axon/myelin-units and thus speed and precision of impulse propagation. In the CNS, the protein composition of oligodendrocyte-derived myelin has evolutionarily diverged and differs from that in the PNS. Here, we hypothesized that the CNS myelin proteome also displays variations within the same species. We thus used quantitative mass spectrometry to compare myelin purified from mouse brains at three developmental timepoints, from brains of male and female mice, and from four CNS regions. We find that most structural myelin proteins are of approximately similar abundance across all tested conditions. However, the abundance of multiple other proteins differs markedly over time, implying that the myelin proteome matures between P18 and P75 and then remains relatively constant until at least 6 months of age. Myelin maturation involves a decrease of cytoskeleton-associated proteins involved in sheath growth and wrapping, along with an increase of all subunits of the septin filament that stabilizes mature myelin, and of multiple other proteins which potentially exert protective functions. Among the latter, quinoid dihydropteridine reductase (QDPR) emerges as a highly specific marker for mature oligodendrocytes and myelin. Conversely, female and male mice display essentially similar myelin proteomes. Across the four CNS regions analyzed, we note that spinal cord myelin exhibits a comparatively high abundance of HCN2-channels, required for particularly long sheaths. These findings show that CNS myelination involves developmental maturation of myelin protein composition, and regional differences, but absence of evidence for sexual dimorphism.
Collapse
Affiliation(s)
- Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vasiliki-Ilya Gargareta
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Leonie C Schadt
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lars Piepkorn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York, New York, New York, USA
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Mishra SK, Tiwari SP. Bioenergetics of Axon Integrity and Its Regulation by Oligodendrocytes and Schwann Cells. Mol Neurobiol 2024; 61:5928-5934. [PMID: 38252382 DOI: 10.1007/s12035-024-03950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Axons are long slender portions of neurons that transmit electrical impulses to maintain proper physiological functioning. Axons in the central nervous system (CNS) and peripheral nervous system (PNS) do not exist in isolation but are found to form a complex association with their surrounding glial cells, oligodendrocytes and Schwann cells. These cells not only myelinate them for faster nerve impulse conduction but are also known to provide metabolic support. Due to their incredible length, continuous growth, and distance from the cell body (where major energy synthesis takes place), axons are in high energetic demand. The stability and integrity of axons have long been associated with axonal energy levels. The current mini-review is thus focused on how axons accomplish their high energetic requirement in a cell-autonomous manner and how the surrounding glial cells help them in maintaining their integrity by fulfilling their energy demands (non-cell autonomous trophic support). The concept that adjacent glial cells (oligodendrocytes and Schwann cells) provide trophic support to axons and assist them in maintaining their integrity comes from the conditional knockout research and the studies in which the metabolic pathways controlling metabolism in these glial cells are modulated and its effect on axonal integrity is evaluated. In the later part of the mini-review, the current knowledge of axon-glial metabolic coupling during various neurodegenerative conditions was discussed, along with the potential lacunae in our current understanding of axon-glial metabolic coupling.
Collapse
Affiliation(s)
- Sandeep K Mishra
- Institute for Myelin and Glia Exploration, University at Buffalo, Buffalo, NY, 14203, USA.
- Faculty of Pharmacy, Kalinga University, Raipur, (C.G.), 492101, India.
| | | |
Collapse
|
4
|
Singh S, Sutkus L, Li Z, Baker S, Bear J, Dilger RN, Miller DJ. Standardization of a silver stain to reveal mesoscale myelin in histological preparations of the mammalian brain. J Neurosci Methods 2024; 407:110139. [PMID: 38626852 DOI: 10.1016/j.jneumeth.2024.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The brain is built of neurons supported by myelin, a fatty substance that improves cellular communication. Noninvasive magnetic resonance imaging (MRI) is now able to measure brain structure like myelin and requires histological validation. NEW METHOD Here we present work in small and large biomedical model mammals to standardize a silver impregnation method as a high-throughput histological myelin visualization procedure. Specifically, we built a new staining well plate to increase batch size, and then systematically varied the staining and clearing cycles to describe the staining response curve across taxa and conditions. We compared tissues fixed by immersion or perfusion, mounted versus free-floating, and cut as thicker or thinner slices, with two-weeks of post-fixation. RESULTS The staining response curves show optimal staining with a single exposure across taxa when incubation and clearing epochs are held to within 3-9 min. We show that clearing was slower in mounted vs free-floating tissue, and that staining was faster and caused fracturing earlier in thinner sliced and smaller volumes of tissue. COMPARISON WITH EXISTING METHODS We developed a batch processing approach to increase throughput while ensuring reproducibility and demonstrate the optimal conditions for fine myelinated fiber morphology visualization with short cycles (<9 minutes). CONCLUSIONS We present our optimized protocol to reveal mesoscale neuroanatomical myelin content in histology across mammals. This standard staining procedure will facilitate multiscale analyses of myelin content across development as well as in the presence of injury or disease.
Collapse
Affiliation(s)
- S Singh
- Department of Evolution, Ecology, and Behavior, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - L Sutkus
- Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - Z Li
- Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - S Baker
- Machine Shop, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - J Bear
- Machine Shop, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - R N Dilger
- Department of Animal Sciences, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - D J Miller
- Department of Evolution, Ecology, and Behavior, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America.
| |
Collapse
|
5
|
Markusson S, Raasakka A, Schröder M, Sograte-Idrissi S, Rahimi AM, Asadpour O, Körner H, Lodygin D, Eichel-Vogel MA, Chowdhury R, Sutinen A, Muruganandam G, Iyer M, Cooper MH, Weigel MK, Ambiel N, Werner HB, Zuchero JB, Opazo F, Kursula P. Nanobodies against the myelin enzyme CNPase as tools for structural and functional studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595513. [PMID: 38826303 PMCID: PMC11142274 DOI: 10.1101/2024.05.25.595513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an abundant constituent of central nervous system non-compact myelin, frequently used as a marker antigen for myelinating cells. The catalytic activity of CNPase, the 3'-hydrolysis of 2',3'-cyclic nucleotides, is well characterised in vitro, but the in vivo function of CNPase remains unclear. CNPase interacts with the actin cytoskeleton to counteract the developmental closure of cytoplasmic channels that travel through compact myelin; its enzymatic activity may be involved in adenosine metabolism and RNA degradation. We developed a set of high-affinity nanobodies recognizing the phosphodiesterase domain of CNPase, and the crystal structures of each complex show that the five nanobodies have distinct epitopes. One of the nanobodies bound deep into the CNPase active site and acted as an inhibitor. Moreover, the nanobodies were characterised in imaging applications and as intrabodies, expressed in mammalian cells, such as primary oligodendrocytes. Fluorescently labelled nanobodies functioned in imaging of teased nerve fibers and whole brain tissue sections, as well as super-resolution microscopy. These anti-CNPase nanobodies provide new tools for structural and functional biology of myelination, including high-resolution imaging of nerve tissue.
Collapse
Affiliation(s)
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Marcel Schröder
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Shama Sograte-Idrissi
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Amir Mohammad Rahimi
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Ommolbanin Asadpour
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Henrike Körner
- Department for Neuroimmunology and Multiple Sclerosis Research, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Dmitri Lodygin
- Department for Neuroimmunology and Multiple Sclerosis Research, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Maria A. Eichel-Vogel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Göttingen, Germany
| | - Risha Chowdhury
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Manasi Iyer
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Madeline H. Cooper
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Maya K. Weigel
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Ambiel
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Göttingen, Germany
| | - J. Bradley Zuchero
- Neurosurgery Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- NanoTag Biotechnologies GmbH, 37079 Göttingen, Germany
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| |
Collapse
|
6
|
Liu Z, Lai J, Kong D, Zhao Y, Zhao J, Dai J, Zhang M. Advances in electroactive bioscaffolds for repairing spinal cord injury. Biomed Mater 2024; 19:032005. [PMID: 38636508 DOI: 10.1088/1748-605x/ad4079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder, leading to loss of motor or somatosensory function, which is the most challenging worldwide medical problem. Re-establishment of intact neural circuits is the basis of spinal cord regeneration. Considering the crucial role of electrical signals in the nervous system, electroactive bioscaffolds have been widely developed for SCI repair. They can produce conductive pathways and a pro-regenerative microenvironment at the lesion site similar to that of the natural spinal cord, leading to neuronal regeneration and axonal growth, and functionally reactivating the damaged neural circuits. In this review, we first demonstrate the pathophysiological characteristics induced by SCI. Then, the crucial role of electrical signals in SCI repair is introduced. Based on a comprehensive analysis of these characteristics, recent advances in the electroactive bioscaffolds for SCI repair are summarized, focusing on both the conductive bioscaffolds and piezoelectric bioscaffolds, used independently or in combination with external electronic stimulation. Finally, thoughts on challenges and opportunities that may shape the future of bioscaffolds in SCI repair are concluded.
Collapse
Affiliation(s)
- Zeqi Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Dexin Kong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jiakang Zhao
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jianwu Dai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
7
|
Keller SH, Johnson GS, Bullock G, Mhlanga-Mutangadura T, Schwartz M, Pattridge SG, Guo J, Kortz GD, Katz ML. Homozygous CNP Mutation and Neurodegeneration in Weimaraners: Myelin Abnormalities and Accumulation of Lipofuscin-like Inclusions. Genes (Basel) 2024; 15:246. [PMID: 38397235 PMCID: PMC10888007 DOI: 10.3390/genes15020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
A progressive neurological disorder was observed in a male neutered Weimaraner. Clinical signs included fecal incontinence, lethargy, moderate paraparesis, proprioceptive pelvic limb ataxia, falling, cognitive decline, incoordination, decreased interest in food, changes in posture, and episodes of trance-like behavior. Neurologic signs were first observed at approximately 4 years, 10 months of age and progressed slowly. Magnetic resonance imaging showed generalized brain atrophy with areas of white matter pathology. Humane euthanasia was elected at 6 years, 7 months of age due to increasing severity of the neurological signs. Autofluorescent intracellular granules were observed in the cerebral and cerebellar cortexes, optic nerve, and cardiac muscle of the affected dog. These abnormal inclusions in the cerebral cortex and cardiac muscle immunolabeled with antibodies to mitochondrial ATP synthase subunit c protein, like that observed in the neuronal ceroid lipofuscinosis group of lysosomal storage diseases. Immunolabeling also demonstrated pronounced neuroinflammation in brain tissues. The ultrastructural appearances of the disease-related inclusion bodies in the brain and optic nerve were quite variable. The ultrastructure and locations of many of the inclusions in the nervous tissues suggested that they were derived, at least in part, from the myelin surrounding axons. The storage bodies in the cardiac muscle were located in mitochondria-rich regions and consisted of parallel arrays of membrane-like components interspersed with electron-dense flocculent material. The disease was characterized by pronounced abnormalities in the myelin of the brain and optic nerve consisting of distinctive areas of ballooning between the layers of myelin. The whole genome sequence generated from the affected dog contained a homozygous G-to-A missense mutation in CNP, which encodes proteins with CNPase enzyme activity and a structural role in myelin. The mutation predicts a Thr42Met amino acid sequence substitution. Genotyping of archived Weimaraner DNA samples identified an additional G > A variant homozygote with a clinical history and brain lesions similar to those of the proband. Of 304 Weimaraners and over 4000 other dogs of various breeds, the proband and the other Weimaraner that exhibited similar signs were the only two that were homozygous for the CNP missense variant. CNPase immunolabeling was widespread in brain tissues from normal dogs but was undetectable in the same tissues from the proband. Based on the clinical history, fluorescence and electron-microscopy, immunohistochemistry, and molecular genetic findings, the late-onset Weimaraner disorder likely results from the missense mutation that results in CNPase deficiency, leading to myelin abnormalities, accumulation of lysosomal storage bodies, and brain atrophy. Similar disorders have been associated with different CNP variants in Dalmatians and in human subjects.
Collapse
Affiliation(s)
- Stefan H. Keller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (S.H.K.); (G.B.); (T.M.-M.); (S.G.P.); (J.G.)
| | - Gary S. Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (S.H.K.); (G.B.); (T.M.-M.); (S.G.P.); (J.G.)
| | - Garrett Bullock
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (S.H.K.); (G.B.); (T.M.-M.); (S.G.P.); (J.G.)
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (S.H.K.); (G.B.); (T.M.-M.); (S.G.P.); (J.G.)
| | - Malte Schwartz
- Summit Veterinary Referral Center, Tacoma, WA 98409, USA;
| | - Savannah G. Pattridge
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (S.H.K.); (G.B.); (T.M.-M.); (S.G.P.); (J.G.)
| | - Juyuan Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (S.H.K.); (G.B.); (T.M.-M.); (S.G.P.); (J.G.)
| | - Gregg D. Kortz
- VCA Sacramento Veterinary Referral Center, Sacramento, CA 95827, USA;
| | - Martin L. Katz
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
8
|
Ibrahim SM, Kamel AS, Ahmed KA, Mohammed RA, Essam RM. The preferential effect of Clemastine on F3/Contactin-1/Notch-1 compared to Jagged-1/Notch-1 justifies its remyelinating effect in an experimental model of multiple sclerosis in rats. Int Immunopharmacol 2024; 128:111481. [PMID: 38232534 DOI: 10.1016/j.intimp.2023.111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/19/2024]
Abstract
Clemastine (CLM) is repurposed to enhance remyelination in multiple sclerosis (MS) patients. CLM blocks histamine and muscarinic receptors as negative regulators to oligodendrocyte differentiation. These receptors are linked to the canonical and non-canonical Notch-1 signaling via specific ligands; Jagged-1 and F3/Contactin-1, respectively. Yet, there are no previous studies showing the influence of CLM on Notch entities. Herein, the study aimed to investigate to which extent CLM aligns to one of the two Notch-1 arms in experimental autoimmune encephalomyelitis (EAE) rat model. Three groups were utilized where first group received vehicles. The second group was injected by spinal cord homogenate mixed with complete Freund's adjuvant on days 0 and 7. In the third group, CLM (5 mg/kg/day; p.o) was administered for 15 days starting from the day of the first immunization. CLM ameliorated EAE-associated motor and gripping impairment in rotarod, open-field, and grip strength arena beside sensory anomalies in hot plate, cold allodynia, and mechanical Randall-Selitto tests. Additionally, CLM alleviated depressive mood observed in tail suspension test. These findings harmonized with histopathological examinations of Luxol-fast blue stain together with enhanced immunostaining of myelin basic protein and oligodendrocyte lineage gene 2 in corpus callosum and spinal cord. Additionally, CLM enhanced oligodendrocyte myelination and maturation by increasing 2',3'-cyclic nucleotide 3'-phosphodiesterase, proteolipid protein, aspartoacylase as well. CLM restored the level of F3/Contactin-1 in the diseased rats over Jagged-1 level; the ligand of the canonical pathway. This was accompanied by elevated gene expression of Deltex-1 and reduced hairy and enhancer-of-split homologs 1 and 5. Additionally, CLM suppressed microglial and astrocyte activation via reducing the expression of ionized calcium-binding adaptor molecule-1 as well as glial fibrillary acidic protein, respectively. These results outlined the remyelinating beneficence of CLM which could be due to augmenting the non-canonical Notch-1 signaling over the canonical one.
Collapse
Affiliation(s)
- Sherehan M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Reham A Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| |
Collapse
|
9
|
Carrillo-Barberà P, Rondelli AM, Morante-Redolat JM, Vernay B, Williams A, Bankhead P. AimSeg: A machine-learning-aided tool for axon, inner tongue and myelin segmentation. PLoS Comput Biol 2023; 19:e1010845. [PMID: 37976310 PMCID: PMC10691719 DOI: 10.1371/journal.pcbi.1010845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 12/01/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023] Open
Abstract
Electron microscopy (EM) images of axons and their ensheathing myelin from both the central and peripheral nervous system are used for assessing myelin formation, degeneration (demyelination) and regeneration (remyelination). The g-ratio is the gold standard measure of assessing myelin thickness and quality, and traditionally is determined from measurements made manually from EM images-a time-consuming endeavour with limited reproducibility. These measurements have also historically neglected the innermost uncompacted myelin sheath, known as the inner tongue. Nonetheless, the inner tongue has been shown to be important for myelin growth and some studies have reported that certain conditions can elicit its enlargement. Ignoring this fact may bias the standard g-ratio analysis, whereas quantifying the uncompacted myelin has the potential to provide novel insights in the myelin field. In this regard, we have developed AimSeg, a bioimage analysis tool for axon, inner tongue and myelin segmentation. Aided by machine learning classifiers trained on transmission EM (TEM) images of tissue undergoing remyelination, AimSeg can be used either as an automated workflow or as a user-assisted segmentation tool. Validation results on TEM data from both healthy and remyelinating samples show good performance in segmenting all three fibre components, with the assisted segmentation showing the potential for further improvement with minimal user intervention. This results in a considerable reduction in time for analysis compared with manual annotation. AimSeg could also be used to build larger, high quality ground truth datasets to train novel deep learning models. Implemented in Fiji, AimSeg can use machine learning classifiers trained in ilastik. This, combined with a user-friendly interface and the ability to quantify uncompacted myelin, makes AimSeg a unique tool to assess myelin growth.
Collapse
Affiliation(s)
- Pau Carrillo-Barberà
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat de València, Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Ana Maria Rondelli
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
- MS Society Edinburgh Centre for MS Research, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Jose Manuel Morante-Redolat
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat de València, Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Bertrand Vernay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
- Centre d’imagerie, Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS UMR 7104—Inserm U 1258, Illkirch, France
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
- MS Society Edinburgh Centre for MS Research, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Peter Bankhead
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Pathology and CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Oizumi H, Miyamoto Y, Seiwa C, Yamamoto M, Yoshioka N, Iizuka S, Torii T, Ohbuchi K, Mizoguchi K, Yamauchi J, Asou H. Lethal adulthood myelin breakdown by oligodendrocyte-specific Ddx54 knockout. iScience 2023; 26:107448. [PMID: 37720086 PMCID: PMC10502337 DOI: 10.1016/j.isci.2023.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis (MS) is a leading disease that causes disability in young adults. We have previously shown that a DEAD-box RNA helicase Ddx54 binds to mRNA and protein isoforms of myelin basic protein (MBP) and that Ddx54 siRNA blocking abrogates oligodendrocyte migration and myelination. Herein, we show that MBP-driven Ddx54 knockout mice (Ddx54 fl/fl;MBP-Cre), after the completion of normal postnatal myelination, gradually develop abnormalities in behavioral profiles and learning ability, inner myelin sheath breakdown, loss of myelinated axons, apoptosis of oligodendrocytes, astrocyte and microglia activation, and they die within 7 months but show minimal peripheral immune cell infiltration. Myelin in Ddx54fl/fl;MBP-Cre is highly vulnerable to the neurotoxicant cuprizone and Ddx54 knockdown greatly impairs myelination in vitro. Ddx54 expression in oligodendrocyte-lineage cells decreased in corpus callosum of MS patients. Our results demonstrate that Ddx54 is indispensable for myelin homeostasis, and they provide a demyelinating disease model based on intrinsic disintegration of adult myelin.
Collapse
Affiliation(s)
- Hiroaki Oizumi
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chika Seiwa
- Glovia Myelin Research Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Masahiro Yamamoto
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Katsuya Ohbuchi
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | | | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroaki Asou
- Glovia Myelin Research Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| |
Collapse
|
11
|
Schäffner E, Bosch-Queralt M, Edgar JM, Lehning M, Strauß J, Fleischer N, Kungl T, Wieghofer P, Berghoff SA, Reinert T, Krueger M, Morawski M, Möbius W, Barrantes-Freer A, Stieler J, Sun T, Saher G, Schwab MH, Wrede C, Frosch M, Prinz M, Reich DS, Flügel A, Stadelmann C, Fledrich R, Nave KA, Stassart RM. Myelin insulation as a risk factor for axonal degeneration in autoimmune demyelinating disease. Nat Neurosci 2023; 26:1218-1228. [PMID: 37386131 PMCID: PMC10322724 DOI: 10.1038/s41593-023-01366-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
Axonal degeneration determines the clinical outcome of multiple sclerosis and is thought to result from exposure of denuded axons to immune-mediated damage. Therefore, myelin is widely considered to be a protective structure for axons in multiple sclerosis. Myelinated axons also depend on oligodendrocytes, which provide metabolic and structural support to the axonal compartment. Given that axonal pathology in multiple sclerosis is already visible at early disease stages, before overt demyelination, we reasoned that autoimmune inflammation may disrupt oligodendroglial support mechanisms and hence primarily affect axons insulated by myelin. Here, we studied axonal pathology as a function of myelination in human multiple sclerosis and mouse models of autoimmune encephalomyelitis with genetically altered myelination. We demonstrate that myelin ensheathment itself becomes detrimental for axonal survival and increases the risk of axons degenerating in an autoimmune environment. This challenges the view of myelin as a solely protective structure and suggests that axonal dependence on oligodendroglial support can become fatal when myelin is under inflammatory attack.
Collapse
Affiliation(s)
- Erik Schäffner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Mar Bosch-Queralt
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Julia M Edgar
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Maria Lehning
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Judith Strauß
- Institute of Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Niko Fleischer
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Theresa Kungl
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Peter Wieghofer
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Tilo Reinert
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Jens Stieler
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus H Schwab
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Maximilian Frosch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Centre for NeuroModulation (NeuroModBasics), University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Flügel
- Institute of Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Institute of Anatomy, Leipzig University, Leipzig, Germany.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Ruth M Stassart
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany.
| |
Collapse
|
12
|
Depp C, Sun T, Sasmita AO, Spieth L, Berghoff SA, Nazarenko T, Overhoff K, Steixner-Kumar AA, Subramanian S, Arinrad S, Ruhwedel T, Möbius W, Göbbels S, Saher G, Werner HB, Damkou A, Zampar S, Wirths O, Thalmann M, Simons M, Saito T, Saido T, Krueger-Burg D, Kawaguchi R, Willem M, Haass C, Geschwind D, Ehrenreich H, Stassart R, Nave KA. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer's disease. Nature 2023; 618:349-357. [PMID: 37258678 PMCID: PMC10247380 DOI: 10.1038/s41586-023-06120-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/21/2023] [Indexed: 06/02/2023]
Abstract
The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths1, the latter of which is associated with secondary neuroinflammation2,3. As oligodendrocytes support axonal energy metabolism and neuronal health4-7, we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-β (Aβ) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aβ-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aβ plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.
Collapse
Affiliation(s)
- Constanze Depp
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andrew Octavian Sasmita
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Taisiia Nazarenko
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katharina Overhoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Agnes A Steixner-Kumar
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Swati Subramanian
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sahab Arinrad
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Göbbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alkmini Damkou
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
| | - Maik Thalmann
- Department of German Philology, Georg-August University, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Dilja Krueger-Burg
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Willem
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ruth Stassart
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
13
|
Krämer-Albers EM, Werner HB. Mechanisms of axonal support by oligodendrocyte-derived extracellular vesicles. Nat Rev Neurosci 2023:10.1038/s41583-023-00711-y. [PMID: 37258632 DOI: 10.1038/s41583-023-00711-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Extracellular vesicles (EVs) have recently emerged as versatile elements of cell communication in the nervous system, mediating tissue homeostasis. EVs influence the physiology of their target cells via horizontal transfer of molecular cargo between cells and by triggering signalling pathways. In this Review, we discuss recent work revealing that EVs mediate interactions between oligodendrocytes and neurons, which are relevant for maintaining the structural integrity of axons. In response to neuronal activity, myelinating oligodendrocytes release EVs, which are internalized by neurons and provide axons with key factors that improve axonal transport, stress resistance and energy homeostasis. Glia-to-neuron transfer of EVs is thus a crucial facet of axonal preservation. When glial support is impaired, axonal integrity is progressively lost, as observed in myelin-related disorders, other neurodegenerative diseases and with normal ageing. We highlight the mechanisms that oligodendroglial EVs use to sustain axonal integrity and function.
Collapse
Affiliation(s)
- Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
14
|
Dustin E, Suarez-Pozos E, Stotesberry C, Qiu S, Palavicini JP, Han X, Dupree JL. Compromised Myelin and Axonal Molecular Organization Following Adult-Onset Sulfatide Depletion. Biomedicines 2023; 11:1431. [PMID: 37239102 PMCID: PMC10216104 DOI: 10.3390/biomedicines11051431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
3-O-sulfogalactosylceramide, or sulfatide, is a prominent myelin glycosphingolipid reduced in the normal appearing white matter (NAWM) in Multiple Sclerosis (MS), indicating that sulfatide reduction precedes demyelination. Using a mouse model that is constitutively depleted of sulfatide, we previously demonstrated that sulfatide is essential during development for the establishment and maintenance of myelin and axonal integrity and for the stable tethering of certain myelin proteins in the sheath. Here, using an adult-onset depletion model of sulfatide, we employ a combination of ultrastructural, immunohistochemical and biochemical approaches to analyze the consequence of sulfatide depletion from the adult CNS. Our findings show a progressive loss of axonal protein domain organization, which is accompanied by axonal degeneration, with myelin sparing. Similar to our previous work, we also observe differential myelin protein anchoring stabilities that are both sulfatide dependent and independent. Most notably, stable anchoring of neurofascin155, a myelin paranodal protein that binds the axonal paranodal complex of contactin/Caspr1, requires sulfatide. Together, our findings show that adult-onset sulfatide depletion, independent of demyelination, is sufficient to trigger progressive axonal degeneration. Although the pathologic mechanism is unknown, we propose that sulfatide is required for maintaining myelin organization and subsequent myelin-axon interactions and disruptions in these interactions results in compromised axon structure and function.
Collapse
Affiliation(s)
- Elizabeth Dustin
- Research Service, Richmond Veterans Affairs Medical Center, Central Virginia Veterans Affairs Health Care System, Richmond, VA 23249, USA; (E.D.)
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond VA 23298, USA
| | - Edna Suarez-Pozos
- Research Service, Richmond Veterans Affairs Medical Center, Central Virginia Veterans Affairs Health Care System, Richmond, VA 23249, USA; (E.D.)
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond VA 23298, USA
| | - Camryn Stotesberry
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Shulan Qiu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Juan Pablo Palavicini
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jeffrey L. Dupree
- Research Service, Richmond Veterans Affairs Medical Center, Central Virginia Veterans Affairs Health Care System, Richmond, VA 23249, USA; (E.D.)
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond VA 23298, USA
| |
Collapse
|
15
|
Djannatian M, Radha S, Weikert U, Safaiyan S, Wrede C, Deichsel C, Kislinger G, Rhomberg A, Ruhwedel T, Campbell DS, van Ham T, Schmid B, Hegermann J, Möbius W, Schifferer M, Simons M. Myelination generates aberrant ultrastructure that is resolved by microglia. J Biophys Biochem Cytol 2023; 222:213804. [PMID: 36637807 PMCID: PMC9856851 DOI: 10.1083/jcb.202204010] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
To enable rapid propagation of action potentials, axons are ensheathed by myelin, a multilayered insulating membrane formed by oligodendrocytes. Most of the myelin is generated early in development, resulting in the generation of long-lasting stable membrane structures. Here, we explored structural and dynamic changes in central nervous system myelin during development. To achieve this, we performed an ultrastructural analysis of mouse optic nerves by serial block face scanning electron microscopy (SBF-SEM) and confocal time-lapse imaging in the zebrafish spinal cord. We found that myelin undergoes extensive ultrastructural changes during early postnatal development. Myelin degeneration profiles were engulfed and phagocytosed by microglia using exposed phosphatidylserine as one "eat me" signal. In contrast, retractions of entire myelin sheaths occurred independently of microglia and involved uptake of myelin by the oligodendrocyte itself. Our findings show that the generation of myelin early in development is an inaccurate process associated with aberrant ultrastructural features that require substantial refinement.
Collapse
Affiliation(s)
- Minou Djannatian
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany,Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany,Minou Djannatian:
| | - Swathi Radha
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Ulrich Weikert
- Max-Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Shima Safaiyan
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Christoph Wrede
- https://ror.org/00f2yqf98Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Cassandra Deichsel
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Georg Kislinger
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Agata Rhomberg
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Torben Ruhwedel
- Max-Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Douglas S. Campbell
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Tjakko van Ham
- https://ror.org/018906e22Department of Clinical Genetics, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bettina Schmid
- https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany
| | - Jan Hegermann
- https://ror.org/00f2yqf98Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Wiebke Möbius
- Max-Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Martina Schifferer
- https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany,https://ror.org/043j0f473German Center for Neurodegenerative Diseases, Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany,Institute for Stroke and Dementia Research, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany,Correspondence to Mikael Simons:
| |
Collapse
|
16
|
Kole K, Voesenek BJB, Brinia ME, Petersen N, Kole MHP. Parvalbumin basket cell myelination accumulates axonal mitochondria to internodes. Nat Commun 2022; 13:7598. [PMID: 36494349 PMCID: PMC9734141 DOI: 10.1038/s41467-022-35350-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Parvalbumin-expressing (PV+) basket cells are fast-spiking inhibitory interneurons that exert critical control over local circuit activity and oscillations. PV+ axons are often myelinated, but the electrical and metabolic roles of interneuron myelination remain poorly understood. Here, we developed viral constructs allowing cell type-specific investigation of mitochondria with genetically encoded fluorescent probes. Single-cell reconstructions revealed that mitochondria selectively cluster to myelinated segments of PV+ basket cells, confirmed by analyses of a high-resolution electron microscopy dataset. In contrast to the increased mitochondrial densities in excitatory axons cuprizone-induced demyelination abolished mitochondrial clustering in PV+ axons. Furthermore, with genetic deletion of myelin basic protein the mitochondrial clustering was still observed at internodes wrapped by noncompacted myelin, indicating that compaction is dispensable. Finally, two-photon imaging of action potential-evoked calcium (Ca2+) responses showed that interneuron myelination attenuates both the cytosolic and mitochondrial Ca2+ transients. These findings suggest that oligodendrocyte ensheathment of PV+ axons assembles mitochondria to branch selectively fine-tune metabolic demands.
Collapse
Affiliation(s)
- Koen Kole
- grid.418101.d0000 0001 2153 6865Axonal Signaling Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Bas J. B. Voesenek
- grid.418101.d0000 0001 2153 6865Axonal Signaling Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Maria E. Brinia
- grid.418101.d0000 0001 2153 6865Axonal Signaling Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands ,grid.5216.00000 0001 2155 0800Medical School, National Kapodistrian University of Athens, Athens, 11527 Greece
| | - Naomi Petersen
- grid.418101.d0000 0001 2153 6865Axonal Signaling Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Maarten H. P. Kole
- grid.418101.d0000 0001 2153 6865Axonal Signaling Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands ,grid.5477.10000000120346234Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
17
|
5 Hz of repetitive transcranial magnetic stimulation improves cognition and induces modifications in hippocampal neurogenesis in adult female Swiss Webster mice. Brain Res Bull 2022; 186:91-105. [PMID: 35688304 DOI: 10.1016/j.brainresbull.2022.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022]
Abstract
Adult hippocampal neurogenesis is regulated by several stimuli to promote the creation of a reserve that may facilitate coping with environmental challenges. In this regard, repetitive transcranial magnetic stimulation (rTMS), a neuromodulation therapy, came to our attention because in clinical studies it reverts behavioral and cognitive alterations related to changes in brain plasticity. Some preclinical studies emphasize the need to understand the underlying mechanism of rTMS to induce behavioral modifications. In this study, we investigated the effects of rTMS on cognition, neurogenic-associated modifications, and neuronal activation in the hippocampus of female Swiss Webster mice. We applied 5 Hz of rTMS twice a day for 14 days. Three days later, mice were exposed to the behavioral battery. Then, brains were collected and immunostained for Ki67-positive cells, doublecortin-positive (DCX+)-cells, calbindin, c-Fos and FosB/Delta-FosB in the dentate gyrus. Also, we analyzed mossy fibers and CA3 with calbindin immunostaining. Mice exposed to rTMS exhibited cognitive improvement, an increased number of proliferative cells, DCX cells, DCX cells with complex dendrite morphology, c-Fos and immunoreactivity of FosB/Delta-FosB in the granular cell layer. The volume of the granular cell layer, mossy fibers and CA3 in rTMS mice also increased. Interestingly, cognitive improvement correlated with DCX cells with complex dendrite morphology. Also, those DCX cells and calbindin immunoreactivity correlated with c-Fos in the granular cell layer. Our results suggest that 5 Hz of rTMS applied twice a day modify cell proliferation, doublecortin cells, mossy fibers and enhance cognitive behavior in healthy female Swiss Webster mice.
Collapse
|
18
|
Abstract
Schwann cells in the peripheral nervous system (PNS) are essential for the support and myelination of axons, ensuring fast and accurate communication between the central nervous system and the periphery. Schwann cells and related glia accompany innervating axons in virtually all tissues in the body, where they exhibit remarkable plasticity and the ability to modulate pathology in extraordinary, and sometimes surprising, ways. Here, we provide a brief overview of the various glial cell types in the PNS and describe the cornerstone cellular and molecular processes that enable Schwann cells to perform their canonical functions. We then dive into discussing exciting noncanonical functions of Schwann cells and related PNS glia, which include their role in organizing the PNS, in regulating synaptic activity and pain, in modulating immunity, in providing a pool of stem cells for different organs, and, finally, in influencing cancer.
Collapse
Affiliation(s)
- Carla Taveggia
- Axo-Glial Interaction Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy;
| | - M. Laura Feltri
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
19
|
Bullock G, Johnson GS, Mhlanga-Mutangadura T, Petesch SC, Thompson S, Goebbels S, Katz ML. Lysosomal storage disease associated with a CNP sequence variant in Dalmatian dogs. Gene X 2022; 830:146513. [PMID: 35447247 DOI: 10.1016/j.gene.2022.146513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022] Open
Abstract
A progressive neurological disorder was identified in purebred Dalmatian dogs. The disease is characterized by anxiety, pacing and circling, hypersensitivity, cognitive decline, sleep disturbance, loss of coordination, loss of control over urination and defecation, and visual impairment. Neurological signs first became apparent when the dogs were approximately 18 months of age and progressed slowly. Two affected littermates were euthanized at approximately 7 years, 5 months and 8 years, 2 months of age due to the severity of neurological impairment. The mother of the affected dogs and four other relatives exhibited milder, later-onset neurological signs. Pronounced accumulations of autofluorescent intracellular inclusions were found in cerebral cortex, cerebellum, optic nerve, and cardiac muscle of the affected dogs. These inclusions co-localized with immunolabeling of the lysosomal marker protein LAMP2 and bound antibodies to mitochondrial ATPase subunit c, indicating that the dogs suffered from a lysosomal storage disease with similarities to the neuronal ceroid lipofuscinoses. Ultrastructural analysis indicated that the storage bodies were surrounded by a single-layer membrane, but the storage granules were distinct from those reported for other lysosomal storage diseases. Whole genome sequences, generated with DNA from the two euthanized Dalmatians, both contained a rare, homozygous single-base deletion and reading-frame shift in CNP which encodes the enzyme CNPase (EC 3.1.4.37). The late-onset disease was exhibited by five of seven related Dalmatians that were heterozygous for the deletion allele and over 8 years of age, whereas none of 16 age-matched reference-allele homozygotes developed neurologic signs. No CNPase antigen could be detected with immunohistochemical labeling in tissues from the dogs with the earlier-onset disorder. Similar to the later-onset Dalmatians, autofluorescent storage granules were apparent in brain and cardiac tissue from transgenic mice that were nullizygous for Cnp. Based on the clinical signs, the histopathological, immunohistochemical, ultrastructural, and molecular-genetic findings, and the finding that nullizygous Cnp mice accumulate autofluorescent storage granules, we propose that the earlier-onset Dalmatian disorder is a novel lysosomal storage disease that results from a loss-of-function mutation in CNP and that shares features characteristic of the neuronal ceroid lipofuscinoses. That the later-onset disorder occurred only in dogs heterozygous for the CNP deletion variant suggests that this disorder is a result of the variant allele's presence.
Collapse
Affiliation(s)
- Garrett Bullock
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Gary S Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Scott C Petesch
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | | | - Sandra Goebbels
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
20
|
de Almeida MMA, Pieropan F, Footz T, David JM, David JP, da Silva VDA, Dos Santos Souza C, Voronova A, Butt AM, Costa SL. Agathisflavone Modifies Microglial Activation State and Myelination in Organotypic Cerebellar Slices Culture. J Neuroimmune Pharmacol 2022; 17:206-217. [PMID: 33881709 DOI: 10.1007/s11481-021-09991-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/10/2021] [Indexed: 12/29/2022]
Abstract
Oligodendrocytes produce the myelin that is critical for rapid neuronal transmission in the central nervous system (CNS). Disruption of myelin has devastating effects on CNS function, as in the demyelinating disease multiple sclerosis (MS). Microglia are the endogenous immune cells of the CNS and play a central role in demyelination and repair. There is a need for new potential therapies that regulate myelination and microglia to promote repair. Agathisflavone (FAB) is a non-toxic flavonoid that is known for its anti-inflammatory and neuroprotective properties. Here, we examined the effects of FAB (5-50 μM) on myelination and microglia in organotypic cerebellar slices prepared from P10-P12 Sox10-EGFP and Plp1-DsRed transgenic mice. Immunofluorescence labeling for myelin basic protein (MBP) and neurofilament (NF) demonstrates that FAB significantly increased the proportion of MBP + /NF + axons but did not affect the overall number of oligodendroglia or axons, or the expression of oligodendroglial proteins CNPase and MBP. FAB is known to be a phytoestrogen, but blockade of α- or β- estrogen receptors (ER) indicated the myelination promoting effects of FAB were not mediated by ER. Examination of microglial responses by Iba1 immunohistochemistry demonstrated that FAB markedly altered microglial morphology, characterized by smaller somata and reduced branching of their processes, consistent with a decreased state of activation, and increased Iba1 protein expression. The results provide evidence that FAB increases the extent of axonal coverage by MBP immunopositive oligodendroglial processes and has a modulatory effect upon microglial cells, which are important therapeutic strategies in multiple neuropathologies.
Collapse
Affiliation(s)
- Monique Marylin Alves de Almeida
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Bahia, Brazil
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Francesca Pieropan
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Jorge Mauricio David
- Department of General and Inorganic Chemistry, Institute of Chemistry, Federal University of Bahia, Bahia, Brazil
| | - Juceni Pereira David
- Department of Medication, Faculty of Pharmacy, Federal University of Bahia, Bahia, Brazil
| | | | - Cleide Dos Santos Souza
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Bahia, Brazil
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK.
| | - Silvia Lima Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Bahia, Brazil.
| |
Collapse
|
21
|
Gargareta VI, Reuschenbach J, Siems SB, Sun T, Piepkorn L, Mangana C, Späte E, Goebbels S, Huitinga I, Möbius W, Nave KA, Jahn O, Werner HB. Conservation and divergence of myelin proteome and oligodendrocyte transcriptome profiles between humans and mice. eLife 2022; 11:77019. [PMID: 35543322 PMCID: PMC9094742 DOI: 10.7554/elife.77019] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Human myelin disorders are commonly studied in mouse models. Since both clades evolutionarily diverged approximately 85 million years ago, it is critical to know to what extent the myelin protein composition has remained similar. Here, we use quantitative proteomics to analyze myelin purified from human white matter and find that the relative abundance of the structural myelin proteins PLP, MBP, CNP, and SEPTIN8 correlates well with that in C57Bl/6N mice. Conversely, multiple other proteins were identified exclusively or predominantly in human or mouse myelin. This is exemplified by peripheral myelin protein 2 (PMP2), which was specific to human central nervous system myelin, while tetraspanin-2 (TSPAN2) and connexin-29 (CX29/GJC3) were confined to mouse myelin. Assessing published scRNA-seq-datasets, human and mouse oligodendrocytes display well-correlating transcriptome profiles but divergent expression of distinct genes, including Pmp2, Tspan2, and Gjc3. A searchable web interface is accessible via www.mpinat.mpg.de/myelin. Species-dependent diversity of oligodendroglial mRNA expression and myelin protein composition can be informative when translating from mouse models to humans.
Collapse
Affiliation(s)
- Vasiliki-Ilya Gargareta
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Josefine Reuschenbach
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lars Piepkorn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Carolina Mangana
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Erik Späte
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Inge Huitinga
- University of Amsterdam, Swammerdam Institute for Life Sciences, Brain Plasticity Group, Amsterdam, Netherlands.,Neuroimmunology Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Electron Microscopy Unit, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
22
|
Buscham TJ, Eichel-Vogel MA, Steyer AM, Jahn O, Strenzke N, Dardawal R, Memhave TR, Siems SB, Müller C, Meschkat M, Sun T, Ruhwedel T, Möbius W, Krämer-Albers EM, Boretius S, Nave KA, Werner HB. Progressive axonopathy when oligodendrocytes lack the myelin protein CMTM5. eLife 2022; 11:75523. [PMID: 35274615 PMCID: PMC8916772 DOI: 10.7554/elife.75523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/27/2022] [Indexed: 11/26/2022] Open
Abstract
Oligodendrocytes facilitate rapid impulse propagation along the axons they myelinate and support their long-term integrity. However, the functional relevance of many myelin proteins has remained unknown. Here, we find that expression of the tetraspan-transmembrane protein CMTM5 (chemokine-like factor-like MARVEL-transmembrane domain containing protein 5) is highly enriched in oligodendrocytes and central nervous system (CNS) myelin. Genetic disruption of the Cmtm5 gene in oligodendrocytes of mice does not impair the development or ultrastructure of CNS myelin. However, oligodendroglial Cmtm5 deficiency causes an early-onset progressive axonopathy, which we also observe in global and tamoxifen-induced oligodendroglial Cmtm5 mutants. Presence of the WldS mutation ameliorates the axonopathy, implying a Wallerian degeneration-like pathomechanism. These results indicate that CMTM5 is involved in the function of oligodendrocytes to maintain axonal integrity rather than myelin biogenesis.
Collapse
Affiliation(s)
- Tobias J Buscham
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Maria A Eichel-Vogel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anna M Steyer
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Nicola Strenzke
- Institute for Auditory Neuroscience, University Medicine Göttingen, Göttingen, Germany
| | - Rakshit Dardawal
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Tor R Memhave
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sophie B Siems
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Christina Müller
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
| | - Martin Meschkat
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Abberior Instruments Gmbh, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
| | - Susann Boretius
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
23
|
Dubey M, Pascual-Garcia M, Helmes K, Wever DD, Hamada MS, Kushner SA, Kole MHP. Myelination synchronizes cortical oscillations by consolidating parvalbumin-mediated phasic inhibition. eLife 2022; 11:73827. [PMID: 35001871 PMCID: PMC8887893 DOI: 10.7554/elife.73827] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Parvalbumin-positive (PV+) γ-aminobutyric acid (GABA) interneurons are critically involved in producing rapid network oscillations and cortical microcircuit computations, but the significance of PV+ axon myelination to the temporal features of inhibition remains elusive. Here, using toxic and genetic mouse models of demyelination and dysmyelination, respectively, we find that loss of compact myelin reduces PV+ interneuron presynaptic terminals and increases failures, and the weak phasic inhibition of pyramidal neurons abolishes optogenetically driven gamma oscillations in vivo. Strikingly, during behaviors of quiet wakefulness selectively theta rhythms are amplified and accompanied by highly synchronized interictal epileptic discharges. In support of a causal role of impaired PV-mediated inhibition, optogenetic activation of myelin-deficient PV+ interneurons attenuated the power of slow theta rhythms and limited interictal spike occurrence. Thus, myelination of PV axons is required to consolidate fast inhibition of pyramidal neurons and enable behavioral state-dependent modulation of local circuit synchronization.
Collapse
Affiliation(s)
- Mohit Dubey
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | | | - Koke Helmes
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Dennis D Wever
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Mustafa S Hamada
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands.,Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Maarten H P Kole
- Department of Axonal Signaling, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands.,Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
24
|
Edgar JM, McGowan E, Chapple KJ, Möbius W, Lemgruber L, Insall RH, Nave K, Boullerne A. Río-Hortega's drawings revisited with fluorescent protein defines a cytoplasm-filled channel system of CNS myelin. J Anat 2021; 239:1241-1255. [PMID: 34713444 PMCID: PMC8602028 DOI: 10.1111/joa.13577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/13/2023] Open
Abstract
A century ago this year, Pío del Río-Hortega (1921) coined the term 'oligodendroglia' for the 'interfascicular glia' with very few processes, launching an extensive discovery effort on his new cell type. One hundred years later, we review his original contributions to our understanding of the system of cytoplasmic channels within myelin in the context of what we observe today using light and electron microscopy of genetically encoded fluorescent reporters and immunostaining. We use the term myelinic channel system to describe the cytoplasm-delimited spaces associated with myelin; being the paranodal loops, inner and outer tongues, cytoplasm-filled spaces through compact myelin and further complex motifs associated to the sheath. Using a central nervous system myelinating cell culture model that contains all major neural cell types and produces compact myelin, we find that td-tomato fluorescent protein delineates the myelinic channel system in a manner reminiscent of the drawings of adult white matter by Río-Hortega, despite that he questioned whether some cytoplasmic figures he observed represented artefact. Together, these data lead us to propose a slightly revised model of the 'unrolled' sheath. Further, we show that the myelinic channel system, while relatively stable, can undergo subtle dynamic shape changes over days. Importantly, we capture an under-appreciated complexity of the myelinic channel system in mature myelin sheaths.
Collapse
Affiliation(s)
- Julia M. Edgar
- Axo‐Glial GroupInstitute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Department of NeurogeneticsMax Planck Institute of Experimental MedicineGöttingenGermany
| | - Eleanor McGowan
- Axo‐Glial GroupInstitute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Katie J. Chapple
- Axo‐Glial GroupInstitute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Wiebke Möbius
- Department of NeurogeneticsMax Planck Institute of Experimental MedicineGöttingenGermany
- Electron Microscopy Core UnitMax Planck Institute of Experimental MedicineGöttingenGermany
| | - Leandro Lemgruber
- Glasgow Imaging FacilityInstitute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | | | - Klaus‐Armin Nave
- Department of NeurogeneticsMax Planck Institute of Experimental MedicineGöttingenGermany
| | - Anne Boullerne
- Department of AnesthesiologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
25
|
Chamberlain KA, Huang N, Xie Y, LiCausi F, Li S, Li Y, Sheng ZH. Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2. Neuron 2021; 109:3456-3472.e8. [PMID: 34506725 PMCID: PMC8571020 DOI: 10.1016/j.neuron.2021.08.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Neurons require mechanisms to maintain ATP homeostasis in axons, which are highly vulnerable to bioenergetic failure. Here, we elucidate a transcellular signaling mechanism by which oligodendrocytes support axonal energy metabolism via transcellular delivery of NAD-dependent deacetylase SIRT2. SIRT2 is undetectable in neurons but enriched in oligodendrocytes and released within exosomes. By deleting sirt2, knocking down SIRT2, or blocking exosome release, we demonstrate that transcellular delivery of SIRT2 is critical for axonal energy enhancement. Mass spectrometry and acetylation analyses indicate that neurons treated with oligodendrocyte-conditioned media from WT, but not sirt2-knockout, mice exhibit strong deacetylation of mitochondrial adenine nucleotide translocases 1 and 2 (ANT1/2). In vivo delivery of SIRT2-filled exosomes into myelinated axons rescues mitochondrial integrity in sirt2-knockout mouse spinal cords. Thus, our study reveals an oligodendrocyte-to-axon delivery of SIRT2, which enhances ATP production by deacetylating mitochondrial proteins, providing a target for boosting axonal bioenergetic metabolism in neurological disorders.
Collapse
Affiliation(s)
- Kelly A Chamberlain
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Yuxiang Xie
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Francesca LiCausi
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Yan Li
- Proteomics Core Facility, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 1B-1014, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
26
|
Berghoff SA, Spieth L, Sun T, Hosang L, Depp C, Sasmita AO, Vasileva MH, Scholz P, Zhao Y, Krueger-Burg D, Wichert S, Brown ER, Michail K, Nave KA, Bonn S, Odoardi F, Rossner M, Ischebeck T, Edgar JM, Saher G. Neuronal cholesterol synthesis is essential for repair of chronically demyelinated lesions in mice. Cell Rep 2021; 37:109889. [PMID: 34706227 DOI: 10.1016/j.celrep.2021.109889] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/12/2021] [Accepted: 10/05/2021] [Indexed: 11/15/2022] Open
Abstract
Astrocyte-derived cholesterol supports brain cells under physiological conditions. However, in demyelinating lesions, astrocytes downregulate cholesterol synthesis, and the cholesterol that is essential for remyelination has to originate from other cellular sources. Here, we show that repair following acute versus chronic demyelination involves distinct processes. In particular, in chronic myelin disease, when recycling of lipids is often defective, de novo neuronal cholesterol synthesis is critical for regeneration. By gene expression profiling, genetic loss-of-function experiments, and comprehensive phenotyping, we provide evidence that neurons increase cholesterol synthesis in chronic myelin disease models and in patients with multiple sclerosis (MS). In mouse models, neuronal cholesterol facilitates remyelination specifically by triggering oligodendrocyte precursor cell proliferation. Our data contribute to the understanding of disease progression and have implications for therapeutic strategies in patients with MS.
Collapse
Affiliation(s)
- Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany; Institute for Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Leon Hosang
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Constanze Depp
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Andrew O Sasmita
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Martina H Vasileva
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Yu Zhao
- Institute for Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Dilja Krueger-Burg
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sven Wichert
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Euan R Brown
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, James Naysmith Building, Heriot Watt University, Edinburgh, UK
| | - Kyriakos Michail
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, James Naysmith Building, Heriot Watt University, Edinburgh, UK
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Stefan Bonn
- Institute for Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Francesca Odoardi
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Moritz Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany; Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Julia M Edgar
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany; Axo-glial Group, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
27
|
Simkins TJ, Duncan GJ, Bourdette D. Chronic Demyelination and Axonal Degeneration in Multiple Sclerosis: Pathogenesis and Therapeutic Implications. Curr Neurol Neurosci Rep 2021; 21:26. [PMID: 33835275 DOI: 10.1007/s11910-021-01110-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system (CNS). Inflammatory attacks in MS lead to both demyelination and axonal damage. However, due to incomplete remyelination most MS lesions remain chronically demyelinated. In parallel, there is axonal degeneration in the CNS of MS patients, contributing to progressive disability. There are currently no approved therapies that adequately restore myelin or protect axons from degeneration. In this review, we will discuss the pathophysiology of axonal loss and chronic demyelination in MS and how understanding this pathophysiology is leading to the development of new MS therapeutics. RECENT FINDINGS Ongoing research into the function of oligodendrocytes and myelin has revealed the importance of their relationship with neuronal health. Demyelination in MS leads to a number of pathophysiologic changes contributing to axonal generation. Among these are mitochondrial dysfunction, persistent neuroinflammation, and the effects of reactive oxygen and nitrogen species. With this information, we review currently approved and investigational therapies designed to restore lost or damaged myelin and protect against neuronal degeneration. The development of therapies to restore lost myelin and protect neurons is a promising avenue of investigation for the benefit of patients with MS.
Collapse
Affiliation(s)
- Tyrell J Simkins
- Department of Neurology, Oregon Health and Science University, 3181S W Sam Jackson Rd L226, Portland, OR, 97239, USA. .,Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA. .,Department of Neurology, Portland VA Medical Center, Portland, OR, USA.
| | - Greg J Duncan
- Department of Neurology, Oregon Health and Science University, 3181S W Sam Jackson Rd L226, Portland, OR, 97239, USA.,Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | - Dennis Bourdette
- Department of Neurology, Oregon Health and Science University, 3181S W Sam Jackson Rd L226, Portland, OR, 97239, USA.,Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
28
|
Siems SB, Jahn O, Hoodless LJ, Jung RB, Hesse D, Möbius W, Czopka T, Werner HB. Proteome Profile of Myelin in the Zebrafish Brain. Front Cell Dev Biol 2021; 9:640169. [PMID: 33898427 PMCID: PMC8060510 DOI: 10.3389/fcell.2021.640169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
The velocity of nerve conduction along vertebrate axons depends on their ensheathment with myelin. Myelin membranes comprise specialized proteins well characterized in mice. Much less is known about the protein composition of myelin in non-mammalian species. Here, we assess the proteome of myelin biochemically purified from the brains of adult zebrafish (Danio rerio), considering its increasing popularity as model organism for myelin biology. Combining gel-based and gel-free proteomic approaches, we identified > 1,000 proteins in purified zebrafish myelin, including all known constituents. By mass spectrometric quantification, the predominant Ig-CAM myelin protein zero (MPZ/P0), myelin basic protein (MBP), and the short-chain dehydrogenase 36K constitute 12%, 8%, and 6% of the total myelin protein, respectively. Comparison with previously established mRNA-abundance profiles shows that expression of many myelin-related transcripts coincides with the maturation of zebrafish oligodendrocytes. Zebrafish myelin comprises several proteins that are not present in mice, including 36K, CLDNK, and ZWI. However, a surprisingly large number of ortholog proteins is present in myelin of both species, indicating partial evolutionary preservation of its constituents. Yet, the relative abundance of CNS myelin proteins can differ markedly as exemplified by the complement inhibitor CD59 that constitutes 5% of the total zebrafish myelin protein but is a low-abundant myelin component in mice. Using novel transgenic reporter constructs and cryo-immuno electron microscopy, we confirm the incorporation of CD59 into myelin sheaths. These data provide the first proteome resource of zebrafish CNS myelin and demonstrate both similarities and heterogeneity of myelin composition between teleost fish and rodents.
Collapse
Affiliation(s)
- Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Laura J Hoodless
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Tim Czopka
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
29
|
Böhme MA, McCarthy AW, Blaum N, Berezeckaja M, Ponimaskine K, Schwefel D, Walter AM. Glial Synaptobrevin mediates peripheral nerve insulation, neural metabolic supply, and is required for motor function. Glia 2021; 69:1897-1915. [PMID: 33811396 DOI: 10.1002/glia.24000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023]
Abstract
Peripheral nerves contain sensory and motor neuron axons coated by glial cells whose interplay ensures function, but molecular details are lacking. SNARE-proteins mediate the exchange and secretion of cargo by fusing vesicles with target organelles, but how glial SNAREs contribute to peripheral nerve function is largely unknown. We, here, identify non-neuronal Synaptobrevin (Syb) as the essential vesicular SNARE in Drosophila peripheral glia to insulate and metabolically supply neurons. We show that tetanus neurotoxin light chain (TeNT-LC), which potently inhibits SNARE-mediated exocytosis from neurons, also impairs peripheral nerve function when selectively expressed in glia, causing nerve disintegration, defective axonal transport, tetanic muscle hyperactivity, impaired locomotion, and lethality. While TeNT-LC disrupts neural function by cleaving neuronal Synaptobrevin (nSyb), it targets non-neuronal Synaptobrevin (Syb) in glia, which it cleaves at low rates: Glial knockdown of Syb (but not nSyb) phenocopied glial TeNT-LC expression whose effects were reverted by a TeNT-LC-insensitive Syb mutant. We link Syb-necessity to two distinct glial subtypes: Impairing Syb function in subperineurial glia disrupted nerve morphology, axonal transport, and locomotion, likely, because nerve-isolating septate junctions (SJs) could not form as essential SJ components (like the cell adhesion protein Neurexin-IV) were mistargeted. Interference with Syb in axon-encircling wrapping glia left nerve morphology and locomotion intact but impaired axonal transport, likely because neural metabolic supply was disrupted due to the mistargeting of metabolite shuffling monocarboxylate transporters. Our study identifies crucial roles of Syb in various glial subtypes to ensure glial-glial and glial-neural interplay needed for proper nerve function, animal motility, and survival.
Collapse
Affiliation(s)
- Mathias A Böhme
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), FMP im CharitéCrossOver, Berlin, Germany.,Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anthony W McCarthy
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), FMP im CharitéCrossOver, Berlin, Germany
| | - Natalie Blaum
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), FMP im CharitéCrossOver, Berlin, Germany
| | - Monika Berezeckaja
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), FMP im CharitéCrossOver, Berlin, Germany
| | - Kristina Ponimaskine
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), FMP im CharitéCrossOver, Berlin, Germany
| | - David Schwefel
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander M Walter
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), FMP im CharitéCrossOver, Berlin, Germany.,Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Abstract
Myelination of axons provides the structural basis for rapid saltatory impulse propagation along vertebrate fiber tracts, a well-established neurophysiological concept. However, myelinating oligodendrocytes and Schwann cells serve additional functions in neuronal energy metabolism that are remarkably similar to those of axon-ensheathing glial cells in unmyelinated invertebrates. Here we discuss myelin evolution and physiological glial functions, beginning with the role of ensheathing glia in preventing ephaptic coupling, axoglial metabolic support, and eliminating oxidative radicals. In both vertebrates and invertebrates, axoglial interactions are bidirectional, serving to regulate cell fate, nerve conduction, and behavioral performance. One key step in the evolution of compact myelin in the vertebrate lineage was the emergence of the open reading frame for myelin basic protein within another gene. Several other proteins were neofunctionalized as myelin constituents and help maintain a healthy nervous system. Myelination in vertebrates became a major prerequisite of inhabiting new ecological niches.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany; ,
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany; ,
| |
Collapse
|
31
|
Tepavčević V. Oligodendroglial Energy Metabolism and (re)Myelination. Life (Basel) 2021; 11:238. [PMID: 33805670 PMCID: PMC7998845 DOI: 10.3390/life11030238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) myelin has a crucial role in accelerating the propagation of action potentials and providing trophic support to the axons. Defective myelination and lack of myelin regeneration following demyelination can both lead to axonal pathology and neurodegeneration. Energy deficit has been evoked as an important contributor to various CNS disorders, including multiple sclerosis (MS). Thus, dysregulation of energy homeostasis in oligodendroglia may be an important contributor to myelin dysfunction and lack of repair observed in the disease. This article will focus on energy metabolism pathways in oligodendroglial cells and highlight differences dependent on the maturation stage of the cell. In addition, it will emphasize that the use of alternative energy sources by oligodendroglia may be required to save glucose for functions that cannot be fulfilled by other metabolites, thus ensuring sufficient energy input for both myelin synthesis and trophic support to the axons. Finally, it will point out that neuropathological findings in a subtype of MS lesions likely reflect defective oligodendroglial energy homeostasis in the disease.
Collapse
Affiliation(s)
- Vanja Tepavčević
- Achucarro Basque Center for Neuroscience, University of the Basque Country, Parque Cientifico de la UPV/EHU, Barrio Sarriena s/n, Edificio Sede, Planta 3, 48940 Leioa, Spain
| |
Collapse
|
32
|
Duncan GJ, Simkins TJ, Emery B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Front Cell Dev Biol 2021; 9:653101. [PMID: 33763430 PMCID: PMC7982542 DOI: 10.3389/fcell.2021.653101] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
The myelination of axons by oligodendrocytes is a highly complex cell-to-cell interaction. Oligodendrocytes and axons have a reciprocal signaling relationship in which oligodendrocytes receive cues from axons that direct their myelination, and oligodendrocytes subsequently shape axonal structure and conduction. Oligodendrocytes are necessary for the maturation of excitatory domains on the axon including nodes of Ranvier, help buffer potassium, and support neuronal energy metabolism. Disruption of the oligodendrocyte-axon unit in traumatic injuries, Alzheimer's disease and demyelinating diseases such as multiple sclerosis results in axonal dysfunction and can culminate in neurodegeneration. In this review, we discuss the mechanisms by which demyelination and loss of oligodendrocytes compromise axons. We highlight the intra-axonal cascades initiated by demyelination that can result in irreversible axonal damage. Both the restoration of oligodendrocyte myelination or neuroprotective therapies targeting these intra-axonal cascades are likely to have therapeutic potential in disorders in which oligodendrocyte support of axons is disrupted.
Collapse
Affiliation(s)
- Greg J. Duncan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Tyrell J. Simkins
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, VA Portland Health Care System, Portland, OR, United States
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
33
|
Möbius W, Hümmert S, Ruhwedel T, Kuzirian A, Gould R. New Species Can Broaden Myelin Research: Suitability of Little Skate, Leucoraja erinacea. Life (Basel) 2021; 11:136. [PMID: 33670172 PMCID: PMC7916940 DOI: 10.3390/life11020136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Although myelinated nervous systems are shared among 60,000 jawed vertebrates, studies aimed at understanding myelination have focused more and more on mice and zebrafish. To obtain a broader understanding of the myelination process, we examined the little skate, Leucoraja erinacea. The reasons behind initiating studies at this time include: the desire to study a species belonging to an out group of other jawed vertebrates; using a species with embryos accessible throughout development; the availability of genome sequences; and the likelihood that mammalian antibodies recognize homologs in the chosen species. We report that the morphological features of myelination in a skate hatchling, a stage that supports complex behavioral repertoires needed for survival, are highly similar in terms of: appearances of myelinating oligodendrocytes (CNS) and Schwann cells (PNS); the way their levels of myelination conform to axon caliber; and their identity in terms of nodal and paranodal specializations. These features provide a core for further studies to determine: axon-myelinating cell communication; the structures of the proteins and lipids upon which myelinated fibers are formed; the pathways used to transport these molecules to sites of myelin assembly and maintenance; and the gene regulatory networks that control their expressions.
Collapse
Affiliation(s)
- Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, 37073 Göttingen, Germany
| | - Sophie Hümmert
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
| | - Alan Kuzirian
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02540, USA;
| | - Robert Gould
- Whitman Science Center, Marin Biological Laboratory, Woods Hole, MA 02540, USA
| |
Collapse
|
34
|
Gruenenfelder FI, McLaughlin M, Griffiths IR, Garbern J, Thomson G, Kuzman P, Barrie JA, McCulloch ML, Penderis J, Stassart R, Nave KA, Edgar JM. Neural stem cells restore myelin in a demyelinating model of Pelizaeus-Merzbacher disease. Brain 2020; 143:1383-1399. [PMID: 32419025 PMCID: PMC7462093 DOI: 10.1093/brain/awaa080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/20/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Pelizaeus-Merzbacher disease is a fatal X-linked leukodystrophy caused by mutations in the PLP1 gene, which is expressed in the CNS by oligodendrocytes. Disease onset, symptoms and mortality span a broad spectrum depending on the nature of the mutation and thus the degree of CNS hypomyelination. In the absence of an effective treatment, direct cell transplantation into the CNS to restore myelin has been tested in animal models of severe forms of the disease with failure of developmental myelination, and more recently, in severely affected patients with early disease onset due to point mutations in the PLP1 gene, and absence of myelin by MRI. In patients with a PLP1 duplication mutation, the most common cause of Pelizaeus-Merzbacher disease, the pathology is poorly defined because of a paucity of autopsy material. To address this, we examined two elderly patients with duplication of PLP1 in whom the overall syndrome, including end-stage pathology, indicated a complex disease involving dysmyelination, demyelination and axonal degeneration. Using the corresponding Plp1 transgenic mouse model, we then tested the capacity of transplanted neural stem cells to restore myelin in the context of PLP overexpression. Although developmental myelination and axonal coverage by endogenous oligodendrocytes was extensive, as assessed using electron microscopy (n = 3 at each of four end points) and immunostaining (n = 3 at each of four end points), wild-type neural precursors, transplanted into the brains of the newborn mutants, were able to effectively compete and replace the defective myelin (n = 2 at each of four end points). These data demonstrate the potential of neural stem cell therapies to restore normal myelination and protect axons in patients with PLP1 gene duplication mutation and further, provide proof of principle for the benefits of stem cell transplantation for other fatal leukodystrophies with 'normal' developmental myelination.
Collapse
Affiliation(s)
- Fredrik I Gruenenfelder
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Mark McLaughlin
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Ian R Griffiths
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - James Garbern
- Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Gemma Thomson
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Peter Kuzman
- Department of Neuropathology, University Clinic Leipzig, D-04103 Leipzig, Germany
| | - Jennifer A Barrie
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Maj-Lis McCulloch
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jacques Penderis
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Ruth Stassart
- Department of Neuropathology, University Clinic Leipzig, D-04103 Leipzig, Germany
| | - Klaus-Armin Nave
- Max Planck Institute for Experimental Medicine, D-37075 Goettingen, Germany
| | - Julia M Edgar
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.,Max Planck Institute for Experimental Medicine, D-37075 Goettingen, Germany
| |
Collapse
|
35
|
Alcover-Sanchez B, Garcia-Martin G, Escudero-Ramirez J, Gonzalez-Riano C, Lorenzo P, Gimenez-Cassina A, Formentini L, de la Villa-Polo P, Pereira MP, Wandosell F, Cubelos B. Absence of R-Ras1 and R-Ras2 causes mitochondrial alterations that trigger axonal degeneration in a hypomyelinating disease model. Glia 2020; 69:619-637. [PMID: 33010069 DOI: 10.1002/glia.23917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Fast synaptic transmission in vertebrates is critically dependent on myelin for insulation and metabolic support. Myelin is produced by oligodendrocytes (OLs) that maintain multilayered membrane compartments that wrap around axonal fibers. Alterations in myelination can therefore lead to severe pathologies such as multiple sclerosis. Given that hypomyelination disorders have complex etiologies, reproducing clinical symptoms of myelin diseases from a neurological perspective in animal models has been difficult. We recently reported that R-Ras1-/- and/or R-Ras2-/- mice, which lack GTPases essential for OL survival and differentiation processes, present different degrees of hypomyelination in the central nervous system with a compounded hypomyelination in double knockout (DKO) mice. Here, we discovered that the loss of R-Ras1 and/or R-Ras2 function is associated with aberrant myelinated axons with increased numbers of mitochondria, and a disrupted mitochondrial respiration that leads to increased reactive oxygen species levels. Consequently, aberrant myelinated axons are thinner with cytoskeletal phosphorylation patterns typical of axonal degeneration processes, characteristic of myelin diseases. Although we observed different levels of hypomyelination in a single mutant mouse, the combined loss of function in DKO mice lead to a compromised axonal integrity, triggering the loss of visual function. Our findings demonstrate that the loss of R-Ras function reproduces several characteristics of hypomyelinating diseases, and we therefore propose that R-Ras1-/- and R-Ras2-/- neurological models are valuable approaches for the study of these myelin pathologies.
Collapse
Affiliation(s)
- Berta Alcover-Sanchez
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gonzalo Garcia-Martin
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan Escudero-Ramirez
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carolina Gonzalez-Riano
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Paz Lorenzo
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alfredo Gimenez-Cassina
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Laura Formentini
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pedro de la Villa-Polo
- Departamento de Biología de Sistemas, Universidad de Alcalá, Madrid, Spain.,Grupo de Neurofisiología Visual, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marta P Pereira
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Francisco Wandosell
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
36
|
Genetic Variation in CNS Myelination and Functional Brain Connectivity in Recombinant Inbred Mice. Cells 2020; 9:cells9092119. [PMID: 32961889 PMCID: PMC7564997 DOI: 10.3390/cells9092119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/29/2023] Open
Abstract
Myelination greatly increases the speed of action potential propagation of neurons, thereby enhancing the efficacy of inter-neuronal communication and hence, potentially, optimizing the brain’s signal processing capability. The impact of genetic variation on the extent of axonal myelination and its consequences for brain functioning remain to be determined. Here we investigated this question using a genetic reference panel (GRP) of mouse BXD recombinant inbred (RI) strains, which partly model genetic diversity as observed in human populations, and which show substantial genetic differences in a variety of behaviors, including learning, memory and anxiety. We found coherent differences in the expression of myelin genes in brain tissue of RI strains of the BXD panel, with the largest differences in the hippocampus. The parental C57BL/6J (C57) and DBA/2J (DBA) strains were on opposite ends of the expression spectrum, with C57 showing higher myelin transcript expression compared with DBA. Our experiments showed accompanying differences between C57 and DBA in myelin protein composition, total myelin content, and white matter conduction velocity. Finally, the hippocampal myelin gene expression of the BXD strains correlated significantly with behavioral traits involving anxiety and/or activity. Taken together, our data indicate that genetic variation in myelin gene expression translates to differences observed in myelination, axonal conduction speed, and possibly in anxiety/activity related behaviors.
Collapse
|
37
|
Jahn O, Siems SB, Kusch K, Hesse D, Jung RB, Liepold T, Uecker M, Sun T, Werner HB. The CNS Myelin Proteome: Deep Profile and Persistence After Post-mortem Delay. Front Cell Neurosci 2020; 14:239. [PMID: 32973451 PMCID: PMC7466725 DOI: 10.3389/fncel.2020.00239] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Myelin membranes are dominated by lipids while the complexity of their protein composition has long been considered to be low. However, numerous additional myelin proteins have been identified since. Here we revisit the proteome of myelin biochemically purified from the brains of healthy c56Bl/6N-mice utilizing complementary proteomic approaches for deep qualitative and quantitative coverage. By gel-free, label-free mass spectrometry, the most abundant myelin proteins PLP, MBP, CNP, and MOG constitute 38, 30, 5, and 1% of the total myelin protein, respectively. The relative abundance of myelin proteins displays a dynamic range of over four orders of magnitude, implying that PLP and MBP have overshadowed less abundant myelin constituents in initial gel-based approaches. By comparisons with published datasets we evaluate to which degree the CNS myelin proteome correlates with the mRNA and protein abundance profiles of myelin and oligodendrocytes. Notably, the myelin proteome displays only minor changes if assessed after a post-mortem delay of 6 h. These data provide the most comprehensive proteome resource of CNS myelin so far and a basis for addressing proteomic heterogeneity of myelin in mouse models and human patients with white matter disorders.
Collapse
Affiliation(s)
- Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sophie B. Siems
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ramona B. Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Thomas Liepold
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Marina Uecker
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
38
|
A method for reducing animal use whilst maintaining statistical power in electrophysiological recordings from rodent nerves. Heliyon 2020; 6:e04143. [PMID: 32529085 PMCID: PMC7281824 DOI: 10.1016/j.heliyon.2020.e04143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/21/2019] [Accepted: 06/02/2020] [Indexed: 12/29/2022] Open
Abstract
The stimulus evoked compound action potential, recorded from ex vivo nerve trunks such as the rodent optic and sciatic nerve, is a popular model system used to study aspects of nervous system metabolism. This includes (1) the role of glycogen in supporting axon conduction, (2) the injury mechanisms resulting from metabolic insults, and (3) to test putative benefits of clinically relevant neuroprotective strategies. We demonstrate the benefit of simultaneously recording from pairs of nerves in the same superfusion chamber compared with conventional recordings from single nerves. Experiments carried out on mouse optic and sciatic nerves demonstrate that our new recording configuration decreased the relative standard deviation from samples when compared with recordings from an equivalent number of individually recorded nerves. The new method reduces the number of animals required to produce equivalent Power compared with the existing method, where single nerves are used. Adopting this method leads to increased experimental efficiency and productivity. We demonstrate that reduced animal use and increased Power can be achieved by recording from pairs of rodent nerve trunks simultaneously.
Collapse
|
39
|
Wang S, Wang T, Liu T, Xie RG, Zhao XH, Wang L, Yang Q, Jia LT, Han J. Ermin is a p116 RIP -interacting protein promoting oligodendroglial differentiation and myelin maintenance. Glia 2020; 68:2264-2276. [PMID: 32530539 DOI: 10.1002/glia.23838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022]
Abstract
Myelin sheaths, which insulate the axons and ensure saltatory conduction of the nerve impulse, are generated and maintained via largely uncharacterized mechanisms. Ermin is an oligodendrocyte-specific protein associated with the cytoskeleton, but how it regulates cytoskeletal remodeling during oligodendrocyte differentiation and its role in myelin maintenance are not clear. To address this, we generated mice constitutively deficient for Ermn, the Ermin-coding gene. We found that aged Ermn-knockout mice exhibit an aberrant myelin architecture, with splitting of myelin layers, peeling of the myelin sheath from axons, and breakdown of myelinated fibers. As a result, these mice had remarkably impaired motor coordination. Ermn knockout also accelerated cuprizone-induced demyelination and exacerbated the associated movement disorders. Ermin was found to contribute to oligodendrocyte morphogenesis by associating with the myosin phosphatase Rho interacting protein (Mprip/p116RIP ) and inactivating RhoA, a GTPase that controls cytoskeletal rearrangement in differentiating cells. These findings provide novel insights into the mechanisms regulating oligodendroglial differentiation, the maintenance of the myelin sheaths, and remyelination.
Collapse
Affiliation(s)
- Shan Wang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Tao Wang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Tao Liu
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Rou-Gang Xie
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Xiang-Hui Zhao
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Lei Wang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Qian Yang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Lin-Tao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
40
|
Gouvêa-Junqueira D, Falvella ACB, Antunes ASLM, Seabra G, Brandão-Teles C, Martins-de-Souza D, Crunfli F. Novel Treatment Strategies Targeting Myelin and Oligodendrocyte Dysfunction in Schizophrenia. Front Psychiatry 2020; 11:379. [PMID: 32425837 PMCID: PMC7203658 DOI: 10.3389/fpsyt.2020.00379] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Oligodendrocytes are the glial cells responsible for the formation of the myelin sheath around axons. During neurodevelopment, oligodendrocytes undergo maturation and differentiation, and later remyelination in adulthood. Abnormalities in these processes have been associated with behavioral and cognitive dysfunctions and the development of various mental illnesses like schizophrenia. Several studies have implicated oligodendrocyte dysfunction and myelin abnormalities in the disorder, together with altered expression of myelin-related genes such as Olig2, CNP, and NRG1. However, the molecular mechanisms subjacent of these alterations remain elusive. Schizophrenia is a severe, chronic psychiatric disorder affecting more than 23 million individuals worldwide and its symptoms usually appear at the beginning of adulthood. Currently, the major therapeutic strategy for schizophrenia relies on the use of antipsychotics. Despite their widespread use, the effects of antipsychotics on glial cells, especially oligodendrocytes, remain unclear. Thus, in this review we highlight the current knowledge regarding oligodendrocyte dysfunction in schizophrenia, compiling data from (epi)genetic studies and up-to-date models to investigate the role of oligodendrocytes in the disorder. In addition, we examined potential targets currently investigated for the improvement of schizophrenia symptoms. Research in this area has been investigating potential beneficial compounds, including the D-amino acids D-aspartate and D-serine, that act as NMDA receptor agonists, modulating the glutamatergic signaling; the antioxidant N-acetylcysteine, a precursor in the synthesis of glutathione, protecting against the redox imbalance; as well as lithium, an inhibitor of glycogen synthase kinase 3β (GSK3β) signaling, contributing to oligodendrocyte survival and functioning. In conclusion, there is strong evidence linking oligodendrocyte dysfunction to the development of schizophrenia. Hence, a better understanding of oligodendrocyte differentiation, as well as the effects of antipsychotic medication in these cells, could have potential implications for understanding the development of schizophrenia and finding new targets for drug development.
Collapse
Affiliation(s)
- Danielle Gouvêa-Junqueira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ana Caroline Brambilla Falvella
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - André Saraiva Leão Marcelo Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- D′Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
41
|
Ferreira BK, Rodrigues MT, Streck EL, Ferreira GC, Schuck PF. White matter disturbances in phenylketonuria: Possible underlying mechanisms. J Neurosci Res 2020; 99:349-360. [PMID: 32141105 DOI: 10.1002/jnr.24598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022]
Abstract
White matter pathologies, as well as intellectual disability, microcephaly, and other central nervous system injuries, are clinical traits commonly ascribed to classic phenylketonuria (PKU). PKU is an inherited metabolic disease elicited by the deficiency of phenylalanine hydroxylase. Accumulation of l-phenylalanine (Phe) and its metabolites is found in tissues and body fluids in phenylketonuric patients. In order to mitigate the clinical findings, rigorous dietary Phe restriction constitutes the core of therapeutic management in PKU. Myelination is the process whereby the oligodendrocytes wrap myelin sheaths around the axons, supporting the conduction of action potentials. White matter injuries are implicated in the brain damage related to PKU, especially in untreated or poorly treated patients. The present review summarizes evidence toward putative mechanisms driving the white matter pathology in PKU patients.
Collapse
Affiliation(s)
- Bruna Klippel Ferreira
- Laboratório de Neuroenergética e Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Porto Alegre, Brazil
| | - Melissa Torres Rodrigues
- Laboratório de Erros Inatos do Metabolismo, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Emilio Luiz Streck
- Laboratório de Neurologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Neuroenergética e Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Porto Alegre, Brazil
| | - Patricia Fernanda Schuck
- Laboratório de Erros Inatos do Metabolismo, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
42
|
Siems SB, Jahn O, Eichel MA, Kannaiyan N, Wu LMN, Sherman DL, Kusch K, Hesse D, Jung RB, Fledrich R, Sereda MW, Rossner MJ, Brophy PJ, Werner HB. Proteome profile of peripheral myelin in healthy mice and in a neuropathy model. eLife 2020; 9:e51406. [PMID: 32130108 PMCID: PMC7056269 DOI: 10.7554/elife.51406] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Proteome and transcriptome analyses aim at comprehending the molecular profiles of the brain, its cell-types and subcellular compartments including myelin. Despite the relevance of the peripheral nervous system for normal sensory and motor capabilities, analogous approaches to peripheral nerves and peripheral myelin have fallen behind evolving technical standards. Here we assess the peripheral myelin proteome by gel-free, label-free mass-spectrometry for deep quantitative coverage. Integration with RNA-Sequencing-based developmental mRNA-abundance profiles and neuropathy disease genes illustrates the utility of this resource. Notably, the periaxin-deficient mouse model of the neuropathy Charcot-Marie-Tooth 4F displays a highly pathological myelin proteome profile, exemplified by the discovery of reduced levels of the monocarboxylate transporter MCT1/SLC16A1 as a novel facet of the neuropathology. This work provides the most comprehensive proteome resource thus far to approach development, function and pathology of peripheral myelin, and a straightforward, accurate and sensitive workflow to address myelin diversity in health and disease.
Collapse
Affiliation(s)
- Sophie B Siems
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Maria A Eichel
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Nirmal Kannaiyan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU MunichMunichGermany
| | - Lai Man N Wu
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Diane L Sherman
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Institute of Anatomy, University of LeipzigLeipzigGermany
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Department of Clinical Neurophysiology, University Medical CenterGöttingenGermany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU MunichMunichGermany
| | - Peter J Brophy
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| |
Collapse
|
43
|
Edgar JM, Smith RS, Duncan ID. Transmission Electron Microscopy and Morphometry of the CNS White Matter. Methods Mol Biol 2020; 2143:233-261. [PMID: 32524485 DOI: 10.1007/978-1-0716-0585-1_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transmission electron microscopy of central nervous system white matter has provided unparalleled access to the ultrastructural features of axons, their myelin sheaths, and the major cells of white matter; namely, oligodendrocytes, oligodendrocyte precursors, astrocytes, and microglia. In particular, it has been invaluable in elucidating pathological changes in axons and myelin following experimentally induced injury or genetic alteration, in animal models. While also of value in the examination of human white matter, the tissue is rarely fixed adequately for the types of detailed analyses that can be performed on well-preserved samples from animal models, perfusion fixed at the time of death. In this chapter we describe methods for obtaining, processing, and visualizing white matter samples using transmission electron microscopy of perfusion fixed tissue and for unbiased morphometry of white matter, with particular emphasis on axon and myelin pathology. Several advanced electron microscopy techniques are now available, but this method remains the most expedient and accessible for routine ultrastructural examination and morphometry.
Collapse
Affiliation(s)
- Julia M Edgar
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Goettingen, Germany.
| | - Rebecca Sherrard Smith
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ian D Duncan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
44
|
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99:1381-1431. [PMID: 31066630 DOI: 10.1152/physrev.00031.2018] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
Collapse
Affiliation(s)
- Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Sebastian Timmler
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Mikael Simons
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| |
Collapse
|
45
|
The Golgi Outpost Protein TPPP Nucleates Microtubules and Is Critical for Myelination. Cell 2019; 179:132-146.e14. [PMID: 31522887 DOI: 10.1016/j.cell.2019.08.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/19/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Abstract
Oligodendrocytes extend elaborate microtubule arbors that contact up to 50 axon segments per cell, then spiral around myelin sheaths, penetrating from outer to inner layers. However, how they establish this complex cytoarchitecture is unclear. Here, we show that oligodendrocytes contain Golgi outposts, an organelle that can function as an acentrosomal microtubule-organizing center (MTOC). We identify a specific marker for Golgi outposts-TPPP (tubulin polymerization promoting protein)-that we use to purify this organelle and characterize its proteome. In in vitro cell-free assays, recombinant TPPP nucleates microtubules. Primary oligodendrocytes from Tppp knockout (KO) mice have aberrant microtubule branching, mixed microtubule polarity, and shorter myelin sheaths when cultured on 3-dimensional (3D) microfibers. Tppp KO mice exhibit hypomyelination with shorter, thinner myelin sheaths and motor coordination deficits. Together, our data demonstrate that microtubule nucleation outside the cell body at Golgi outposts by TPPP is critical for elongation of the myelin sheath.
Collapse
|
46
|
Duncan GJ, Manesh SB, Hilton BJ, Assinck P, Plemel JR, Tetzlaff W. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury. Glia 2019; 68:227-245. [PMID: 31433109 DOI: 10.1002/glia.23706] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are the most proliferative and dispersed population of progenitor cells in the adult central nervous system, which allows these cells to rapidly respond to damage. Oligodendrocytes and myelin are lost after traumatic spinal cord injury (SCI), compromising efficient conduction and, potentially, the long-term health of axons. In response, OPCs proliferate and then differentiate into new oligodendrocytes and Schwann cells to remyelinate axons. This culminates in highly efficient remyelination following experimental SCI in which nearly all intact demyelinated axons are remyelinated in rodent models. However, myelin regeneration comprises only one role of OPCs following SCI. OPCs contribute to scar formation after SCI and restrict the regeneration of injured axons. Moreover, OPCs alter their gene expression following demyelination, express cytokines and perpetuate the immune response. Here, we review the functional contribution of myelin regeneration and other recently uncovered roles of OPCs and their progeny to repair following SCI.
Collapse
Affiliation(s)
- Greg J Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, Oregon
| | - Sohrab B Manesh
- Graduate Program in Neuroscience, International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Brett J Hilton
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Peggy Assinck
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Jason R Plemel
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, University of Alberta, Calgary, Alberta, Canada
| | - Wolfram Tetzlaff
- Graduate Program in Neuroscience, International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Departments of Zoology and Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Chamberlain KA, Sheng ZH. Mechanisms for the maintenance and regulation of axonal energy supply. J Neurosci Res 2019; 97:897-913. [PMID: 30883896 PMCID: PMC6565461 DOI: 10.1002/jnr.24411] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/25/2022]
Abstract
The unique polarization and high-energy demand of neurons necessitates specialized mechanisms to maintain energy homeostasis throughout the cell, particularly in the distal axon. Mitochondria play a key role in meeting axonal energy demand by generating adenosine triphosphate through oxidative phosphorylation. Recent evidence demonstrates how axonal mitochondrial trafficking and anchoring are coordinated to sense and respond to altered energy requirements. If and when these mechanisms are impacted in pathological conditions, such as injury and neurodegenerative disease, is an emerging research frontier. Recent evidence also suggests that axonal energy demand may be supplemented by local glial cells, including astrocytes and oligodendrocytes. In this review, we provide an updated discussion of how oxidative phosphorylation, aerobic glycolysis, and oligodendrocyte-derived metabolic support contribute to the maintenance of axonal energy homeostasis.
Collapse
Affiliation(s)
- Kelly Anne Chamberlain
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| |
Collapse
|
48
|
Correale J, Marrodan M, Ysrraelit MC. Mechanisms of Neurodegeneration and Axonal Dysfunction in Progressive Multiple Sclerosis. Biomedicines 2019; 7:biomedicines7010014. [PMID: 30791637 PMCID: PMC6466454 DOI: 10.3390/biomedicines7010014] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple Sclerosis (MS) is a major cause of neurological disability, which increases predominantly during disease progression as a result of cortical and grey matter structures involvement. The gradual accumulation of disability characteristic of the disease seems to also result from a different set of mechanisms, including in particular immune reactions confined to the Central Nervous System such as: (a) B-cell dysregulation, (b) CD8+ T cells causing demyelination or axonal/neuronal damage, and (c) microglial cell activation associated with neuritic transection found in cortical demyelinating lesions. Other potential drivers of neurodegeneration are generation of oxygen and nitrogen reactive species, and mitochondrial damage, inducing impaired energy production, and intra-axonal accumulation of Ca2+, which in turn activates a variety of catabolic enzymes ultimately leading to progressive proteolytic degradation of cytoskeleton proteins. Loss of axon energy provided by oligodendrocytes determines further axonal degeneration and neuronal loss. Clearly, these different mechanisms are not mutually exclusive and could act in combination. Given the multifactorial pathophysiology of progressive MS, many potential therapeutic targets could be investigated in the future. This remains however, an objective that has yet to be undertaken.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, FLENI, Buenos Aires 1428, Argentina.
| | | | | |
Collapse
|
49
|
Bijland S, Thomson G, Euston M, Michail K, Thümmler K, Mücklisch S, Crawford CL, Barnett SC, McLaughlin M, Anderson TJ, Linington C, Brown ER, Kalkman ER, Edgar JM. An in vitro model for studying CNS white matter: functional properties and experimental approaches. F1000Res 2019; 8:117. [PMID: 31069065 PMCID: PMC6489523 DOI: 10.12688/f1000research.16802.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2019] [Indexed: 12/23/2022] Open
Abstract
The normal development and maintenance of CNS white matter, and its responses to disease and injury, are defined by synergies between axons, oligodendrocytes, astrocytes and microglia, and further influenced by peripheral components such as the gut microbiome and the endocrine and immune systems. Consequently, mechanistic insights, therapeutic approaches and safety tests rely ultimately on in vivo models and clinical trials. However, in vitro models that replicate the cellular complexity of the CNS can inform these approaches, reducing costs and minimising the use of human material or experimental animals; in line with the principles of the 3Rs. Using electrophysiology, pharmacology, time-lapse imaging, and immunological assays, we demonstrate that murine spinal cord-derived myelinating cell cultures recapitulate spinal-like electrical activity and innate CNS immune functions, including responses to disease-relevant myelin debris and pathogen associated molecular patterns (PAMPs). Further, we show they are (i) amenable to siRNA making them suitable for testing gene-silencing strategies; (ii) can be established on microelectrode arrays (MEAs) for electrophysiological studies; and (iii) are compatible with multi-well microplate formats for semi-high throughput screens, maximising information output whilst further reducing animal use. We provide protocols for each of these. Together, these advances increase the utility of this in vitro tool for studying normal and pathological development and function of white matter, and for screening therapeutic molecules or gene targets for diseases such as multiple sclerosis, motor neuron disease or spinal cord injury, whilst avoiding in vivo approaches on experimental animals.
Collapse
Affiliation(s)
- Silvia Bijland
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Gemma Thomson
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Matthew Euston
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Kyriakos Michail
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Katja Thümmler
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Steve Mücklisch
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Colin L Crawford
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Mark McLaughlin
- School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - T James Anderson
- School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Christopher Linington
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Euan R Brown
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Eric R Kalkman
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Julia M Edgar
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
50
|
Erwig MS, Patzig J, Steyer AM, Dibaj P, Heilmann M, Heilmann I, Jung RB, Kusch K, Möbius W, Jahn O, Nave KA, Werner HB. Anillin facilitates septin assembly to prevent pathological outfoldings of central nervous system myelin. eLife 2019; 8:43888. [PMID: 30672734 PMCID: PMC6344079 DOI: 10.7554/elife.43888] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Myelin serves as an axonal insulator that facilitates rapid nerve conduction along axons. By transmission electron microscopy, a healthy myelin sheath comprises compacted membrane layers spiraling around the cross-sectioned axon. Previously we identified the assembly of septin filaments in the innermost non-compacted myelin layer as one of the latest steps of myelin maturation in the central nervous system (CNS) (Patzig et al., 2016). Here we show that loss of the cytoskeletal adaptor protein anillin (ANLN) from oligodendrocytes disrupts myelin septin assembly, thereby causing the emergence of pathological myelin outfoldings. Since myelin outfoldings are a poorly understood hallmark of myelin disease and brain aging we assessed axon/myelin-units in Anln-mutant mice by focused ion beam-scanning electron microscopy (FIB-SEM); myelin outfoldings were three-dimensionally reconstructed as large sheets of multiple compact membrane layers. We suggest that anillin-dependent assembly of septin filaments scaffolds mature myelin sheaths, facilitating rapid nerve conduction in the healthy CNS.
Collapse
Affiliation(s)
- Michelle S Erwig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anna M Steyer
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Payam Dibaj
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|