1
|
Dias L, Nabais AM, Borges-Martins VPP, Canas PM, Cunha RA, Agostinho P. Impact of Glucocorticoid-Associated Stress-Like Conditions on Aquaporin-4 in Cultured Astrocytes and Its Modulation by Adenosine A 2A Receptors. J Neurochem 2025; 169:e16299. [PMID: 39754374 DOI: 10.1111/jnc.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
Astrocytes participate in brain clearance of extracellular proteins and metabolites, through the activity of the water channel aquaporin-4 (AQP4), which can be deregulated in stress-related disorders, impairing brain waste clearance. The present study investigates the impact of dexamethasone (Dexa), a synthetic glucocorticoid used as a simplified in vitro stress model, on astrocytic AQP4 and its modulation by adenosine A2A receptors (A2AR), which blockade reverses conditions related with maladaptive stress, such as anxiety and depression. The clearance of proteins in primary astrocytic cultures, assessed using 5 kDa FITC-dextran and 45 kDa TRITC-dextran uptake, was decreased by a 24 h exposure to 100 nM Dexa. The Dexa exposure decreased α-syntrophin density, a protein-targeting AQP4 to astrocytic processes, potentially affecting AQP4 location and, consequently, its activity. Accordingly, Dexa exposure decreased astrocytic water influx (assessed with calcein fluorescence), which paralleled the impairment of dextran clearance. The Dexa-induced decrease in extracellular protein uptake was prevented by the AQP4 activator TGN-073 and A2AR antagonism with SCH58261, showing that the impairment of AQP4-mediated protein clearance was controlled by A2AR in this Dexa-simplified in vitro stress model. Additionally, the effects of Dexa in AQP4 location and activity were prevented by SCH58261, confirming that A2AR modulate AQP4 function. This conclusion was reinforced by the observed AQP4/A2AR physical interaction in astrocytes. Overall, the data indicate that in vitro conditions related to stress affect the localisation of astrocytic AQP4 and its role in extracellular protein uptake, which was modulated by A2AR. These findings unveil a novel therapeutic mechanism to prevent brain extracellular protein accumulation and associated neurological disorders by tinkering with AQP4 and A2AR.
Collapse
Affiliation(s)
- Liliana Dias
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Margarida Nabais
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paula Agostinho
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Abdennadher M, Jacobellis S, Václavů L, Juttukonda M, Inati S, Goldstein L, van Osch MJP, Rosen B, Hua N, Theodore W. Water exchange across the blood-brain barrier and epilepsy: Review on pathophysiology and neuroimaging. Epilepsia Open 2024; 9:1123-1135. [PMID: 38884502 PMCID: PMC11296120 DOI: 10.1002/epi4.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
The blood-brain barrier (BBB) is a barrier protecting the brain and a milieu of continuous exchanges between blood and brain. There is emerging evidence that the BBB plays a major role in epileptogenesis and drug-resistant epilepsy, through several mechanisms, such as water homeostasis dysregulation, overexpression of drug transporters, and inflammation. Studies have shown abnormal water homeostasis in epileptic tissue and altered aquaporin-4 water channel expression in animal epilepsy models. This review focuses on abnormal water exchange in epilepsy and describes recent non-invasive MRI methods of quantifying water exchange. PLAIN LANGUAGE SUMMARY: Abnormal exchange between blood and brain contribute to seizures and epilepsy. The authors describe why correct water balance is necessary for healthy brain functioning and how it is impacted in epilepsy. This review also presents recent MRI methods to measure water exchange in human brain. These measures would improve our understanding of factors leading to seizures.
Collapse
Affiliation(s)
- Myriam Abdennadher
- Neurology Department, Boston Medical CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Sara Jacobellis
- Boston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Lena Václavů
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Meher Juttukonda
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Sara Inati
- National Institute of Neurological Disorders and Stroke, NIHBethesdaMarylandUSA
| | - Lee Goldstein
- Psychiatry and Neurology DepartmentBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Matthias J. P. van Osch
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Bruce Rosen
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Ning Hua
- Radiology Department, Boston Medical CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - William Theodore
- National Institute of Neurological Disorders and Stroke, NIHBethesdaMarylandUSA
| |
Collapse
|
3
|
Sriram S, Carstens K, Dewing W, Fiacco TA. Astrocyte regulation of extracellular space parameters across the sleep-wake cycle. Front Cell Neurosci 2024; 18:1401698. [PMID: 38988660 PMCID: PMC11233815 DOI: 10.3389/fncel.2024.1401698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Multiple subfields of neuroscience research are beginning to incorporate astrocytes into current frameworks of understanding overall brain physiology, neuronal circuitry, and disease etiology that underlie sleep and sleep-related disorders. Astrocytes have emerged as a dynamic regulator of neuronal activity through control of extracellular space (ECS) volume and composition, both of which can vary dramatically during different levels of sleep and arousal. Astrocytes are also an attractive target of sleep research due to their prominent role in the glymphatic system, a method by which toxic metabolites generated during wakefulness are cleared away. In this review we assess the literature surrounding glial influences on fluctuations in ECS volume and composition across the sleep-wake cycle. We also examine mechanisms of astrocyte volume regulation in glymphatic solute clearance and their role in sleep and wake states. Overall, findings highlight the importance of astrocytes in sleep and sleep research.
Collapse
Affiliation(s)
- Sandhya Sriram
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Kaira Carstens
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Wayne Dewing
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, CA, United States
| | - Todd A Fiacco
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
4
|
Hermanova Z, Valihrach L, Kriska J, Maheta M, Tureckova J, Kubista M, Anderova M. The deletion of AQP4 and TRPV4 affects astrocyte swelling/volume recovery in response to ischemia-mimicking pathologies. Front Cell Neurosci 2024; 18:1393751. [PMID: 38818517 PMCID: PMC11138210 DOI: 10.3389/fncel.2024.1393751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Astrocytic Transient receptor potential vanilloid 4 (TRPV4) channels, together with Aquaporin 4 (AQP4), are suspected to be the key players in cellular volume regulation, and therefore may affect the development and severity of cerebral edema during ischemia. In this study, we examined astrocytic swelling/volume recovery in mice with TRPV4 and/or AQP4 deletion in response to in vitro ischemic conditions, to determine how the deletion of these channels can affect the development of cerebral edema. Methods We used three models of ischemia-related pathological conditions: hypoosmotic stress, hyperkalemia, and oxygenglucose deprivation (OGD), and observed their effect on astrocyte volume changes in acute brain slices of Aqp4-/-, Trpv4-/- and double knockouts. In addition, we employed single-cell RT-qPCR to assess the effect of TRPV4 and AQP4 deletion on the expression of other ion channels and transporters involved in the homeostatic functioning of astrocytes. Results Quantification of astrocyte volume changes during OGD revealed that the deletion of AQP4 reduces astrocyte swelling, while simultaneous deletion of both AQP4 and TRPV4 leads to a disruption of astrocyte volume recovery during the subsequent washout. Of note, astrocyte exposure to hypoosmotic stress or hyperkalemia revealed no differences in astrocyte swelling in the absence of AQP4, TRPV4, or both channels. Moreover, under ischemia-mimicking conditions, we identified two distinct subpopulations of astrocytes with low and high volumetric responses (LRA and HRA), and their analyses revealed that mainly HRA are affected by the deletion of AQP4, TRPV4, or both channels. Furthermore, gene expression analysis revealed reduced expression of the ion transporters KCC1 and ClC2 as well as the receptors GABAB and NMDA in Trpv4-/- mice. The deletion of AQP4 instead caused reduced expression of the serine/cysteine peptidase inhibitor Serpina3n. Discussion Thus, we showed that in AQP4 or TRPV4 knockouts, not only the specific function of these channels is affected, but also the expression of other proteins, which may modulate the ischemic cascade and thus influence the final impact of ischemia.
Collapse
Affiliation(s)
- Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lukas Valihrach
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
| | - Mansi Maheta
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
| |
Collapse
|
5
|
Giannetto MJ, Gomolka RS, Gahn-Martinez D, Newbold EJ, Bork PAR, Chang E, Gresser M, Thompson T, Mori Y, Nedergaard M. Glymphatic fluid transport is suppressed by the aquaporin-4 inhibitor AER-271. Glia 2024; 72:982-998. [PMID: 38363040 PMCID: PMC11203403 DOI: 10.1002/glia.24515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The glymphatic system transports cerebrospinal fluid (CSF) into the brain via arterial perivascular spaces and removes interstitial fluid from the brain along perivenous spaces and white matter tracts. This directional fluid flow supports the clearance of metabolic wastes produced by the brain. Glymphatic fluid transport is facilitated by aquaporin-4 (AQP4) water channels, which are enriched in the astrocytic vascular endfeet comprising the outer boundary of the perivascular space. Yet, prior studies of AQP4 function have relied on genetic models, or correlated altered AQP4 expression with glymphatic flow in disease states. Herein, we sought to pharmacologically manipulate AQP4 function with the inhibitor AER-271 to assess the contribution of AQP4 to glymphatic fluid transport in mouse brain. Administration of AER-271 inhibited glymphatic influx as measured by CSF tracer infused into the cisterna magna and inhibited increases in the interstitial fluid volume as measured by diffusion-weighted MRI. Furthermore, AER-271 inhibited glymphatic efflux as assessed by an in vivo clearance assay. Importantly, AER-271 did not affect AQP4 localization to the astrocytic endfeet, nor have any effect in AQP4 deficient mice. Since acute pharmacological inhibition of AQP4 directly decreased glymphatic flow in wild-type but not in AQP4 deficient mice, we foresee AER-271 as a new tool for manipulation of the glymphatic system in rodent brain.
Collapse
Affiliation(s)
- Michael J. Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ryszard S. Gomolka
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel Gahn-Martinez
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Evan J. Newbold
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Peter A. R. Bork
- Department of Physics, Technical University of Denmark, Richard Petersens Plads, 2800 Lyngby, Denmark
| | - Ethan Chang
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael Gresser
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513
| | - Trevor Thompson
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Rostami F, Jaafari Suha A, Janahmadi M, Hosseinmardi N. Aquaporin-4 inhibition attenuates Pentylenetetrazole-induced behavioral seizures and cognitive impairments in kindled rats. Physiol Behav 2024; 278:114521. [PMID: 38492911 DOI: 10.1016/j.physbeh.2024.114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Epilepsy is a neurological condition distinguished by recurrent and unexpected seizures. Astrocytic channels and transporters are essential for maintaining normal neuronal functionality. The astrocytic water channel, aquaporin-4 (AQP4), which plays a pivotal role in regulating water homeostasis, is a potential target for epileptogenesis. In present study, we examined the effect of different doses (10, 50, 100 μM and 5 mM) of AQP4 inhibitor, 2-nicotinamide-1, 3, 4-thiadiazole (TGN-020), during kindling acquisition, on seizure parameters and seizure-induced cognitive impairments. Animals were kindled by injection of pentylenetetrazole (PTZ: 37.5 mg/kg, i.p.). TGN-020 was administered into the right lateral cerebral ventricle 30 min before PTZ every alternate day. Seizure parameters were assessed 20 min after PTZ administration. One day following the last PTZ injection, memory performance was investigated using spontaneous alternation in Y-maze and novel object recognition (NOR) tests. The inhibition of AQP4 during the kindling process significantly decreased the maximal seizure stage and seizure duration (two-way ANOVA, P = 0.0001) and increased the latency of seizure onset and the number of PTZ injections required to induce different seizure stages (one-way ANOVA, P = 0.0001). Compared to kindled rats, the results of the NOR tests showed that AQP4 inhibition during PTZ-kindling prevented recognition memory impairment. Based on these results, AQP4 could be involved in seizure development and seizure-induced cognitive impairment. More investigation is required to fully understand the complex interactions between seizure activity, water homeostasis, and cognitive dysfunction, which may help identify potential therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Fatemeh Rostami
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Jaafari Suha
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Cibelli A, Mola MG, Saracino E, Barile B, Abbrescia P, Mogni G, Spray DC, Scemes E, Rossi A, Spennato D, Svelto M, Frigeri A, Benfenati V, Nicchia GP. Aquaporin-4 and transient receptor potential vanilloid 4 balance in early postnatal neurodevelopment. Glia 2024; 72:938-959. [PMID: 38362923 DOI: 10.1002/glia.24512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
In the adult brain, the water channel aquaporin-4 (AQP4) is expressed in astrocyte endfoot, in supramolecular assemblies, called "Orthogonal Arrays of Particles" (OAPs) together with the transient receptor potential vanilloid 4 (TRPV4), finely regulating the cell volume. The present study aimed at investigating the contribution of AQP4 and TRPV4 to CNS early postnatal development using WT and AQP4 KO brain and retina and neuronal stem cells (NSCs), as an in vitro model of astrocyte differentiation. Western blot analysis showed that, differently from AQP4 and the glial cell markers, TRPV4 was downregulated during CNS development and NSC differentiation. Blue native/SDS-PAGE revealed that AQP4 progressively organized into OAPs throughout the entire differentiation process. Fluorescence quenching assay indicated that the speed of cell volume changes was time-related to NSC differentiation and functional to their migratory ability. Calcium imaging showed that the amplitude of TRPV4 Ca2+ transient is lower, and the dynamics are changed during differentiation and suppressed in AQP4 KO NSCs. Overall, these findings suggest that early postnatal neurodevelopment is subjected to temporally modulated water and Ca2+ dynamics likely to be those sustaining the biochemical and physiological mechanisms responsible for astrocyte differentiation during brain and retinal development.
Collapse
Affiliation(s)
- Antonio Cibelli
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Pasqua Abbrescia
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro-Medical School, Bari, Italy
| | - Guido Mogni
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eliana Scemes
- Department of Cell Biology and Anatomy, NY Medical College, Valhalla, New York, USA
| | - Andrea Rossi
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Diletta Spennato
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro-Medical School, Bari, Italy
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
8
|
Thormann M, Traube N, Yehia N, Koestler R, Galabova G, MacAulay N, Toft-Bertelsen TL. Toward New AQP4 Inhibitors: ORI-TRN-002. Int J Mol Sci 2024; 25:924. [PMID: 38255997 PMCID: PMC10815436 DOI: 10.3390/ijms25020924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Cerebral edema is a life-threatening condition that can cause permanent brain damage or death if left untreated. Existing therapies aim at mitigating the associated elevated intracranial pressure, yet they primarily alleviate pressure rather than prevent edema formation. Prophylactic anti-edema therapy necessitates novel drugs targeting edema formation. Aquaporin 4 (AQP4), an abundantly expressed water pore in mammalian glia and ependymal cells, has been proposed to be involved in cerebral edema formation. A series of novel compounds have been tested for their potential inhibitory effects on AQP4. However, selectivity, toxicity, functional inhibition, sustained therapeutic concentration, and delivery into the central nervous system are major challenges. Employing extensive density-functional theory (DFT) calculations, we identified a previously unreported thermodynamically stable tautomer of the recently identified AQP4-specific inhibitor TGN-020 (2-(nicotinamide)-1,3,4-thiadiazol). This novel form, featuring a distinct hydrogen-bonding pattern, served as a template for a COSMOsim-3D-based virtual screen of proprietary compounds from Origenis™. The screening identified ORI-TRN-002, an electronic homologue of TGN-020, demonstrating high solubility and low protein binding. Evaluating ORI-TRN-002 on AQP4-expressing Xenopus laevis oocytes using a high-resolution volume recording system revealed an IC50 of 2.9 ± 0.6 µM, establishing it as a novel AQP4 inhibitor. ORI-TRN-002 exhibits superior solubility and overcomes free fraction limitations compared to other reported AQP4 inhibitors, suggesting its potential as a promising anti-edema therapy for treating cerebral edema in the future.
Collapse
Affiliation(s)
| | - Nadine Traube
- Origenis GmbH, Am Klopferspitz 19A, 82152 Martinsried, Germany
| | - Nasser Yehia
- Origenis GmbH, Am Klopferspitz 19A, 82152 Martinsried, Germany
| | - Roland Koestler
- Origenis GmbH, Am Klopferspitz 19A, 82152 Martinsried, Germany
| | | | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Trine L. Toft-Bertelsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Jazaeri SZ, Taghizadeh G, Babaei JF, Goudarzi S, Saadatmand P, Joghataei MT, Khanahmadi Z. Aquaporin 4 beyond a water channel; participation in motor, sensory, cognitive and psychological performances, a comprehensive review. Physiol Behav 2023; 271:114353. [PMID: 37714320 DOI: 10.1016/j.physbeh.2023.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
Aquaporin 4 (AQP4) is a protein highly expressed in the central nervous system (CNS) and peripheral nervous system (PNS) as well as various other organs, whose different sites of action indicate its importance in various functions. AQP4 has a variety of essential roles beyond water homeostasis. In this article, we have for the first time summarized different roles of AQP4 in motor and sensory functions, besides cognitive and psychological performances, and most importantly, possible physiological mechanisms by which AQP4 can exert its effects. Furthermore, we demonstrated that AQP4 participates in pathology of different neurological disorders, various effects depending on the disease type. Since neurological diseases involve a spectrum of dysfunctions and due to the difficulty of obtaining a treatment that can simultaneously affect these deficits, it is therefore suggested that future studies consider the role of this protein in different functional impairments related to neurological disorders simultaneously or separately by targeting AQP4 expression and/or polarity modulation.
Collapse
Affiliation(s)
- Seyede Zohreh Jazaeri
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Goudarzi
- Experimental Medicine Research Center, Tehran University of medical Sciences, Tehran, Iran
| | - Pegah Saadatmand
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Innovation in Medical Education, Faculty of Medicine, Ottawa University, Ottawa, Canada.
| | - Zohreh Khanahmadi
- Department of Occupational Therapy, School of Rehabilitation Services, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Rodríguez-Callejas JD, Fuchs E, Perez-Cruz C. Atrophic astrocytes in aged marmosets present tau hyperphosphorylation, RNA oxidation, and DNA fragmentation. Neurobiol Aging 2023; 129:121-136. [PMID: 37302213 DOI: 10.1016/j.neurobiolaging.2023.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 06/13/2023]
Abstract
Astrocytes perform multiple essential functions in the brain showing morphological changes. Hypertrophic astrocytes are commonly observed in cognitively healthy aged animals, implying a functional defense mechanism without losing neuronal support. In neurodegenerative diseases, astrocytes show morphological alterations, such as decreased process length and reduced number of branch points, known as astroglial atrophy, with detrimental effects on neuronal cells. The common marmoset (Callithrix jacchus) is a non-human primate that, with age, develops several features that resemble neurodegeneration. In this study, we characterize the morphological alterations in astrocytes of adolescent (mean 1.75 y), adult (mean 5.33 y), old (mean 11.25 y), and aged (mean 16.83 y) male marmosets. We observed a significantly reduced arborization in astrocytes of aged marmosets compared to younger animals in the hippocampus and entorhinal cortex. These astrocytes also show oxidative damage to RNA and increased nuclear plaques in the cortex and tau hyperphosphorylation (AT100). Astrocytes lacking S100A10 protein show a more severe atrophy and DNA fragmentation. Our results demonstrate the presence of atrophic astrocytes in the brains of aged marmosets.
Collapse
Affiliation(s)
- Juan D Rodríguez-Callejas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Department of Pharmacology, Mexico City, Mexico
| | - Eberhard Fuchs
- German Primate Center, Leibniz-Institute of Primate Research, Göttingen, Germany
| | - Claudia Perez-Cruz
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Department of Pharmacology, Mexico City, Mexico.
| |
Collapse
|
11
|
Henning L, Unichenko P, Bedner P, Steinhäuser C, Henneberger C. Overview Article Astrocytes as Initiators of Epilepsy. Neurochem Res 2023; 48:1091-1099. [PMID: 36244037 PMCID: PMC10030460 DOI: 10.1007/s11064-022-03773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/22/2022] [Accepted: 09/27/2022] [Indexed: 10/17/2022]
Abstract
Astrocytes play a dual role in the brain. On the one hand, they are active signaling partners of neurons and can for instance control synaptic transmission and its plasticity. On the other hand, they fulfill various homeostatic functions such as clearance of glutamate and K+ released from neurons. The latter is for instance important for limiting neuronal excitability. Therefore, an impairment or failure of glutamate and K+ clearance will lead to increased neuronal excitability, which could trigger or aggravate brain diseases such as epilepsy, in which neuronal hyperexcitability plays a role. Experimental data indicate that astrocytes could have such a causal role in epilepsy, but the role of astrocytes as initiators of epilepsy and the relevant mechanisms are under debate. In this overview, we will discuss the potential mechanisms with focus on K+ clearance, glutamate uptake and homoeostasis and related mechanisms, and the evidence for their causative role in epilepsy.
Collapse
Affiliation(s)
- Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Petr Unichenko
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| |
Collapse
|
12
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
13
|
Gomolka RS, Hablitz LM, Mestre H, Giannetto M, Du T, Hauglund NL, Xie L, Peng W, Martinez PM, Nedergaard M, Mori Y. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation. eLife 2023; 12:e82232. [PMID: 36757363 PMCID: PMC9995113 DOI: 10.7554/elife.82232] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
The glymphatic system is a fluid transport network of cerebrospinal fluid (CSF) entering the brain along arterial perivascular spaces, exchanging with interstitial fluid (ISF), ultimately establishing directional clearance of interstitial solutes. CSF transport is facilitated by the expression of aquaporin-4 (AQP4) water channels on the perivascular endfeet of astrocytes. Mice with genetic deletion of AQP4 (AQP4 KO) exhibit abnormalities in the brain structure and molecular water transport. Yet, no studies have systematically examined how these abnormalities in structure and water transport correlate with glymphatic function. Here, we used high-resolution 3D magnetic resonance (MR) non-contrast cisternography, diffusion-weighted MR imaging (MR-DWI) along with intravoxel-incoherent motion (IVIM) DWI, while evaluating glymphatic function using a standard dynamic contrast-enhanced MR imaging to better understand how water transport and glymphatic function is disrupted after genetic deletion of AQP4. AQP4 KO mice had larger interstitial spaces and total brain volumes resulting in higher water content and reduced CSF space volumes, despite similar CSF production rates and vascular density compared to wildtype mice. The larger interstitial fluid volume likely resulted in increased slow but not fast MR diffusion measures and coincided with reduced glymphatic influx. This markedly altered brain fluid transport in AQP4 KO mice may result from a reduction in glymphatic clearance, leading to enlargement and stagnation of fluid in the interstitial space. Overall, diffusion MR is a useful tool to evaluate glymphatic function and may serve as valuable translational biomarker to study glymphatics in human disease.
Collapse
Affiliation(s)
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- Department of Neurology, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Ting Du
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- School of Pharmacy, China Medical UniversityShenyangChina
| | | | - Lulu Xie
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Weiguo Peng
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | | | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Yuki Mori
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
14
|
Li X, Yang B. Non-Transport Functions of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:65-80. [PMID: 36717487 DOI: 10.1007/978-981-19-7415-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although it has been more than 20 years since the first aquaporin was discovered, the specific functions of many aquaporins are still under investigation, because various mice lacking aquaporins have no significant phenotypes. And in many studies, the function of aquaporin is not directly related to its transport function. Therefore, this chapter will focus on some unexpected functions of aquaporins, such the decreased tumor angiogenesis in AQP1 knockout mice, and AQP1 promotes cell migration, possibly by accelerating the water transport in lamellipodia of migrating cells. AQP transports glycerol, and water regulates glycerol content in epidermis and fat, thereby regulating skin hydration/biosynthesis and fat metabolism. AQPs may also be involved in neural signal transduction, cell volume regulation, and organelle physiology. AQP1, AQP3, and AQP5 are also involved in cell proliferation. In addition, AQPs have also been reported to play roles in inflammation in various tissues and organs. The functions of these AQPs may not depend on the permeability of small molecules such as water and glycerol, suggesting AQPs may play more roles in different biological processes in the body.
Collapse
Affiliation(s)
- Xiaowei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
15
|
Xiao M, Hou J, Xu M, Li S, Yang B. Aquaporins in Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:99-124. [PMID: 36717489 DOI: 10.1007/978-981-19-7415-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) mediate water flux between the four distinct water compartments in the central nervous system (CNS). In the present chapter, we mainly focus on the expression and function of the nine AQPs expressed in the CNS, which include five members of aquaporin subfamily: AQP1, AQP4, AQP5, AQP6, and AQP8; three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP9; and one member of superaquaporin subfamily: AQP11. In addition, AQP1, AQP2, and AQP4 expressed in the peripheral nervous system are also reviewed. AQP4, the predominant water channel in the CNS, is involved both in the astrocyte swelling of cytotoxic edema and the resolution of vasogenic edema and is of pivotal importance in the pathology of brain disorders such as neuromyelitis optica, brain tumors, and neurodegenerative disorders. Moreover, AQP4 has been demonstrated as a functional regulator of recently discovered glymphatic system that is a main contributor to clearance of toxic macromolecule from the brain. Other AQPs are also involved in a variety of important physiological and pathological process in the brain. It has been suggested that AQPs could represent an important target in treatment of brain disorders like cerebral edema. Future investigations are necessary to elucidate the pathological significance of AQPs in the CNS.
Collapse
Affiliation(s)
- Ming Xiao
- Jiangsu Province, Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jiaoyu Hou
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengmeng Xu
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shao Li
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
16
|
Walch E, Fiacco TA. Honey, I shrunk the extracellular space: Measurements and mechanisms of astrocyte swelling. Glia 2022; 70:2013-2031. [PMID: 35635369 PMCID: PMC9474570 DOI: 10.1002/glia.24224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
Abstract
Astrocyte volume fluctuation is a physiological phenomenon tied closely to the activation of neural circuits. Identification of underlying mechanisms has been challenging due in part to use of a wide range of experimental approaches that vary between research groups. Here, we first review the many methods that have been used to measure astrocyte volume changes directly or indirectly. While the field has recently shifted towards volume analysis using fluorescence microscopy to record cell volume changes directly, established metrics corresponding to extracellular space dynamics have also yielded valuable insights. We then turn to analysis of mechanisms of astrocyte swelling derived from many studies, with a focus on volume changes tied to increases in extracellular potassium concentration ([K+ ]o ). The diverse methods that have been utilized to generate the external [K+ ]o environment highlight multiple scenarios of astrocyte swelling mediated by different mechanisms. Classical potassium buffering theories are tempered by many recent studies that point to different swelling pathways optimized at particular [K+ ]o and that depend on local/transient versus more sustained increases in [K+ ]o .
Collapse
Affiliation(s)
- Erin Walch
- Division of Biomedical Sciences, School of MedicineUniversity of California, RiversideRiversideCaliforniaUSA
| | - Todd A. Fiacco
- Department of Molecular, Cell and Systems BiologyUniversity of California, RiversideRiversideCaliforniaUSA
- Center for Glial‐Neuronal InteractionsUniversity of California, RiversideRiversideCaliforniaUSA
| |
Collapse
|
17
|
Insight into the Mammalian Aquaporin Interactome. Int J Mol Sci 2022; 23:ijms23179615. [PMID: 36077012 PMCID: PMC9456110 DOI: 10.3390/ijms23179615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane water channels expressed in all living organisms. AQPs facilitate osmotically driven water flux across biological membranes and, in some cases, the movement of small molecules (such as glycerol, urea, CO2, NH3, H2O2). Protein-protein interactions play essential roles in protein regulation and function. This review provides a comprehensive overview of the current knowledge of the AQP interactomes and addresses the molecular basis and functional significance of these protein-protein interactions in health and diseases. Targeting AQP interactomes may offer new therapeutic avenues as targeting individual AQPs remains challenging despite intense efforts.
Collapse
|
18
|
The Water Transport System in Astrocytes–Aquaporins. Cells 2022; 11:cells11162564. [PMID: 36010640 PMCID: PMC9406552 DOI: 10.3390/cells11162564] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Highlights (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes, including those of astrocytes. The expression and subcellular localization of AQPs in astrocytes are highly dynamic under physiological and pathological conditions. Besides their primary function in water homeostasis, AQPs participate in many ancillary functions including glutamate clearance in tripartite synapses and cell migration.
Abstract Astrocytes have distinctive morphological and functional characteristics, and are found throughout the central nervous system. Astrocytes are now known to be far more than just housekeeping cells in the brain. Their functions include contributing to the formation of the blood–brain barrier, physically and metabolically supporting and communicating with neurons, regulating the formation and functions of synapses, and maintaining water homeostasis and the microenvironment in the brain. Aquaporins (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes. Various subtypes of AQPs (AQP1, AQP3, AQP4, AQP5, AQP8 and AQP9) have been reported to be expressed in astrocytes, and the expressions and subcellular localizations of AQPs in astrocytes are highly correlated with both their physiological and pathophysiological functions. This review describes and summarizes the recent advances in our understanding of astrocytes and AQPs in regard to controlling water homeostasis in the brain. Findings regarding the features of different AQP subtypes, such as their expression, subcellular localization, physiological functions, and the pathophysiological roles of astrocytes are presented, with brain edema and glioma serving as two representative AQP-associated pathological conditions. The aim is to provide a better insight into the elaborate “water distribution” system in cells, exemplified by astrocytes, under normal and pathological conditions.
Collapse
|
19
|
Elsherbini DMA, Ghoneim FM, El-Mancy EM, Ebrahim HA, El-Sherbiny M, El-Shafey M, Al-Serwi RH, Elsherbiny NM. Astrocytes profiling in acute hepatic encephalopathy: Possible enrolling of glial fibrillary acidic protein, tumor necrosis factor-alpha, inwardly rectifying potassium channel (Kir 4.1) and aquaporin-4 in rat cerebral cortex. Front Cell Neurosci 2022; 16:896172. [PMID: 36060277 PMCID: PMC9428715 DOI: 10.3389/fncel.2022.896172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neurological disarray manifested as a sequel to chronic and acute liver failure (ALF). A potentially fatal consequence of ALF is brain edema with concomitant astrocyte enlargement. This study aims to outline the role of astrocytes in acute HE and shed light on the most critical mechanisms driving this role. Rats were allocated into two groups. Group 1, the control group, received the vehicle. Group 2, the TAA group, received TAA (300 mg/kg) for 3 days. Serum AST, ALT, and ammonia were determined. Liver and cerebral cortical sections were processed for hematoxylin and eosin staining. Additionally, mRNA expression and immunohistochemical staining of cortical GFAP, TNFα, Kir4.1, and AQP4 were performed. Cortical sections from the TAA group demonstrated neuropil vacuolation and astrocytes enlargement with focal gliosis. GFAP, TNFα, and AQP4 revealed increased mRNA expression, positive immunoreactivity, and a positive correlation to brain water content. In contrast, Kir 4.1 showed decreased mRNA expression and immunoreactivity and a negative correlation to brain water content. In conclusion, our findings revealed altered levels of TNFα, Kir 4.1, GFAP, and AQP4 in HE-associated brain edema. A more significant dysregulation of Kir 4.1 and TNFα was observed compared to AQP4 and GFAP.
Collapse
Affiliation(s)
- Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- *Correspondence: Dalia Mahmoud Abdelmonem Elsherbini,
| | - Fatma M. Ghoneim
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Mohammed El-Mancy
- Deanship of Common First Year, Jouf University, Sakaka, Saudi Arabia
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Hasnaa Ali Ebrahim
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Mohamed El-Sherbiny,
| | - Mohamed El-Shafey
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Physiological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nehal M. Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
20
|
Szu JI, Binder DK. Mechanisms Underlying Aquaporin-4 Subcellular Mislocalization in Epilepsy. Front Cell Neurosci 2022; 16:900588. [PMID: 35734218 PMCID: PMC9207308 DOI: 10.3389/fncel.2022.900588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a chronic brain disorder characterized by unprovoked seizures. Mechanisms underlying seizure activity have been intensely investigated. Alterations in astrocytic channels and transporters have shown to be a critical player in seizure generation and epileptogenesis. One key protein involved in such processes is the astrocyte water channel aquaporin-4 (AQP4). Studies have revealed that perivascular AQP4 redistributes away from astrocyte endfeet and toward the neuropil in both clinical and preclinical studies. This subcellular mislocalization significantly impacts neuronal hyperexcitability and understanding how AQP4 becomes dysregulated in epilepsy is beginning to emerge. In this review, we evaluate the role of AQP4 dysregulation and mislocalization in epilepsy.
Collapse
|
21
|
Hayatdavoudi P, Hosseini M, Hajali V, Hosseini A, Rajabian A. The role of astrocytes in epileptic disorders. Physiol Rep 2022; 10:e15239. [PMID: 35343625 PMCID: PMC8958496 DOI: 10.14814/phy2.15239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 04/17/2023] Open
Abstract
Epilepsy affects about 1% of the population and approximately 30% of epileptic patients are resistant to current antiepileptic drugs. As a hallmark in epileptic tissue, many of the epileptic patients show changes in glia morphology and function. There are characteristic changes in different types of glia in different epilepsy models. Some of these changes such as astrogliosis are enough to provoke epileptic seizures. Astrogliosis is well known in mesial temporal lobe epilepsy (MTLE), the most common form of refractory epilepsy. A better understanding of astrocytes alterations could lead to novel and efficient pharmacological approaches for epilepsy. In this review, we present the alterations of astrocyte morphology and function and present some instances of targeting astrocytes in seizure and epilepsy.
Collapse
Affiliation(s)
- Parichehr Hayatdavoudi
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of PhysiologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Vahid Hajali
- Department of NeuroscienceFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
- Department of PharmacologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Arezoo Rajabian
- Department of Internal MedicineFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
22
|
Siqueira M, Stipursky J. BLOOD BRAIN BARRIER AS AN INTERFACE FOR ALCOHOL INDUCED NEUROTOXICITY DURING DEVELOPMENT. Neurotoxicology 2022; 90:145-157. [DOI: 10.1016/j.neuro.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
23
|
Soubannier V, Chaineau M, Gursu L, Haghi G, Franco Flores AK, Rouleau G, Durcan TM, Stifani S. Rapid Generation of Ventral Spinal Cord-like Astrocytes from Human iPSCs for Modeling Non-Cell Autonomous Mechanisms of Lower Motor Neuron Disease. Cells 2022; 11:cells11030399. [PMID: 35159209 PMCID: PMC8834281 DOI: 10.3390/cells11030399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 12/26/2022] Open
Abstract
Astrocytes play important roles in the function and survival of neuronal cells. Dysfunctions of astrocytes are associated with numerous disorders and diseases of the nervous system, including motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Human-induced pluripotent stem cell (iPSC)-based approaches are becoming increasingly important for the study of the mechanisms underlying the involvement of astrocytes in non-cell autonomous processes of motor neuron degeneration in ALS. These studies must account for the molecular and functional diversity among astrocytes in different regions of the brain and spinal cord. It is essential that the most pathologically relevant astrocyte preparations are used when investigating non-cell autonomous mechanisms of either upper or lower motor neuron degeneration in ALS. Here, we describe the efficient and streamlined generation of human iPSC-derived astrocytes with molecular and biological properties similar to physiological astrocytes in the ventral spinal cord. These induced astrocytes exhibit spontaneous and ATP-induced calcium transients, and lack signs of overt activation. Human iPSC-derived astrocytes with ventral spinal cord features offer advantages over more generic astrocyte preparations for the study of both ventral spinal cord astrocyte biology and the involvement of astrocytes in mechanisms of lower motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (V.S.); (G.R.); (T.M.D.)
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (M.C.); (L.G.); (G.H.); (A.K.F.F.)
| | - Mathilde Chaineau
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (M.C.); (L.G.); (G.H.); (A.K.F.F.)
| | - Lale Gursu
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (M.C.); (L.G.); (G.H.); (A.K.F.F.)
| | - Ghazal Haghi
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (M.C.); (L.G.); (G.H.); (A.K.F.F.)
| | - Anna Kristyna Franco Flores
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (M.C.); (L.G.); (G.H.); (A.K.F.F.)
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (V.S.); (G.R.); (T.M.D.)
| | - Thomas M. Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (V.S.); (G.R.); (T.M.D.)
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (M.C.); (L.G.); (G.H.); (A.K.F.F.)
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (V.S.); (G.R.); (T.M.D.)
- Correspondence:
| |
Collapse
|
24
|
Cibelli A, Stout R, Timmermann A, de Menezes L, Guo P, Maass K, Seifert G, Steinhäuser C, Spray DC, Scemes E. Cx43 carboxyl terminal domain determines AQP4 and Cx30 endfoot organization and blood brain barrier permeability. Sci Rep 2021; 11:24334. [PMID: 34934080 PMCID: PMC8692511 DOI: 10.1038/s41598-021-03694-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022] Open
Abstract
The neurovascular unit (NVU) consists of cells intrinsic to the vessel wall, the endothelial cells and pericytes, and astrocyte endfeet that surround the vessel but are separated from it by basement membrane. Endothelial cells are primarily responsible for creating and maintaining blood-brain-barrier (BBB) tightness, but astrocytes contribute to the barrier through paracrine signaling to the endothelial cells and by forming the glia limitans. Gap junctions (GJs) between astrocyte endfeet are composed of connexin 43 (Cx43) and Cx30, which form plaques between cells. GJ plaques formed of Cx43 do not diffuse laterally in the plasma membrane and thus potentially provide stable organizational features to the endfoot domain, whereas GJ plaques formed of other connexins and of Cx43 lacking a large portion of its cytoplasmic carboxyl terminus are quite mobile. In order to examine the organizational features that immobile GJs impose on the endfoot, we have used super-resolution confocal microscopy to map number and sizes of GJ plaques and aquaporin (AQP)-4 channel clusters in the perivascular endfeet of mice in which astrocyte GJs (Cx30, Cx43) were deleted or the carboxyl terminus of Cx43 was truncated. To determine if BBB integrity was compromised in these transgenic mice, we conducted perfusion studies under elevated hydrostatic pressure using horseradish peroxide as a molecular probe enabling detection of micro-hemorrhages in brain sections. These studies revealed that microhemorrhages were more numerous in mice lacking Cx43 or its carboxyl terminus. In perivascular domains of cerebral vessels, we found that density of Cx43 GJs was higher in the truncation mutant, while GJ size was smaller. Density of perivascular particles formed by AQP4 and its extended isoform AQP4ex was inversely related to the presence of full length Cx43, whereas the ratio of sizes of the particles of the AQP4ex isoform to total AQP4 was directly related to the presence of full length Cx43. Confocal analysis showed that Cx43 and Cx30 were substantially colocalized in astrocyte domains near vasculature of truncation mutant mice. These results showing altered distribution of some astrocyte nexus components (AQP4 and Cx30) in Cx43 null mice and in a truncation mutant, together with leakier cerebral vasculature, support the hypothesis that localization and mobility of gap junction proteins and their binding partners influences organization of astrocyte endfeet which in turn impacts BBB integrity of the NVU.
Collapse
Affiliation(s)
- Antonio Cibelli
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Randy Stout
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Aline Timmermann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Laura de Menezes
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Insitute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Peng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cellular Imaging Core Facility, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Karen Maass
- Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Eliana Scemes
- Department of Anatomy and Cell Biology, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
25
|
Binder DK, Steinhäuser C. Astrocytes and Epilepsy. Neurochem Res 2021; 46:2687-2695. [PMID: 33661442 DOI: 10.1007/s11064-021-03236-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Changes in astrocyte channels, transporters, and metabolism play a critical role in seizure generation and epilepsy. In particular, alterations in astrocyte potassium, glutamate, water and adenosine homeostasis and gap junctional coupling have all been associated with hyperexcitability and epileptogenesis (largely in temporal lobe epilepsy). Distinct astrocytic changes have also been identified in other types of epilepsy, such as tuberous sclerosis, tumor-associated epilepsy and post-traumatic epilepsy. Together, the emerging literature on astrocytes and epilepsy provides powerful rationale for distinct new therapeutic targets that are astrocyte-specific.
Collapse
Affiliation(s)
- Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Della Vecchia S, Marchese M, Santorelli FM, Sicca F. Kir4.1 Dysfunction in the Pathophysiology of Depression: A Systematic Review. Cells 2021; 10:2628. [PMID: 34685608 PMCID: PMC8534194 DOI: 10.3390/cells10102628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
A serotonergic dysfunction has been largely postulated as the main cause of depression, mainly due to its effective response to drugs that increase the serotonergic tone, still currently the first therapeutic line in this mood disorder. However, other dysfunctional pathomechanisms are likely involved in the disorder, and this may in part explain why some individuals with depression are resistant to serotonergic therapies. Among these, emerging evidence suggests a role for the astrocytic inward rectifier potassium channel 4.1 (Kir4.1) as an important modulator of neuronal excitability and glutamate metabolism. To discuss the relationship between Kir4.1 dysfunction and depression, a systematic review was performed according to the PRISMA statement. Searches were conducted across PubMed, Scopus, and Web of Science by two independent reviewers. Twelve studies met the inclusion criteria, analyzing Kir4.1 relationships with depression, through in vitro, in vivo, and post-mortem investigations. Increasing, yet not conclusive, evidence suggests a potential pathogenic role for Kir4.1 upregulation in depression. However, the actual contribution in the diverse subtypes of the disorder and in the comorbid conditions, for example, the epilepsy-depression comorbidity, remain elusive. Further studies are needed to better define the clinical phenotype associated with Kir4.1 dysfunction in humans and the molecular mechanisms by which it contributes to depression and implications for future treatments.
Collapse
Affiliation(s)
- Stefania Della Vecchia
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy;
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Maria Marchese
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Via dei Giacinti 2, 56128 Pisa, Italy;
| | - Filippo Maria Santorelli
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Via dei Giacinti 2, 56128 Pisa, Italy;
| | - Federico Sicca
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy;
- Child Neuropsychiatric Unit, USL Centro Toscana, 59100 Prato, Italy
| |
Collapse
|
27
|
Hart CG, Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021; 99:2427-2462. [PMID: 34259342 DOI: 10.1002/jnr.24922] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Astrocytes play essential roles in development, homeostasis, injury, and repair of the central nervous system (CNS). Their development is tightly regulated by distinct spatial and temporal cues during embryogenesis and into adulthood throughout the CNS. Astrocytes have several important responsibilities such as regulating blood flow and permeability of the blood-CNS barrier, glucose metabolism and storage, synapse formation and function, and axon myelination. In CNS pathologies, astrocytes also play critical parts in both injury and repair mechanisms. Upon injury, they undergo a robust phenotypic shift known as "reactive astrogliosis," which results in both constructive and deleterious outcomes. Astrocyte activation and migration at the site of injury provides an early defense mechanism to minimize the extent of injury by enveloping the lesion area. However, astrogliosis also contributes to the inhibitory microenvironment of CNS injury and potentiate secondary injury mechanisms, such as inflammation, oxidative stress, and glutamate excitotoxicity, which facilitate neurodegeneration in CNS pathologies. Intriguingly, reactive astrocytes are increasingly a focus in current therapeutic strategies as their activation can be modulated toward a neuroprotective and reparative phenotype. This review will discuss recent advancements in knowledge regarding the development and role of astrocytes in the healthy and pathological CNS. We will also review how astrocytes have been genetically modified to optimize their reparative potential after injury, and how they may be transdifferentiated into neurons and oligodendrocytes to promote repair after CNS injury and neurodegeneration.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
28
|
Price BR, Johnson LA, Norris CM. Reactive astrocytes: The nexus of pathological and clinical hallmarks of Alzheimer's disease. Ageing Res Rev 2021; 68:101335. [PMID: 33812051 PMCID: PMC8168445 DOI: 10.1016/j.arr.2021.101335] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
Astrocyte reactivity is a hallmark of neuroinflammation that arises with Alzheimer’s disease (AD) and nearly every other neurodegenerative condition. While astrocytes certainly contribute to classic inflammatory processes (e.g. cytokine release, waste clearance, and tissue repair), newly emerging technologies for measuring and targeting cell specific activities in the brain have uncovered essential roles for astrocytes in synapse function, brain metabolism, neurovascular coupling, and sleep/wake patterns. In this review, we use a holistic approach to incorporate, and expand upon, classic neuroinflammatory concepts to consider how astrocyte dysfunction/reactivity modulates multiple pathological and clinical hallmarks of AD. Our ever-evolving understanding of astrocyte signaling in neurodegeneration is not only revealing new drug targets and treatments for dementia but is suggesting we reimagine AD pathophysiological mechanisms.
Collapse
Affiliation(s)
- Brittani R Price
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA, 02111, USA
| | - Lance A Johnson
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Physiology, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA.
| |
Collapse
|
29
|
Deckmann I, Santos-Terra J, Fontes-Dutra M, Körbes-Rockenbach M, Bauer-Negrini G, Schwingel GB, Riesgo R, Bambini-Junior V, Gottfried C. Resveratrol prevents brain edema, blood-brain barrier permeability, and altered aquaporin profile in autism animal model. Int J Dev Neurosci 2021; 81:579-604. [PMID: 34196408 DOI: 10.1002/jdn.10137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder can present a plethora of clinical conditions associated with the disorder, such as greater brain volume in the first years of life in a significant percentage of patients. We aimed to evaluate the brain water content, the blood-brain barrier permeability, and the expression of aquaporin 1 and 4, and GFAP in a valproic acid-animal model, assessing the effect of resveratrol. On postnatal day 30, Wistar rats of the valproic acid group showed greater permeability of the blood-brain barrier to the Evans blue dye and a higher proportion of brain water volume, prevented both by resveratrol. Prenatal exposition to valproic acid diminished aquaporin 1 in the choroid plexus, in the primary somatosensory area, in the amygdala region, and in the medial prefrontal cortex, reduced aquaporin 4 in medial prefrontal cortex and increased aquaporin 4 levels in primary somatosensory area (with resveratrol prevention). Valproic acid exposition also increased the number of astrocytes and GFAP fluorescence in both primary somatosensory area and medial prefrontal cortex. In medial prefrontal cortex, resveratrol prevented the increased fluorescence. Finally, there was an effect of resveratrol per se on the number of astrocytes and GFAP fluorescence in the amygdala region and in the hippocampus. Thus, this work demonstrates significant changes in blood-brain barrier permeability, edema formation, distribution of aquaporin 1 and 4, in addition to astrocytes profile in the animal model of autism, as well as the use of resveratrol as a tool to investigate the mechanisms involved in the pathophysiology of autism spectrum disorder.
Collapse
Affiliation(s)
- Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Marília Körbes-Rockenbach
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil
| | - Guilherme Bauer-Negrini
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK.,Department of Pediatrics, Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| |
Collapse
|
30
|
Gobbo D, Scheller A, Kirchhoff F. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Front Neurol 2021; 12:661408. [PMID: 34177766 PMCID: PMC8219957 DOI: 10.3389/fneur.2021.661408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic forms of epilepsy are 2.5-4 Hz spike and wave discharges (SWDs) originating from abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are generally associated with sudden and brief non-convulsive epileptic events mostly generating impairment of consciousness and correlating with attention and learning as well as cognitive deficits. To date, SWDs are known to arise from locally restricted imbalances of excitation and inhibition in the deep layers of the primary somatosensory cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT) and the somatosensory thalamic nuclei that project back to the cortex, leading to the typical generalized spike and wave oscillations. Given their shared anatomical basis, SWDs have been originally considered the pathological transition of 11-16 Hz bursts of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid Eye Movement (NREM) sleep, but more recent research revealed fundamental functional differences between sleep spindles and SWDs, suggesting the latter could be more closely related to the slow (<1 Hz) oscillations alternating active (Up) and silent (Down) cortical activity and concomitantly occurring during NREM. Indeed, several lines of evidence support the fact that SWDs impair sleep architecture as well as sleep/wake cycles and sleep pressure, which, in turn, affect seizure circadian frequency and distribution. Given the accumulating evidence on the role of astroglia in the field of epilepsy in the modulation of excitation and inhibition in the brain as well as on the development of aberrant synchronous network activity, we aim at pointing at putative contributions of astrocytes to the physiology of slow-wave sleep and to the pathology of SWDs. Particularly, we will address the astroglial functions known to be involved in the control of network excitability and synchronicity and so far mainly addressed in the context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii) gap junction mechanical and functional coupling as well as hemichannel function, (iv) gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive astrogliosis and cytokine release.
Collapse
Affiliation(s)
- Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
31
|
Abstract
Our brains consist of 80% water, which is continuously shifted between different compartments and cell types during physiological and pathophysiological processes. Disturbances in brain water homeostasis occur with pathologies such as brain oedema and hydrocephalus, in which fluid accumulation leads to elevated intracranial pressure. Targeted pharmacological treatments do not exist for these conditions owing to our incomplete understanding of the molecular mechanisms governing brain water transport. Historically, the transmembrane movement of brain water was assumed to occur as passive movement of water along the osmotic gradient, greatly accelerated by water channels termed aquaporins. Although aquaporins govern the majority of fluid handling in the kidney, they do not suffice to explain the overall brain water movement: either they are not present in the membranes across which water flows or they appear not to be required for the observed flow of water. Notably, brain fluid can be secreted against an osmotic gradient, suggesting that conventional osmotic water flow may not describe all transmembrane fluid transport in the brain. The cotransport of water is an unconventional molecular mechanism that is introduced in this Review as a missing link to bridge the gap in our understanding of cellular and barrier brain water transport.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Dadgostar E, Tajiknia V, Shamsaki N, Naderi-Taheri M, Aschner M, Mirzaei H, Tamtaji OR. Aquaporin 4 and brain-related disorders: Insights into its apoptosis roles. EXCLI JOURNAL 2021; 20:983-994. [PMID: 34267610 PMCID: PMC8278210 DOI: 10.17179/excli2021-3735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
Brain-related disorders are leading global health problems. Various internal and external factors are involved in the progression of brain-related disorders. Inflammatory pathways, oxidative stresses, apoptosis, and deregulations of various channels are critical players in brain-related disorder pathogenesis. Among these players, aquaporins (AQP) have critical roles in various physiological and pathological conditions. AQPs are water channel molecules that permit water to cross the hydrophobic lipid bilayers of cellular membranes. AQP4 is one of the important members of AQP family. AQPs are involved in controlling apoptosis pathways in brain-related disorders. In this regard, several reports have evaluated the pathological effects of AQP4 by targeting the apoptosis-related processes in brain-related disorders. Here, for the first time, we highlight the impact of AQP4 on apoptosis-related processes in brain-related disorders.
Collapse
Affiliation(s)
- Ehsan Dadgostar
- Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Shamsaki
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Naderi-Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Reza Tamtaji
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
33
|
Ishido M, Yoshikado T. Decrease in AQP4 expression level in atrophied skeletal muscles with innervation. Physiol Rep 2021; 9:e14856. [PMID: 33991463 PMCID: PMC8123556 DOI: 10.14814/phy2.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/23/2021] [Indexed: 12/05/2022] Open
Abstract
Functional interaction between the selective water channel AQP4 and several ion channels, such as TRPV4, NKCC1, and Na+/K+‐ATPase, closely participate to regulate osmotic homeostasis. In the skeletal muscles, the decrease in APQ4 expression due to denervation was followed by the restoration of AQP4 expression during reinnervation. These findings raised the possibility that innervation status is an essential factor to regulate AQP4 expression in the skeletal muscles. This study investigated this hypothesis using disuse muscle atrophy model with innervation. Adult female Fischer 344 rats (8 weeks of age) were randomly assigned to either control (C) or cast immobilization (IM) groups (n = 6 per group). Two weeks after cast immobilization, the tibialis anterior muscles of each group were removed and the expression levels of some target proteins were quantified by western blot analysis. The expression level of AQP4 significantly decreased at 2 weeks post‐immobilization (p < 0.05). Moreover, the expression levels of TRPV4, NKCC1, and Na+/K+‐ATPase significantly decreased at 2 weeks post‐immobilization (p < 0.05). This study suggested that innervation status is not always a key regulatory factor to maintain the expression of AQP4 in the skeletal muscles. Moreover, the transport of water and ions by AQP4 may be changed during immobilization‐induced muscle atrophy.
Collapse
Affiliation(s)
- Minenori Ishido
- Division of Human Sciences, Faculty of Engineering, Section for Health-Related Physical Education, Osaka Institute of Technology, Osaka, Japan
| | - Tomoya Yoshikado
- Graduate Course in Applied Chemistry, Environmental and Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| |
Collapse
|
34
|
Rao SB, Skauli N, Jovanovic N, Katoozi S, Frigeri A, Froehner SC, Adams ME, Ottersen OP, Amiry-Moghaddam M. Orchestrating aquaporin-4 and connexin-43 expression in brain: Differential roles of α1- and β1-syntrophin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183616. [PMID: 33872576 DOI: 10.1016/j.bbamem.2021.183616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 01/09/2023]
Abstract
Aquaporin-4 (AQP4) water channels and gap junction proteins (connexins) are two classes of astrocytic membrane proteins critically involved in brain water and ion homeostasis. AQP4 channels are anchored by α1-syntrophin to the perivascular astrocytic endfoot membrane domains where they control water flux at the blood-brain interface while connexins cluster at the lateral aspects of the astrocytic endfeet forming gap junctions that allow water and ions to dissipate through the astrocyte syncytium. Recent studies have pointed to an interdependence between astrocytic AQP4 and astrocytic gap junctions but the underlying mechanism remains to be explored. Here we use a novel transgenic mouse line to unravel whether β1-syntrophin (coexpressed with α1-syntrophin in astrocytic plasma membranes) is implicated in the expression of AQP4 isoforms and formation of gap junctions in brain. Our results show that while the effect of β1-syntrophin deletion is rather limited, double knockout of α1- and β1-syntrophin causes a downregulation of the novel AQP4 isoform AQP4ex and an increase in the number of astrocytic gap junctions. The present study highlight the importance of syntrophins in orchestrating specialized functional domains of brain astrocytes.
Collapse
Affiliation(s)
- Shreyas B Rao
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317 Oslo, Norway.
| | - Nadia Skauli
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317 Oslo, Norway.
| | - Nenad Jovanovic
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317 Oslo, Norway
| | - Shirin Katoozi
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317 Oslo, Norway
| | - Antonio Frigeri
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.
| | - Stanley C Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA.
| | - Marvin E Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA.
| | - Ole Petter Ottersen
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317 Oslo, Norway.
| | - Mahmood Amiry-Moghaddam
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317 Oslo, Norway.
| |
Collapse
|
35
|
Madadi A, Wolfart J, Lange F, Brehme H, Linnebacher M, Bräuer AU, Büttner A, Freiman T, Henker C, Einsle A, Rackow S, Köhling R, Kirschstein T, Müller S. Correlation between Kir4.1 expression and barium-sensitive currents in rat and human glioma cell lines. Neurosci Lett 2021; 741:135481. [PMID: 33161102 DOI: 10.1016/j.neulet.2020.135481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/29/2023]
Abstract
Gliomas are the most common primary brain tumors and often become apparent through symptomatic epileptic seizures. Glial cells express the inwardly rectifying K+ channel Kir4.1 playing a major role in K+ buffering, and are presumably involved in facilitating epileptic hyperexcitability. We therefore aimed to investigate the molecular and functional expression of Kir4.1 channels in cultured rat and human glioma cells. Quantitative PCR showed reduced expression of Kir4.1 in rat C6 and F98 cells as compared to control. In human U-87MG cells and in patient-derived low-passage glioblastoma cultures, Kir4.1 expression was also reduced as compared to autopsy controls. Testing Kir4.1 function using whole-cell patch-clamp experiments on rat C6 and two human low-passage glioblastoma cell lines (HROG38 and HROG05), we found a significantly depolarized resting membrane potential (RMP) in HROG05 (-29 ± 2 mV, n = 11) compared to C6 (-71 ± 1 mV, n = 12, P < 0.05) and HROG38 (-60 ± 2 mV, n = 12, P < 0.05). Sustained K+ inward or outward currents were sensitive to Ba2+ added to the bath solution in HROG38 and C6 cells, but not in HROG05 cells, consistent with RMP depolarization. While immunocytochemistry confirmed Kir4.1 in all three cell lines including HROG05, we found that aquaporin-4 and Kir5.1 were also significantly reduced suggesting that the Ba2+-sensitive K+ current is generally impaired in glioma tissue. In summary, we demonstrated that glioma cells differentially express functional inwardly rectifying K+ channels suggesting that impaired K+ buffering in cells lacking functional Ba2+-sensitive K+ currents may be a risk factor for increased excitability and thereby contribute to the differential epileptogenicity of gliomas.
Collapse
Affiliation(s)
- Annett Madadi
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Jakob Wolfart
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Falko Lange
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany; Center of Transdisciplinary Neurosciences Rostock, (CTNR), Rostock University Medical Center, Germany
| | - Hannes Brehme
- Department of Neurology, Rostock University Medical Center, Germany
| | | | - Anja U Bräuer
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Andreas Büttner
- Institute of Forensic Medicine, Rostock University Medical Center, Germany
| | - Thomas Freiman
- Department of Neurosurgery, Rostock University Medical Center, Germany
| | - Christian Henker
- Department of Neurosurgery, Rostock University Medical Center, Germany
| | - Anne Einsle
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Simone Rackow
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany; Center of Transdisciplinary Neurosciences Rostock, (CTNR), Rostock University Medical Center, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany; Center of Transdisciplinary Neurosciences Rostock, (CTNR), Rostock University Medical Center, Germany
| | - Steffen Müller
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
36
|
Lapato AS, Thompson SM, Parra K, Tiwari-Woodruff SK. Astrocyte Glutamate Uptake and Water Homeostasis Are Dysregulated in the Hippocampus of Multiple Sclerosis Patients With Seizures. ASN Neuro 2020; 12:1759091420979604. [PMID: 33297722 PMCID: PMC7734542 DOI: 10.1177/1759091420979604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
While seizure disorders are more prevalent among multiple sclerosis (MS) patients than the population overall and prognosticate earlier death & disability, their etiology remains unclear. Translational data indicate perturbed expression of astrocytic molecules contributing to homeostatic neuronal excitability, including water channels (AQP4) and synaptic glutamate transporters (EAAT2), in a mouse model of MS with seizures (MS+S). However, astrocytes in MS+S have not been examined. To assess the translational relevance of astrocyte dysfunction observed in a mouse model of MS+S, demyelinated lesion burden, astrogliosis, and astrocytic biomarkers (AQP4/EAAT2/ connexin-CX43) were evaluated by immunohistochemistry in postmortem hippocampi from MS & MS+S donors. Lesion burden was comparable in MS & MS+S cohorts, but astrogliosis was elevated in MS+S CA1 with a concomitant decrease in EAAT2 signal intensity. AQP4 signal declined in MS+S CA1 & CA3 with a loss of perivascular AQP4 in CA1. CX43 expression was increased in CA3. Together, these data suggest that hippocampal astrocytes from MS+S patients display regional differences in expression of molecules associated with glutamate buffering and water homeostasis that could exacerbate neuronal hyperexcitability. Importantly, mislocalization of CA1 perivascular AQP4 seen in MS+S is analogous to epileptic hippocampi without a history of MS, suggesting convergent pathophysiology. Furthermore, as neuropathology was concentrated in MS+S CA1, future study is warranted to determine the pathophysiology driving regional differences in glial function in the context of seizures during demyelinating disease.
Collapse
Affiliation(s)
- Andrew S Lapato
- Division of Biomedical Sciences, UCR School of Medicine, Riverside, California, United States.,Center for Glial-Neuronal Interaction, UCR School of Medicine, Riverside, California, United States
| | - Sarah M Thompson
- Division of Biomedical Sciences, UCR School of Medicine, Riverside, California, United States
| | - Karen Parra
- Division of Biomedical Sciences, UCR School of Medicine, Riverside, California, United States
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, UCR School of Medicine, Riverside, California, United States.,Center for Glial-Neuronal Interaction, UCR School of Medicine, Riverside, California, United States.,Department of Neuroscience, UCR School of Medicine, Riverside, California, United States
| |
Collapse
|
37
|
Verhoog QP, Holtman L, Aronica E, van Vliet EA. Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Front Neurol 2020; 11:591690. [PMID: 33324329 PMCID: PMC7726323 DOI: 10.3389/fneur.2020.591690] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are key homeostatic regulators in the central nervous system and play important roles in physiology. After brain damage caused by e.g., status epilepticus, traumatic brain injury, or stroke, astrocytes may adopt a reactive phenotype. This process of reactive astrogliosis is important to restore brain homeostasis. However, persistent reactive astrogliosis can be detrimental for the brain and contributes to the development of epilepsy. In this review, we will focus on physiological functions of astrocytes in the normal brain as well as pathophysiological functions in the epileptogenic brain, with a focus on acquired epilepsy. We will discuss the role of astrocyte-related processes in epileptogenesis, including reactive astrogliosis, disturbances in energy supply and metabolism, gliotransmission, and extracellular ion concentrations, as well as blood-brain barrier dysfunction and dysregulation of blood flow. Since dysfunction of astrocytes can contribute to epilepsy, we will also discuss their role as potential targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Quirijn P. Verhoog
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Linda Holtman
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Erwin A. van Vliet
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
38
|
Wang N, Zhang SN, Xing RJ, Liu MQ, Huang CN, Jiang SM, Li T, Yang CS, Yang L, Zhang LJ. Cerebrospinal fluid lactate level in aquaporin-4 antibody positive neuromyelitis optica spectrum disorders: a hint on differential diagnosis and possible immunopathogenesis. Mult Scler Relat Disord 2020; 47:102629. [PMID: 33232908 DOI: 10.1016/j.msard.2020.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorders (NMOSD) and multiple sclerosis (MS) may be similar to each other in clinical features. The differential diagnosis between them remains challenging in clinical practice. This retrospective study is aimed to describe the difference of cerebrospinal fluid (CSF) lactate level between aquaporin-4 antibody (AQP4-Ab) positive NMOSD and MS, to discuss the possible explanation upon immunopathogenesis and the significance in differential diagnosis. METHOD We retrospectively analysed cerebral biochemical results from 60 AQP4-Ab positive NMOSD and 55 MS Asian patients. To assess the diagnostic ability of cerebrospinal fluid lactate for distinguishing AQP4-Ab positive NMOSD from MS using receiver operating characteristic (ROC) curve analysis. RESULTS The cerebrospinal fluid lactate level is significantly higher in AQP4-Ab positive NMOSD than in MS based on multiple linear regression (P<0.0001). The differential diagnostic efficacy of cerebrospinal fluid lactate distinguishing AQP4-Ab positive NMOSD from MS reached an area under ROC curve (AUC) of 0.8842 (95% CI 0.82-0.95, P<0.0001), using 1.50 as the diagnostic critical point of the cerebrospinal fluid lactate level, the sensitivity was 88.3%, the specificity was 78.2%. CONCLUSION The cerebrospinal fluid lactate level differs between AQP4-Ab positive NMOSD and MS, which also contributes in differential diagnosis. The distinct patterns of cerebral biochemical results may cast a light on the immunopathogenesis of AQP4-Ab positive NMOSD.
Collapse
Affiliation(s)
- Nan Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin 300052, China
| | - Sheng-Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin 300052, China
| | - Rong-Jun Xing
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin 300052, China
| | - Ming-Qi Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin 300052, China
| | - Chen-Na Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin 300052, China
| | - Shu-Min Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin 300052, China
| | - Ting Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin 300052, China
| | - Chun-Sheng Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin 300052, China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin 300052, China
| | - Lin-Jie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|
39
|
Lu H, Zhan Y, Ai L, Chen H, Chen J. AQP4-siRNA alleviates traumatic brain edema by altering post-traumatic AQP4 polarity reversal in TBI rats. J Clin Neurosci 2020; 81:113-119. [PMID: 33222898 DOI: 10.1016/j.jocn.2020.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/13/2020] [Accepted: 09/06/2020] [Indexed: 11/18/2022]
Abstract
The spatial and temporal distribution of aquaporin-4 (AQP4) expression in rat brain following brain trauma and AQP4-siRNA treatment, as well as corresponding pathological changes, were studied to explore the mechanism underlying the effect of AQP4-siRNA treatment on traumatic brain injury (TBI). The rats in the sham operation group had normal structure, with AQP4 located in the perivascular end-foot membranes and astrocytic membranes in a polarized pattern. The accelerated polarity reversal was observed in the TBI group in 1-12 h after TBI. During this period, AQP4 abundance on the astrocytic membrane is gradually increased, while AQP4 abundance on the perivascular end-foot membrane declined rapidly. Twelve hours after TBI, AQP4 expression was depolarized, showing a shift from the perivascular end-foot membrane to the astrocytic membrane. Pathological observation showed that vasogenic edema occurred immediately after TBI, at which time the extracellular space was expanded, leading to severe intracellular edema. AQP4-siRNA reduced the polarity reversal index at the early stage of TBI recovery and reduced edema, demonstrating the potential benefit of reduced AQP4 expression during recovery from TBI.
Collapse
Affiliation(s)
- Hong Lu
- Department of Radiology, Chongqing The Seventh Peoplés Hospital, Chongqing, China
| | - Yuefu Zhan
- Department of Radiology, Hainan Women and Children's Medical Center, No. 15, Long Kun Nan road, Haikou, Hainan 572500, China.
| | - Li Ai
- Department of Radiology, Chongqing The Seventh Peoplés Hospital, Chongqing, China
| | - Haixia Chen
- Department of Radiology, Chongqing The Seventh Peoplés Hospital, Chongqing, China
| | - Jianqiang Chen
- Department of Radiology, Xiangya School of Medicine Affiliated Haikou Hospital, Central South University, Haikou, Hainan 570208, China.
| |
Collapse
|
40
|
Roman C, Egert L, Di Benedetto B. Astrocytic-neuronal crosstalk gets jammed: Alternative perspectives on the onset of neuropsychiatric disorders. Eur J Neurosci 2020; 54:5717-5729. [PMID: 32644273 DOI: 10.1111/ejn.14900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/09/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
Investigating interactions of glia cells and synapses during development and in adulthood is the focus of several research programmes which aim at understanding the neurobiology of brain physiological and pathological processes. Both glia-specific released and membrane-bound proteins play essential roles in the development, maintenance and functionality of synaptic connections. Alterations in synaptic contacts in specific brain areas are hallmarks of several brain diseases, such as major depressive disorder, autism spectrum disorder and schizophrenia. Thus, a deeper knowledge about putative astrocyte dysfunctions which might affect the synaptic compartment is warranted to improve treatment options. Here, we present the latest advances about the role of glia cells in orchestrating the arrangement of synapses and neuronal networks in physiological and pathological states. We specifically focus on the role of astrocytes in the phagocytosis of neuronal synapses as a novel mechanism which drives the refinement of neuronal circuits and might be affected in pathological conditions. Finally, we propose this astrocyte-dependent mechanism as a putative alternative target of pharmacological interventions for the treatment of brain disorders.
Collapse
Affiliation(s)
- Celia Roman
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Luisa Egert
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Barbara Di Benedetto
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
41
|
Toft-Bertelsen TL, Larsen BR, Christensen SK, Khandelia H, Waagepetersen HS, MacAulay N. Clearance of activity-evoked K + transients and associated glia cell swelling occur independently of AQP4: A study with an isoform-selective AQP4 inhibitor. Glia 2020; 69:28-41. [PMID: 32506554 DOI: 10.1002/glia.23851] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Abstract
The mammalian brain consists of 80% water, which is continuously shifted between different compartments and cellular structures by mechanisms that are, to a large extent, unresolved. Aquaporin 4 (AQP4) is abundantly expressed in glia and ependymal cells of the mammalian brain and has been proposed to act as a gatekeeper for brain water dynamics, predominantly based on studies utilizing AQP4-deficient mice. However, these mice have a range of secondary effects due to the gene deletion. An efficient and selective AQP4 inhibitor has thus been sorely needed to validate the results obtained in the AQP4-/- mice to quantify the contribution of AQP4 to brain fluid dynamics. In AQP4-expressing Xenopus laevis oocytes monitored by a high-resolution volume recording system, we here demonstrate that the compound TGN-020 is such a selective AQP4 inhibitor. TGN-020 targets the tested species of AQP4 with an IC50 of ~3.5 μM, but displays no inhibitory effect on the other AQPs (AQP1-AQP9). With this tool, we employed rat hippocampal slices and ion-sensitive microelectrodes to determine the role of AQP4 in glia cell swelling following neuronal activity. TGN-020-mediated inhibition of AQP4 did not prevent stimulus-induced extracellular space shrinkage, nor did it slow clearance of the activity-evoked K+ transient. These data, obtained with a verified isoform-selective AQP4 inhibitor, indicate that AQP4 is not required for the astrocytic contribution to the K+ clearance or the associated extracellular space shrinkage.
Collapse
Affiliation(s)
- Trine Lisberg Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian Roland Larsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Kjellerup Christensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Himanshu Khandelia
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
MacAulay N. Molecular mechanisms of K + clearance and extracellular space shrinkage-Glia cells as the stars. Glia 2020; 68:2192-2211. [PMID: 32181522 DOI: 10.1002/glia.23824] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Neuronal signaling in the central nervous system (CNS) associates with release of K+ into the extracellular space resulting in transient increases in [K+ ]o . This elevated K+ is swiftly removed, in part, via uptake by neighboring glia cells. This process occurs in parallel to the [K+ ]o elevation and glia cells thus act as K+ sinks during the neuronal activity, while releasing it at the termination of the pulse. The molecular transport mechanisms governing this glial K+ absorption remain a point of debate. Passive distribution of K+ via Kir4.1-mediated spatial buffering of K+ has become a favorite within the glial field, although evidence for a quantitatively significant contribution from this ion channel to K+ clearance from the extracellular space is sparse. The Na+ /K+ -ATPase, but not the Na+ /K+ /Cl- cotransporter, NKCC1, shapes the activity-evoked K+ transient. The different isoform combinations of the Na+ /K+ -ATPase expressed in glia cells and neurons display different kinetic characteristics and are thereby distinctly geared toward their temporal and quantitative contribution to K+ clearance. The glia cell swelling occurring with the K+ transient was long assumed to be directly associated with K+ uptake and/or AQP4, although accumulating evidence suggests that they are not. Rather, activation of bicarbonate- and lactate transporters appear to lead to glial cell swelling via the activity-evoked alkaline transient, K+ -mediated glial depolarization, and metabolic demand. This review covers evidence, or lack thereof, accumulated over the last half century on the molecular mechanisms supporting activity-evoked K+ and extracellular space dynamics.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Vandebroek A, Yasui M. Regulation of AQP4 in the Central Nervous System. Int J Mol Sci 2020; 21:E1603. [PMID: 32111087 PMCID: PMC7084855 DOI: 10.3390/ijms21051603] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/26/2022] Open
Abstract
Aquaporin-4 (AQP4) is the main water channel protein expressed in the central nervous system (CNS). AQP4 is densely expressed in astrocyte end-feet, and is an important factor in CNS water and potassium homeostasis. Changes in AQP4 activity and expression have been implicated in several CNS disorders, including (but not limited to) epilepsy, edema, stroke, and glioblastoma. For this reason, many studies have been done to understand the various ways in which AQP4 is regulated endogenously, and could be regulated pharmaceutically. In particular, four regulatory methods have been thoroughly studied; regulation of gene expression via microRNAs, regulation of AQP4 channel gating/trafficking via phosphorylation, regulation of water permeability using heavy metal ions, and regulation of water permeability using small molecule inhibitors. A major challenge when studying AQP4 regulation is inter-method variability. A compound or phosphorylation which shows an inhibitory effect in vitro may show no effect in a different in vitro method, or even show an increase in AQP4 expression in vivo. Although a large amount of variability exists between in vitro methods, some microRNAs, heavy metal ions, and two small molecule inhibitors, acetazolamide and TGN-020, have shown promise in the field of AQP4 regulation.
Collapse
Affiliation(s)
- Arno Vandebroek
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan;
| | | |
Collapse
|
44
|
Uncoupling of the Astrocyte Syncytium Differentially Affects AQP4 Isoforms. Cells 2020; 9:cells9020382. [PMID: 32046059 PMCID: PMC7072498 DOI: 10.3390/cells9020382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 11/25/2022] Open
Abstract
The water channel protein aquaporin-4 (AQP4) and the gap junction forming proteins connexin-43 (Cx43) and connexin-30 (Cx30) are astrocytic proteins critically involved in brain water and ion homeostasis. While AQP4 is mainly involved in water flux across the astrocytic endfeet membranes, astrocytic gap junctions provide syncytial coupling allowing intercellular exchange of water, ions, and other molecules. We have previously shown that mice with targeted deletion of Aqp4 display enhanced gap junctional coupling between astrocytes. Here, we investigate whether uncoupling of the astrocytic syncytium by deletion of the astrocytic connexins Cx43 and Cx30 affects AQP4 membrane localization and expression. By using quantitative immunogold cytochemistry, we show that deletion of astrocytic connexins leads to a substantial reduction of perivascular AQP4, concomitant with a down-regulation of total AQP4 protein and mRNA. Isoform expression analysis shows that while the level of the predominant AQP4 M23 isoform is reduced in Cx43/Cx30 double deficient hippocampal astrocytes, the levels of M1, and the alternative translation AQP4ex isoform protein levels are increased. These findings reveal a complex interdependence between AQP4 and connexins, which are both significantly involved in homeostatic functions and astrogliopathologies.
Collapse
|
45
|
Walch E, Murphy TR, Cuvelier N, Aldoghmi M, Morozova C, Donohue J, Young G, Samant A, Garcia S, Alvarez C, Bilas A, Davila D, Binder DK, Fiacco TA. Astrocyte-Selective Volume Increase in Elevated Extracellular Potassium Conditions Is Mediated by the Na +/K + ATPase and Occurs Independently of Aquaporin 4. ASN Neuro 2020; 12:1759091420967152. [PMID: 33092407 PMCID: PMC7586494 DOI: 10.1177/1759091420967152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022] Open
Abstract
Astrocytes and neurons have been shown to swell across a variety of different conditions, including increases in extracellular potassium concentration (^[K+]o). The mechanisms involved in the coupling of K+ influx to water movement into cells leading to cell swelling are not well understood and remain controversial. Here, we set out to determine the effects of ^[K+]o on rapid volume responses of hippocampal CA1 pyramidal neurons and stratum radiatum astrocytes using real-time confocal volume imaging. First, we found that elevating [K+]o within a physiological range (to 6.5 mM and 10.5 mM from a baseline of 2.5 mM), and even up to pathological levels (26 mM), produced dose-dependent increases in astrocyte volume, with absolutely no effect on neuronal volume. In the absence of compensating for addition of KCl by removal of an equal amount of NaCl, neurons actually shrank in ^[K+]o, while astrocytes continued to exhibit rapid volume increases. Astrocyte swelling in ^[K+]o was not dependent on neuronal firing, aquaporin 4, the inwardly rectifying potassium channel Kir 4.1, the sodium bicarbonate cotransporter NBCe1, , or the electroneutral cotransporter, sodium-potassium-chloride cotransporter type 1 (NKCC1), but was significantly attenuated in 1 mM barium chloride (BaCl2) and by the Na+/K+ ATPase inhibitor ouabain. Effects of 1 mM BaCl2 and ouabain applied together were not additive and, together with reports that BaCl2 can inhibit the NKA at high concentrations, suggests a prominent role for the astrocyte NKA in rapid astrocyte volume increases occurring in ^[K+]o. These findings carry important implications for understanding mechanisms of cellular edema, regulation of the brain extracellular space, and brain tissue excitability.
Collapse
Affiliation(s)
- Erin Walch
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, United States
- Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, United States
| | - Thomas R. Murphy
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
| | - Nicholas Cuvelier
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| | - Murad Aldoghmi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
| | - Cristine Morozova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Jordan Donohue
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| | - Gaby Young
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Anuja Samant
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Stacy Garcia
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Camila Alvarez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Alex Bilas
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| | - David Davila
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, United States
- Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| | - Todd A. Fiacco
- Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, United States
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| |
Collapse
|
46
|
Li H, Russo A, DiAntonio A. SIK3 suppresses neuronal hyperexcitability by regulating the glial capacity to buffer K + and water. J Cell Biol 2019; 218:4017-4029. [PMID: 31645458 PMCID: PMC6891094 DOI: 10.1083/jcb.201907138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/27/2019] [Accepted: 09/19/2019] [Indexed: 01/10/2023] Open
Abstract
Glial regulation of extracellular potassium (K+) helps to maintain appropriate levels of neuronal excitability. While channels and transporters mediating K+ and water transport are known, little is understood about upstream regulatory mechanisms controlling the glial capacity to buffer K+ and osmotically obliged water. Here we identify salt-inducible kinase 3 (SIK3) as the central node in a signal transduction pathway controlling glial K+ and water homeostasis in Drosophila Loss of SIK3 leads to dramatic extracellular fluid accumulation in nerves, neuronal hyperexcitability, and seizures. SIK3-dependent phenotypes are exacerbated by K+ stress. SIK3 promotes the cytosolic localization of HDAC4, thereby relieving inhibition of Mef2-dependent transcription of K+ and water transport molecules. This transcriptional program controls the glial capacity to regulate K+ and water homeostasis and modulate neuronal excitability. We identify HDAC4 as a candidate therapeutic target in this pathway, whose inhibition can enhance the K+ buffering capacity of glia, which may be useful in diseases of dysregulated K+ homeostasis and hyperexcitability.
Collapse
Affiliation(s)
- Hailun Li
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Alexandra Russo
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
47
|
Breithausen B, Kautzmann S, Boehlen A, Steinhäuser C, Henneberger C. Limited contribution of astroglial gap junction coupling to buffering of extracellular K + in CA1 stratum radiatum. Glia 2019; 68:918-931. [PMID: 31743499 DOI: 10.1002/glia.23751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022]
Abstract
Astrocytes form large networks, in which individual cells are connected via gap junctions. It is thought that this astroglial gap junction coupling contributes to the buffering of extracellular K+ increases. However, it is largely unknown how the control of extracellular K+ by astroglial gap junction coupling depends on the underlying activity patterns and on the magnitude of extracellular K+ increases. We explored this dependency in acute hippocampal slices (CA1, stratum radiatum) by direct K+ -sensitive microelectrode recordings and acute pharmacological inhibition of gap junctions. K+ transients evoked by synaptic and axonal activity were largely unaffected by acute astroglial uncoupling in slices obtained from young and adult rats. Iontophoretic K+ -application enabled us to generate K+ gradients with defined spatial properties and magnitude. By varying the K+ -iontophoresis position and protocol, we found that acute pharmacological uncoupling increases the amplitude of K+ transients once their initial amplitude exceeded ~10 mM. Our experiments demonstrate that the contribution of gap junction coupling to buffering of extracellular K+ gradients is limited to large and localized K+ increases.
Collapse
Affiliation(s)
- Björn Breithausen
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Steffen Kautzmann
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Anne Boehlen
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.,Institute of Neurology, University College London, London, UK.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
48
|
Nikolic L, Nobili P, Shen W, Audinat E. Role of astrocyte purinergic signaling in epilepsy. Glia 2019; 68:1677-1691. [DOI: 10.1002/glia.23747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ljiljana Nikolic
- Institute for Biological Research Siniša Stanković, University of Belgrade Serbia
| | | | - Weida Shen
- Zhejiang University City College Zhejiang Hangzhou China
| | - Etienne Audinat
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM Montpellier France
| |
Collapse
|
49
|
Abstract
Leukodystrophies are genetically determined disorders affecting the white matter of the central nervous system. The combination of MRI pattern recognition and next-generation sequencing for the definition of novel disease entities has recently demonstrated that many leukodystrophies are due to the primary involvement and/or mutations in genes selectively expressed by cell types other than the oligodendrocytes, the myelin-forming cells in the brain. This has led to a new definition of leukodystrophies as genetic white matter disorders resulting from the involvement of any white matter structural component. As a result, the research has shifted its main focus from oligodendrocytes to other types of neuroglia. Astrocytes are the housekeeping cells of the nervous system, responsible for maintaining homeostasis and normal brain physiology and to orchestrate repair upon injury. Several lines of evidence show that astrocytic interactions with the other white matter cellular constituents play a primary pathophysiologic role in many leukodystrophies. These are thus now classified as astrocytopathies. This chapter addresses how the crosstalk between astrocytes, other glial cells, axons and non-neural cells are essential for the integrity and maintenance of the white matter in health. It also addresses the current knowledge of the cellular pathomechanisms of astrocytic leukodystrophies, and specifically Alexander disease, vanishing white matter, megalencephalic leukoencephalopathy with subcortical cysts and Aicardi-Goutière Syndrome.
Collapse
Affiliation(s)
- M S Jorge
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Chang VTW, Chang HM. Review: Recent advances in the understanding of the pathophysiology of neuromyelitis optica spectrum disorder. Neuropathol Appl Neurobiol 2019; 46:199-218. [PMID: 31353503 DOI: 10.1111/nan.12574] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Neuromyelitis optica is an autoimmune inflammatory disorder of the central nervous system that preferentially targets the spinal cord and optic nerve. Following the discovery of circulating antibodies against the astrocytic aquaporin 4 (AQP4) water channel protein, recent studies have expanded our knowledge of the unique complexities of the pathogenesis of neuromyelitis optica and its relationship with the immune response. This review describes and summarizes the recent advances in our understanding of the molecular mechanisms underlying neuromyelitis optica disease pathology and examines their potential as therapeutic targets. Additionally, we update the most recent research by proposing major unanswered questions regarding how peripheral AQP4 antibodies are produced and their entry into the central nervous system, the causes of AQP4-IgG-seronegative disease, why peripheral AQP4-expressing organs are spared from damage, and the impact of this disease on pregnancy.
Collapse
Affiliation(s)
- V T W Chang
- St George's, University of London, London, UK
| | - H-M Chang
- Department of Obstetrics and Gynaecology, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|