1
|
Meng L, Chen HM, Zhang JS, Wu YR, Xu YZ. Matricellular proteins: From cardiac homeostasis to immune regulation. Biomed Pharmacother 2024; 180:117463. [PMID: 39305814 DOI: 10.1016/j.biopha.2024.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Tissue repair after myocardial injury is a complex process involving changes in all aspects of the myocardial tissue, including the extracellular matrix (ECM). The ECM is composed of large structural proteins such as collagen and elastin and smaller proteins with major regulatory properties called matricellular proteins. Matricellular cell proteins exert their functions and elicit cellular responses by binding to structural proteins not limited to interactions with cell surface receptors, cytokines, or proteases. At the same time, matricellular proteins act as the "bridge" of information exchange between cells and ECM, maintaining the integrity of the cardiac structure and regulating the immune environment, which is a key factor in determining cardiac homeostasis. In this review, we present an overview of the identified matricellular proteins and summarize the current knowledge regarding their roles in maintaining cardiac homeostasis and regulating the immune system.
Collapse
Affiliation(s)
- Li Meng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Hui-Min Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Jia-Sheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Yi-Rong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| | - Yi-Zhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| |
Collapse
|
2
|
Li P, Tao Z, Zhao X. The Role of Osteopontin (OPN) in Regulating Microglia Phagocytosis in Nervous System Diseases. J Integr Neurosci 2024; 23:169. [PMID: 39344228 DOI: 10.31083/j.jin2309169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 10/01/2024] Open
Abstract
Phagocytosis is the process by which certain cells or organelles internalise foreign substances by engulfing them and then digesting or disposing of them. Microglia are the main resident phagocytic cells in the brain. It is generally believed that microglia/macrophages play a role in guiding the brain's repair and functional recovery processes. However, the resident and invading immune cells of the central nervous system can also exacerbate tissue damage by stimulating inflammation and engulfing viable neurons. The functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon in acute brain injury because it eliminates dead cells and induces an anti-inflammatory response. Osteopontin (OPN) is a phosphorylated glycoprotein induced by injury in various tissues, including brain tissue. In acute brain injuries such as hemorrhagic stroke and ischemic stroke, OPN is generally believed to have anti-inflammatory effects. OPN can promote the reconstruction of the blood-brain barrier and up-regulate the scavenger receptor CD36. But in chronic diseases such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), OPN can cause microglia to engulf neurons and worsen disease progression. We explored the role of OPN in promoting microglial phagocytosis in nervous system disorders.
Collapse
Affiliation(s)
- Pengpeng Li
- Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China
- Department of Neurosurgery, Jiangnan University Medical Center, 214005 Wuxi, Jiangsu, China
| | - Zhengxin Tao
- Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, Jiangsu, China
- Department of Neurosurgery, Jiangnan University Medical Center, 214005 Wuxi, Jiangsu, China
| | - Xudong Zhao
- Department of Neurosurgery, Jiangnan University Medical Center, 214005 Wuxi, Jiangsu, China
- Wuxi Neurosurgical Institute, Wuxi School of Medicine, Jiangnan University, 214002 Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Matusiak M, Hickey JW, van IJzendoorn DG, Lu G, Kidziński L, Zhu S, Colburg DR, Luca B, Phillips DJ, Brubaker SW, Charville GW, Shen J, Loh KM, Okwan-Duodu DK, Nolan GP, Newman AM, West RB, van de Rijn M. Spatially Segregated Macrophage Populations Predict Distinct Outcomes in Colon Cancer. Cancer Discov 2024; 14:1418-1439. [PMID: 38552005 PMCID: PMC11294822 DOI: 10.1158/2159-8290.cd-23-1300] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 08/03/2024]
Abstract
Tumor-associated macrophages are transcriptionally heterogeneous, but the spatial distribution and cell interactions that shape macrophage tissue roles remain poorly characterized. Here, we spatially resolve five distinct human macrophage populations in normal and malignant human breast and colon tissue and reveal their cellular associations. This spatial map reveals that distinct macrophage populations reside in spatially segregated micro-environmental niches with conserved cellular compositions that are repeated across healthy and diseased tissue. We show that IL4I1+ macrophages phagocytose dying cells in areas with high cell turnover and predict good outcome in colon cancer. In contrast, SPP1+ macrophages are enriched in hypoxic and necrotic tumor regions and portend worse outcome in colon cancer. A subset of FOLR2+ macrophages is embedded in plasma cell niches. NLRP3+ macrophages co-localize with neutrophils and activate an inflammasome in tumors. Our findings indicate that a limited number of unique human macrophage niches function as fundamental building blocks in tissue. Significance: This work broadens our understanding of the distinct roles different macrophage populations may exert on cancer growth and reveals potential predictive markers and macrophage population-specific therapy targets.
Collapse
Affiliation(s)
| | - John W. Hickey
- Department of Pathology, Stanford University, Stanford, California.
| | | | - Guolan Lu
- Department of Pathology, Stanford University, Stanford, California.
| | - Lukasz Kidziński
- Department of Bioengineering, Stanford University, Stanford, California.
| | - Shirley Zhu
- Department of Pathology, Stanford University, Stanford, California.
| | | | - Bogdan Luca
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, California.
- Department of Biomedical Data Science, Stanford University, Stanford, California.
| | | | - Sky W. Brubaker
- Department of Microbiology and Immunology, Stanford University, Stanford, California.
| | | | - Jeanne Shen
- Department of Pathology, Stanford University, Stanford, California.
| | - Kyle M. Loh
- Department of Developmental Biology, Stanford University, Stanford, California.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California.
| | | | - Garry P. Nolan
- Department of Pathology, Stanford University, Stanford, California.
| | - Aaron M. Newman
- Department of Biomedical Data Science, Stanford University, Stanford, California.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California.
- Stanford Cancer Institute, Stanford University, Stanford, California.
| | - Robert B. West
- Department of Pathology, Stanford University, Stanford, California.
| | - Matt van de Rijn
- Department of Pathology, Stanford University, Stanford, California.
| |
Collapse
|
4
|
Sahebi K, Foroozand H, Amirsoleymani M, Eslamzadeh S, Negahdaripour M, Tajbakhsh A, Rahimi Jaberi A, Savardashtaki A. Advancing stroke recovery: unlocking the potential of cellular dynamics in stroke recovery. Cell Death Discov 2024; 10:321. [PMID: 38992073 PMCID: PMC11239950 DOI: 10.1038/s41420-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Stroke stands as a predominant cause of mortality and morbidity worldwide, and there is a pressing need for effective therapies to improve outcomes and enhance the quality of life for stroke survivors. In this line, effective efferocytosis, the clearance of apoptotic cells, plays a crucial role in neuroprotection and immunoregulation. This process involves specialized phagocytes known as "professional phagocytes" and consists of four steps: "Find-Me," "Eat-Me," engulfment/digestion, and anti-inflammatory responses. Impaired efferocytosis can lead to secondary necrosis and inflammation, resulting in adverse outcomes following brain pathologies. Enhancing efferocytosis presents a potential avenue for improving post-stroke recovery. Several therapeutic targets have been identified, including osteopontin, cysteinyl leukotriene 2 receptor, the µ opioid receptor antagonist β-funaltrexamine, and PPARγ and RXR agonists. Ferroptosis, defined as iron-dependent cell death, is now emerging as a novel target to attenuate post-stroke tissue damage and neuronal loss. Additionally, several biomarkers, most importantly CD163, may serve as potential biomarkers and therapeutic targets for acute ischemic stroke, aiding in stroke diagnosis and prognosis. Non-pharmacological approaches involve physical rehabilitation, hypoxia, and hypothermia. Mitochondrial dysfunction is now recognized as a major contributor to the poor outcomes of brain stroke, and medications targeting mitochondria may exhibit beneficial effects. These strategies aim to polarize efferocytes toward an anti-inflammatory phenotype, limit the ingestion of distressed but viable neurons, and stimulate efferocytosis in the late phase of stroke to enhance post-stroke recovery. These findings highlight promising directions for future research and development of effective stroke recovery therapies.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saghi Eslamzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Weng Y, Lu F, Li P, Jian Y, Xu J, Zhong T, Guo Q, Yang Y. Osteopontin Promotes Angiogenesis in the Spinal Cord and Exerts a Protective Role Against Motor Function Impairment and Neuropathic Pain After Spinal Cord Injury. Spine (Phila Pa 1976) 2024; 49:E142-E151. [PMID: 38329420 DOI: 10.1097/brs.0000000000004954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
STUDY DESIGN Basic science study using a hemisection spinal cord injury (SCI) model. OBJECTIVE We sought to assess the effect of blocking osteopontin (OPN) upregulation on motor function recovery and pain behavior after SCI and to further investigate the possible downstream target of OPN in the injured spinal cord. SUMMARY OF BACKGROUND DATA OPN is a noncollagenous extracellular matrix protein widely expressed across different tissues. Its expression substantially increases following SCI. A previous study suggested that this protein might contribute to locomotor function recovery after SCI. However, its neuroprotective potential was not fully explored, nor were the underlying mechanisms. MATERIALS AND METHODS We constructed a SCI mouse model and analyzed the expression of OPN at different time points and the particular cell distribution in the injured spinal cord. Then, we blocked OPN upregulation with lentivirus-delivering siRNA targeting OPN specifically and examined its effect on motor function impairment and neuropathic pain after SCI. The underlying mechanisms were explored in the OPN-knockdown mice model and cultured vascular endothelial cells. RESULTS The proteome study revealed that OPN was the most dramatically increased protein following SCI. OPN in the spinal cord was significantly increased three weeks after SCI. Suppressing OPN upregulation through siRNA exacerbated motor function impairment and neuropathic pain. In addition, SCI resulted in an increase in vascular endothelial growth factor (VEGF), AKT phosphorylation, and angiogenesis within the spinal cord, all of which were curbed by OPN reduction. Similarly, OPN knockdown suppressed VEGF expression, AKT phosphorylation, cell migration, invasion, and angiogenesis in cultured vascular endothelial cells. CONCLUSION OPN demonstrates a protective influence against motor function impairment and neuropathic pain following SCI. This phenomenon may result from the proangiogenetic effect of OPN, possibly due to activation of the VEGF and/or AKT pathways.
Collapse
Affiliation(s)
- Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Feng Lu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ping Li
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Department of Maternity, Xiangya Hospital, Central South University, Changsha, China
| | - Yanping Jian
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Jingmei Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Tao Zhong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Yong Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| |
Collapse
|
6
|
Al-Dalahmah O, Lam M, McInvale JJ, Qu W, Nguyen T, Mun JY, Kwon S, Ifediora N, Mahajan A, Humala N, Winters T, Angeles E, Jakubiak KA, Kühn R, Kim YA, De Rosa MC, Doege CA, Paryani F, Flowers X, Dovas A, Mela A, Lu H, DeTure MA, Vonsattel JP, Wszolek ZK, Dickson DW, Kuhlmann T, Zaehres H, Schöler HR, Sproul AA, Siegelin MD, De Jager PL, Goldman JE, Menon V, Canoll P, Hargus G. Osteopontin drives neuroinflammation and cell loss in MAPT-N279K frontotemporal dementia patient neurons. Cell Stem Cell 2024; 31:676-693.e10. [PMID: 38626772 PMCID: PMC11373574 DOI: 10.1016/j.stem.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/07/2024] [Accepted: 03/19/2024] [Indexed: 05/05/2024]
Abstract
Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.
Collapse
Affiliation(s)
- Osama Al-Dalahmah
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease & the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Matti Lam
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julie J McInvale
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Wenhui Qu
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Trang Nguyen
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Jeong-Yeon Mun
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Sam Kwon
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Nkechime Ifediora
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Aayushi Mahajan
- Department of Neurosurgery, Columbia University, New York, NY 10032, USA
| | - Nelson Humala
- Department of Neurosurgery, Columbia University, New York, NY 10032, USA
| | - Tristan Winters
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Ellen Angeles
- Taub Institute for Research on Alzheimer's Disease & the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Kelly A Jakubiak
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Rebekka Kühn
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Yoon A Kim
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Maria Caterina De Rosa
- Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Claudia A Doege
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Fahad Paryani
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xena Flowers
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Athanassios Dovas
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Angeliki Mela
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Hong Lu
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Michael A DeTure
- Department of Neuroscience, The Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Jean Paul Vonsattel
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Zbigniew K Wszolek
- Department of Neurology, The Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, The Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Holm Zaehres
- Institute of Anatomy, Ruhr University Bochum, Medical Faculty, Bochum 44801, Germany; Max Planck Institute for Molecular Biomedicine, Münster 48149, Germany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Münster 48149, Germany
| | - Andrew A Sproul
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease & the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Markus D Siegelin
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Philip L De Jager
- Taub Institute for Research on Alzheimer's Disease & the Aging Brain, Columbia University, New York, NY 10032, USA; Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - James E Goldman
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease & the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Vilas Menon
- Taub Institute for Research on Alzheimer's Disease & the Aging Brain, Columbia University, New York, NY 10032, USA; Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Gunnar Hargus
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease & the Aging Brain, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
7
|
Butler ML, Pervaiz N, Ypsilantis P, Wang Y, Cammasola Breda J, Mazzilli S, Nicks R, Spurlock E, Hefti MM, Huber BR, Alvarez VE, Stein TD, Campbell JD, McKee AC, Cherry JD. Repetitive head impacts induce neuronal loss and neuroinflammation in young athletes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586815. [PMID: 38585925 PMCID: PMC10996668 DOI: 10.1101/2024.03.26.586815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Repetitive head impacts (RHI) sustained from contact sports are the largest risk factor for chronic traumatic encephalopathy (CTE). Currently, CTE can only be diagnosed after death and the multicellular cascade of events that trigger initial hyperphosphorylated tau (p-tau) deposition remain unclear. Further, the symptoms endorsed by young individuals with early disease are not fully explained by the extent of p-tau deposition, severely hampering development of therapeutic interventions. Here, we show that RHI exposure associates with a multicellular response in young individuals (<51 years old) prior to the onset of CTE p-tau pathology that correlates with number of years of RHI exposure. Leveraging single nucleus RNA sequencing of tissue from 8 control, 9 RHI-exposed, and 11 low stage CTE individuals, we identify SPP1+ inflammatory microglia, angiogenic and inflamed endothelial cell profiles, reactive astrocytes, and altered synaptic gene expression in excitatory and inhibitory neurons in all individuals with exposure to RHI. Surprisingly, we also observe a significant loss of cortical sulcus layer 2/3 neurons in contact sport athletes compared to controls independent of p-tau pathology. These results provide robust evidence that multiple years of RHI exposure is sufficient to induce lasting cellular alterations that may underlie p-tau deposition and help explain the early clinical symptoms observed in young former contact sport athletes. Furthermore, these data identify specific cellular responses to repetitive head impacts that may direct future identification of diagnostic and therapeutic strategies for CTE.
Collapse
Affiliation(s)
- Morgane L.M.D. Butler
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston MA
| | - Nida Pervaiz
- Section of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
| | | | - Yichen Wang
- Section of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
| | - Julia Cammasola Breda
- Section of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
| | - Sarah Mazzilli
- Section of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
| | | | | | - Marco M. Hefti
- Department of Pathology, University of Iowa Health Care, Iowa City IA, USA
| | - Bertrand R. Huber
- VA Boston Healthcare System, Jamaica Plain MA, USA
- National Center for PTSD, VA Boston Healthcare System, Boston MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
| | - Victor E. Alvarez
- VA Boston Healthcare System, Jamaica Plain MA, USA
- VA Bedford Healthcare System, Bedford MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston MA
- VA Boston Healthcare System, Jamaica Plain MA, USA
- VA Bedford Healthcare System, Bedford MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
| | - Joshua D. Campbell
- Section of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
| | - Ann C. McKee
- Boston University Alzheimer’s Disease and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston MA
- VA Boston Healthcare System, Jamaica Plain MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
| | - Jonathan D. Cherry
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston MA
- VA Boston Healthcare System, Jamaica Plain MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
| |
Collapse
|
8
|
Lawrence AR, Canzi A, Bridlance C, Olivié N, Lansonneur C, Catale C, Pizzamiglio L, Kloeckner B, Silvin A, Munro DAD, Fortoul A, Boido D, Zehani F, Cartonnet H, Viguier S, Oller G, Squarzoni P, Candat A, Helft J, Allet C, Watrin F, Manent JB, Paoletti P, Thieffry D, Cantini L, Pridans C, Priller J, Gélot A, Giacobini P, Ciobanu L, Ginhoux F, Thion MS, Lokmane L, Garel S. Microglia maintain structural integrity during fetal brain morphogenesis. Cell 2024; 187:962-980.e19. [PMID: 38309258 PMCID: PMC10869139 DOI: 10.1016/j.cell.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/30/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.
Collapse
Affiliation(s)
- Akindé René Lawrence
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Alice Canzi
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Cécile Bridlance
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Nicolas Olivié
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Claire Lansonneur
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational Systems Biology, 75005 Paris, France
| | - Clarissa Catale
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Lara Pizzamiglio
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Glutamate Receptors and Excitatory Synapses, 75005 Paris, France
| | - Benoit Kloeckner
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, 94800 Villejuif, France
| | - Aymeric Silvin
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, 94800 Villejuif, France
| | - David A D Munro
- UK Dementia Research Institute at the University of Edinburgh, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Aurélien Fortoul
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Davide Boido
- NeuroSpin, CEA, Paris-Saclay University, Gif-sur-Yvette, Saclay, France
| | - Feriel Zehani
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Hugues Cartonnet
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Sarah Viguier
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Guillaume Oller
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Paola Squarzoni
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Adrien Candat
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Electron Microscopy Facility, 75005 Paris, France
| | - Julie Helft
- Institut Cochin, INSERM, CNRS, Université Paris Cité, Team Phagocytes and Tumor Immunology, 75014 Paris, France
| | - Cécile Allet
- UMR-S 1172, JPArc - Centre de Recherche Neurosciences et Cancer, University of Lille, Lille, France
| | - Francoise Watrin
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Jean-Bernard Manent
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Pierre Paoletti
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Glutamate Receptors and Excitatory Synapses, 75005 Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational Systems Biology, 75005 Paris, France
| | - Laura Cantini
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational Systems Biology, 75005 Paris, France
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Edinburgh EH16 4TJ, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Josef Priller
- UK Dementia Research Institute at the University of Edinburgh, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University Munich, 81675 Munich, Germany; Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin and DZNE Berlin, 10117 Berlin, Germany
| | - Antoinette Gélot
- Service d'anatomie Pathologique, Hôpital Trousseau APHP, 75571 Paris Cedex 12, France
| | - Paolo Giacobini
- University of Lille, CHU Lille, Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, 59000 Lille, France
| | - Luisa Ciobanu
- NeuroSpin, CEA, Paris-Saclay University, Gif-sur-Yvette, Saclay, France
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, 94800 Villejuif, France; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Morgane Sonia Thion
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; Collège de France, Université PSL, 75005 Paris, France.
| |
Collapse
|
9
|
Riew TR, Hwang JW, Jin X, Kim HL, Jung SJ, Lee MY. Astrocytes are involved in the formation of corpora amylacea-like structures from neuronal debris in the CA1 region of the rat hippocampus after ischemia. Front Cell Neurosci 2023; 17:1308247. [PMID: 38188667 PMCID: PMC10766773 DOI: 10.3389/fncel.2023.1308247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, we demonstrated that the corpora amylacea (CA), a glycoprotein-rich aggregate frequently found in aged brains, accumulates in the ischemic hippocampus and that osteopontin (OPN) mediates the entire process of CA formation. Therefore, this study aimed to elucidate the mechanisms by which astrocytes and microglia participate in CA formation during the late phase (4-12 weeks) of brain ischemia. Based on various morphological analyses, including immunohistochemistry, in situ hybridization, immunoelectron microscopy, and correlative light and electron microscopy, we propose that astrocytes are the primary cells responsible for CA formation after ischemia. During the subacute phase after ischemia, astrocytes, rather than microglia, express Opn messenger ribonucleic acid and OPN protein, a surrogate marker and key component of CA. Furthermore, the specific localization of OPN in the Golgi complex suggests that it is synthesized and secreted by astrocytes. Astrocytes were in close proximity to type I OPN deposits, which accumulated in the mitochondria of degenerating neurons before fully forming the CA (type III OPN deposits). Throughout CA formation, astrocytes remained closely attached to OPN deposits, with their processes exhibiting well-developed gap junctions. Astrocytic cytoplasmic protein S100β, a calcium-binding protein, was detected within the fully formed CA. Additionally, ultrastructural analysis revealed direct contact between astroglial fibrils and the forming facets of the CA. Overall, we demonstrated that astrocytes play a central role in mediating CA formation from the initial stages of OPN deposit accumulation to the evolution of fully formed CA following transient ischemia in the hippocampus.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Won Hwang
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sharon Jiyoon Jung
- Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
10
|
Hernandez VG, Lechtenberg KJ, Peterson TC, Zhu L, Lucas TA, Bradshaw KP, Owah JO, Dorsey AI, Gentles AJ, Buckwalter MS. Translatome analysis reveals microglia and astrocytes to be distinct regulators of inflammation in the hyperacute and acute phases after stroke. Glia 2023; 71:1960-1984. [PMID: 37067534 PMCID: PMC10330240 DOI: 10.1002/glia.24377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
Neuroinflammation is a hallmark of ischemic stroke, which is a leading cause of death and long-term disability. Understanding the exact cellular signaling pathways that initiate and propagate neuroinflammation after stroke will be critical for developing immunomodulatory stroke therapies. In particular, the precise mechanisms of inflammatory signaling in the clinically relevant hyperacute period, hours after stroke, have not been elucidated. We used the RiboTag technique to obtain microglia and astrocyte-derived mRNA transcripts in a hyperacute (4 h) and acute (3 days) period after stroke, as these two cell types are key modulators of acute neuroinflammation. Microglia initiated a rapid response to stroke at 4 h by adopting an inflammatory profile associated with the recruitment of immune cells. The hyperacute astrocyte profile was marked by stress response genes and transcription factors, such as Fos and Jun, involved in pro-inflammatory pathways such as TNF-α. By 3 days, microglia shift to a proliferative state and astrocytes strengthen their inflammatory response. The astrocyte pro-inflammatory response at 3 days is partially driven by the upregulation of the transcription factors C/EBPβ, Spi1, and Rel, which comprise 25% of upregulated transcription factor-target interactions. Surprisingly, few sex differences across all groups were observed. Expression and log2 fold data for all sequenced genes are available on a user-friendly website for researchers to examine gene changes and generate hypotheses for stroke targets. Taken together, our data comprehensively describe the microglia and astrocyte-specific translatome response in the hyperacute and acute period after stroke and identify pathways critical for initiating neuroinflammation.
Collapse
Affiliation(s)
- Victoria G Hernandez
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Kendra J Lechtenberg
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Todd C Peterson
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Li Zhu
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Tawaun A Lucas
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Karen P Bradshaw
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Justice O Owah
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Alanna I Dorsey
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Andrew J Gentles
- Department of Pathology, Stanford University, Stanford, California, USA
- Department of Medicine - Biomedical Informatics Research, Stanford University, Stanford, California, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California, USA
| |
Collapse
|
11
|
Lin EYH, Xi W, Aggarwal N, Shinohara ML. Osteopontin (OPN)/SPP1: from its biochemistry to biological functions in the innate immune system and the central nervous system (CNS). Int Immunol 2023; 35:171-180. [PMID: 36525591 PMCID: PMC10071791 DOI: 10.1093/intimm/dxac060] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional protein, initially identified in osteosarcoma cells with its role of mediating osteoblast adhesion. Later studies revealed that OPN is associated with many inflammatory conditions caused by infections, allergic responses, autoimmunity and tissue damage. Many cell types in the peripheral immune system express OPN with various functions, which could be beneficial or detrimental. Also, more recent studies demonstrated that OPN is highly expressed in the central nervous system (CNS), particularly in microglia during CNS diseases and development. However, understanding of mechanisms underlying OPN's functions in the CNS is still limited. In this review, we focus on peripheral myeloid cells and CNS-resident cells to discuss the expression and functions of OPN.
Collapse
Affiliation(s)
- Elliot Yi-Hsin Lin
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wen Xi
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nupur Aggarwal
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
12
|
De Schepper S, Ge JZ, Crowley G, Ferreira LSS, Garceau D, Toomey CE, Sokolova D, Rueda-Carrasco J, Shin SH, Kim JS, Childs T, Lashley T, Burden JJ, Sasner M, Sala Frigerio C, Jung S, Hong S. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer's disease. Nat Neurosci 2023; 26:406-415. [PMID: 36747024 PMCID: PMC9991912 DOI: 10.1038/s41593-023-01257-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by synaptic loss, which can result from dysfunctional microglial phagocytosis and complement activation. However, what signals drive aberrant microglia-mediated engulfment of synapses in AD is unclear. Here we report that secreted phosphoprotein 1 (SPP1/osteopontin) is upregulated predominantly by perivascular macrophages and, to a lesser extent, by perivascular fibroblasts. Perivascular SPP1 is required for microglia to engulf synapses and upregulate phagocytic markers including C1qa, Grn and Ctsb in presence of amyloid-β oligomers. Absence of Spp1 expression in AD mouse models results in prevention of synaptic loss. Furthermore, single-cell RNA sequencing and putative cell-cell interaction analyses reveal that perivascular SPP1 induces microglial phagocytic states in the hippocampus of a mouse model of AD. Altogether, we suggest a functional role for SPP1 in perivascular cells-to-microglia crosstalk, whereby SPP1 modulates microglia-mediated synaptic engulfment in mouse models of AD.
Collapse
Affiliation(s)
- Sebastiaan De Schepper
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Judy Z Ge
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Gerard Crowley
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Laís S S Ferreira
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | | | - Christina E Toomey
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Dimitra Sokolova
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Javier Rueda-Carrasco
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Sun-Hye Shin
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel
| | - Thomas Childs
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jemima J Burden
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | | | - Carlo Sala Frigerio
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Steffen Jung
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
13
|
Hernandez VG, Lechtenberg KJ, Peterson TC, Zhu L, Lucas TA, Owah JO, Dorsey AI, Gentles AJ, Buckwalter MS. Translatome analysis reveals microglia and astrocytes to be distinct regulators of inflammation in the hyperacute and acute phases after stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.520351. [PMID: 36824949 PMCID: PMC9949064 DOI: 10.1101/2023.02.14.520351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Neuroinflammation is a hallmark of ischemic stroke, which is a leading cause of death and long-term disability. Understanding the exact cellular signaling pathways that initiate and propagate neuroinflammation after stroke will be critical for developing immunomodulatory stroke therapies. In particular, the precise mechanisms of inflammatory signaling in the clinically relevant hyperacute period, hours after stroke, have not been elucidated. We used the RiboTag technique to obtain astrocyte and microglia-derived mRNA transcripts in a hyperacute (4 hours) and acute (3 days) period after stroke, as these two cell types are key modulators of acute neuroinflammation. Microglia initiated a rapid response to stroke at 4 hours by adopting an inflammatory profile associated with the recruitment of immune cells. The hyperacute astrocyte profile was marked by stress response genes and transcription factors, such as Fos and Jun , involved in pro-inflammatory pathways such as TNF-α. By 3 days, microglia shift to a proliferative state and astrocytes strengthen their inflammatory response. The astrocyte pro-inflammatory response at 3 days is partially driven by the upregulation of the transcription factors C/EBPβ, Spi1 , and Rel , which comprise 25% of upregulated transcription factor-target interactions. Surprisingly, few sex differences across all groups were observed. Expression and log 2 fold data for all sequenced genes are available on a user-friendly website for researchers to examine gene changes and generate hypotheses for stroke targets. Taken together our data comprehensively describe the astrocyte and microglia-specific translatome response in the hyperacute and acute period after stroke and identify pathways critical for initiating neuroinflammation.
Collapse
|
14
|
Bai Q, Wang X, Yan H, Wen L, Zhou Z, Ye Y, Jing Y, Niu Y, Wang L, Zhang Z, Su J, Chang T, Dou G, Wang Y, Sun J. Microglia-Derived Spp1 Promotes Pathological Retinal Neovascularization via Activating Endothelial Kit/Akt/mTOR Signaling. J Pers Med 2023; 13:jpm13010146. [PMID: 36675807 PMCID: PMC9866717 DOI: 10.3390/jpm13010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Pathological retinal neovascularization (RNV) is the main character of ischemic ocular diseases, which causes severe visual impairments. Though retinal microglia are well acknowledged to play important roles in both physiological and pathological angiogenesis, the molecular mechanisms by which microglia communicates with endothelial cells (EC) remain unknown. In this study, using single-cell RNA sequencing, we revealed that the pro-inflammatory secreted protein Spp1 was the most upregulated gene in microglia in the mouse model of oxygen-induced retinopathy (OIR). Bioinformatic analysis showed that the expression of Spp1 in microglia was respectively regulated via nuclear factor-kappa B (NF-κB) and hypoxia-inducible factor 1α (HIF-1α) pathways, which was further confirmed through in vitro assays using BV2 microglia cell line. To mimic microglia-EC communication, the bEnd.3 endothelial cell line was cultured with conditional medium (CM) from BV2. We found that adding recombinant Spp1 to bEnd.3 as well as treating with hypoxic BV2 CM significantly enhanced EC proliferation and migration, while Spp1 neutralizing blocked those CM-induced effects. Moreover, RNA sequencing of BV2 CM-treated bEnd.3 revealed a significant downregulation of Kit, one of the type III tyrosine kinase receptors that plays a critical role in cell growth and activation. We further revealed that Spp1 increased phosphorylation and expression level of Akt/mTOR signaling cascade, which might account for its pro-angiogenic effects. Finally, we showed that intravitreal injection of Spp1 neutralizing antibody attenuated pathological RNV and improved visual function. Taken together, our work suggests that Spp1 mediates microglia-EC communication in RNV via activating endothelial Kit/Akt/mTOR signaling and is a potential target to treat ischemic ocular diseases.
Collapse
Affiliation(s)
- Qian Bai
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- 63750 Army Hospital of Chinese PLA, Xi’an 710043, China
| | - Xin Wang
- Lintong Rehabilitation Center of PLA Joint Logistics Support Force, Xi’an 710600, China
| | - Hongxiang Yan
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Lishi Wen
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Ziyi Zhou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yating Ye
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- College of Life Science, Northwestern University, Xi’an 710069, China
| | - Yutong Jing
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yali Niu
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Liang Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Ophthalmology, The Northern Theater Air Force Hospital, Shenyang 110041, China
| | - Zifeng Zhang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Jingbo Su
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Tianfang Chang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Guorui Dou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yusheng Wang
- Eye Institute of Chinese PLA, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (Y.W.); (J.S.); Tel.: +029-84775371 (Y.W.); +029-84771273 (J.S.)
| | - Jiaxing Sun
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (Y.W.); (J.S.); Tel.: +029-84775371 (Y.W.); +029-84771273 (J.S.)
| |
Collapse
|
15
|
Riew TR, Hwang JW, Jin X, Kim HL, Lee MY. Infiltration of meningeal macrophages into the Virchow-Robin space after ischemic stroke in rats: Correlation with activated PDGFR-β-positive adventitial fibroblasts. Front Mol Neurosci 2022; 15:1033271. [PMID: 36644619 PMCID: PMC9837109 DOI: 10.3389/fnmol.2022.1033271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Macrophages play a crucial role in wound healing and fibrosis progression after brain injury. However, a detailed analysis of their initial infiltration and interaction with fibroblasts is yet to be conducted. This study aimed to investigate the possible route for migration of meningeal macrophages into the ischemic brain and whether these macrophages closely interact with neighboring platelet-derived growth factor beta receptor (PDGFR-β)-positive adventitial fibroblasts during this process. A rat model of ischemic stroke induced by middle cerebral artery occlusion (MCAO) was developed. In sham-operated rats, CD206-positive meningeal macrophages were confined to the leptomeninges and the perivascular spaces, and they were not found in the cortical parenchyma. In MCAO rats, the number of CD206-positive meningeal macrophages increased both at the leptomeninges and along the vessels penetrating the cortex 1 day after reperfusion and increased progressively in the extravascular area of the cortical parenchyma by 3 days. Immunoelectron microscopy and correlative light and electron microscopy showed that in the ischemic brain, macrophages were frequently located in the Virchow-Robin space around the penetrating arterioles and ascending venules at the pial surface. This was identified by cells expressing PDGFR-β, a novel biomarker of leptomeningeal cells. Macrophages within penetrating vessels were localized in the perivascular space between smooth muscle cells and PDGFR-β-positive adventitial fibroblasts. In addition, these PDGFR-β-positive fibroblasts showed morphological and molecular characteristics similar to those of leptomeningeal cells: they had large euchromatic nuclei with prominent nucleoli and well-developed rough endoplasmic reticulum; expressed nestin, vimentin, and type I collagen; and were frequently surrounded by collagen fibrils, indicating active collagen synthesis. In conclusion, the perivascular Virchow-Robin space surrounding the penetrating vessels could be an entry route of meningeal macrophages from the subarachnoid space into the ischemic cortical parenchyma, implying that activated PDGFR-β-positive adventitial fibroblasts could be involved in this process.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Won Hwang
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea,*Correspondence: Mun-Yong Lee, ✉
| |
Collapse
|
16
|
West PK, Viengkhou B, Campbell IL, Hofer MJ. Microglia shield the murine brain from damage mediated by the cytokines IL-6 and IFN-α. Front Immunol 2022; 13:1036799. [PMID: 36389783 PMCID: PMC9650248 DOI: 10.3389/fimmu.2022.1036799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/13/2022] [Indexed: 12/10/2023] Open
Abstract
Sustained production of elevated levels of the cytokines interleukin (IL)-6 or interferon (IFN)-α in the central nervous system (CNS) is detrimental and directly contributes to the pathogenesis of neurological diseases such as neuromyelitis optica spectrum disorders or cerebral interferonopathies, respectively. Using transgenic mice with CNS-targeted production of IL-6 (GFAP-IL6) or IFN-α (GFAP-IFN), we have recently demonstrated that microglia are prominent target and effector cells and mount stimulus-specific responses to these cytokines. In order to further clarify the phenotype and function of these cells, we treated GFAP-IL6 and GFAP-IFN mice with the CSF1R inhibitor PLX5622 to deplete microglia. We examined their ability to recover from acute microglia depletion, as well as the impact of chronic microglia depletion on the progression of disease. Following acute depletion in the brains of GFAP-IL6 mice, microglia repopulation was enhanced, while in GFAP-IFN mice, microglia did not repopulate the brain. Furthermore, chronic CSF1R inhibition was detrimental to the brain of GFAP-IL6 and GFAP-IFN mice and gave rise to severe CNS calcification which strongly correlated with the absence of microglia. In addition, PLX5622-treated GFAP-IFN mice had markedly reduced survival. Our findings provide evidence for novel microglia functions to protect against IFN-α-mediated neurotoxicity and neuronal dysregulation, as well as restrain calcification as a result of both IL-6- and IFN-α-induced neuroinflammation. Taken together, we demonstrate that CSF1R inhibition may be an undesirable target for therapeutic treatment of neuroinflammatory diseases that are driven by elevated IL-6 and IFN-α production.
Collapse
Affiliation(s)
| | | | | | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Osteopontin mediates the formation of corpora amylacea-like structures from degenerating neurons in the CA1 region of the rat hippocampus after ischemia. Cell Tissue Res 2022; 389:443-463. [PMID: 35688947 DOI: 10.1007/s00441-022-03645-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
We previously demonstrated that osteopontin (OPN) is closely associated with calcium precipitation in response to ischemic brain insults. The present study was designed to elucidate the possible association between deposition of OPN and progressive neurodegeneration in the ischemic hippocampus. To address this, we analyzed the OPN deposits in the rat hippocampus after global cerebral ischemia in the chronic phase (4 to 12 weeks) after reperfusion using immunoelectron microscopy and correlative light and electron microscopy. We identified three different types of OPN deposits based on their morphological characteristics, numbered according to the order in which they evolved. Dark degenerative cells that retained cellular morphology were frequently observed in the pyramidal cell layer, and type I OPN deposits were degenerative mitochondria that accumulated among these cells. Type II deposits evolved into more complex amorphous structures with prominent OPN deposits within their periphery and within degenerative mitochondria-like structures. Finally, type III had large concentric laminated structures with irregularly shaped bodies in the center of the deposits. In all types, OPN expression was closely correlated with calcification, as confirmed by calcium fixation and Alizarin Red staining. Notably, type II and III deposits were highly reminiscent of corpora amylacea, glycoprotein-rich aggregates found in aged brains, or neurodegenerative disease, which was further confirmed by ubiquitin expression and periodic acid-Schiff staining. Overall, our data provide a novel link between ongoing neurodegeneration and the formation of corpora amylacea-like structures and calcium deposits in the ischemic hippocampus, suggesting that OPN may play an important role in such processes.
Collapse
|
18
|
Rosmus DD, Lange C, Ludwig F, Ajami B, Wieghofer P. The Role of Osteopontin in Microglia Biology: Current Concepts and Future Perspectives. Biomedicines 2022; 10:biomedicines10040840. [PMID: 35453590 PMCID: PMC9027630 DOI: 10.3390/biomedicines10040840] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 12/14/2022] Open
Abstract
The innate immune landscape of the central nervous system (CNS), including the brain and the retina, consists of different myeloid cell populations with distinct tasks to fulfill. Whereas the CNS borders harbor extraparenchymal CNS-associated macrophages whose main duty is to build up a defense against invading pathogens and other damaging factors from the periphery, the resident immune cells of the CNS parenchyma and the retina, microglia, are highly dynamic cells with a plethora of functions during homeostasis and disease. Therefore, microglia are constantly sensing their environment and closely interacting with surrounding cells, which is in part mediated by soluble factors. One of these factors is Osteopontin (OPN), a multifunctional protein that is produced by different cell types in the CNS, including microglia, and is upregulated in neurodegenerative and neuroinflammatory conditions. In this review, we discuss the current literature about the interaction between microglia and OPN in homeostasis and several disease entities, including multiple sclerosis (MS), Alzheimer’s and cerebrovascular diseases (AD, CVD), amyotrophic lateral sclerosis (ALS), age-related macular degeneration (AMD) and diabetic retinopathy (DR), in the context of the molecular pathways involved in OPN signaling shaping the function of microglia. As nearly all CNS diseases are characterized by pathological alterations in microglial cells, accompanied by the disturbance of the homeostatic microglia phenotype, the emergence of disease-associated microglia (DAM) states and their interplay with factors shaping the DAM-signature, such as OPN, is of great interest for therapeutical interventions in the future.
Collapse
Affiliation(s)
| | - Clemens Lange
- Eye Center, Freiburg Medical Center, University of Freiburg, 79106 Freiburg, Germany; (C.L.); (F.L.)
- Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital, 48145 Muenster, Germany
| | - Franziska Ludwig
- Eye Center, Freiburg Medical Center, University of Freiburg, 79106 Freiburg, Germany; (C.L.); (F.L.)
| | - Bahareh Ajami
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Peter Wieghofer
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany;
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, Augsburg University, 86159 Augsburg, Germany
- Correspondence:
| |
Collapse
|
19
|
Brown GC. Neuronal Loss after Stroke Due to Microglial Phagocytosis of Stressed Neurons. Int J Mol Sci 2021; 22:13442. [PMID: 34948237 PMCID: PMC8707068 DOI: 10.3390/ijms222413442] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
After stroke, there is a rapid necrosis of all cells in the infarct, followed by a delayed loss of neurons both in brain areas surrounding the infarct, known as 'selective neuronal loss', and in brain areas remote from, but connected to, the infarct, known as 'secondary neurodegeneration'. Here we review evidence indicating that this delayed loss of neurons after stroke is mediated by the microglial phagocytosis of stressed neurons. After a stroke, neurons are stressed by ongoing ischemia, excitotoxicity and/or inflammation and are known to: (i) release "find-me" signals such as ATP, (ii) expose "eat-me" signals such as phosphatidylserine, and (iii) bind to opsonins, such as complement components C1q and C3b, inducing microglia to phagocytose such neurons. Blocking these factors on neurons, or their phagocytic receptors on microglia, can prevent delayed neuronal loss and behavioral deficits in rodent models of ischemic stroke. Phagocytic receptors on microglia may be attractive treatment targets to prevent delayed neuronal loss after stroke due to the microglial phagocytosis of stressed neurons.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
20
|
Nilsson G, Baburamani AA, Rutherford MA, Zhu C, Mallard C, Hagberg H, Vontell R, Wang X. White matter injury but not germinal matrix hemorrhage induces elevated osteopontin expression in human preterm brains. Acta Neuropathol Commun 2021; 9:166. [PMID: 34654477 PMCID: PMC8518254 DOI: 10.1186/s40478-021-01267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/26/2021] [Indexed: 11/10/2022] Open
Abstract
Osteopontin (OPN) is a matricellular protein that mediates various physiological functions and is implicated in neuroinflammation, myelination, and perinatal brain injury. However, its expression in association with brain injury in preterm infants is unexplored. Here we examined the expression of OPN in postmortem brains of preterm infants and explored how this expression is affected in brain injury. We analyzed brain sections from cases with white matter injury (WMI) and cases with germinal matrix hemorrhage (GMH) and compared them to control cases having no brain injury. WMI cases displayed moderate to severe tissue injury in the periventricular and deep white matter that was accompanied by an increase of microglia with amoeboid morphology. Apart from visible hemorrhage in the germinal matrix, GMH cases displayed diffuse white matter injury in the periventricular and deep white matter. In non-injured preterm brains, OPN was expressed at low levels in microglia, astrocytes, and oligodendrocytes. OPN expression was significantly increased in regions with white matter injury in both WMI cases and GMH cases. The main cellular source of OPN in white matter injury areas was amoeboid microglia, although a significant increase was also observed in astrocytes in WMI cases. OPN was not expressed in the germinal matrix of any case, regardless of whether there was hemorrhage. In conclusion, preterm brain injury induces elevated OPN expression in microglia and astrocytes, and this increase is found in sites closely related to injury in the white matter regions but not with the hemorrhage site in the germinal matrix. Thus, it appears that OPN takes part in the inflammatory process in white matter injury in preterm infants, and these findings facilitate our understanding of OPN's role under both physiological and pathological conditions in the human brain that may lead to greater elucidation of disease mechanisms and potentially better treatment strategies.
Collapse
Affiliation(s)
- Gisela Nilsson
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Ana A Baburamani
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Mary A Rutherford
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Changlian Zhu
- Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Henan Key Laboratory of Child Brain Injury and Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, 40530, Gothenburg, Sweden
| | - Regina Vontell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
- University of Miami Brain Endowment Bank, Miami, FL, 33136, USA
| | - Xiaoyang Wang
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, 40530, Gothenburg, Sweden.
| |
Collapse
|
21
|
Davaanyam D, Kim ID, Lee JK. Intranasal Delivery of RGD-Containing Osteopontin Heptamer Peptide Confers Neuroprotection in the Ischemic Brain and Augments Microglia M2 Polarization. Int J Mol Sci 2021; 22:ijms22189999. [PMID: 34576163 PMCID: PMC8466884 DOI: 10.3390/ijms22189999] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Osteopontin (OPN), a phosphorylated glycoprotein, is induced in response to tissue damage and inflammation in various organs, including the brain. In our previous studies, we reported the robust neuroprotective effects of the icosamer OPN peptide OPNpt20, containing arginine-glycine-aspartic acid (RGD) and serine-leucine-alanine-tyrosine (SLAY) motifs, in an animal model of transient focal ischemia and demonstrated that its anti-inflammatory, pro-angiogenic, and phagocytosis inducing functions are responsible for the neuroprotective effects. In the present study, we truncated OPNpt20 to 13 or 7 amino acid peptides containing RGD (R) and/or SLAY (S) motifs (OPNpt13RS, OPNpt7R, OPNpt7RS, and OPNpt7S), and their neuroprotective efficacy was examined in a rat middle cerebral artery occlusion (MCAO) model. Intranasal administration of all four peptides significantly reduced infarct volume; OPNpt7R (VPNGRGD), the 7-amino-acid peptide containing an RGD motif, was determined to be the most potent, with efficacy comparable to that of OPNpt20. Additionally, sensory–motor functional deficits of OPNpt7R-administered MCAO animals were significantly improved, as indicated by the modified neurological severity scores and rotarod test. Notably, the expression of M1 markers was suppressed, whereas that of M2 markers (Arginase 1, CD206, and VEGF) was significantly enhanced in OPNpt7R-treated primary microglia cultures. Inflammation resolution by OPNpt7R was further confirmed in MCAO animals, in which upregulation of anti-inflammatory cytokines (Arg1, IL-10, IL-4, and CD36) and enhanced efferocytosis were detected. Moreover, studies using three mutant peptides (OPNpt7R-RAA or OPNpt7R-RAD, where RGD was replaced with RAA or RAD, respectively, and OPNpt7R-sc containing scrambled sequences) revealed that the RGD motif plays a vital role in conferring neuroprotection. In conclusion, the RGD-containing OPN heptamer OPNpt7R exhibits neuroprotective effects in the post-ischemic brain by suppressing M1 markers and augmenting M2 polarization of microglia and the RGD motif plays a critical role in these activities.
Collapse
|
22
|
Osteopontin in Cardiovascular Diseases. Biomolecules 2021; 11:biom11071047. [PMID: 34356671 PMCID: PMC8301767 DOI: 10.3390/biom11071047] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Unprecedented advances in secondary prevention have greatly improved the prognosis of cardiovascular diseases (CVDs); however, CVDs remain a leading cause of death globally. These findings suggest the need to reconsider cardiovascular risk and optimal medical therapy. Numerous studies have shown that inflammation, pro-thrombotic factors, and gene mutations are focused not only on cardiovascular residual risk but also as the next therapeutic target for CVDs. Furthermore, recent clinical trials, such as the Canakinumab Anti-inflammatory Thrombosis Outcomes Study trial, showed the possibility of anti-inflammatory therapy for patients with CVDs. Osteopontin (OPN) is a matricellular protein that mediates diverse biological functions and is involved in a number of pathological states in CVDs. OPN has a two-faced phenotype that is dependent on the pathological state. Acute increases in OPN have protective roles, including wound healing, neovascularization, and amelioration of vascular calcification. By contrast, chronic increases in OPN predict poor prognosis of a major adverse cardiovascular event independent of conventional cardiovascular risk factors. Thus, OPN can be a therapeutic target for CVDs but is not clinically available. In this review, we discuss the role of OPN in the development of CVDs and its potential as a therapeutic target.
Collapse
|
23
|
Shi L, Sun Z, Su W, Xu F, Xie D, Zhang Q, Dai X, Iyer K, Hitchens TK, Foley LM, Li S, Stolz DB, Chen K, Ding Y, Thomson AW, Leak RK, Chen J, Hu X. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity 2021; 54:1527-1542.e8. [PMID: 34015256 DOI: 10.1016/j.immuni.2021.04.022] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
The precise mechanisms underlying the beneficial effects of regulatory T (Treg) cells on long-term tissue repair remain elusive. Here, using single-cell RNA sequencing and flow cytometry, we found that Treg cells infiltrated the brain 1 to 5 weeks after experimental stroke in mice. Selective depletion of Treg cells diminished oligodendrogenesis, white matter repair, and functional recovery after stroke. Transcriptomic analyses revealed potent immunomodulatory effects of brain-infiltrating Treg cells on other immune cells, including monocyte-lineage cells. Microglia depletion, but not T cell lymphopenia, mitigated the beneficial effects of transferred Treg cells on white matter regeneration. Mechanistically, Treg cell-derived osteopontin acted through integrin receptors on microglia to enhance microglial reparative activity, consequently promoting oligodendrogenesis and white matter repair. Increasing Treg cell numbers by delivering IL-2:IL-2 antibody complexes after stroke improved white matter integrity and rescued neurological functions over the long term. These findings reveal Treg cells as a neurorestorative target for stroke recovery.
Collapse
Affiliation(s)
- Ligen Shi
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Zeyu Sun
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wei Su
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Fei Xu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Di Xie
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Qingxiu Zhang
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xuejiao Dai
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kartik Iyer
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - T Kevin Hitchens
- Animal Imaging Center and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Lesley M Foley
- Animal Imaging Center and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Sicheng Li
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kong Chen
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA.
| |
Collapse
|
24
|
Xin D, Li T, Chu X, Ke H, Liu D, Wang Z. MSCs-extracellular vesicles attenuated neuroinflammation, synapse damage and microglial phagocytosis after hypoxia-ischemia injury by preventing osteopontin expression. Pharmacol Res 2021; 164:105322. [PMID: 33279596 DOI: 10.1016/j.phrs.2020.105322] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/26/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) significantly suppressed hypoxia-ischemia (HI)-induced neuroinflammation in neonatal mice. However, its underlying mechanism is still unknown. Osteopontin (OPN) is one of the key molecules involved in neuroinflammation. We demonstrate here for the first time a key role of OPN in EVs-mediated neuroinflammation following HI. Firstly, HI exposure upregulated OPN expression in Iba-1+/ TMEM119+ microglia and Iba-1+/TMEM119- monocytes/macrophages. Blocking OPN mRNA expression with LV-shOPN attenuated edema, infarct volumes, and the levels of inflammatory cytokines following HI exposure. MSCs-EVs treatment remarkably restored synaptic reorganization and up-regulated synaptic protein expression post-HI, concomitant with reducing OPN levels. Moreover, MSCs-EVs treatment rescued microglial phagocytosis of viable neurons following HI, concomitant with decreasing OPN expression. In addition, blocking NF-κB activation with pyrrolidine dithiocarbamate (PDTC, NF-κB inhibitor) or MSCs-EVs attenuated HI-induced OPN expression in the ipsilateral cortex. This study demonstrates that upregulation of OPN expression in cerebral immune cells aggravated brain damage and inflammation following HI insult. MSCs-EVs suppressed neuroinflammation, synaptic damage and microglial phagocytosis after HI injury by preventing NF-κB-mediated OPN expression in neonate mice.
Collapse
Affiliation(s)
- Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Xili Chu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Hongfei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, PR China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
25
|
Herring A, Kurapati NK, Krebs S, Grammon N, Scholz LM, Voss G, Miah MR, Budny V, Mairinger F, Haase K, Teuber-Hanselmann S, Dobersalske C, Schramm S, Jöckel KH, Münster Y, Keyvani K. Genetic knockdown of Klk8 has sex-specific multi-targeted therapeutic effects on Alzheimer's pathology in mice. Neuropathol Appl Neurobiol 2021; 47:611-624. [PMID: 33341972 DOI: 10.1111/nan.12687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/23/2020] [Accepted: 12/14/2020] [Indexed: 01/22/2023]
Abstract
AIMS Previous work in our lab has identified the protease kallikrein-8 (KLK8) as a potential upstream mover in the pathogenesis of Alzheimer's disease (AD). We showed pathologically elevated levels of KLK8 in the cerebrospinal fluid and blood of patients with mild cognitive impairment or dementia due to AD, and in brains of patients and transgenic CRND8 (TgCRND8) mice in incipient stages of the disease. Furthermore, short-term antibody-mediated KLK8 inhibition in moderate stage disease alleviated AD pathology in female mice. However, it remains to be shown whether long-term reversal of KLK8 overexpression can also counteract AD. Therefore, the effects of genetic Klk8-knockdown were determined in TgCRND8 mice. METHODS The effects of heterozygous ablation of murine Klk8 (mKlk8) gene on AD pathology of both sexes were examined by crossbreeding TgCRND8 [hAPP+/-] with mKlk8-knockdown [mKlk8+/-] mice resulting in animals with or without AD pathology which revealed pathologically elevated or normal KLK8 levels. RESULTS mKlk8-knockdown had negligible effects on wildtype animals but led to significant decline of amyloid beta (Aβ) and tau pathology as well as an improvement of structural neuroplasticity in a sex-specific manner in transgenics. These changes were mediated by a shift to non-amyloidogenic cleavage of the human amyloid precursor protein (APP), recovery of the neurovascular unit and maintaining microglial metabolic fitness. Mechanistically, Klk8-knockdown improved Aβ phagocytosis in primary glia and Aβ resistance in primary neurons. Most importantly, transgenic mice revealed less anxiety and a better memory performance. CONCLUSIONS These results reinforce the potential of KLK8 as a therapeutic target in AD.
Collapse
Affiliation(s)
- Arne Herring
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Nirup K Kurapati
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Sofia Krebs
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Nils Grammon
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Luisa M Scholz
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Gerrit Voss
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Muhammad R Miah
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Vanessa Budny
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Fabian Mairinger
- Institute of Pathology, University of Duisburg-Essen, Essen, Germany
| | - Katharina Haase
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | | | - Celia Dobersalske
- DKFZ-Division of Translational Neurooncology, West German Cancer Center, German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sara Schramm
- Institute of Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Yvonne Münster
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Nguyen AT, Wang K, Hu G, Wang X, Miao Z, Azevedo JA, Suh E, Van Deerlin VM, Choi D, Roeder K, Li M, Lee EB. APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer's disease. Acta Neuropathol 2020; 140:477-493. [PMID: 32840654 PMCID: PMC7520051 DOI: 10.1007/s00401-020-02200-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Beta-amyloid deposition is a defining feature of Alzheimer's disease (AD). How genetic risk factors, like APOE and TREM2, intersect with cellular responses to beta-amyloid in human tissues is not fully understood. Using single-nucleus RNA sequencing of postmortem human brain with varied APOE and TREM2 genotypes and neuropathology, we identified distinct microglia subpopulations, including a subpopulation of CD163-positive amyloid-responsive microglia (ARM) that are depleted in cases with APOE and TREM2 risk variants. We validated our single-nucleus RNA sequencing findings in an expanded cohort of AD cases, demonstrating that APOE and TREM2 risk variants are associated with a significant reduction in CD163-positive amyloid-responsive microglia. Our results showcase the diverse microglial response in AD and underscore how genetic risk factors influence cellular responses to underlying pathologies.
Collapse
Affiliation(s)
- Aivi T Nguyen
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kui Wang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 213 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
- Department of Information Theory and Data Science, School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Gang Hu
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 213 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
- School of Statistics and Data Science, Key Laboratory for Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin, China
| | - Xuran Wang
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhen Miao
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua A Azevedo
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - EunRan Suh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Choi
- Heinz College of Public Policy and Information Systems, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 213 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Shirakawa K, Endo J, Kataoka M, Katsumata Y, Anzai A, Moriyama H, Kitakata H, Hiraide T, Ko S, Goto S, Ichihara G, Fukuda K, Minamino T, Sano M. MerTK Expression and ERK Activation Are Essential for the Functional Maturation of Osteopontin-Producing Reparative Macrophages After Myocardial Infarction. J Am Heart Assoc 2020; 9:e017071. [PMID: 32865099 PMCID: PMC7726992 DOI: 10.1161/jaha.120.017071] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background We previously reported that osteopontin plays an essential role in accelerating both reparative fibrosis and clearance of dead cells (efferocytosis) during tissue repair after myocardial infarction (MI) and galectin-3hiCD206+ macrophages is the main source of osteopontin in post-MI heart. Interleukin-10- STAT3 (signal transducer and activator of transcription 3)-galectin-3 axis is essential for Spp1 (encoding osteopontin) transcriptional activation in cardiac macrophages after MI. Here, we investigated the more detailed mechanism responsible for functional maturation of osteopontin-producing macrophages. Methods and Results In post-MI hearts, Spp1 transcriptional activation occurred almost exclusively in MerTK (Mer tyrosine kinase)+ galectin-3hi macrophages. The induction of MerTK on galectin-3hi macrophages is essential for their functional maturation including efferocytosis and Spp1 transcriptional activity. MerTK+galectin-3hi macrophages showed a strong activation of both STAT3 and ERK (extracellular signal-regulated kinase). STAT3 inhibition suppressed the differentiation of osteopontin-producing MerTK+galectin-3hi macrophages, however, STAT3 activation was insufficient at inducing Spp1 transcriptional activity. ERK inhibition suppressed Spp1 transcriptional activation without affecting MerTK or galectin-3 expression. Concomitant activation of ERK is required for transcriptional activation of Spp1. In Il-10 knockout enhanced green fluorescent protein-Spp1 knock-in mice subjected to MI, osteopontin-producing macrophages decreased but did not disappear entirely. Interleukin-10 and macrophage colony-stimulating factor synergistically activated STAT3 and ERK and promoted the differentiation of osteopontin-producing MerTK+galectin-3hi macrophages in bone marrow-derived macrophages. Coadministration of anti-interleukin-10 plus anti-macrophage colony-stimulating factor antibodies substantially reduced the number of osteopontin-producing macrophages by more than anti-interleukin-10 antibody alone in post-MI hearts. Conclusions Interleukin-10 and macrophage colony-stimulating factor act synergistically to activate STAT3 and ERK in cardiac macrophages, which in turn upregulate the expression of galectin-3 and MerTK, leading to the functional maturation of osteopontin-producing macrophages.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Biology and Medicine Niigata University Graduate School of Medical and Dental Sciences Niigata Japan.,Department of Cardiology Keio University School of Medicine Tokyo Japan
| | - Jin Endo
- Department of Cardiology Keio University School of Medicine Tokyo Japan
| | - Masaharu Kataoka
- Department of Cardiology Keio University School of Medicine Tokyo Japan
| | | | - Atsushi Anzai
- Department of Cardiology Keio University School of Medicine Tokyo Japan
| | - Hidenori Moriyama
- Department of Cardiology Keio University School of Medicine Tokyo Japan
| | - Hiroki Kitakata
- Department of Cardiology Keio University School of Medicine Tokyo Japan
| | - Takahiro Hiraide
- Department of Cardiology Keio University School of Medicine Tokyo Japan
| | - Seien Ko
- Department of Cardiology Keio University School of Medicine Tokyo Japan
| | - Shinichi Goto
- Department of Cardiology Keio University School of Medicine Tokyo Japan
| | - Genki Ichihara
- Department of Cardiology Keio University School of Medicine Tokyo Japan
| | - Keiichi Fukuda
- Department of Cardiology Keio University School of Medicine Tokyo Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine Niigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Motoaki Sano
- Department of Cardiology Keio University School of Medicine Tokyo Japan
| |
Collapse
|
28
|
Dashdulam D, Kim ID, Lee H, Lee HK, Kim SW, Lee JK. Osteopontin heptamer peptide containing the RGD motif enhances the phagocytic function of microglia. Biochem Biophys Res Commun 2020; 524:371-377. [PMID: 32005517 DOI: 10.1016/j.bbrc.2020.01.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022]
Abstract
Osteopontin (OPN) is a phosphorylated glycoprotein expressed in various tissues, including brain, and mediates a wide range of cellular activities. In our previous studies, we reported recombinant OPN and RGD and SLAY-containing OPN-peptide icosamer (OPNpt20) exhibited robust neuroprotective activities in an animal model of transient focal ischemia, and attributed these effects to the anti-inflammatory, pro-angiogenic, and phagocytic functions of OPNpt20. In the present study, we truncated OPNpt20 to 13 or 7 amino acid peptides containing RGD (R) and/or SLAY (S) motif (OPNpt13RS, OPNpt7R, OPNpt7RS, and OPNpt7S) and their cell motility and migration inducing activities were examined in BV2 cells (a microglia cell line). All four peptides significantly enhanced BV2 cell motility and migration, but OPNpt7R, an RGD-containing 7-amino-acid OPN peptide (VPNGRGD), was found to be most potent and its potency was comparable to OPNpt20. Phagocytic activity and F-actin polymerization were also significantly enhanced in OPNpt7R-treated BV2 cells. Importantly, studies using two mutant peptides (OPNpt7R-RAA and OPNpt7R-RAD, wherein RGD in OPNpt7R was replaced with RAA or RAD, respectively) revealed that all these effects of OPNpt7R, motility, migration, F-actin polymerization, and phagocytosis induction, were RGD-dependent. Furthermore, the Erk, Fak, and Akt signaling pathways appeared to be involved in the induction of phagocytic activity by OPNpt7R. Co-treating cells with OPNpt7R and D98059 or wortmannin (pharmacological inhibitors of Erk and Akt, respectively) significantly suppressed OPNpt7R-mediated phagocytosis induction. These results indicate the RGD-containing OPN heptamer OPNpt7R triggers microglial motility, migration, and phagocytic activity and that the RGD motif plays a critical role in these activities.
Collapse
Affiliation(s)
- Davaanyam Dashdulam
- Department of Anatomy, Inha University School of Medicine, Incheon, Republic of Korea; Medical Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - Il-Doo Kim
- Department of Anatomy, Inha University School of Medicine, Incheon, Republic of Korea; Medical Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hahnbie Lee
- Department of Anatomy, Inha University School of Medicine, Incheon, Republic of Korea; Medical Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hye-Kyung Lee
- Department of Anatomy, Inha University School of Medicine, Incheon, Republic of Korea; Medical Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - Seung-Woo Kim
- Department of Anatomy, Inha University School of Medicine, Incheon, Republic of Korea; Department of Biomedical Sciences, Inha University School of Medicine, Incheon, Republic of Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Incheon, Republic of Korea; Medical Research Center, Inha University School of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
29
|
Chitu V, Biundo F, Shlager GGL, Park ES, Wang P, Gulinello ME, Gokhan Ş, Ketchum HC, Saha K, DeTure MA, Dickson DW, Wszolek ZK, Zheng D, Croxford AL, Becher B, Sun D, Mehler MF, Stanley ER. Microglial Homeostasis Requires Balanced CSF-1/CSF-2 Receptor Signaling. Cell Rep 2020; 30:3004-3019.e5. [PMID: 32130903 PMCID: PMC7370656 DOI: 10.1016/j.celrep.2020.02.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 12/18/2019] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
CSF-1R haploinsufficiency causes adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). Previous studies in the Csf1r+/- mouse model of ALSP hypothesized a central role of elevated cerebral Csf2 expression. Here, we show that monoallelic deletion of Csf2 rescues most behavioral deficits and histopathological changes in Csf1r+/- mice by preventing microgliosis and eliminating most microglial transcriptomic alterations, including those indicative of oxidative stress and demyelination. We also show elevation of Csf2 transcripts and of several CSF-2 downstream targets in the brains of ALSP patients, demonstrating that the mechanisms identified in the mouse model are functional in humans. Our data provide insights into the mechanisms underlying ALSP. Because increased CSF2 levels and decreased microglial Csf1r expression have also been reported in Alzheimer's disease and multiple sclerosis, we suggest that the unbalanced CSF-1R/CSF-2 signaling we describe in the present study may contribute to the pathogenesis of other neurodegenerative conditions.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gabriel G L Shlager
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eun S Park
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria E Gulinello
- Behavioral Core Facility, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Şölen Gokhan
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Harmony C Ketchum
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kusumika Saha
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael A DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Deyou Zheng
- The Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, and Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
30
|
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, Li P, Gao Y. The blood brain barrier in cerebral ischemic injury – Disruption and repair. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2019.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
Kawahara Y, Morimoto A, Oh Y, Furukawa R, Wakabayashi K, Monden Y, Osaka H, Yamagata T. Serum and cerebrospinal fluid cytokines in children with acute encephalopathy. Brain Dev 2020; 42:185-191. [PMID: 31787380 DOI: 10.1016/j.braindev.2019.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/24/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The pathogenesis of acute encephalopathy (AE) remains unclear, and a biomarker has not been identified. METHODS Levels of 49 cytokines and chemokines, including osteopontin (OPN), were measured in serum and cerebrospinal fluid (CSF) of children with AE (n = 17) or febrile convulsion (FC; n = 8; control group). The AE group included acute necrotizing encephalopathy (n = 1), acute encephalopathy with biphasic seizures and late reduced diffusion (AESD; n = 3), clinically mild encephalitis/encephalopathy with a reversible splenial lesion (MERS; n = 4), and unclassified acute encephalopathy (UCAE; n = 9) that does not meet the criteria of syndrome classification. Five individuals with AE had neurological sequelae or death (poor prognosis), whereas 12 were alive without neurological sequelae (good prognosis). RESULTS The CSF:serum ratios of OPN, CC chemokine ligand (CCL)4, and interleukin (IL)-10 were significantly higher in AE than in FC. The CSF levels of macrophage inhibitory factor (MIF) and leukemia inhibitory factor (LIF) were significantly higher in the poor-prognosis group than in the good-prognosis group. The CSF:serum ratios of OPN were significantly higher in AESD and in MERS than in FC. The CSF:serum ratios of MIF and OPN were higher in MERS than in UCAE or FC. CONCLUSION Our results suggest that microglia-related cytokines and chemokines such as OPN, MIF, and LIF could be novel biomarkers of AE, in addition to the previously reported IL-10 and CCL4, and that MIF and LIF may be markers of poor prognosis.
Collapse
Affiliation(s)
- Yuta Kawahara
- Department of Pediatrics, Jichi Medical University School of Medicine, Japan.
| | - Akira Morimoto
- Department of Pediatrics, Jichi Medical University School of Medicine, Japan
| | - Yukiko Oh
- Department of Pediatrics, Jichi Medical University School of Medicine, Japan
| | - Rieko Furukawa
- Department of Pediatric Medical Imaging, Jichi Medical University School of Medicine, Japan
| | - Kei Wakabayashi
- Department of Pediatrics, Jichi Medical University School of Medicine, Japan
| | - Yukifumi Monden
- Department of Pediatrics, Jichi Medical University School of Medicine, Japan; Department of Pediatrics, International University of Health and Welfare, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University School of Medicine, Japan
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University School of Medicine, Japan
| |
Collapse
|
32
|
Shirakawa K, Endo J, Kataoka M, Katsumata Y, Yoshida N, Yamamoto T, Isobe S, Moriyama H, Goto S, Kitakata H, Hiraide T, Fukuda K, Sano M. IL (Interleukin)-10-STAT3-Galectin-3 Axis Is Essential for Osteopontin-Producing Reparative Macrophage Polarization After Myocardial Infarction. Circulation 2019; 138:2021-2035. [PMID: 29967195 DOI: 10.1161/circulationaha.118.035047] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Both osteopontin (OPN) and galectin-3 have been implicated in phagocytic clearance of dead cells and reparative fibrosis during wound healing. CD206+ macrophages are involved in tissue repair through phagocytosis and fibrosis after myocardial infarction (MI). However, the relationship among OPN, galectin-3, and macrophage polarization in the context of MI remains unclear. METHODS The time course of Spp1 (encoding OPN) expression in the heart after MI showed a strong activation of Spp1 on day 3 after MI. To identify where in the body and in which cells the transcriptional activity of Spp1 increased after MI, we analyzed EGFP (enhanced green fluorescent protein)- Spp1 knockin reporter mice on day 3 after MI. RESULTS The transcriptional activity of Spp1 increased only in CD206+ macrophages in the infarct myocardium, and most of CD206+ macrophages have strong transcriptional activation of Spp1 after MI. The temporal expression pattern of Lgal3 (encoding galectin-3) in cardiac macrophages after MI was similar to that of Spp1, and OPN is almost exclusively produced by galectin-3hiCD206+ macrophages. Although both interleukin (IL)-4 and IL-10 were reported to promote CD206+ macrophage-mediated cardiac repair after MI, IL-10- but not IL-4-stimulated CD11b+Ly6G- cells could differentiate into OPN-producing galectin-3hiCD206+ macrophages and showed enhanced phagocytic ability. Inhibition of STAT3 tyrosine phosphorylation suppressed IL-10-induced expression of intracellular galectin-3 and transcriptional activation of Spp1. Knockdown of galectin-3 suppressed their ability to differentiate into OPN-producing cells, but not STAT3 activation. The tyrosine phosphorylation of STAT3 and the appearance rate of galectin-3hiCD206+ cells on cardiac CD11b+Ly6G- cells in Spp1 knockout mice were the same as those in wild-type mice. Spp1 knockout mice showed vulnerability to developing post-MI left ventricular chamber dilatation and the terminal deoxynucleo-tidyltransferase 2'-Deoxyuridine-5'-triphosphate nick-end labeling (TUNEL)-positive cells in the infarcted myocardium after MI remained higher in number in Spp1 knockout mice than in wild-type mice. CONCLUSIONS OPN is almost exclusively produced by galectin-3hiCD206+ macrophages, which specifically appear in the infarct myocardium after MI. The IL-10-STAT3-galectin-3 axis is essential for OPN-producing reparative macrophage polarization after myocardial infarction, and these macrophages contribute to tissue repair by promoting fibrosis and clearance of apoptotic cells. These results suggest that galectin-3 may contribute to reparative fibrosis in the infarct myocardium by controlling OPN levels.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Yoshinori Katsumata
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Naohiro Yoshida
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.).,Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Japan (N.Y.)
| | - Tsunehisa Yamamoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Sarasa Isobe
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Hidenori Moriyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Shinichi Goto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Hiroki Kitakata
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Takahiro Hiraide
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.).,Japan Science and Technology Agency, Tokyo, Japan (M.S.)
| |
Collapse
|
33
|
Osteopontin in the Cerebrospinal Fluid of Patients with Severe Aneurysmal Subarachnoid Hemorrhage. Cells 2019; 8:cells8070695. [PMID: 31295895 PMCID: PMC6678172 DOI: 10.3390/cells8070695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. In SAH patients, plasma osteopontin (OPN) has been shown to independently predict poor outcome. The aim of the study is to investigate, in a selected population with severe SAH, OPN time course in cerebrospinal fluid (CSF) and plasma during the first week after aneurism rupture, and OPN prognostic value. We included 44 patients with the following criteria: (1) age 18 and 80 years, (2) diagnosis of SAH from cerebral aneurysm rupture, (3) insertion of external ventricular drain. Plasma and CSF were sampled at day 1, 4, and 8. OPN levels, in CSF and plasma, displayed a weak correlation on day 1 and were higher, in CSF, in all time points. Only in poor prognosis patients, OPN levels in CSF significantly increased at day 4 and day 8. Plasma OPN at day 1 and 4 was predictor of poor outcome. In conclusion, plasma and CSF OPN displays a weak correlation, on day 1. The higher levels of OPN found in the CSF compared to plasma, suggest OPN production within the CNS after SAH. Furthermore, plasma OPN, at day 1 and 4, seems to be an independent predictor of poor outcome.
Collapse
|
34
|
Sugiyama Y, Oishi T, Yamashita A, Murata Y, Yamamoto T, Takashima I, Isa T, Higo N. Neuronal and microglial localization of secreted phosphoprotein 1 (osteopontin) in intact and damaged motor cortex of macaques. Brain Res 2019; 1714:52-64. [PMID: 30790559 DOI: 10.1016/j.brainres.2019.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 01/06/2023]
Abstract
We previously reported that mRNA encoding secreted phosphoprotein 1 (SPP1), also known as osteopontin, is preferentially expressed in large neurons in layer V of the macaque motor cortex, most of which are presumed to be corticospinal tract neurons. As a first step to elucidating the cellular function of SPP1 in macaque neurons, we examined the localization of SPP1 in the primary motor cortex (M1) of the macaque by using immunohistochemistry. SPP1 immunoreactivity was found to be localized in the cell bodies of neurons, but not outside the cells, indicating that SPP1 was not secreted from these neurons. The results of electron microscope analysis and double-labeling analysis with marker proteins suggested that SPP1 was localized in the mitochondria of neurons. The distributions of SPP1 in the neurons corresponded to those of integrin αV, a putative receptor for SPP1. The distribution of SPP1 was also investigated in macaques whose M1 had been lesioned. We found that SPP1 was secreted by proliferated microglia in the lesioned area. Double-labeling analysis indicated that SPP1 immunoreactivity in the microglia was colocalized with CD44, another putative receptor for SPP1. Success rates in the small-object-retrieval task were positively correlated with SPP1 immunoreactivity in the neurons in the perilesional area. SPP1 has multiple roles in the macaque motor cortex, and it may be a key protein during recovery of hand movement after brain damage.
Collapse
Affiliation(s)
- Yoko Sugiyama
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8574, Japan
| | - Takao Oishi
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Akiko Yamashita
- Division of Biology, Department of Liberal Education, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yumi Murata
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Tatsuya Yamamoto
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan; Department of Physical Therapy, Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Ibaraki 300-0051, Japan
| | - Ichiro Takashima
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8574, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Noriyuki Higo
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan.
| |
Collapse
|
35
|
Riew TR, Kim S, Jin X, Kim HL, Lee JH, Lee MY. Osteopontin and its spatiotemporal relationship with glial cells in the striatum of rats treated with mitochondrial toxin 3-nitropropionic acid: possible involvement in phagocytosis. J Neuroinflammation 2019; 16:99. [PMID: 31088570 PMCID: PMC6518780 DOI: 10.1186/s12974-019-1489-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
Background Osteopontin (OPN, SPP1) is upregulated in response to acute brain injury, and based on its immunoreactivity, two distinct forms have been identified: intracellular OPN within brain macrophages and small granular OPN, identified as OPN-coated degenerated neurites. This study investigates the spatiotemporal relationship between punctate OPN deposition and astroglial and microglial reactions elicited by 3-nitropropionic acid (3-NP). Methods Male Sprague-Dawley rats were intraperitoneally injected with mitochondrial toxin 3-NP and euthanized at 3, 7, 14, and 28 days. Quantitative and qualitative light and electron microscopic techniques were used to assess the relationship between OPN and glial cells. Statistical significance was determined by Student’s t test or a one-way analysis of variance followed by Tukey’s multiple comparisons test. Results Punctate OPN-immunoreactive profiles were synthesized and secreted by amoeboid-like brain macrophages in the lesion core, but not by reactive astrocytes and activated microglia with a stellate shape in the peri-lesional area. Punctate OPN accumulation was detected only in the lesion core away from reactive astrocytes in the peri-lesional area at day 3, but had direct contact with, and even overlapped with astroglial processes at day 7. The distance between the OPN-positive area and the astrocytic scar significantly decreased from days 3 to 7. By days 14 and 28 post-lesion, when the glial scar was fully formed, punctate OPN distribution mostly overlapped with the astrocytic scar. Three-dimensional reconstructions and quantitative image analysis revealed numerous granular OPN puncta inside the cytoplasm of reactive astrocytes and brain macrophages. Reactive astrocytes showed prominent expression of the lysosomal marker lysosomal-associated membrane protein 1, and ultrastructural analysis confirmed OPN-coated degenerating neurites inside astrocytes, suggesting the phagocytosis of OPN puncta by reactive astrocytes after injury. Conclusions Punctate OPN-immunoreactive profiles corresponded to OPN-coated degenerated neurites, which were closely associated with, or completely engulfed by, the reactive astrocytes forming the astroglial scar in 3-NP lesioned striatum, suggesting that OPN may cause astrocytes to migrate towards these degenerated neurites in the lesion core to establish physical contact with, and possibly, to phagocytose them. Our results provide novel insights essential to understanding the recovery and repair of the central nervous system tissue. Electronic supplementary material The online version of this article (10.1186/s12974-019-1489-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea
| | - Soojin Kim
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea. .,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
36
|
Carbone F, Busto G, Padroni M, Bernardoni A, Colagrande S, Dallegri F, Montecucco F, Fainardi E. Radiologic Cerebral Reperfusion at 24 h Predicts Good Clinical Outcome. Transl Stroke Res 2019; 10:178-188. [PMID: 29949087 DOI: 10.1007/s12975-018-0637-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/08/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
Cerebral reperfusion and arterial recanalization are radiological features of the effectiveness of thrombolysis in acute ischemic stroke (AIS) patients. Here, an investigation of the prognostic role of early recanalization/reperfusion on clinical outcome was performed. In AIS patients (n = 55), baseline computerized tomography (CT) was performed ≤ 8 h from symptom onset, whereas CT determination of reperfusion/recanalization was assessed at 24 h. Multiple linear and logistic regression models were used to correlate reperfusion/recanalization with radiological (i.e., hemorrhagic transformation, ischemic core, and penumbra volumes) and clinical outcomes (assessed as National Institutes of Health Stroke Scale [NIHSS] reduction ≥ 8 points or a NIHSS ≤ 1 at 24 h and as modified Rankin Scale [mRS] < 2 at 90 days). At 24 h, patients achieving radiological reperfusion were n = 24, while the non-reperfused were n = 31. Among non-reperfused, n = 15 patients were recanalized. Radiological reperfusion vs. recanalization was also confirmed by early increased levels of circulating inflammatory biomarkers (i.e., serum osteopontin). In multivariate analysis, ischemic lesion volume reduction was associated with both recanalization (β = 0.265; p = 0.014) and reperfusion (β = 0.461; p < 0.001), but only reperfusion was independently associated with final infarct volume (β = - 0.333; p = 0.007). Only radiological reperfusion at 24 h predicted good clinical response at day 1 (adjusted OR 16.054 [1.423-181.158]; p = 0.025) and 90-day good functional outcome (adjusted OR 25.801 [1.483-448.840]; p = 0.026). At ROC curve analysis the AUC of reperfusion was 0.777 (p < 0.001) for the good clinical response at 24 h and 0.792 (p < 0.001) for 90-day clinical outcome. Twenty-four-hour radiological reperfusion assessed by CT is associated with good clinical response on day 1 and good functional outcome on day 90 in patients with ischemic stroke.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, 6 viale Benedetto XV, 13132, Genoa, Italy.
| | - Giorgio Busto
- Struttura Organizzativa Dipartimentale di Radiodiagnostica 2, Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, Azienda Ospedaliero-Universitaria Careggi, 3 Largo Brambilla, 50134, Florence, Italy
| | - Marina Padroni
- Unità Operativa di Neurologia, Dipartimento di Scienze Biologiche, Psichiatriche e Psicologiche, Università di Ferrara, Arcispedale S. Anna, Ferrara, Italy
| | - Andrea Bernardoni
- Unità Operativa di Neuroradiologia, Dipartimento di Neuroscienze, Azienda Ospedaliero-Universitaria di Ferrara, Arcispedale S. Anna, 203 Corso della Giovecca, 44121, Ferrara, Italy
| | - Stefano Colagrande
- Struttura Organizzativa Dipartimentale di Radiodiagnostica 2, Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, Azienda Ospedaliero-Universitaria Careggi, 3 Largo Brambilla, 50134, Florence, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, 6 viale Benedetto XV, 13132, Genoa, Italy
- Ospedale Policlinico San Martino, 10 Largo Benzi, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, 6 viale Benedetto XV, 13132, Genoa, Italy
- Ospedale Policlinico San Martino, 10 Largo Benzi, 16132, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132, Genoa, Italy
| | - Enrico Fainardi
- Struttura Organizzativa Dipartimentale di Neuroradiologia, Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, Azienda Ospedaliero-Universitaria Careggi, 3 Largo Brambilla, 50134, Florence, Italy
| |
Collapse
|
37
|
Li Y, Zhu ZY, Huang TT, Zhou YX, Wang X, Yang LQ, Chen ZA, Yu WF, Li PY. The peripheral immune response after stroke-A double edge sword for blood-brain barrier integrity. CNS Neurosci Ther 2018; 24:1115-1128. [PMID: 30387323 PMCID: PMC6490160 DOI: 10.1111/cns.13081] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023] Open
Abstract
The blood‐brain barrier (BBB) is a highly regulated interface that separates the peripheral circulation and the brain. It plays a vital role in regulating the trafficking of solutes, fluid, and cells at the blood‐brain interface and maintaining the homeostasis of brain microenvironment for normal neuronal activity. Growing evidence has led to the realization that ischemic stroke elicits profound immune responses in the circulation and the activation of multiple subsets of immune cells, which in turn affect both the early disruption and the later repair of the BBB after stroke. Distinct phenotypes or subsets of peripheral immune cells along with diverse intracellular mechanisms contribute to the dynamic changes of BBB integrity after stroke. This review focuses on the interaction between the peripheral immune cells and the BBB after ischemic stroke. Understanding their reciprocal interaction may generate new directions for stroke research and may also drive the innovation of easy accessible immune modulatory treatment strategies targeting BBB in the pursuit of better stroke recovery.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ting-Ting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu-Xi Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zeng-Ai Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
38
|
Proangiogenic functions of an RGD-SLAY-containing osteopontin icosamer peptide in HUVECs and in the postischemic brain. Exp Mol Med 2018; 50:e430. [PMID: 29350679 PMCID: PMC5799800 DOI: 10.1038/emm.2017.241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 01/08/2023] Open
Abstract
Osteopontin (OPN) is a phosphorylated glycoprotein secreted into body fluids by various cell types. OPN contains arginine-glycine-aspartate (RGD) and serine-leucine-alanine-tyrosine (SLAY) motifs that bind to several integrins and mediate a wide range of cellular processes. In the present study, the proangiogenic effects of a 20-amino-acid OPN peptide (OPNpt20) containing RGD and SLAY motifs were examined in human umbilical vein endothelial cells (HUVECs) and in a rat focal cerebral ischemia model. OPNpt20 exerted robust proangiogenic effects in HUVECs by promoting proliferation, migration and tube formation. These effects were significantly reduced in OPNpt20-RAA (RGD->RAA)-treated cells, but only slightly reduced in OPNpt20-SLAA (SLAY->SLAA)-treated cells. Interestingly, a mutant peptide without both motifs failed to induce these proangiogenic processes, indicating that the RGD motif is crucial and that SLAY also has a role. In OPNpt20-treated HUVEC cultures, AKT and ERK signaling pathways were activated, but activation of these pathways and tube formation were suppressed by anti-αvβ3 antibody, indicating that OPNpt20 stimulates angiogenesis via the αvβ3-integrin/AKT and ERK pathways. The proangiogenic function of OPNpt20 was further confirmed in a rat middle cerebral artery occlusion model. Total vessel length and vessel densities were markedly greater in OPNpt20-treated ischemic brains, accompanied by induction of proangiogenic markers. Together, these results demonstrate that the 20-amino-acid OPN peptide containing RGD and SLAY motifs exerts proangiogenic effects, wherein both motifs have important roles, and these effects appear to contribute to the neuroprotective effects of this peptide in the postischemic brain.
Collapse
|
39
|
Rentsendorj A, Sheyn J, Fuchs DT, Daley D, Salumbides BC, Schubloom HE, Hart NJ, Li S, Hayden EY, Teplow DB, Black KL, Koronyo Y, Koronyo-Hamaoui M. A novel role for osteopontin in macrophage-mediated amyloid-β clearance in Alzheimer's models. Brain Behav Immun 2018; 67:163-180. [PMID: 28860067 PMCID: PMC5865478 DOI: 10.1016/j.bbi.2017.08.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/11/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
Osteopontin (OPN), a matricellular immunomodulatory cytokine highly expressed by myelomonocytic cells, is known to regulate immune cell migration, communication, and response to brain injury. Enhanced cerebral recruitment of monocytes achieved through glatiramer acetate (GA) immunization or peripheral blood enrichment with bone marrow (BM)-derived CD115+ monocytes (MoBM) curbs amyloid β-protein (Aβ) neuropathology and preserves cognitive function in murine models of Alzheimer's disease (ADtg mice). To elucidate the beneficial mechanisms of these immunomodulatory approaches in AD, we focused on the potential role of OPN in macrophage-mediated Aβ clearance. Here, we found extensive OPN upregulation along with reduction of vascular and parenchymal Aβ burden in cortices and hippocampi of GA-immunized ADtg mice. Treatment combining GA with blood-grafted MoBM further increased OPN levels surrounding residual Aβ plaques. In brains from AD patients and ADtg mice, OPN was also elevated and predominantly expressed by infiltrating GFP+- or Iba1+-CD45high monocyte-derived macrophages engulfing Aβ plaques. Following GA immunization, we detected a significant increase in a subpopulation of inflammatory blood monocytes (CD115+CD11b+Ly6Chigh) expressing OPN, and subsequently, an elevated population of OPN-expressing CD11b+Ly6C+CD45high monocyte/macrophages in the brains of these ADtg mice. Correlogram analyses indicate a strong linear correlation between cerebral OPN levels and macrophage infiltration, as well as a tight inverse relation between OPN and Aβ-plaque burden. In vitro studies corroborate in vivo findings by showing that GA directly upregulates OPN expression in BM-derived macrophages (MФBM). Further, OPN promotes a phenotypic shift that is highly phagocytic (increased uptake of Aβ fibrils and surface scavenger receptors) and anti-inflammatory (altered cell morphology, reduced iNOS, and elevated IL-10 and Aβ-degrading enzyme MMP-9). Inhibition of OPN expression in MФBM, either by siRNA, knockout (KOOPN), or minocycline, impairs uptake of Aβ fibrils and hinders GA's neuroprotective effects on macrophage immunological profile. Addition of human recombinant OPN reverses the impaired Aβ phagocytosis in KOOPN-MФBM. This study demonstrates that OPN has an essential role in modulating macrophage immunological profile and their ability to resist pathogenic forms of Aβ.
Collapse
Affiliation(s)
- Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - David Daley
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Brenda C Salumbides
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Hannah E Schubloom
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Nadav J Hart
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Songlin Li
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA; Institute of Life Sciences, Wenzhou University, 276 Xueyuan Middle Rd, Lucheng Qu, Wenzhou Shi, Zhejiang Sheng 325027, China
| | - Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, 635 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, 635 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA 90048, USA.
| |
Collapse
|
40
|
The Effect of Osteopontin on Microglia. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1879437. [PMID: 28698867 PMCID: PMC5494082 DOI: 10.1155/2017/1879437] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/29/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022]
Abstract
Osteopontin (OPN) is a proinflammatory cytokine that can be secreted from many cells, including activated macrophages and T-lymphocytes, and is widely distributed in many tissues and cells. OPN, a key factor in tissue repairing and extracellular matrix remodeling after injury, is a constituent of the extracellular matrix of the central nervous system (CNS). Recently, the role of OPN in neurodegenerative diseases has gradually caused widespread concern. Microglia are resident macrophage-like immune cells in CNS and play a vital role in both physiological and pathological conditions, including restoring the integrity of the CNS and promoting the progression of neurodegenerative disorders. Microglia's major function is to maintain homeostasis and the normal function of the CNS, both during development and in response to CNS injury. Although the functional mechanism of OPN in CNS neurodegenerative diseases has yet to be fully elucidated, most studies suggest that OPN play a role in pathogenesis of neurodegenerative diseases or in neuroprotection by regulating the activation and function of microglia. Here, we summarize the functions of OPN on microglia in response to various stimulations in vitro and in vivo.
Collapse
|
41
|
Riew TR, Kim HL, Jin X, Choi JH, Shin YJ, Kim JS, Lee MY. Spatiotemporal expression of osteopontin in the striatum of rats subjected to the mitochondrial toxin 3-nitropropionic acid correlates with microcalcification. Sci Rep 2017; 7:45173. [PMID: 28345671 PMCID: PMC5366947 DOI: 10.1038/srep45173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/20/2017] [Indexed: 11/18/2022] Open
Abstract
Our aim was to elucidate whether osteopontin (OPN) is involved in the onset of mineralisation and progression of extracellular calcification in striatal lesions due to mitochondrial toxin 3-nitropropionic acid exposure. OPN expression had two different patterns when observed using light microscopy. It was either localised to the Golgi complex in brain macrophages or had a small granular pattern scattered in the affected striatum. OPN labelling tended to increase in number and size over a 2-week period following the lesion. Ultrastructural investigations revealed that OPN is initially localised to degenerating mitochondria within distal dendrites, which were then progressively surrounded by profuse OPN on days 7–14. Electron probe microanalysis of OPN-positive and calcium-fixated neurites indicated that OPN accumulates selectively on the surfaces of degenerating calcifying dendrites, possibly via interactions between OPN and calcium. In addition, 3-dimensional reconstruction of OPN-positive neurites revealed that they are in direct contact with larger OPN-negative degenerating dendrites rather than with fragmented cell debris. Our overall results indicate that OPN expression is likely to correlate with the spatiotemporal progression of calcification in the affected striatum, and raise the possibility that OPN may play an important role in the initiation and progression of microcalcification in response to brain insults.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong-Heon Choi
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo-Jin Shin
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Soo Kim
- Gumi Electronics &Information Technology Research Institute, Gumi, Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
42
|
Rabenstein M, Vay SU, Flitsch LJ, Fink GR, Schroeter M, Rueger MA. Osteopontin directly modulates cytokine expression of primary microglia and increases their survival. J Neuroimmunol 2016; 299:130-138. [DOI: 10.1016/j.jneuroim.2016.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022]
|
43
|
Chang SW, Kim HI, Kim GH, Park SJ, Kim IB. Increased Expression of Osteopontin in Retinal Degeneration Induced by Blue Light-Emitting Diode Exposure in Mice. Front Mol Neurosci 2016; 9:58. [PMID: 27504084 PMCID: PMC4958628 DOI: 10.3389/fnmol.2016.00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/07/2016] [Indexed: 02/01/2023] Open
Abstract
Osteopontin (OPN) is a multifunctional adhesive glycoprotein that is implicated in a variety of pro-inflammatory as well as neuroprotective and repair-promoting effects in the brain. As a first step towards understanding the role of OPN in retinal degeneration (RD), we examined changes in OPN expression in a mouse model of RD induced by exposure to a blue light-emitting diode (LED). RD was induced in BALB/c mice by exposure to a blue LED (460 nm) for 2 h. Apoptotic cell death was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. In order to investigate changes in OPN in RD, western blotting and immunohistochemistry were performed. Anti-OPN labeling was compared to that of anti-glial fibrillary acidic protein (GFAP), which is a commonly used marker for retinal injury or stress including inflammation. OPN expression in RD retinas markedly increased at 24 h after exposure, was sustained through 72 h, and subsided at 120 h. Increased OPN expression was observed co-localized with microglial cells in the outer nuclear layer (ONL), outer plexiform layer (OPL), and subretinal space. Expression was restricted to the central retina in which photoreceptor cell death occurred. Interestingly, OPN expression in the ONL/OPL was closely associated with microglia, whereas most of the OPN plaques observed in the subretinal space were not. Immunogold electron microscopy demonstrated that OPN was distributed throughout the cytoplasm of microglia and in nearby fragments of degenerating photoreceptors. In addition, we found that OPN was induced more acutely and with greater region specificity than GFAP. These results indicate that OPN may be a more useful marker for retinal injury or stress, and furthermore act as a microglial pro-inflammatory mediator and a phagocytosis-inducing opsonin in the subretinal space. Taken together, our data suggest that OPN plays an important role in the pathogenesis of RD.
Collapse
Affiliation(s)
- Seung Wook Chang
- Department of Anatomy, College of Medicine, The Catholic University of Korea Seoul, Korea
| | - Hyung Il Kim
- Department of Anatomy, College of Medicine, The Catholic University of KoreaSeoul, Korea; Gyeongju St. Mary's Eye ClinicGyeongju, Korea
| | - Gyu Hyun Kim
- Department of Anatomy, College of Medicine, The Catholic University of KoreaSeoul, Korea; Catholic Neuroscience Institute, College of Medicine, The Catholic University of KoreaSeoul, Korea
| | - Su Jin Park
- Department of Anatomy, College of Medicine, The Catholic University of KoreaSeoul, Korea; Catholic Neuroscience Institute, College of Medicine, The Catholic University of KoreaSeoul, Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of KoreaSeoul, Korea; Catholic Neuroscience Institute, College of Medicine, The Catholic University of KoreaSeoul, Korea; Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of KoreaSeoul, Korea
| |
Collapse
|
44
|
Kim HL, Lee MY, Shin YJ, Song DW, Park J, Chang BS, Lee JH. Increased Expression of Osteopontin in the Degenerating Striatum of Rats Treated with Mitochondrial Toxin 3-Nitropropionic Acid: A Light and Electron Microscopy Study. Acta Histochem Cytochem 2015; 48:135-43. [PMID: 26633905 PMCID: PMC4652028 DOI: 10.1267/ahc.15010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/04/2015] [Indexed: 12/16/2022] Open
Abstract
The mycotoxin 3-nitropropionic acid (3NP) is an irreversible inhibitor that induces neuronal damage by inhibiting mitochondrial complex II. Neurodegeneration induced by 3NP, which is preferentially induced in the striatum, is caused by an excess influx and accumulation of calcium in mitochondria. Osteopontin (OPN) is a glycosylated phosphoprotein and plays a role in the regulation of calcium precipitation in the injured brain. The present study was designed to examine whether induction of OPN protein is implicated in the pathogenesis of 3NP-induced striatal neurodegeneration. We observed overlapping regional expression of OPN, the neurodegeneration marker Fluoro-Jade B, and the microglial marker ionized calcium-binding adaptor molecule 1 (Iba1) in the 3NP-lesioned striatum. OPN expression was closely associated with the mitochondrial marker NADH dehydrogenase (ubiquinone) flavoprotein 2 in the damaged striatum. In addition, immunoelectron microscopy demonstrated that OPN protein was specifically localized to the inner membrane and matrix of the mitochondria in degenerating striatal neurons, and cell fragments containing OPN-labeled mitochondria were also present within activated brain macrophages. Thus, our study revealed that OPN expression is associated with mitochondrial dysfunction produced by 3NP-induced alteration of mitochondrial calcium homeostasis, suggesting that OPN is involved in the pathogenesis of striatal degeneration by 3NP administration.
Collapse
Affiliation(s)
- Hong-Lim Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University
- Integrative Research Support Center, College of Medicine, Catholic University
| | - Mun-Yong Lee
- Department of Anatomy, College of Medicine, Catholic University
| | - Yoo-Jin Shin
- Department of Anatomy, College of Medicine, Catholic University
| | - Doo-Won Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University
| | - Jieun Park
- Integrative Research Support Center, College of Medicine, Catholic University
| | | | - Jong-Hwan Lee
- Department of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University
| |
Collapse
|
45
|
Jin YC, Lee H, Kim SW, Kim ID, Lee HK, Lee Y, Han PL, Lee JK. Intranasal Delivery of RGD Motif-Containing Osteopontin Icosamer Confers Neuroprotection in the Postischemic Brain via αvβ3 Integrin Binding. Mol Neurobiol 2015; 53:5652-63. [PMID: 26482372 DOI: 10.1007/s12035-015-9480-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/08/2015] [Indexed: 12/18/2022]
Abstract
Osteopontin (OPN) is a phosphorylated glycoprotein possessing an arginine-glycine-aspartate (RGD)-motif, which binds to several cell surface integrins and mediates a wide range of cellular processes. Inductions of OPN have been reported in the postischemic brain, and the neuroprotective effects of OPN have been demonstrated in animal models of stroke. In the present study, we showed a robust neuroprotective effect of RGD-containing icosamer OPN peptide (OPNpt20) in a rat model of focal cerebral ischemia (middle cerebral artery occlusion, MCAO). Intranasally administered OPNpt20 reduced mean infarct volume by 79.7 % compared to the treatment-naïve MCAO control animals and markedly ameliorated neurological deficits. In addition, OPNpt20 significantly suppressed the inductions of iNOS and of inflammatory markers in postischemic brains and in primary microglial cultures, demonstrating anti-inflammatory effects. Administration of a mutant peptide, in which RGD was replaced by arginine-alanine-alanine (RAA), failed to suppress infarct volumes in MCAO animals and co-administration of OPNpt20 with anti-αvβ3 integrin antibody failed to suppress iNOS induction in primary microglia culture, indicating that the RGD motif in OPNpt20 and endogenous αvβ3 integrin play critical roles. Furthermore, pull-down assay revealed a direct binding between OPNpt20 and αvβ3 integrin in primary microglia culture. Together, these results indicate that RGD-containing OPN icosamer has therapeutic potential in the postischemic brain and αvβ3 integrin-mediated anti-inflammatory effect might be an underlying mechanism.
Collapse
Affiliation(s)
- Yin-Chuan Jin
- Department of Anatomy, Inha University School of Medicine, 7-241 Shinheung-dong, Jung-Gu, Inchon, 400-712, Republic of Korea
| | - Hahnbie Lee
- Department of Anatomy, Inha University School of Medicine, 7-241 Shinheung-dong, Jung-Gu, Inchon, 400-712, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, South Korea
| | - Seung-Woo Kim
- Department of Anatomy, Inha University School of Medicine, 7-241 Shinheung-dong, Jung-Gu, Inchon, 400-712, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, South Korea
| | - Il-Doo Kim
- Department of Anatomy, Inha University School of Medicine, 7-241 Shinheung-dong, Jung-Gu, Inchon, 400-712, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, South Korea
| | - Hye-Kyung Lee
- Department of Anatomy, Inha University School of Medicine, 7-241 Shinheung-dong, Jung-Gu, Inchon, 400-712, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, South Korea
| | - Yunjin Lee
- Department of Brain and Cognitive Science, Ewha Womans University, Seoul, South Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Science, Ewha Womans University, Seoul, South Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, 7-241 Shinheung-dong, Jung-Gu, Inchon, 400-712, Republic of Korea. .,Medical Research Center, Inha University School of Medicine, Inchon, South Korea.
| |
Collapse
|
46
|
Gliem M, Krammes K, Liaw L, van Rooijen N, Hartung HP, Jander S. Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia 2015; 63:2198-207. [PMID: 26148976 DOI: 10.1002/glia.22885] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/18/2015] [Indexed: 01/30/2023]
Abstract
Infarcted regions of the brain after stroke are segregated from the intact brain by scar tissue comprising both fibrous and glial components. The extent and quality of scarring is influenced by inflammation. The matricellular glycoprotein osteopontin (OPN) is strongly induced in myeloid cells after stroke and may contribute to repair of ischemic brain lesions. To elucidate the role of OPN in scar formation, we induced photothrombotic brain infarction, characterized by circumscribed cortical infarctions with a well-defined border zone toward the intact brain parenchyma. The cellular source and functional role of OPN was addressed by studies in OPN null (OPN(-/-) ) mice, wild-type mice depleted of hematogenous monocytes/macrophages by clodronate-filled liposome treatment, and CCR2(-/-) bone marrow chimeric mice characterized by impaired hematogenous macrophage influx into the infarctions. OPN was mainly produced by hematogenous macrophages infiltrating into the inner border zone of the infarcts whereas astrocyte activation occurred in the outer border zone. In OPN(-/-) as well as macrophage-depleted mice, reactive astrocytes failed to properly extend processes from the periphery toward the center of the infarctions. This was associated with incomplete coverage of neovessels by astrocytic endfeet and persistent leakiness of the damaged blood brain barrier. In conclusion, OPN produced by hematogenous macrophages induces astrocyte process extension toward the infarct border zone, which may contribute to repair of the ischemic neurovascular unit.
Collapse
Affiliation(s)
- Michael Gliem
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Kristina Krammes
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Nico van Rooijen
- Department of Cell Biology and Immunology, Faculty of Medicine, Vrije Universiteit, Amsterdam, The Netherlands
| | - Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Sebastian Jander
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
47
|
Carbone F, Vuilleumier N, Burger F, Roversi G, Tamborino C, Casetta I, Seraceni S, Trentini A, Padroni M, Dallegri F, Mach F, Fainardi E, Montecucco F. Serum osteopontin levels are upregulated and predict disability after an ischaemic stroke. Eur J Clin Invest 2015; 45:579-86. [PMID: 25845543 DOI: 10.1111/eci.12446] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/31/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND After an acute ischaemic stroke (AIS), several inflammatory biomarkers have been investigated, but their predictive role on functional recovery remains to be validated. Here, we investigated the prognostic relevance of biomarkers related to atherosclerotic plaque calcification, such as osteopontin (OPN), osteoprotegerin (OPG) and the receptor activator of nuclear factor kappa-B ligand (RANKL) in a cohort of patients with AIS (n = 90) during 90-day follow-up. MATERIALS AND METHODS Radiological and clinical examinations as well as blood sampling were performed at admission and at days 1, 7 and 90 from the event. Validated scores [such as modified Rankin scale (mRS) and the National Institutes of Health Stroke Scale (NIHSS)] were used to assess poststroke outcome. Serum levels of OPN, OPG and RANKL were measured by colorimetric enzyme-linked immunosorbent assay (ELISA). RESULTS When compared to the admission, OPN serum levels increased at day 7. Serum OPN levels at this time point were positively correlated with both ischaemic lesion volume and NIHSS at days 7 and 90. A cut-off of 30.53 ng/mL was identified for serum OPN by receiver operating characteristic (ROC) curve analysis. Adjusted logistic regression showed that serum OPN levels at day 7 predicted worse mRS at day 90 [OR 4.13 (95% CI 1.64-10.36); P = 0.002] and NIHSS [1.49 (95% CI 1.16-1.99); P = 0.007], independently of age, gender, hypertension and thrombolysis. CONCLUSIONS Serum levels of OPN, but not OPG and RANKL, peaked at day 7 after AIS and predicted worse neurological scores. Therefore, OPN might have a pathophysiological and clinical relevance after AIS.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.,Division of Cardiology, Department of Medical Specialties, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Fabienne Burger
- Division of Cardiology, Department of Medical Specialties, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Gloria Roversi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmine Tamborino
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Ilaria Casetta
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Silva Seraceni
- Section of Infectious Diseases, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandro Trentini
- Section of Medical Biochemistry, Molecular Biology and Genetics, Department of Biomedical and Specialist Surgical Sciences University of Ferrara, Ferrara, Italy
| | - Marina Padroni
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - François Mach
- Division of Cardiology, Department of Medical Specialties, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Enrico Fainardi
- Section of Neurology, Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.,Division of Cardiology, Department of Medical Specialties, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland.,Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
48
|
Chan JL, Reeves TM, Phillips LL. Osteopontin expression in acute immune response mediates hippocampal synaptogenesis and adaptive outcome following cortical brain injury. Exp Neurol 2014; 261:757-71. [PMID: 25151457 DOI: 10.1016/j.expneurol.2014.08.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/04/2014] [Accepted: 08/14/2014] [Indexed: 01/13/2023]
Abstract
Traumatic brain injury (TBI) produces axotomy, deafferentation and reactive synaptogenesis. Inflammation influences synaptic repair, and the novel brain cytokine osteopontin (OPN) has potential to support axon regeneration through exposure of its integrin receptor binding sites. This study explored whether OPN secretion and proteolysis by matrix metalloproteinases (MMPs) mediate the initial degenerative phase of synaptogenesis, targeting reactive neuroglia to affect successful repair. Adult rats received unilateral entorhinal cortex lesion (UEC) modeling adaptive synaptic plasticity. Over the first week postinjury, hippocampal OPN protein and mRNA were assayed and histology was performed. At 1-2d, OPN protein increased up to 51 fold, and was localized within activated, mobilized glia. OPN transcript also increased over 50 fold, predominantly within reactive microglia. OPN fragments known to be derived from MMP proteolysis were elevated at 1d, consistent with prior reports of UEC glial activation and enzyme production. Postinjury minocycline immunosuppression attenuated MMP-9 gelatinase activity, which was correlated with the reduction of neutrophil gelatinase-associated lipocalin (LCN2) expression, and reduced OPN fragment generation. The antibiotic also attenuated removal of synapsin-1 positive axons from the deafferented zone. OPN KO mice subjected to UEC had similar reduction of hippocampal MMP-9 activity, as well as lower synapsin-1 breakdown over the deafferented zone. MAP1B and N-cadherin, surrogates of cytoarchitecture and synaptic adhesion, were not affected. OPN KO mice with UEC exhibited time dependent cognitive deficits during the synaptogenic phase of recovery. This study demonstrates that OPN can mediate immune response during TBI synaptic repair, positively influencing synapse reorganization and functional recovery.
Collapse
Affiliation(s)
- Julie L Chan
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298, USA
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298, USA
| | - Linda L Phillips
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298, USA.
| |
Collapse
|
49
|
Fu R, Shen Q, Xu P, Luo JJ, Tang Y. Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 2014; 49:1422-34. [PMID: 24395130 PMCID: PMC4012154 DOI: 10.1007/s12035-013-8620-6] [Citation(s) in RCA: 464] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/15/2013] [Indexed: 12/20/2022]
Abstract
Microglia, the resident macrophages of the central nervous system, rapidly activate in nearly all kinds of neurological diseases. These activated microglia become highly motile, secreting inflammatory cytokines, migrating to the lesion area, and phagocytosing cell debris or damaged neurons. During the past decades, the secretory property and chemotaxis of microglia have been well-studied, while relatively less attention has been paid to microglial phagocytosis. So far there is no obvious concordance with whether it is beneficial or detrimental in tissue repair. This review focuses on phagocytic phenotype of microglia in neurological diseases such as Alzheimer's disease, multiple sclerosis, Parkinson's disease, traumatic brain injury, ischemic and other brain diseases. Microglial morphological characteristics, involved receptors and signaling pathways, distribution variation along with time and space changes, and environmental factors that affecting phagocytic function in each disease are reviewed. Moreover, a comparison of contributions between macrophages from peripheral circulation and the resident microglia to these pathogenic processes will also be discussed.
Collapse
Affiliation(s)
- Ruying Fu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, 510120 Guangdong Province China
| | - Qingyu Shen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, 510120 Guangdong Province China
- Department of Neurology, Zengcheng People’s Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Pengfei Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, 510120 Guangdong Province China
| | - Jin Jun Luo
- Department of Neurology, School of Medicine, Temple University, Philadelphia, PA USA
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, 510120 Guangdong Province China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
50
|
Jha MK, Seo M, Kim JH, Kim BG, Cho JY, Suk K. The secretome signature of reactive glial cells and its pathological implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2418-28. [PMID: 23269363 DOI: 10.1016/j.bbapap.2012.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022]
|