1
|
Wei X, Zheng Z, Feng Z, Zheng L, Tao S, Zheng B, Huang B, Zhang X, Liu J, Chen Y, Zong W, Shan Z, Fan S, Chen J, Zhao F. Sigma-1 receptor attenuates osteoclastogenesis by promoting ER-associated degradation of SERCA2. EMBO Mol Med 2022; 14:e15373. [PMID: 35611810 PMCID: PMC9260208 DOI: 10.15252/emmm.202115373] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Sigma-1 receptor (Sigmar1) is a specific chaperone located in the mitochondria-associated endoplasmic reticulum membrane (MAM) and plays a role in several physiological processes. However, the role of Sigmar1 in bone homeostasis remains unknown. Here, we show that mice lacking Sigmar1 exhibited severe osteoporosis in an ovariectomized model. In contrast, overexpression of Sigmar1 locally alleviated the osteoporosis phenotype. Treatment with Sigmar1 agonists impaired both human and mice osteoclast formation in vitro. Mechanistically, SERCA2 was identified to interact with Sigmar1 based on the immunoprecipitation-mass spectrum (IP-MS) and co-immunoprecipitation (co-IP) assays, and Q615 of SERCA2 was confirmed to be the critical residue for their binding. Furthermore, Sigmar1 promoted SERCA2 degradation through Hrd1/Sel1L-dependent ER-associated degradation (ERAD). Ubiquitination of SERCA2 at K460 and K541 was responsible for its proteasomal degradation. Consequently, inhibition of SERCA2 impeded Sigmar1 deficiency enhanced osteoclastogenesis. Moreover, we found that dimemorfan, an FDA-approved Sigmar1 agonist, effectively rescued bone mass in various established bone-loss models. In conclusion, Sigmar1 is a negative regulator of osteoclastogenesis, and activation of Sigmar1 by dimemorfan may be a potential treatment for osteoporosis in clinical practice.
Collapse
Affiliation(s)
- Xiaoan Wei
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Zeyu Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Zhenhua Feng
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Lin Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Siyue Tao
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Bingjie Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Bao Huang
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Xuyang Zhang
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Junhui Liu
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Yilei Chen
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Wentian Zong
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Zhi Shan
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Shunwu Fan
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Jian Chen
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Fengdong Zhao
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
2
|
Pirnat S, Božić M, Dolanc D, Horvat A, Tavčar P, Vardjan N, Verkhratsky A, Zorec R, Stenovec M. Astrocyte arborization enhances Ca 2+ but not cAMP signaling plasticity. Glia 2021; 69:2899-2916. [PMID: 34406698 PMCID: PMC9290837 DOI: 10.1002/glia.24076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023]
Abstract
The plasticity of astrocytes is fundamental for their principal function, maintaining homeostasis of the central nervous system throughout life, and is associated with diverse exposomal challenges. Here, we used cultured astrocytes to investigate at subcellular level basic cell processes under controlled environmental conditions. We compared astroglial functional and signaling plasticity in standard serum‐containing growth medium, a condition mimicking pathologic conditions, and in medium without serum, favoring the acquisition of arborized morphology. Using opto−/electrophysiologic techniques, we examined cell viability, expression of astroglial markers, vesicle dynamics, and cytosolic Ca2+ and cAMP signaling. The results revealed altered vesicle dynamics in arborized astrocytes that was associated with increased resting [Ca2+]i and increased subcellular heterogeneity in [Ca2+]i, whereas [cAMP]i subcellular dynamics remained stable in both cultures, indicating that cAMP signaling is less prone to plastic remodeling than Ca2+ signaling, possibly also in in vivo contexts.
Collapse
Affiliation(s)
- Samo Pirnat
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Mićo Božić
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Dorian Dolanc
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Anemari Horvat
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Tavčar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Cell Engineering, Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Crosstalk among Calcium ATPases: PMCA, SERCA and SPCA in Mental Diseases. Int J Mol Sci 2021; 22:ijms22062785. [PMID: 33801794 PMCID: PMC8000800 DOI: 10.3390/ijms22062785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Calcium in mammalian neurons is essential for developmental processes, neurotransmitter release, apoptosis, and signal transduction. Incorrectly processed Ca2+ signal is well-known to trigger a cascade of events leading to altered response to variety of stimuli and persistent accumulation of pathological changes at the molecular level. To counterbalance potentially detrimental consequences of Ca2+, neurons are equipped with sophisticated mechanisms that function to keep its concentration in a tightly regulated range. Calcium pumps belonging to the P-type family of ATPases: plasma membrane Ca2+-ATPase (PMCA), sarco/endoplasmic Ca2+-ATPase (SERCA) and secretory pathway Ca2+-ATPase (SPCA) are considered efficient line of defense against abnormal Ca2+ rises. However, their role is not limited only to Ca2+ transport, as they present tissue-specific functionality and unique sensitive to the regulation by the main calcium signal decoding protein—calmodulin (CaM). Based on the available literature, in this review we analyze the contribution of these three types of Ca2+-ATPases to neuropathology, with a special emphasis on mental diseases.
Collapse
|
4
|
Britzolaki A, Saurine J, Klocke B, Pitychoutis PM. A Role for SERCA Pumps in the Neurobiology of Neuropsychiatric and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:131-161. [PMID: 31646509 DOI: 10.1007/978-3-030-12457-1_6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium (Ca2+) is a fundamental regulator of cell fate and intracellular Ca2+ homeostasis is crucial for proper function of the nerve cells. Given the complexity of neurons, a constellation of mechanisms finely tunes the intracellular Ca2+ signaling. We are focusing on the sarco/endoplasmic reticulum (SR/ER) calcium (Ca2+)-ATPase (SERCA) pump, an integral ER protein. SERCA's well established role is to preserve low cytosolic Ca2+ levels ([Ca2+]cyt), by pumping free Ca2+ ions into the ER lumen, utilizing ATP hydrolysis. The SERCA pumps are encoded by three distinct genes, SERCA1-3, resulting in 12 known protein isoforms, with tissue-dependent expression patterns. Despite the well-established structure and function of the SERCA pumps, their role in the central nervous system is not clear yet. Interestingly, SERCA-mediated Ca2+ dyshomeostasis has been associated with neuropathological conditions, such as bipolar disorder, schizophrenia, Parkinson's disease and Alzheimer's disease. We summarize here current evidence suggesting a role for SERCA in the neurobiology of neuropsychiatric and neurodegenerative disorders, thus highlighting the importance of this pump in brain physiology and pathophysiology.
Collapse
Affiliation(s)
- Aikaterini Britzolaki
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Joseph Saurine
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Benjamin Klocke
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA.
| |
Collapse
|
5
|
Verkhratsky A, Rose CR. Na +-dependent transporters: The backbone of astroglial homeostatic function. Cell Calcium 2019; 85:102136. [PMID: 31835178 DOI: 10.1016/j.ceca.2019.102136] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 01/30/2023]
Abstract
Astrocytes are the principal homeostatic cells of the central nerves system (CNS) that support the CNS function at all levels of organisation, from molecular to organ. Several fundamental homeostatic functions of astrocytes are mediated through plasmalemmal pumps and transporters; most of which are also regulated by the transplasmalemmal gradient of Na+ ions. Neuronal activity as well as mechanical or chemical stimulation of astrocytes trigger plasmalemmal Na+ fluxes, which in turn generate spatio-temporally organised transient changes in the cytosolic Na+ concentration, which represent the substrate of astroglial Na+ signalling. Astroglial Na+ signals link and coordinate neuronal activity and CNS homeostatic demands with the astroglial homeostatic response.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
6
|
Britzolaki A, Saurine J, Flaherty E, Thelen C, Pitychoutis PM. The SERCA2: A Gatekeeper of Neuronal Calcium Homeostasis in the Brain. Cell Mol Neurobiol 2018; 38:981-994. [PMID: 29663107 DOI: 10.1007/s10571-018-0583-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Calcium (Ca2+) ions are prominent cell signaling regulators that carry information for a variety of cellular processes and are critical for neuronal survival and function. Furthermore, Ca2+ acts as a prominent second messenger that modulates divergent intracellular cascades in the nerve cells. Therefore, nerve cells have developed intricate Ca2+ signaling pathways to couple the Ca2+ signal to their biochemical machinery. Notably, intracellular Ca2+ homeostasis greatly relies on the rapid redistribution of Ca2+ ions into the diverse subcellular organelles which serve as Ca2+ stores, including the endoplasmic reticulum (ER). It is well established that Ca2+ released into the neuronal cytoplasm is pumped back into the ER by the sarco-/ER Ca2+ ATPase 2 (SERCA2), a P-type ion-motive ATPase that resides on the ER membrane. Even though the SERCA2 is constitutively expressed in nerve cells, its precise role in brain physiology and pathophysiology is not well-characterized. Intriguingly, SERCA2-dependent Ca2+ dysregulation has been implicated in several disorders that affect cognitive function, including Darier's disease, schizophrenia, Alzheimer's disease, and cerebral ischemia. The current review summarizes knowledge on the expression pattern of the different SERCA2 isoforms in the nervous system, and further discusses evidence of SERCA2 dysregulation in various neuropsychiatric disorders. To the best of our knowledge, this is the first literature review that specifically highlights the critical role of the SERCA2 in the brain. Advancing knowledge on the role of SERCA2 in maintaining neuronal Ca2+ homeostasis may ultimately lead to the development of safer and more effective pharmacotherapies to combat debilitating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aikaterini Britzolaki
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Joseph Saurine
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Emily Flaherty
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Connor Thelen
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA.
| |
Collapse
|
7
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
8
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 964] [Impact Index Per Article: 160.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
9
|
Morita M, Nakane A, Maekawa S, Kudo Y. Pharmacological characterization of the involvement of protein kinase C in oscillatory and non-oscillatory calcium increases in astrocytes. J Pharmacol Sci 2015; 129:38-42. [PMID: 26349942 DOI: 10.1016/j.jphs.2015.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/09/2015] [Accepted: 08/11/2015] [Indexed: 01/24/2023] Open
Abstract
Evidence increasingly shows that astrocytes play a pivotal role in brain physiology and pathology via calcium dependent processes, thus the characterization of the calcium dynamics in astrocytes is of growing importance. We have previously reported that the epidermal growth factor and basic fibroblast growth factor up-regulate the oscillation of the calcium releases that are induced by stimuli, including glutamate in cultured astrocytes. This calcium oscillation is assumed to involve protein kinase C (PKC), which is activated together with the calcium releases as a consequence of inositol phospholipid hydrolysis. In the present study, this issue has been investigated pharmacologically by using astrocytes cultured with and without the growth factors. The pharmacological activation of PKC largely reduced the glutamate-induced oscillatory and non-oscillatory calcium increases. Meanwhile, PKC inhibitors increased the total amounts of both calcium increases without affecting the peak amplitudes and converted the calcium oscillations to non-oscillatory sustained calcium increases by abolishing the falling phases of the repetitive calcium increases. Furthermore, the pharmacological effects were consistent between both glutamate- and histamine-induced calcium oscillations. These results suggest that PKC up-regulates the removal of cytosolic calcium in astrocytes, and this up-regulation is essential for calcium oscillation in astrocytes cultured with growth factors.
Collapse
Affiliation(s)
- Mitsuhiro Morita
- Department of Biology, Kobe University Graduate School of Science, Kobe, 657-8501, Japan; School of Life Science, Tokyo University of Pharmacy and Life Science, Tokyo, 192-0392, Japan.
| | - Akira Nakane
- School of Life Science, Tokyo University of Pharmacy and Life Science, Tokyo, 192-0392, Japan
| | - Shohei Maekawa
- Department of Biology, Kobe University Graduate School of Science, Kobe, 657-8501, Japan
| | - Yoshihisa Kudo
- School of Life Science, Tokyo University of Pharmacy and Life Science, Tokyo, 192-0392, Japan
| |
Collapse
|
10
|
The transmembrane transporter domain of glutamate transporters is a process tip localizer. Sci Rep 2015; 5:9032. [PMID: 25761899 PMCID: PMC4357008 DOI: 10.1038/srep09032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/10/2015] [Indexed: 01/09/2023] Open
Abstract
Glutamate transporters in the central nervous system remove glutamate released from neurons to terminate the signal. These transporters localize to astrocyte process tips approaching neuronal synapses. The mechanisms underlying the localization of glutamate transporters to these processes, however, are not known. In this study, we demonstrate that the trimeric transmembrane transporter domain fragment of glutamate transporters, lacking both N- and C-terminal cytoplasmic regions, localized to filopodia tips. This is a common property of trimeric transporters including a neutral amino acid transporter ASCT1. Astrocyte specific proteins are not required for the filopodia tip localization. An extracellular loop at the centre of the 4th transmembrane helices, unique for metazoans, is required for the localization. Moreover, a C186S mutation at the 4th transmembrane region of EAAT1, found in episodic ataxia patients, significantly decreased its process tip localization. The transmembrane transporter domain fragments of glutamate transporters also localized to astrocyte process tips in cultured hippocampal slice. These results indicate that the transmembrane transporter domain of glutamate transporters have an additional function as a sorting signal to process tips.
Collapse
|
11
|
DC electric fields direct breast cancer cell migration, induce EGFR polarization, and increase the intracellular level of calcium ions. Cell Biochem Biophys 2014; 67:1115-25. [PMID: 23657921 DOI: 10.1007/s12013-013-9615-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Migration of cancer cells leads to invasion of primary tumors to distant organs (i.e., metastasis). Growing number of studies have demonstrated the migration of various cancer cell types directed by applied direct current electric fields (dcEF), i.e., electrotaxis, and suggested its potential implications in metastasis. MDA-MB-231 cell, a human metastatic breast cancer cell line, has been shown to migrate toward the anode of dcEF. Further characterizations of MDA-MB-231 cell electrotaxis and investigation of its underlying signaling mechanisms will lead to a better understanding of electrically guided cancer cell migration and metastasis. Therefore, we quantitatively characterized MDA-MB-231 cell electrotaxis and a few associated signaling events. Using a microfluidic device that can create well-controlled dcEF, we showed the anode-directing migration of MDA-MB-231 cells. In addition, surface staining of epidermal growth factor receptor (EGFR) and confocal microscopy showed the dcEF-induced anodal EGFR polarization in MDA-MB-231 cells. Furthermore, we showed an increase of intracellular calcium ions in MDA-MB-231 cells upon dcEF stimulation. Altogether, our study provided quantitative measurements of electrotactic migration of MDA-MB-231 cells, and demonstrated the electric field-mediated EGFR and calcium signaling events, suggesting their involvement in breast cancer cell electrotaxis.
Collapse
|
12
|
Hertz L, Xu J, Peng L. Glycogenolysis and purinergic signaling. ADVANCES IN NEUROBIOLOGY 2014; 11:31-54. [PMID: 25236723 DOI: 10.1007/978-3-319-08894-5_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Both ATP and glutamate are on one hand essential metabolites in brain and on the other serve a signaling function as transmitters. However, there is the major difference that the flux in the pathway producing transmitter glutamate is comparable to the rate of glucose metabolism in brain, whereas that producing transmitter ATP is orders of magnitude smaller than the metabolic turnover between ATP and ADP. Moreover, de novo glutamate production occurs exclusively in astrocytes, whereas transmitter ATP is produced both in neurons and astrocytes. This chapter deals only with ATP and exclusively with its formation and release in astrocytes, and it focuses on potential associations with glycogenolysis, which is known to be indispensable for the synthesis of glutamate. Glycogenolysis is dependent upon an increase in free intracellular Ca(2+) concentration (Ca(2+)]i). It can be further stimulated by cAMP, but in contrast to widespread beliefs, cAMP can on its own not induce glycogenolysis. Astrocytes generate ATP from accumulated adenosine, and this process does not seem to require glycogenolysis. A minor amount of the generated ATP is utilized as a transmitter, and its synthesis requires the presence of the mainly intracellular nucleoside transporter ENT3. Many transmitters as well as extracellular K(+) concentrations high enough to open the voltage-sensitive L-channels for Ca(2+) cause a release of transmitter ATP from astrocytes. Adenosine and ATP induce release of ATP by action at several different purinergic receptors. The release evoked by transmitters or elevated K(+) concentrations is abolished by DAB, an inhibitor of glycogenolysis.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China,
| | | | | |
Collapse
|
13
|
Cortese B, Palamà IE, D'Amone S, Gigli G. Influence of electrotaxis on cell behaviour. Integr Biol (Camb) 2014; 6:817-30. [DOI: 10.1039/c4ib00142g] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding the mechanism of cell migration and interaction with the microenvironment is not only of critical significance to the function and biology of cells, but also has extreme relevance and impact on physiological processes and diseases such as morphogenesis, wound healing, neuron guidance, and cancer metastasis.
Collapse
Affiliation(s)
- Barbara Cortese
- NNL
- Institute of Nanoscience CNR
- 73100 Lecce, Italy
- Department of Physics
- University Sapienza
| | | | | | - Giuseppe Gigli
- NNL
- Institute of Nanoscience CNR
- 73100 Lecce, Italy
- Department of Mathematics and Physics
- University of Salento
| |
Collapse
|
14
|
Naranjo JR, Mellström B. Ca2+-dependent transcriptional control of Ca2+ homeostasis. J Biol Chem 2012; 287:31674-80. [PMID: 22822058 DOI: 10.1074/jbc.r112.384982] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular free Ca(2+) ions regulate many cellular functions, and in turn, the cell devotes many genes/proteins to keep tight control of the level of intracellular free Ca(2+). Here, we review recent work on Ca(2+)-dependent mechanisms and effectors that regulate the transcription of genes encoding proteins involved in the maintenance of the homeostasis of Ca(2+) in the cell.
Collapse
Affiliation(s)
- Jose R Naranjo
- National Center of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC) and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.
| | | |
Collapse
|
15
|
Toivari E, Hituri K, Manninen T, Jalonen TO, Linne ML. Contribution of SERCA and IP3 sensitivity to calcium signaling in astrocytes: a computational study. BMC Neurosci 2011. [PMCID: PMC3240303 DOI: 10.1186/1471-2202-12-s1-p201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Ng FS, Tangredi MM, Jackson FR. Glial cells physiologically modulate clock neurons and circadian behavior in a calcium-dependent manner. Curr Biol 2011; 21:625-34. [PMID: 21497088 PMCID: PMC3081987 DOI: 10.1016/j.cub.2011.03.027] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 02/09/2011] [Accepted: 03/09/2011] [Indexed: 01/12/2023]
Abstract
BACKGROUND An important goal of contemporary neuroscience research is to define the neural circuits and synaptic interactions that mediate behavior. In both mammals and Drosophila, the neuronal circuitry controlling circadian behavior has been the subject of intensive investigation, but roles for glial cells in the networks controlling rhythmic behavior have only begun to be defined in recent studies. RESULTS Here, we show that conditional, glial-specific genetic manipulations affecting membrane (vesicle) trafficking, the membrane ionic gradient, or calcium signaling lead to circadian arrhythmicity in adult behaving Drosophila. Correlated and reversible effects on a clock neuron peptide transmitter (PDF) and behavior demonstrate the capacity for glia-to-neuron signaling in the circadian circuitry. These studies also reveal the importance of a single type of glial cell-the astrocyte-and glial internal calcium stores in the regulation of circadian rhythms. CONCLUSIONS This is the first demonstration in any system that adult glial cells can physiologically modulate circadian neuronal circuitry and behavior. A role for astrocytes and glial calcium signaling in the regulation of Drosophila circadian rhythms emphasizes the conservation of cellular and molecular mechanisms that regulate behavior in mammals and insects.
Collapse
Affiliation(s)
- Fanny S. Ng
- Department of Neuroscience, Center for Neuroscience Research Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - Michelle M. Tangredi
- Department of Neuroscience, Center for Neuroscience Research Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - F. Rob Jackson
- Department of Neuroscience, Center for Neuroscience Research Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| |
Collapse
|