1
|
Chang YS, Yang M, Ahn SY, Sung SI, Park WS. Improving the future of clinical trials and translation of mesenchymal stromal cell therapies for neonatal disorders. Stem Cells Transl Med 2024; 13:941-948. [PMID: 39120439 PMCID: PMC11465171 DOI: 10.1093/stcltm/szae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/23/2024] [Indexed: 08/10/2024] Open
Abstract
Despite recent advances in neonatal intensive care medicine, neonatal disorders such as (bronchopulmonary dysplasia [BPD], intraventricular hemorrhage [IVH], and hypoxic ischemic encephalopathy [HIE]) remain major causes of death and morbidity in survivors, with few effective treatments being available. Recent preclinical studies have demonstrated the pleiotropic host injury-responsive paracrine protective effects of cell therapy especially with mesenchymal stromal cells (MSCs) against BPD, IVH, and HIE. These findings suggest that MSCs therapy might emerge as a novel therapeutic modality for these currently devastating neonatal disorders with complex multifactorial etiologies. Although early-phase clinical trials suggest their safety and feasibility, their clinical therapeutic benefits have not yet been proven. Therefore, based on currently available preclinical research and clinical trial data, we focus on critical issues that need to be addressed for future successful clinical trials and eventual clinical translation such as selecting the right patient and optimal cell type, route, dose, and timing of MSCs therapy for neonatal disorders such as BPD, HIE, and IVH.
Collapse
Affiliation(s)
- Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Misun Yang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Gangnam Cha Hospital, Cha University, Seoul, Korea
| |
Collapse
|
2
|
Lee S, Blanco T, Musayeva A, Dehghani S, Narimatsu A, Forouzanfar K, Ortiz G, Kahale F, Wang S, Chen Y, Dohlman TH, Chauhan SK, Dana R. Myeloid-derived suppressor cells promote allograft survival by suppressing regulatory T cell dysfunction in high-risk corneal transplantation. Am J Transplant 2024; 24:1597-1609. [PMID: 38514014 PMCID: PMC11390336 DOI: 10.1016/j.ajt.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Highly inflamed and neovascularized corneal graft beds are known as high-risk (HR) environments for transplant survival. One of the primary factors leading to this rejection is reduction in the suppressive function of regulatory T cells (Treg). Our results show that myeloid-derived suppressor cells (MDSC) counteract interleukin-6-mediated Treg dysfunction by expressing interleukin-10. Additionally, MDSC maintain forkhead box P3 stability and their ability to suppress IFN-γ+ Th1 cells. Administering MDSC to HR corneal transplant recipients demonstrates prolonged graft survival via promotion of Treg while concurrently suppressing IFN-γ+ Th1 cells. Moreover, MDSC-mediated donor-specific immune tolerance leads to long-term corneal graft survival as evidenced by the higher survival rate or delayed survival of a second-party C57BL/7 (B6) graft compared to those of third-party C3H grafts observed in contralateral low-risk or HR corneal transplantation of BALB/c recipient mice, respectively. Our study provides compelling preliminary evidence demonstrating the effectiveness of MDSC in preventing Treg dysfunction, significantly improving graft survival in HR corneal transplantation, and showing promising potential for immune tolerance induction.
Collapse
Affiliation(s)
- Seokjoo Lee
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tomas Blanco
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytan Musayeva
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shima Dehghani
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Akitomo Narimatsu
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Katayoon Forouzanfar
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gustavo Ortiz
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesca Kahale
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shudan Wang
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yihe Chen
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas H Dohlman
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunil K Chauhan
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Buyl K, Merimi M, Rodrigues RM, Rahmani S, Fayyad-Kazan M, Bouhtit F, Boukhatem N, Vanhaecke T, Fahmi H, De Kock J, Najar M. The Immunological Profile of Adipose Mesenchymal Stromal/Stem Cells after Cell Expansion and Inflammatory Priming. Biomolecules 2024; 14:852. [PMID: 39062566 PMCID: PMC11275169 DOI: 10.3390/biom14070852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND AT-MSCs display great immunoregulatory features, making them potential candidates for cell-based therapy. This study aimed to evaluate the "RBC lysis buffer" isolation protocol and immunological profiling of the so-obtained AT-MSCs. METHODS We established an immune-comparative screening of AT-MSCs throughout in vitro cell expansion (PM, P1, P2, P3, P4) and inflammatory priming regarding the expression of 28 cell-surface markers, 6 cytokines/chemokines, and 10 TLR patterns. FINDINGS AT-MSCs were highly expandable and sensitive to microenvironment challenges, hereby showing plasticity in distinct expression profiles. Both cell expansion and inflammation differentially modulated the expression profile of CD34, HLA-DR, CD40, CD62L, CD200 and CD155, CD252, CD54, CD58, CD106, CD274 and CD112. Inflammation resulted in a significant increase in the expression of the cytokines IL-6, IL-8, IL-1β, IL-1Ra, CCL5, and TNFα. Depending on the culture conditions, the expression of the TLR pattern was distinctively altered with TLR1-4, TLR7, and TLR10 being increased, whereas TLR6 was downregulated. Protein network and functional enrichment analysis showed that several trophic and immune responses are likely linked to these immunological changes. CONCLUSIONS AT-MSCs may sense and actively respond to tissue challenges by modulating distinct and specific pathways to create an appropriate immuno-reparative environment. These mechanisms need to be further characterized to identify and assess a molecular target that can enhance or impede the therapeutic ability of AT-MSCs, which therefore will help improve the quality, safety, and efficacy of the therapeutic strategy.
Collapse
Affiliation(s)
- Karolien Buyl
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Makram Merimi
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco (F.B.); (N.B.)
| | - Robim M. Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Saida Rahmani
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco (F.B.); (N.B.)
| | - Mohammad Fayyad-Kazan
- Department of Natural and Applied Sciences, College of Arts and Sciences, The American University of Iraq-Baghdad (AUIB), Baghdad 10001, Iraq
| | - Fatima Bouhtit
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco (F.B.); (N.B.)
- Hematology Department, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Laboratoire d’Hématologie, CHU Mohammed VI, Faculté de Médecine et de Pharmacie d’Oujda, University Mohammed Premier, Oujda 60000, Morocco
| | - Noureddine Boukhatem
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco (F.B.); (N.B.)
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Mehdi Najar
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
- Faculty of Medicine, ULB721, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
4
|
Luo ZR, Meng WT, Li H, Wang Y, Wang YC, Zhao Y, Lu PP, Yuan Y, Huang W, Guo HD. Transplantation of induced pluripotent stem cells-derived cardiomyocytes combined with modified Taohong Siwu decoction improved heart repair after myocardial infarction. Heliyon 2024; 10:e26700. [PMID: 38434034 PMCID: PMC10906439 DOI: 10.1016/j.heliyon.2024.e26700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Objective This study aimed to study whether modified Taohong Siwu decoction (MTHSWD) combined with human induced pluripotent stem cells-derived cardiomyocytes (iPS-CMs) transplantation can promote cardiac function in myocardial infarction (MI) nude mouse model and explore its possible mechanism. Methods The MI mouse model was established by the ligation of left anterior descending coronary artery. After 4 weeks of gavage of MTHSWD combined with iPS-CMs transplantation, the changes in heart function of mice were examined by echocardiography. The histological changes were observed by Masson's trichrome staining. The survival and differentiation of transplanted cells were detected by double immunofluorescence staining of human nuclear antigen (HNA) and cardiac troponin T (cTnT). The number of c-kit-positive cells in the infarct area were evaluated by immunofluorescent staining. The levels of stromal cell-derived factor 1 (SDF-1), stem cell factor (SCF), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor in infarcted myocardium tissues were detected by ELISA. Results MTHSWD combined with iPS-CMs transplantation can improve the heart function of MI mice, reduce the infarct size and collagen deposition in infarct area. By immunofluorescence double-label detection of HNA and cTnT, it was found that MTHSWD combined with iPS-CMs transplantation can improve the survival and maturation of iPS-CMs. In addition, MTHSWD combined with iPS-CMs transplantation can activate more endogenous c-kit positive cardiac mesenchymal cells, and significantly increase the content of SDF-1, SCF and VEGF in myocardial tissues. Conclusions The combination of MTHSWD with iPS-CMs transplantation promoted cardiac function of nude mice with MI by improving the survival and maturation of iPS-CMs in the infarct area, activating the endogenous c-kit positive cardiac mesenchymal cells, and increasing paracrine.
Collapse
Affiliation(s)
- Zhi-rong Luo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wan-ting Meng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Han Li
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ya-chao Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ping-ping Lu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Huang
- Department of Chinese Internal Medicine, Dahua Hospital, Xuhui District, Shanghai, China
| | - Hai-dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
5
|
Pappolla MA, Wu P, Fang X, Poeggeler B, Sambamurti K, Wisniewski T, Perry G. Stem Cell Interventions in Neurology: From Bench to Bedside. J Alzheimers Dis 2024; 101:S395-S416. [PMID: 39422938 DOI: 10.3233/jad-230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Stem cell therapies are progressively redefining the treatment landscape for a spectrum of neurological and age-related disorders. This review discusses the molecular and functional attributes of stem cells, emphasizing the roles of neural stem cells and mesenchymal stem cells in the context of neurological diseases such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and Alzheimer's disease. The review also explores the potential of stem cells in addressing the aging process. The paper analyzes stem cells' intrinsic properties of self-renewal, differentiation, and paracrine effects, alongside the importance of laboratory-modified stem cells like induced pluripotent stem cells and transgenic stem cells. Insights into disease-specific stem cell treatments are offered, reviewing both successes and challenges in the field. This includes the translational difficulties from rodent studies to human trials. The review concludes by acknowledging the uncharted territories that warrant further investigation, emphasizing the potential roles of stem cell-derived exosomes and indole-related molecules, and aiming at providing a basic understanding of stem cell therapies.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Wu
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Faculty of Biology and Psychology, Georg August University Göttingen, Gütersloh, Germany
| | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology, and Psychiatry, New York University Alzheimer's Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
6
|
Pluchino S, Prasad P. Oligodendroglia-to-neuron material transfer lights up the mouse CNS. J Exp Med 2023; 220:e20230489. [PMID: 37078982 PMCID: PMC10125899 DOI: 10.1084/jem.20230489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Intercellular material transfer in the central nervous system (CNS) supports neuronal survival and activity. Mayrhofer et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20221632) characterize extensive regionally coordinated transfer of oligodendroglial ribosomal and nuclear material toward neurons, linked to satellite oligodendrocyte-neuron pairs in the mouse CNS.
Collapse
Affiliation(s)
- Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Pranathi Prasad
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Russo MN, Whaley LA, Norton ES, Zarco N, Guerrero-Cázares H. Extracellular vesicles in the glioblastoma microenvironment: A diagnostic and therapeutic perspective. Mol Aspects Med 2023; 91:101167. [PMID: 36577547 PMCID: PMC10073317 DOI: 10.1016/j.mam.2022.101167] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM), is the most malignant form of gliomas and the most common and lethal primary brain tumor in adults. Conventional cancer treatments have limited to no efficacy on GBM. GBM cells respond and adapt to the surrounding brain parenchyma known as tumor microenvironment (TME) to promote tumor preservation. Among specific TME, there are 3 of particular interest for GBM biology: the perivascular niche, the subventricular zone neurogenic niche, and the immune microenvironment. GBM cells and TME cells present a reciprocal feedback which results in tumor maintenance. One way that these cells can communicate is through extracellular vesicles. These vesicles include exosomes and microvesicles that have the ability to carry both cancerous and non-cancerous cargo, such as miRNA, RNA, proteins, lipids, and DNA. In this review we will discuss the booming topic that is extracellular vesicles, and how they have the novelty to be a diagnostic and targetable vehicle for GBM.
Collapse
Affiliation(s)
- Marissa N Russo
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Lauren A Whaley
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Biology Graduate Program, University of North Florida, Jacksonville, FL, USA
| | - Emily S Norton
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA; Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Natanael Zarco
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
8
|
Ahn SY, Chang YS, Park WS. Stem cells for neonatal brain injury - Lessons from the bench. Semin Perinatol 2023; 47:151726. [PMID: 37003920 DOI: 10.1016/j.semperi.2023.151726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Neonatal brain injury resulting from various intractable disorders including intraventricular hemorrhage and hypoxic ischemic encephalopathy still remains a major cause of mortality and morbidities with few effective treatments. Recent preclinical research results showing the pleiotropic neuroprotective effects of stem cell therapy, specifically mesenchymal stem cells (MSCs), suggest that MSCs transplantation might be a promising new therapeutic modality for neuroprotection against the currently intractable and devastating neonatal brain injury with complex multifactorial etiology. This review summarizes recent advances in preclinical stem cell research for treating neonatal brain injury with a focus on the important issues including the mechanism of neuroprotection, and determining the ideal cell source, route, timing and dose of MSCs transplantation.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAHIST), Samsung Medical Center, Seoul 06351, South Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAHIST), Samsung Medical Center, Seoul 06351, South Korea.
| |
Collapse
|
9
|
Cabeza-Fernández S, White JA, McMurran CE, Gómez-Sánchez JA, de la Fuente AG. Immune-stem cell crosstalk in the central nervous system: how oligodendrocyte progenitor cells interact with immune cells. Immunol Cell Biol 2023; 101:25-35. [PMID: 36427276 DOI: 10.1111/imcb.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
The interaction between immune and stem cells has proven essential for homeostasis and regeneration in a wide range of tissues. However, because the central nervous system was long considered an immune-privileged organ, its immune-stem cell axis was not deeply investigated until recently. Research has shown that oligodendrocyte progenitor cells (OPCs), a highly abundant population of adult brain stem cells, establish bidirectional interactions with the immune system. Here, we provide an overview of the interactions that OPCs have with tissue-resident and recruited immune cells, paying particular attention to the role they play in myelin regeneration and neuroinflammation. We highlight the described role of OPCs as key active players in neuroinflammation, overriding the previous concept that OPCs are mere recipients of immune signals. Understanding the mechanisms behind this bidirectional interaction holds great potential for the development of novel therapeutic approaches limiting neuroinflammation and promoting myelin repair. A better understanding of the central nervous system's immune-stem cell axis will also be key for tackling two important features shared across neurodegenerative diseases, neuroinflammation and myelin loss.
Collapse
Affiliation(s)
- Sonia Cabeza-Fernández
- Instituto Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,Instituto de Neurosciencias CSIC-UMH, San Juan de Alicante, Spain
| | - Jessica A White
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Christopher E McMurran
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - José A Gómez-Sánchez
- Instituto Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,Instituto de Neurosciencias CSIC-UMH, San Juan de Alicante, Spain
| | - Alerie G de la Fuente
- Instituto Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,Instituto de Neurosciencias CSIC-UMH, San Juan de Alicante, Spain.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
10
|
Exosomes in Cerebral Ischemia-Reperfusion Injury: Current Perspectives and Future Challenges. Brain Sci 2022; 12:brainsci12121657. [PMID: 36552117 PMCID: PMC9776031 DOI: 10.3390/brainsci12121657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cerebral ischemia impedes the functional or metabolic demands of the central nervous system (CNS), which subsequently leads to irreversible brain damage. While recanalization of blocked vessels recovers cerebral blood flow, it can also aggravate brain injury, termed as ischemia/reperfusion (I/R) injury. Exosomes, nanometric membrane vesicles, attracted wide attention as carriers of biological macromolecules. In the brain, exosomes can be secreted by almost all types of cells, and their contents can be altered during the pathological and clinical processes of cerebral I/R injury. Herein, we will review the current literature on the possible role of cargos derived from exosomes and exosomes-mediated intercellular communication in cerebral I/R injury. The PubMed and Web of Science databases were searched through January 2015. The studies published in English were identified using search terms including "exosomes", "cerebral ischemia-reperfusion injury", "brain ischemia-reperfusion injury", and "stroke". We will also focus on the potential therapeutic effects of stem cell-derived exosomes and underlying mechanisms in cerebral I/R injury. Meanwhile, with the advantages of low immunogenicity and cytotoxicity, high bioavailability, and the capacity to pass through the blood-brain barrier, exosomes also attract more attention as therapeutic modalities for the treatment of cerebral I/R injury.
Collapse
|
11
|
Intervention of neuroinflammation in the traumatic brain injury trajectory: In vivo and clinical approaches. Int Immunopharmacol 2022; 108:108902. [PMID: 35729835 DOI: 10.1016/j.intimp.2022.108902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022]
|
12
|
Abstract
PURPOSE OF THE REVIEW Despite the significant progress in the development of disease-modifying treatments for multiple sclerosis (MS), repair of existing damage is still poorly addressed. Current research focuses on stem cell-based therapies as a suitable alternative or complement to current drug therapies. RECENT FINDINGS Myelin damage is a hallmark of multiple sclerosis, and novel approaches leading to remyelination represent a promising tool to prevent neurodegeneration of the underlying axon. With increasing evidence of diminishing remyelination capacity of the MS brain with ageing and disease progression, exogenous cell transplantation is a promising therapeutic approach for restoration of oligodendrocyte precursor cell pool reserve and myelin regeneration. SUMMARY The present review summarizes recent developments of remyelinating therapies in multiple sclerosis, focusing on exogenous cell-based strategies and discussing related scientific, practical, and ethical concerns.
Collapse
|
13
|
Willis CM, Nicaise AM, Krzak G, Ionescu RB, Pappa V, D'Angelo A, Agarwal R, Repollés-de-Dalmau M, Peruzzotti-Jametti L, Pluchino S. Soluble factors influencing the neural stem cell niche in brain physiology, inflammation, and aging. Exp Neurol 2022; 355:114124. [DOI: 10.1016/j.expneurol.2022.114124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 11/27/2022]
|
14
|
Ahmad S, Srivastava RK, Singh P, Naik UP, Srivastava AK. Role of Extracellular Vesicles in Glia-Neuron Intercellular Communication. Front Mol Neurosci 2022; 15:844194. [PMID: 35493327 PMCID: PMC9043804 DOI: 10.3389/fnmol.2022.844194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cross talk between glia and neurons is crucial for a variety of biological functions, ranging from nervous system development, axonal conduction, synaptic transmission, neural circuit maturation, to homeostasis maintenance. Extracellular vesicles (EVs), which were initially described as cellular debris and were devoid of biological function, are now recognized as key components in cell-cell communication and play a critical role in glia-neuron communication. EVs transport the proteins, lipids, and nucleic acid cargo in intercellular communication, which alters target cells structurally and functionally. A better understanding of the roles of EVs in glia-neuron communication, both in physiological and pathological conditions, can aid in the discovery of novel therapeutic targets and the development of new biomarkers. This review aims to demonstrate that different types of glia and neuronal cells secrete various types of EVs, resulting in specific functions in intercellular communications.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, New Delhi, India
| | - Rohit K. Srivastava
- Department of Pediatric Surgery, Texas Children’s Hospital, Houston, TX, United States
- M.E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Pratibha Singh
- Department of Biochemistry and Cell Biology, Biosciences Research Collaborative, Rice University, Houston, TX, United States
| | - Ulhas P. Naik
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Cardeza Foundation for Hematologic Research, Philadelphia, PA, United States
| | - Amit K. Srivastava
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Cardeza Foundation for Hematologic Research, Philadelphia, PA, United States
- *Correspondence: Amit K. Srivastava,
| |
Collapse
|
15
|
Lin TJ, Cheng KC, Wu LY, Lai WY, Ling TY, Kuo YC, Huang YH. Potential of Cellular Therapy for ALS: Current Strategies and Future Prospects. Front Cell Dev Biol 2022; 10:851613. [PMID: 35372346 PMCID: PMC8966507 DOI: 10.3389/fcell.2022.851613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive upper and lower motor neuron (MN) degeneration with unclear pathology. The worldwide prevalence of ALS is approximately 4.42 per 100,000 populations, and death occurs within 3-5 years after diagnosis. However, no effective therapeutic modality for ALS is currently available. In recent years, cellular therapy has shown considerable therapeutic potential because it exerts immunomodulatory effects and protects the MN circuit. However, the safety and efficacy of cellular therapy in ALS are still under debate. In this review, we summarize the current progress in cellular therapy for ALS. The underlying mechanism, current clinical trials, and the pros and cons of cellular therapy using different types of cell are discussed. In addition, clinical studies of mesenchymal stem cells (MSCs) in ALS are highlighted. The summarized findings of this review can facilitate the future clinical application of precision medicine using cellular therapy in ALS.
Collapse
Affiliation(s)
- Ting-Jung Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuang-Chao Cheng
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Luo-Yun Wu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Yu Lai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Fei W, Wu J, Gao M, Wang Q, Zhao YY, Shan C, Shen Y, Chen G. Multilineage-differentiating stress-enduring cells alleviate atopic dermatitis-associated behaviors in mice. Stem Cell Res Ther 2021; 12:606. [PMID: 34930455 PMCID: PMC8686553 DOI: 10.1186/s13287-021-02671-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pruritus is a recurring, long-lasting skin disease with few effective treatments. Many patients have unsatisfactory responses to currently available antipruritic treatments, and effective therapeutics are urgently needed to relieve symptoms. A previous study reported that mesenchymal stem cell (MSC)-mediated immune regulation could be used to treat skin inflammatory diseases. Multilineage-differentiating stress-enduring (Muse) cells are a new type of pluripotent stem cell that may also have the potential to treat inflammatory skin diseases. METHODS Muse cells were isolated from human bone marrow-derived MSCs (BMSCs) via the 8-h longterm trypsin incubation (LTT) method. Repeated use of 2,4-dinitrofluorobenzene (DNFB) induced atopic dermatitis (AD) in a mouse model. Immunofluorescence, behavior recording, and image analysis were used to evaluate the therapeutic effect of subcutaneous Muse cell injection. Real-time quantitative polymerase chain reaction (qPCR) was used to measure the expression of inflammatory factors. In vitro, wound healing and cell proliferation experiments were used to examine the effect of Muse cell supernatant on keratinocytes. RESULTS Our results showed that subcutaneous injection of Muse cells after AD model induction significantly alleviated scratching behavior in mice. The evaluation of dermatitis and photos of damaged skin on the back of the neck revealed that Muse cells reduced dermatitis, playing an active role in healing the damaged skin. The activation of spinal glial cells and scratching behavior were also reduced by Muse cell injection. In addition, we also showed that the expression levels of the inflammatory factors interleukin (IL)-6, IL-17α, and IL-33 in both the spinal cord and skin were suppressed by Muse cells. Furthermore, Muse cells not only exerted anti-inflammatory effects on lipopolysaccharide (LPS)-induced human HaCat cells but also promoted wound healing and keratinocyte proliferation. CONCLUSIONS In vivo, Muse cells could alleviate scratching symptoms, reduce epidermal inflammation, and promote wound healing. In vitro, Muse cells could also promote the migration and proliferation of keratinocytes. In summary, Muse cells may become a new therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- WenDi Fei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - JunLin Wu
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - MengDie Gao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Ya Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - ChunLi Shan
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yu Shen
- Department of Dermatology, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China. .,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China. .,Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
17
|
Radandish M, Khalilian P, Esmaeil N. The Role of Distinct Subsets of Macrophages in the Pathogenesis of MS and the Impact of Different Therapeutic Agents on These Populations. Front Immunol 2021; 12:667705. [PMID: 34489926 PMCID: PMC8417824 DOI: 10.3389/fimmu.2021.667705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/31/2021] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system (CNS). Besides the vital role of T cells, other immune cells, including B cells, innate immune cells, and macrophages (MФs), also play a critical role in MS pathogenesis. Tissue-resident MФs in the brain’s parenchyma, known as microglia and monocyte-derived MФs, enter into the CNS following alterations in CNS homeostasis that induce inflammatory responses in MS. Although the neuroprotective and anti-inflammatory actions of monocyte-derived MФs and resident MФs are required to maintain CNS tolerance, they can release inflammatory cytokines and reactivate primed T cells during neuroinflammation. In the CNS of MS patients, elevated myeloid cells and activated MФs have been found and associated with demyelination and axonal loss. Thus, according to the role of MФs in neuroinflammation, they have attracted attention as a therapeutic target. Also, due to their different origin, location, and turnover, other strategies may require to target the various myeloid cell populations. Here we review the role of distinct subsets of MФs in the pathogenesis of MS and different therapeutic agents that target these cells.
Collapse
Affiliation(s)
- Maedeh Radandish
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Khalilian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Smith JA, Nicaise AM, Ionescu RB, Hamel R, Peruzzotti-Jametti L, Pluchino S. Stem Cell Therapies for Progressive Multiple Sclerosis. Front Cell Dev Biol 2021; 9:696434. [PMID: 34307372 PMCID: PMC8299560 DOI: 10.3389/fcell.2021.696434] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and axonal degeneration. MS patients typically present with a relapsing-remitting (RR) disease course, manifesting as sporadic attacks of neurological symptoms including ataxia, fatigue, and sensory impairment. While there are several effective disease-modifying therapies able to address the inflammatory relapses associated with RRMS, most patients will inevitably advance to a progressive disease course marked by a gradual and irreversible accrual of disabilities. Therapeutic intervention in progressive MS (PMS) suffers from a lack of well-characterized biological targets and, hence, a dearth of successful drugs. The few medications approved for the treatment of PMS are typically limited in their efficacy to active forms of the disease, have little impact on slowing degeneration, and fail to promote repair. In looking to address these unmet needs, the multifactorial therapeutic benefits of stem cell therapies are particularly compelling. Ostensibly providing neurotrophic support, immunomodulation and cell replacement, stem cell transplantation holds substantial promise in combatting the complex pathology of chronic neuroinflammation. Herein, we explore the current state of preclinical and clinical evidence supporting the use of stem cells in treating PMS and we discuss prospective hurdles impeding their translation into revolutionary regenerative medicines.
Collapse
Affiliation(s)
- Jayden A. Smith
- Cambridge Innovation Technologies Consulting (CITC) Limited, Cambridge, United Kingdom
| | - Alexandra M. Nicaise
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rosana-Bristena Ionescu
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Regan Hamel
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Callus Formation in Fractured Femur of Rats Treated with Injection of Human Umbilical Cord Mesenchymal Stem Cell-Conditioned Medium. Vet Med Int 2021; 2021:8410175. [PMID: 33996023 PMCID: PMC8096585 DOI: 10.1155/2021/8410175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells-conditioned medium (MSC-CM) is the extraction from stem cell medium containing biological substances, including growth factors and cytokines. These substances play roles in the various functions of body regulatory, including bone formation. However, the effect of MSC-CM derived from human umbilical cord injection in femur fracture healing of rats has not been reported previously. This study aims to see the effect of MSC-CM derived from human umbilical cord injection on the callus formation of bone fracture healing in Wistar rats (Rattus norvegicus). A femur fracture in 54 Wistar rats was made by surgery according to the procedure under sterile conditions. After the surgery, rats were divided into 2 groups of 27, respectively. Injection in the control (0.1 mL/kg body weight NaCl) and MSC-CM group (0.1 mL/kg body weight MSC-CM) was performed on weeks 0, 1, 2, 3, 4, 5, 6, 7, and 8 after surgery. Radiographic images and the femur bone samples were taken and collected on days 1, 7, 14, 21, 28, 35, and 60 after surgery. Bone samples were then fixed in Bouin solution. Histologic preparations were done by the paraffin method, by cutting the tissue blocks into 5 μm thickness and then staining with Mallory aniline blue staining. The results were analyzed descriptively and quantitatively. The result showed that the soft callus formation occurred rapidly and got wider in the MSC-CM group than that of the control group. The administration of MSC-CM injection postfracture surgery to femur fracture cases in rats was capable to accelerate the callus formation.
Collapse
|
20
|
Üçal M, Maurer C, Etschmaier V, Hamberger D, Grünbacher G, Tögl L, Roosen MJ, Molcanyi M, Vorholt D, Hatay FF, Hescheler J, Pallasch C, Schäfer U, Patz S. Inflammatory Pre-Conditioning of Adipose-Derived Stem Cells with Cerebrospinal Fluid from Traumatic Brain Injury Patients Alters the Immunomodulatory Potential of ADSC Secretomes. J Neurotrauma 2021; 38:2311-2322. [PMID: 33514282 DOI: 10.1089/neu.2020.7017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Immunomodulation by adipose-tissue-derived stem cells (ADSCs) is of special interest for the alleviation of damaging inflammatory responses in central nervous system injuries. The present study explored the effects of cerebrospinal fluid (CSF) from traumatic brain injury (TBI) patients on this immunomodulatory potential of ADSCs. CSF conditioning of ADSCs increased messenger RNA levels of both pro- and anti-inflammatory genes compared to controls. Exposure of phorbol-12-myristate-13-acetate-differentiated THP1 macrophages to the secretome of CSF-conditioned ADSCs downregulated both proinflammatory (cyclooxygenase-2, tumor necrosis factor alpha) and anti-inflammatory (suppressor of cytokine signaling 3, interleukin-1 receptor antagonist, and transforming growth factor beta) genes in these cells. Interleukin-10 expression was elevated in both naïve and conditioned secretomes. ADSC secretome treatment, further, induced macrophage maturation of THP1 cells and increased the percentage of CD11b+, CD14+, CD86+, and, to a lesser extent, CD206+ cells. This, moreover, enhanced the phagocytic activity of CD14+ and CD86+ cells, though independently of pre-conditioning. Secretome exposure, finally, also induced a reduction in the percentage of CD192+ adherent cells in cultures of peripheral blood mononuclear cells (PBMCs) from both healthy subjects and TBI patients. This limited efficacy (of both naïve and pre-conditioned secretomes) suggests that the effects of lymphocyte-monocyte paracrine signaling on the fate of cultured PBMCs are strongest upon adherent cell populations.
Collapse
Affiliation(s)
- Muammer Üçal
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Christa Maurer
- Department of Neurosurgery, Medical University Graz, Graz, Austria.,Ruprecht-Karls-University Heidelberg, Institute for Anatomy and Cell Biology, Division for Medical Cell Biology, Heidelberg, Germany
| | | | - Daniel Hamberger
- Department of Neurosurgery, Medical University Graz, Graz, Austria.,National Centre for Tumour Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Gerda Grünbacher
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Lennart Tögl
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Marvin J Roosen
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Marek Molcanyi
- Department of Neurosurgery, Medical University Graz, Graz, Austria.,Institute of Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Daniela Vorholt
- Department of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Düsseldorf, CECAD Centre of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - F Fulya Hatay
- Institute of Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Christian Pallasch
- Department of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Düsseldorf, CECAD Centre of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ute Schäfer
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Silke Patz
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| |
Collapse
|
21
|
Zhang G, Zhu Z, Wang H, Yu Y, Chen W, Waqas A, Wang Y, Chen L. Exosomes derived from human neural stem cells stimulated by interferon gamma improve therapeutic ability in ischemic stroke model. J Adv Res 2020; 24:435-445. [PMID: 32551140 PMCID: PMC7289755 DOI: 10.1016/j.jare.2020.05.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
hNSC-Exo presented therapeutic roles in brain ischemic stroke model of rats. IFN-γ preconditioning significantly altered the abilities and contents of hNSC-Exo. IFN-γ-hNSC-Exo shown more therapeutic benefits than hNSC-Exo in vitro and in vivo. Exosomal miRNAs in IFN-γ-hNSC-Exo mediated the potential effects on cell survival.
Transplanted neural stem cells promote neural tissue regeneration and functional recovery primarily by releasing paracrine factors. Exosomes act as important secreted paracrine molecules to deliver therapeutic agents involved in cellular functions. Here, we focused on the role of exosomes (hNSC-Exo) derived from human neural stem cells (hNSCs). We utilized the pro-inflammatory factor interferon gamma (IFN-γ) to induce the generation of altered exosomes (IFN-γ-hNSC-Exo), and compared their roles with those of hNSC-Exo and explored the potential mechanism. Importantly, IFN-γ preconditioning did not affect the secretion, but significantly altered the ability of exosomes derived from hNSCs. Moreover, IFN-γ-hNSC-Exo was functionally superior to hNSC-Exo; showed increased cell proliferation and cell survival and decreased cell apoptosis in vitro. Furthermore, IFN-γ-hNSC-Exo further exerted therapeutic effects (showed better behavioral and structural outcomes) compared to those of hNSCs-Exo in an ischemic stroke rat model. Next-generation sequencing (NGS) revealed specific exosomal miRNAs (hsa-miR-206, hsa-miR-133a-3p and hsa-miR-3656) in IFN-γ-hNSC-Exo with important roles in cell survival. Thus, our findings demonstrate that the inflammatory factor IFN-γ can regulate the functions of exosomes and highlight its role in regulating the application of neural stem cell-derived exosomes.
Collapse
Affiliation(s)
- Guilong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhihan Zhu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Hong Wang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yongbo Yu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Wanghao Chen
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Ahmed Waqas
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yezhong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
| |
Collapse
|
22
|
Promises and Limitations of Neural Stem Cell Therapies for Progressive Multiple Sclerosis. Trends Mol Med 2020; 26:898-912. [PMID: 32448751 DOI: 10.1016/j.molmed.2020.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Abstract
Multiple disease-modifying medications with regulatory approval to treat multiple sclerosis (MS) are unable to prevent inflammatory tissue damage in the central nervous system (CNS), and none directly promote repair. Thus, there is an unmet clinical need for therapies that can arrest and reverse the persistent accumulation of disabilities associated with progressive forms of MS (P-MS). Preclinical research has revealed an unexpected ability of neural stem cell (NSC) therapies to provide neurotrophic support and inhibit detrimental host immune responses in vivo following transplantation into the chronically inflamed CNS. We discuss NSC transplantation as a promising therapy for P-MS, elaborate on the necessities of clinical trial validation and formalized usage guidelines, and caution about unscrupulous 'clinics' marketing unproven therapies to patients.
Collapse
|
23
|
Bian B, Zhao C, He X, Gong Y, Ren C, Ge L, Zeng Y, Li Q, Chen M, Weng C, He J, Fang Y, Xu H, Yin ZQ. Exosomes derived from neural progenitor cells preserve photoreceptors during retinal degeneration by inactivating microglia. J Extracell Vesicles 2020; 9:1748931. [PMID: 32373289 PMCID: PMC7191912 DOI: 10.1080/20013078.2020.1748931] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/12/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Retinal degeneration (RD) is one of the most common causes of visual impairment and blindness and is characterized by progressive degeneration of photoreceptors. Transplantation of neural stem/progenitor cells (NPCs) is a promising treatment for RD, although the mechanisms underlying the efficacy remain unclear. Accumulated evidence supports the notion that paracrine effects of transplanted stem cells is likely the major approach to rescuing early degeneration, rather than cell replacement. NPC-derived exosomes (NPC-exos), a type of extracellular vesicles (EVs) released from NPCs, are thought to carry functional molecules to recipient cells and play therapeutic roles. In present study, we found that grafted human NPCs (hNPCs) secreted EVs and exosomes in the subretinal space (SRS) of RCS rats, an RD model. And direct administration of mouse neural progenitor cell-derived exosomes (mNPC-exos) delayed photoreceptor degeneration, preserved visual function, prevented thinning of the outer nuclear layer (ONL), and decreased apoptosis of photoreceptors in RCS rats. Mechanistically, mNPC-exos were specifically internalized by retinal microglia and suppressed their activation in vitro and in vivo. RNA sequencing and miRNA profiling revealed a set of 17 miRNAs contained in mNPC-exos that markedly inhibited inflammatory signal pathways by targeting TNF-α, IL-1β, and COX-2 in activated microglia. The exosomes derived from hNPC (hNPC-exos) contained similar miRNAs to mNPC-exos that inhibited microglial activation. We demonstrated that NPC-exos markedly suppressed microglial activation to protect photoreceptors from apoptosis, suggesting that NPC-exos and their contents may be the mechanism of stem cell therapy for treating RD.
Collapse
Affiliation(s)
- Baishijiao Bian
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Congjian Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Xiangyu He
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Chunge Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Min Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Chuanhuang Weng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Juncai He
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Yajie Fang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P.R. China
| |
Collapse
|
24
|
Ottoboni L, von Wunster B, Martino G. Therapeutic Plasticity of Neural Stem Cells. Front Neurol 2020; 11:148. [PMID: 32265815 PMCID: PMC7100551 DOI: 10.3389/fneur.2020.00148] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Neural stem cells (NSCs) have garnered significant scientific and commercial interest in the last 15 years. Given their plasticity, defined as the ability to develop into different phenotypes inside and outside of the nervous system, with a capacity of almost unlimited self-renewal, of releasing trophic and immunomodulatory factors, and of exploiting temporal and spatial dynamics, NSCs have been proposed for (i) neurotoxicity testing; (ii) cellular therapies to treat CNS diseases; (iii) neural tissue engineering and repair; (iv) drug target validation and testing; (v) personalized medicine. Moreover, given the growing interest in developing cell-based therapies to target neurodegenerative diseases, recent progress in developing NSCs from human-induced pluripotent stem cells has produced an analog of endogenous NSCs. Herein, we will review the current understanding on emerging conceptual and technological topics in the neural stem cell field, such as deep characterization of the human compartment, single-cell spatial-temporal dynamics, reprogramming from somatic cells, and NSC manipulation and monitoring. Together, these aspects contribute to further disentangling NSC plasticity to better exploit the potential of those cells, which, in the future, might offer new strategies for brain therapies.
Collapse
Affiliation(s)
- Linda Ottoboni
- Neurology and Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Gianvito Martino
- Neurology and Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy
| |
Collapse
|
25
|
Fang J, Zhang S, Liu Z, Pan Y, Cao L, Hou P, Chen Y, Zhang Y, Li X, Liu R, Shang Q, Zheng Z, Song L, Li Y, Fu Z, Lin L, Melino G, Wang Y, Shao C, Shi Y. Skeletal muscle stem cells confer maturing macrophages anti-inflammatory properties through insulin-like growth factor-2. Stem Cells Transl Med 2020; 9:773-785. [PMID: 32176461 PMCID: PMC7308640 DOI: 10.1002/sctm.19-0447] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Cytokines produced by immune cells have been demonstrated to act on muscle stem cells (MuSCs) and direct their fate and behavior during muscle repair and regeneration. Nevertheless, it is unclear whether and how MuSCs can also in turn modulate the properties of immune cells. Here, we showed that in vitro expanded MuSCs exhibited a potent anti‐inflammatory effect when infused into mice suffering from inflammatory bowel disease (IBD). Supernatant conditioned by MuSCs similarly ameliorated IBD. This beneficial effect of MuSCs was not observed when macrophages were depleted. The MuSC supernatant was found to greatly attenuate the expression of inflammatory cytokines but increase the expression of programmed death‐ligand 1 in macrophages treated with lipopolysaccharide and interferon gamma. Further analysis revealed that MuSCs produce a large amount of insulin‐like growth factor‐2 (IGF‐2) that instructs maturing macrophages to undergo oxidative phosphorylation and thus acquire anti‐inflammatory properties. Interestingly, the IGF‐2 production by MuSCs is much higher than by mesenchymal stem cells. Knockdown or neutralization of IGF‐2 abrogated the anti‐inflammatory effects of MuSCs and their therapeutic efficacy on IBD. Our study demonstrated that MuSCs possess a strong anti‐inflammatory property and the bidirectional interactions between immune cells and MuSCs have important implications in muscle‐related physiological and pathological conditions.
Collapse
Affiliation(s)
- Jiankai Fang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Shengchao Zhang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Zhanhong Liu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Yongsha Pan
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Pengbo Hou
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Yongjing Chen
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yuyan Zhang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Xiaolei Li
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Rui Liu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Qianwen Shang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Zhiyuan Zheng
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Lin Song
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yanan Li
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Zhonglin Fu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Liangyu Lin
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Buyl K, Merimi M, Rodrigues RM, Moussa Agha D, Melki R, Vanhaecke T, Bron D, Lewalle P, Meuleman N, Fahmi H, Rogiers V, Lagneaux L, De Kock J, Najar M. The Impact of Cell-Expansion and Inflammation on The Immune-Biology of Human Adipose Tissue-Derived Mesenchymal Stromal Cells. J Clin Med 2020; 9:jcm9030696. [PMID: 32143473 PMCID: PMC7141238 DOI: 10.3390/jcm9030696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/30/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background: As a cell-based therapeutic, AT-MSCs need to create an immuno-reparative environment appropriate for tissue repair. In the presence of injury, MSCs may have to proliferate and face inflammation. Clinical application requires repeated administrations of a high number of cells with a well-established immune profile. Methods: We have established an immuno-comparative screening by determining the expression of 28 molecules implicated in immune regulation. This screening was performed during cell-expansion and inflammatory priming of AT-MSCs. Results: Our study confirms that AT-MSCs are highly expandable and sensitive to inflammation. Both conditions have substantially modulated the expression of a panel of immunological marker. Specifically, CD34 expression was substantially decreased upon cell-passaging. HLA-ABC, CD40 CD54, CD106, CD274 and CD112 were significantly increased by inflammation. In vitro cell-expansion also significantly altered the expression profile of HLA-DR, CD40, CD62L, CD106, CD166, HLA-G, CD200, HO-1, CD155 and ULBP-3. Conclusion: This study points out the response and characteristics of MSCs following expansion and inflammatory priming. It will strength our knowledge about the molecular mechanisms that may improve or hamper the therapeutic potential of MSCs. These immunological changes need to be further characterized to guarantee a safe cellular product with consistent quality and high therapeutic efficacy.
Collapse
Affiliation(s)
- Karolien Buyl
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
- Correspondence:
| | - Robim M. Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Douâa Moussa Agha
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Rahma Melki
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dominique Bron
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Nathalie Meuleman
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), 900 Saint-Denis, R11.424, Montreal, QC H2X 0A9, Canada
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 808 Route de Lennik, 1070 Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Mehdi Najar
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), 900 Saint-Denis, R11.424, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
27
|
Willis CM, Nicaise AM, Peruzzotti-Jametti L, Pluchino S. The neural stem cell secretome and its role in brain repair. Brain Res 2020; 1729:146615. [DOI: 10.1016/j.brainres.2019.146615] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
|
28
|
Therajaran P, Hamilton JA, O'Brien TJ, Jones NC, Ali I. Microglial polarization in posttraumatic epilepsy: Potential mechanism and treatment opportunity. Epilepsia 2020; 61:203-215. [PMID: 31943156 DOI: 10.1111/epi.16424] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Owing to the complexity of the pathophysiological mechanisms driving epileptogenesis following traumatic brain injury (TBI), effective preventive treatment approaches are not yet available for posttraumatic epilepsy (PTE). Neuroinflammation appears to play a critical role in the pathogenesis of the acquired epilepsies, including PTE, but despite a large preclinical literature demonstrating the ability of anti-inflammatory treatments to suppress epileptogenesis and chronic seizures, no anti-inflammatory treatment approaches have been clinically proven to date. TBI triggers robust inflammatory cascades, suggesting that they may be relevant for the pathogenesis of PTE. A major cell type involved in such cascades is the microglial cells-brain-resident immune cells that become activated after brain injury. When activated, these cells can oscillate between different phenotypes, and such polarization states are associated with the release of various pro- and anti-inflammatory mediators that may influence brain repair processes, and also differentially contribute to the development of PTE. As the molecular mechanisms and key signaling molecules associated with microglial polarization in brain are discovered, strategies are now emerging that can modulate this polarization, promoting this as a potential therapeutic strategy for PTE. In this review, we discuss the relevant literature regarding the polarization of brain-resident immune cells following TBI and attempt to put into perspective a role in epilepsy pathogenesis. Finally, we explore potential strategies that could polarize microglia/macrophages toward a neuroprotective phenotype to mitigate PTE development.
Collapse
Affiliation(s)
- Peravina Therajaran
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - John A Hamilton
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Idrish Ali
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Peng Y, Liou B, Inskeep V, Blackwood R, Mayhew CN, Grabowski GA, Sun Y. Intravenous infusion of iPSC-derived neural precursor cells increases acid β-glucosidase function in the brain and lessens the neuronopathic phenotype in a mouse model of Gaucher disease. Hum Mol Genet 2019; 28:3406-3421. [PMID: 31373366 PMCID: PMC6891072 DOI: 10.1093/hmg/ddz184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Gaucher disease (GD) is caused by GBA1 mutations leading to functional deficiency of acid-β-glucosidase (GCase). No effective treatment is available for neuronopathic GD (nGD). A subclass of neural stem and precursor cells (NPCs) expresses VLA4 (integrin α4β1, very late antigen-4) that facilitates NPC entry into the brain following intravenous (IV) infusion. Here, the therapeutic potential of IV VLA4+NPCs was assessed for nGD using wild-type mouse green fluorescent protein (GFP)-positive multipotent induced pluripotent stem cell (iPSC)-derived VLA4+NPCs. VLA4+NPCs successfully engrafted in the nGD (4L;C*) mouse brain. GFP-positive cells differentiated into neurons, astrocytes and oligodendrocytes in the brainstem, midbrain and thalamus of the transplanted mice and significantly improved sensorimotor function and prolonged life span compared to vehicle-treated 4L;C* mice. VLA4+NPC transplantation significantly decreased levels of CD68 and glial fibrillary acidic protein, as well as TNFα mRNA levels in the brain, indicating reduced neuroinflammation. Furthermore, decreased Fluoro-Jade C and NeuroSilver staining suggested inhibition of neurodegeneration. VLA4+NPC-engrafted 4L;C* midbrains showed 35% increased GCase activity, reduced substrate [glucosylceramide (GC, -34%) and glucosylsphingosine (GS, -11%)] levels and improved mitochondrial oxygen consumption rates in comparison to vehicle-4L;C* mice. VLA4+NPC engraftment in 4L;C* brain also led to enhanced expression of neurotrophic factors that have roles in neuronal survival and the promotion of neurogenesis. This study provides evidence that iPSC-derived NPC transplantation has efficacy in an nGD mouse model and provides proof of concept for autologous NPC therapy in nGD.
Collapse
Affiliation(s)
- Yanyan Peng
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Venette Inskeep
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rachel Blackwood
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Christopher N Mayhew
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
30
|
Morton MC, Neckles VN, Seluzicki CM, Holmberg JC, Feliciano DM. Neonatal Subventricular Zone Neural Stem Cells Release Extracellular Vesicles that Act as a Microglial Morphogen. Cell Rep 2019; 23:78-89. [PMID: 29617675 DOI: 10.1016/j.celrep.2018.03.037] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/19/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Subventricular zone (SVZ) neural stem cells (NSCs) are the cornerstone of the perinatal neurogenic niche. Microglia are immune cells of the nervous system that are enriched in the neonatal SVZ. Although microglia regulate NSCs, the extent to which this interaction is bi-directional is unclear. Extracellular vesicles (EVs) are cell-derived particles that encase miRNA and proteins. Here, we demonstrate that SVZ NSCs generate and release EVs. Neonatal electroporated fluorescent EV fusion proteins were released by NSCs and subsequently cleared from the SVZ. EVs were preferentially targeted to microglia. Small RNA sequencing identified miRNAs within the EVs that regulate microglia physiology and morphology. EVs induced a transition to a CD11b/Iba1 non-stellate microglial morphology. The transition accompanied a microglial transcriptional state characterized by Let-7-regulated cytokine release and a negative feedback loop that controlled NSC proliferation. These findings implicate an NSC-EV-microglia axis and provide insight to normal and pathophysiological brain development.
Collapse
Affiliation(s)
- Mary C Morton
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA
| | - Victoria N Neckles
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA
| | - Caitlin M Seluzicki
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA
| | - Jennie C Holmberg
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA
| | - David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA.
| |
Collapse
|
31
|
Vogel S, Schäfer C, Hess S, Folz-Donahue K, Nelles M, Minassian A, Schwarz MK, Kukat C, Ehrlich M, Zaehres H, Kloppenburg P, Hoehn M, Aswendt M. The in vivo timeline of differentiation of engrafted human neural progenitor cells. Stem Cell Res 2019; 37:101429. [DOI: 10.1016/j.scr.2019.101429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 01/19/2023] Open
|
32
|
Zalfa C, Rota Nodari L, Vacchi E, Gelati M, Profico D, Boido M, Binda E, De Filippis L, Copetti M, Garlatti V, Daniele P, Rosati J, De Luca A, Pinos F, Cajola L, Visioli A, Mazzini L, Vercelli A, Svelto M, Vescovi AL, Ferrari D. Transplantation of clinical-grade human neural stem cells reduces neuroinflammation, prolongs survival and delays disease progression in the SOD1 rats. Cell Death Dis 2019; 10:345. [PMID: 31024007 PMCID: PMC6484011 DOI: 10.1038/s41419-019-1582-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Stem cells are emerging as a therapeutic option for incurable diseases, such as Amyotrophic Lateral Sclerosis (ALS). However, critical issues are related to their origin as well as to the need to deepen our knowledge of the therapeutic actions exerted by these cells. Here, we investigate the therapeutic potential of clinical-grade human neural stem cells (hNSCs) that have been successfully used in a recently concluded phase I clinical trial for ALS patients (NCT01640067). The hNSCs were transplanted bilaterally into the anterior horns of the lumbar spinal cord (four grafts each, segments L3–L4) of superoxide dismutase 1 G93A transgenic rats (SOD1 rats) at the symptomatic stage. Controls included untreated SOD1 rats (CTRL) and those treated with HBSS (HBSS). Motor symptoms and histological hallmarks of the disease were evaluated at three progressive time points: 15 and 40 days after transplant (DAT), and end stage. Animals were treated by transient immunosuppression (for 15 days, starting at time of transplantation). Under these conditions, hNSCs integrated extensively within the cord, differentiated into neural phenotypes and migrated rostro-caudally, up to 3.77 ± 0.63 cm from the injection site. The transplanted cells delayed decreases in body weight and deterioration of motor performance in the SOD1 rats. At 40DAT, the anterior horns at L3–L4 revealed a higher density of motoneurons and fewer activated astroglial and microglial cells. Accordingly, the overall survival of transplanted rats was significantly enhanced with no rejection of hNSCs observed. We demonstrated that the beneficial effects observed after stem cell transplantation arises from multiple events that counteract several aspects of the disease, a crucial feature for multifactorial diseases, such as ALS. The combination of therapeutic approaches that target different pathogenic mechanisms of the disorder, including pharmacology, molecular therapy and cell transplantation, will increase the chances of a clinically successful therapy for ALS.
Collapse
Affiliation(s)
- Cristina Zalfa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Laura Rota Nodari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Elena Vacchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Maurizio Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, Foggia, Italy
| | - Daniela Profico
- Fondazione IRCCS Casa Sollievo della Sofferenza, Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, Foggia, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Elena Binda
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, (FG), Italy
| | - Lidia De Filippis
- Fondazione IRCCS Casa Sollievo della Sofferenza, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, (FG), Italy
| | - Massimiliano Copetti
- Fondazione IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, Viale dei Cappuccini, 71013, San Giovanni Rotondo, (FG), Italy
| | - Valentina Garlatti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Paola Daniele
- Fondazione IRCCS Casa Sollievo della Sofferenza, Molecular Genetics Unit, Viale dei Cappuccini, 71013, San Giovanni Rotondo, (FG), Italy
| | - Jessica Rosati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cellular Reprogramming Unit, San Giovanni Rotondo, (FG), Italy
| | - Alessandro De Luca
- Fondazione IRCCS Casa Sollievo della Sofferenza, Molecular Genetics Unit, Viale dei Cappuccini, 71013, San Giovanni Rotondo, (FG), Italy
| | - Francesca Pinos
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Laura Cajola
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | | | - Letizia Mazzini
- Centro Regionale Esperto SLA Azienda Ospedaliero-Universitaria "Maggiore della Carità", Novara, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Maria Svelto
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy. .,Fondazione IRCCS Casa Sollievo della Sofferenza, Production Unit of Advanced Therapies (UPTA), Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), 71013, San Giovanni Rotondo, Foggia, Italy. .,Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy.
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy.
| |
Collapse
|
33
|
Liu Q, Guo Y, Liu S, Wang P, Xue Y, Cui Z, Chen J. Characterization of the iPSC-derived conditioned medium that promotes the growth of bovine corneal endothelial cells. PeerJ 2019; 7:e6734. [PMID: 31024764 PMCID: PMC6474332 DOI: 10.7717/peerj.6734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/07/2019] [Indexed: 12/26/2022] Open
Abstract
Corneal endothelial cells (CECs) maintain corneal transparency and visual acuity. However, the limited proliferative capability of these cells in vitro has prompted researchers to find efficient culturing techniques for them. The aim of our study was to evaluate the use of conditioned medium (CM) obtained from induced pluripotent stem cells (iPSCs) as a source for the effective proliferation of bovine CECs (B-CECs). In our study, the proliferative ability of B-CECs was moderately enhanced when the cells were grown in 25% iPSC conditioned medium (iPSC-CM). Additionally, hexagonal cell morphology was maintained until passage 4, as opposed to the irregular and enlarged shape observed in control corneal endothelial medium (CEM). B-CECs in both the 25% iPSC-CM and CEM groups expressed and Na+-K+-ATPase. The gene expression levels of NIFK, Na+-K+-ATPase, Col4A and Col8A and the percentage of cells entering S and G2 phases were higher in the iPSC-CM group. The number of apoptotic cells also decreased in the iPSC-CM group. In comparison to the control cultures, iPSC-CM facilitated cell migration, and these cells showed better barrier functions after several passages. The mechanism of cell proliferation mediated by iPSC-CM was also investigated, and phosphorylation of Akt was observed in B-CECs after exposure to iPSC-CM and showed sustained phosphorylation induced for up to 180 min in iPSC-CM. Our findings indicate that iPSC-CM may employ PI3-kinase signaling in regulating cell cycle progression, which can lead to enhanced cellular proliferation. Effective component analysis of the CM showed that in the iPSC-CM group, the expression of activin-A was significantly increased. If activin-A is added as a supplement, it could help to maintain the morphology of the cells, similar to that of CM. Hence, we conclude that activin-A is one of the effective components of CM in promoting cell proliferation and maintaining cell morphology.
Collapse
Affiliation(s)
- Qing Liu
- Ophthalmology Department, The People’s Hospital of Yubei District of Chongqing city, Chongqing, China
| | - Yonglong Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Shiwei Liu
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Peiyuan Wang
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | | | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
- Aier Eye Institute, Changsha, China
| |
Collapse
|
34
|
Guo X, Gu X, Hareshwaree S, Rong X, Li L, Chu M. Induced pluripotent stem cell-conditional medium inhibits H9C2 cardiomyocytes apoptosis via autophagy flux and Wnt/β-catenin pathway. J Cell Mol Med 2019; 23:4358-4374. [PMID: 30957422 PMCID: PMC6533467 DOI: 10.1111/jcmm.14327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Induced pluripotent stem cell‐derived conditioned medium (iPS‐CM) could improve cell viability in many types of cells and may be a better alternative for the treatment of myocardial infarction. This study aimed to examine the influence of iPS‐CM on anti‐apoptosis and the proliferation of H9C2 cardiomyocytes and investigate the underlying mechanisms. H9C2 cardiomyocytes were exposed to 200 μmol/L hydrogen peroxide (H2O2) for 24 hours with or without pre‐treatment with iPS‐CM. The ratio of apoptotic cells, the loss of mitochondrial membrane potential (△Ψm) and the levels of intracellular reactive oxygen species were analysed by flow cytometric analysis. The expression levels of BCL‐2 and BAX proteins were analysed by Western blot. Cell proliferation was assessed using cell cycle and EdU staining assays. To study cell senescence, senescence‐associated β‐galactosidase (SA‐β‐gal) staining was conducted. The levels of malondialdehyde, superoxide dismutase and glutathione were also quantified using commercially available enzymatic kits. The results showed that iPS‐CM containing basic fibroblast growth factor significantly reduced H2O2‐induced H9C2 cardiomyocyte apoptosis by activating the autophagy flux pathway, promoted cardiomyocyte proliferation by up‐regulating the Wnt/β‐catenin pathway and inhibited oxidative stress and cell senescence. In conclusion, iPS‐CM effectively enhanced the cell viability of H9C2 cardiomyocytes and could potentially be used to inhibit cardiomyocytes apoptosis to treat myocardial infarction in the future.
Collapse
Affiliation(s)
- Xiaoling Guo
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohong Gu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sohun Hareshwaree
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing Rong
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Li
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Maoping Chu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Beegle JR. Previews. Stem Cells 2018. [DOI: 10.1002/stem.2930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Julie R. Beegle
- Institute for Regenerative Cures, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
36
|
Peruzzotti-Jametti L, Pluchino S. Targeting Mitochondrial Metabolism in Neuroinflammation: Towards a Therapy for Progressive Multiple Sclerosis. Trends Mol Med 2018; 24:838-855. [DOI: 10.1016/j.molmed.2018.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
|
37
|
Mendes-Pinheiro B, Teixeira FG, Anjo SI, Manadas B, Behie LA, Salgado AJ. Secretome of Undifferentiated Neural Progenitor Cells Induces Histological and Motor Improvements in a Rat Model of Parkinson's Disease. Stem Cells Transl Med 2018; 7:829-838. [PMID: 30238668 PMCID: PMC6216452 DOI: 10.1002/sctm.18-0009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that results from the death of dopamine (DA) neurons. Over recent years, differentiated or undifferentiated neural stem cells (NSCs) transplantation has been widely used as a means of cell replacement therapy. However, compelling evidence has brought attention to the array of bioactive molecules produced by stem cells, defined as secretome. As described in the literature, other cell populations have a high‐neurotrophic activity, but little is known about NSCs. Moreover, the exploration of the stem cell secretome is only in its initial stages, particularly as applied to neurodegenerative diseases. Thus, we have characterized the secretome of human neural progenitor cells (hNPCs) through proteomic analysis and investigated its effects in a 6‐hydroxidopamine (6‐OHDA) rat model of PD in comparison with undifferentiated hNPCs transplantation. Results revealed that the injection of hNPCs secretome potentiated the histological recovery of DA neurons when compared to the untreated group 6‐OHDA and those transplanted with cells (hNPCs), thereby supporting the functional motor amelioration of 6‐OHDA PD animals. Additionally, hNPCs secretome proteomic characterization has revealed that these cells have the capacity to secrete a wide range of important molecules with neuroregulatory actions, which are most likely support the effects observed. Overall, we have concluded that the use of hNPCs secretome partially modulate DA neurons cell survival and ameliorate PD animals’ motor deficits, disclosing improved results when compared to cell transplantation approaches, indicating that the secretome itself could represent a route for new therapeutic options for PD regenerative medicine. stem cells translational medicine2018;7:829–838
Collapse
Affiliation(s)
- Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Sandra I Anjo
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Leo A Behie
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
38
|
Barthels D, Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis 2018; 1866:165260. [PMID: 31699365 DOI: 10.1016/j.bbadis.2018.09.012] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/24/2018] [Accepted: 09/09/2018] [Indexed: 01/09/2023]
Abstract
With more than 795,000 cases occurring every year, stroke has become a major problem in the United States across all demographics. Stroke is the leading cause of long-term disability and is the fifth leading cause of death in the US. Ischemic stroke represents 87% of total strokes in the US, and is currently the main focus of stroke research. This literature review examines the risk factors associated with ischemic stroke, changes in cell morphology and signaling in the brain after stroke, and the advantages and disadvantages of in vivo and in vitro ischemic stroke models. Classification systems for stroke etiology are also discussed briefly, as well as current ischemic stroke therapies and new therapeutic strategies that focus on the potential of stem cells to promote stroke recovery.
Collapse
Affiliation(s)
- Derek Barthels
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
39
|
Najar M, Crompot E, Raicevic G, Sokal EM, Najimi M, Lagneaux L. Cytokinome of adult-derived human liver stem/progenitor cells: immunological and inflammatory features. Hepatobiliary Surg Nutr 2018; 7:331-344. [PMID: 30498709 DOI: 10.21037/hbsn.2018.05.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Being non-immunogenic and capable of achieving major metabolic liver functions, adult-derived human liver stem/progenitor cells (ADHLSCs) are of special interest in the field of liver cell therapy. The cytokine repertoire of engrafted cells may have critical impacts on the immune response balance, particularly during cell transplantation. Methods In this work, we analyzed the cytokinome of ADHLSCs during hepatogenic differentiation (HD) following stimulation with a mixture of inflammatory cytokines (I) in vitro and compared it to that of mature hepatocytes. Results Independent of their hepatic state, ADHLSCs showed no constitutive expression of pro-inflammatory cytokines, which were significantly induced by inflammation (IL-1β, IL-6, IL-8, TNFα, CCL5, IL-12a, IL-12b, IL-23p19, IL-27p28 and EBI-3). IL1-RA and IDO-1, as immunoregulatory cytokines, were highly induced in undifferentiated ADHLSCs, whereas TGF-β was downregulated by both hepatic and inflammatory events. Interestingly, TDO-1 was exclusively expressed in ADHLSCs after hepatic differentiation and enhanced by inflammatory cytokines. Compared to mature hepatocytes, hepatic-differentiated ADHLSCs showed significantly different cytokine expression patterns. Conclusions By establishing the cytokinome of ADHLSCs and highlighting their immunological and inflammatory features, we can enhance our knowledge about the safety and efficiency of the transplantation strategy.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels 1070, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels 1070, Belgium
| | - Gordana Raicevic
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels 1070, Belgium
| | - Etienne M Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental & Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental & Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels 1070, Belgium
| |
Collapse
|
40
|
Effects of inflammatory cytokines IFN-γ, TNF-α and IL-6 on the viability and functionality of human pluripotent stem cell-derived neural cells. J Neuroimmunol 2018; 331:36-45. [PMID: 30195439 DOI: 10.1016/j.jneuroim.2018.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Multiple Sclerosis (MS) is an inflammatory neurodegenerative disease, where neural progenitor cell (NPC) transplantation has been suggested as a potential neuroprotective therapeutic strategy. Since the effect of inflammation on NPCs is poorly known, their effect on the survival and functionality of human NPCs were studied. Treatment with interleukin (IL)-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ did not induced cytotoxicity, but IFN-γ treatment showed decreased proliferation and neuronal migration. By contrast, increased proliferation and inhibition of electrical activity were detected after TNF-α treatment. Treatments induced secretion of inflammatory factors. Inflammatory cytokines appear to modulate proliferation as well as the cellular and functional properties of human NPCs.
Collapse
|
41
|
Matarredona ER, Talaverón R, Pastor AM. Interactions Between Neural Progenitor Cells and Microglia in the Subventricular Zone: Physiological Implications in the Neurogenic Niche and After Implantation in the Injured Brain. Front Cell Neurosci 2018; 12:268. [PMID: 30177874 PMCID: PMC6109750 DOI: 10.3389/fncel.2018.00268] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
The adult subventricular zone (SVZ) of the mammalian brain contains neural progenitor cells (NPCs) that continuously produce neuroblasts throughout life. These neuroblasts migrate towards the olfactory bulb where they differentiate into local interneurons. The neurogenic niche of the SVZ includes, in addition to NPCs and neuroblasts, astrocytes, ependymal cells, blood vessels and the molecules released by these cell types. In the last few years, microglial cells have also been included as a key component of the SVZ neurogenic niche. Microglia in the SVZ display unique phenotypic features, and are more densely populated and activated than in non-neurogenic regions. In this article we will review literature reporting microglia-NPC interactions in the SVZ and the role of this bilateral communication in microglial function and in NPC biology. This interaction can take place through the release of soluble factors, extracellular vesicles or gap junctional communication. In addition, as NPCs are used for cell replacement therapies, they can establish therapeutically relevant crosstalks with host microglia which will also be summarized throughout the article.
Collapse
Affiliation(s)
| | - Rocío Talaverón
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
42
|
Hansmann F, Jungwirth N, Zhang N, Skripuletz T, Stein VM, Tipold A, Stangel M, Baumgärtner W. Beneficial and detrimental impact of transplanted canine adipose-derived stem cells in a virus-induced demyelinating mouse model. Vet Immunol Immunopathol 2018; 202:130-140. [PMID: 30078587 DOI: 10.1016/j.vetimm.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/01/2018] [Accepted: 07/07/2018] [Indexed: 01/17/2023]
Abstract
In recent years stem cell therapies have been broadly applied in various disease models specifically immune mediated and degenerative diseases. Whether adipose-derived stem cells might represent a useful therapeutic option in virus-triggered central nervous system diseases has not been investigated so far. Theiler's murine encephalomyelitis (TME) and canine distemper encephalitis are established, virus-mediated animal models sharing many similarities with multiple sclerosis (MS). Canine adipose-derived stem cells (ASC) were selected since dogs might serve as an important translational model for further therapeutic applications. The aim of the present study was to investigate whether canine ASC influence clinical signs, axonal damage, demyelination and inflammation during TME. ASC were transplanted intravenously (iv) or intra-cerebroventricularly (icv) at 7 (early) or 42 (late) days post infection (dpi) in TME virus (TMEV) infected mice. TMEV/ASC iv animals transplanted at 7dpi displayed a transient clinical deterioration in rotarod performance compared to TMEV/control animals. Worsening of clinical signs was associated with significantly increased numbers of microglia/macrophages and demyelination in the spinal cord. In contrast, late transplantation had no influence on clinical findings of TMEV-infected animals. However, late TMEV/ASC iv transplanted animals showed reduced axonal damage compared to TMEV/control animals. Screening of spinal cord and peripheral organs for transplanted ASC revealed no positive cells. Surprisingly, iv transplanted animals showed pulmonary follicular aggregates consisting of T- and B-lymphocytes. Thus, our data suggest that following intravenous application, the lung as priming organ for lymphocytes seems to play a pivotal role in the pathogenesis of TME. Consequences of T-lymphocyte priming in the lung depend on the disease phase and may be responsible for disease modifying effects of ASC.
Collapse
Affiliation(s)
- Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Nicole Jungwirth
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Ning Zhang
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Veronika Maria Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany; Division of Neurology, Department of Clinical Veterinary Sciences, Vetsuisse Faculty, University of Bern, Länggassstrasse 128, 3012, Bern, Switzerland
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.
| |
Collapse
|
43
|
Guo X, Chen Y, Hong T, Chen X, Duan Y, Li C, Ge R. Induced pluripotent stem cell-derived conditional medium promotes Leydig cell anti-apoptosis and proliferation via autophagy and Wnt/β-catenin pathway. J Cell Mol Med 2018; 22:3614-3626. [PMID: 29667777 PMCID: PMC6010900 DOI: 10.1111/jcmm.13641] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
Leydig cell transplantation is a better alternative in the treatment of androgen-deficient males. The main purpose of this study was to investigate the effects of induced pluripotent stem cell-derived conditioned medium (iPS-CM) on the anti-apoptosis, proliferation and function of immature Leydig cells (ILCs), and illuminate the underlying mechanisms. ILCs were exposed to 200 μmol/L hydrogen peroxide (H2 O2 ) for 24 hours with or without iPS-CM treatments. Cell apoptosis was detected by flow cytometric analysis. Cell proliferation was assessed using cell cycle assays and EdU staining. The steroidogenic enzyme expressions were quantified with Western blotting. The results showed that iPS-CM significantly reduced H2 O2 -induced ILC apoptosis through down-regulation of autophagic and apoptotic proteins LC3-I/II, Beclin-1, P62, P53 and BAX as well as up-regulation of BCL-2, which could be inhibited by LY294002 (25 μmol/L). iPS-CM could also promote ILC proliferation through up-regulation of β-catenin and its target proteins cyclin D1, c-Myc and survivin, but was inhibited by XAV939 (10 μmol/L). The level of bFGF in iPS-CM was higher than that of DMEM-LG. Exogenous bFGF (20 ng/mL) or Wnt signalling agonist lithium chloride (LiCl) (20 mmol/L) added into DMEM-LG could achieve the similar effects of iPS-CM. Meanwhile, iPS-CM could improve the medium testosterone levels and up-regulation of LHCGR, SCARB1, STAR, CYP11A1, HSD3B1, CYP17A1, HSD17B3 and SF-1 in H2 O2 -induced ILCs. In conclusion, iPS-CM could reduce H2 O2 -induced ILC apoptosis through the activation of autophagy, promote proliferation through up-regulation of Wnt/β-catenin pathway and enhance testosterone production through increasing steroidogenic enzyme expressions, which might be used in regenerative medicine for future.
Collapse
Affiliation(s)
- Xiaoling Guo
- Center of Scientific ResearchThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Yong Chen
- Department of AnesthesiologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Tingting Hong
- Center of Scientific ResearchThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Xianwu Chen
- Center of Scientific ResearchThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Yue Duan
- Center of Scientific ResearchThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Chao Li
- Center of Scientific ResearchThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Renshan Ge
- Center of Scientific ResearchThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Department of AnesthesiologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
44
|
Abiko M, Mitsuhara T, Okazaki T, Imura T, Nakagawa K, Otsuka T, Oshita J, Takeda M, Kawahara Y, Yuge L, Kurisu K. Rat Cranial Bone-Derived Mesenchymal Stem Cell Transplantation Promotes Functional Recovery in Ischemic Stroke Model Rats. Stem Cells Dev 2018; 27:1053-1061. [PMID: 29786481 DOI: 10.1089/scd.2018.0022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The functional disorders caused by central nervous system (CNS) diseases, such as ischemic stroke, are clinically incurable and current treatments have limited effects. Previous studies suggested that cell-based therapy using mesenchymal stem cells (MSCs) exerts therapeutic effects for ischemic stroke. In addition, the characteristics of MSCs may depend on their sources. Among the derived tissues of MSCs, we have focused on cranial bones originating from the neural crest. We previously demonstrated that the neurogenic potential of human cranial bone-derived MSCs (cMSCs) was higher than that of human iliac bone-derived MSCs. Therefore, we presumed that cMSCs have a higher therapeutic potential for CNS diseases. However, the therapeutic effects of cMSCs have not yet been elucidated in detail. In the present study, we aimed to demonstrate the therapeutic effects of transplantation with rat cranial bone-derived MSCs (rcMSCs) in ischemic stroke model rats. The mRNA expression of brain-derived neurotrophic factor and nerve growth factor was significantly stronger in rcMSCs than in rat bone marrow-derived MSCs (rbMSCs). Ischemic stroke model rats in the rcMSC transplantation group showed better functional recovery than those in the no transplantation and rbMSC transplantation groups. Furthermore, in the in vitro study, the conditioned medium of rcMSCs significantly suppressed the death of neuroblastoma × glioma hybrid cells (NG108-15) exposed to oxidative and inflammatory stresses. These results suggest that cMSCs have potential as a candidate cell-based therapy for CNS diseases.
Collapse
Affiliation(s)
- Masaru Abiko
- 1 Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Takafumi Mitsuhara
- 1 Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Takahito Okazaki
- 1 Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Takeshi Imura
- 2 Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Kei Nakagawa
- 2 Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Takashi Otsuka
- 2 Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Jumpei Oshita
- 1 Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Masaaki Takeda
- 1 Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Yumi Kawahara
- 3 Space Bio-Laboratories Co., Ltd. , Hiroshima, Japan
| | - Louis Yuge
- 2 Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan .,3 Space Bio-Laboratories Co., Ltd. , Hiroshima, Japan
| | - Kaoru Kurisu
- 1 Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| |
Collapse
|
45
|
Andreopoulou E, Arampatzis A, Patsoni M, Kazanis I. Being a Neural Stem Cell: A Matter of Character But Defined by the Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1041:81-118. [PMID: 29204830 DOI: 10.1007/978-3-319-69194-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cells that build the nervous system, either this is a small network of ganglia or a complicated primate brain, are called neural stem and progenitor cells. Even though the very primitive and the very recent neural stem cells (NSCs) share common basic characteristics that are hard-wired within their character, such as the expression of transcription factors of the SoxB family, their capacity to give rise to extremely different neural tissues depends significantly on instructions from the microenvironment. In this chapter we explore the nature of the NSC microenvironment, looking through evolution, embryonic development, maturity and even disease. Experimental work undertaken over the last 20 years has revealed exciting insight into the NSC microcosmos. NSCs are very capable in producing their own extracellular matrix and in regulating their behaviour in an autocrine and paracrine manner. Nevertheless, accumulating evidence indicates an important role for the vasculature, especially within the NSC niches of the postnatal brain; while novel results reveal direct links between the metabolic state of the organism and the function of NSCs.
Collapse
Affiliation(s)
- Evangelia Andreopoulou
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Asterios Arampatzis
- Wellcome Trust- MRC Cambridge Stem Cell Biology Institute, University of Cambridge, Cambridge, UK
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Melina Patsoni
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Ilias Kazanis
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece.
- Wellcome Trust- MRC Cambridge Stem Cell Biology Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
46
|
Peruzzotti-Jametti L, Bernstock JD, Vicario N, Costa ASH, Kwok CK, Leonardi T, Booty LM, Bicci I, Balzarotti B, Volpe G, Mallucci G, Manferrari G, Donegà M, Iraci N, Braga A, Hallenbeck JM, Murphy MP, Edenhofer F, Frezza C, Pluchino S. Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation. Cell Stem Cell 2018; 22:355-368.e13. [PMID: 29478844 PMCID: PMC5842147 DOI: 10.1016/j.stem.2018.01.020] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/18/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
Neural stem cell (NSC) transplantation can influence immune responses and suppress inflammation in the CNS. Metabolites, such as succinate, modulate the phenotype and function of immune cells, but whether and how NSCs are also activated by such immunometabolites to control immunoreactivity and inflammatory responses is unclear. Here, we show that transplanted somatic and directly induced NSCs ameliorate chronic CNS inflammation by reducing succinate levels in the cerebrospinal fluid, thereby decreasing mononuclear phagocyte (MP) infiltration and secondary CNS damage. Inflammatory MPs release succinate, which activates succinate receptor 1 (SUCNR1)/GPR91 on NSCs, leading them to secrete prostaglandin E2 and scavenge extracellular succinate with consequential anti-inflammatory effects. Thus, our work reveals an unexpected role for the succinate-SUCNR1 axis in somatic and directly induced NSCs, which controls the response of stem cells to inflammatory metabolic signals released by type 1 MPs in the chronically inflamed brain.
Collapse
Affiliation(s)
- Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| | - Joshua D Bernstock
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; Stroke Branch, National Institute of Neurological Disorders and Stroke, NIH (NINDS/NIH), Bethesda, MD, USA
| | - Nunzio Vicario
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Ana S H Costa
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Chee Keong Kwok
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Tommaso Leonardi
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Lee M Booty
- MRC Mitochondrial Biology Unit, Hills Road, University of Cambridge, Cambridge, UK
| | - Iacopo Bicci
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Beatrice Balzarotti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Giulio Volpe
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Giulia Mallucci
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Giulia Manferrari
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Matteo Donegà
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Nunzio Iraci
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Via S. Sofia 97, Catania 95125, Italy
| | - Alice Braga
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - John M Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, NIH (NINDS/NIH), Bethesda, MD, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Hills Road, University of Cambridge, Cambridge, UK
| | - Frank Edenhofer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany; Institute of Molecular Biology and CMBI, Genomics, Stem Cell Biology and Regenerative Medicine, Leopold-Franzens-University Innsbruck, Innsbruck, Austria.
| | - Christian Frezza
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK.
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
47
|
Gao J, Grill RJ, Dunn TJ, Bedi S, Labastida JA, Hetz RA, Xue H, Thonhoff JR, DeWitt DS, Prough DS, Cox CS, Wu P. Human Neural Stem Cell Transplantation-Mediated Alteration of Microglial/Macrophage Phenotypes after Traumatic Brain Injury. Cell Transplant 2018; 25:1863-1877. [PMID: 26980267 DOI: 10.3727/096368916x691150] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neural stem cells (NSCs) promote recovery from brain trauma, but neuronal replacement is unlikely the sole underlying mechanism. We hypothesize that grafted NSCs enhance neural repair at least partially through modulating the host immune response after traumatic brain injury (TBI). C57BL/6 mice were intracerebrally injected with primed human NSCs (hNSCs) or vehicle 24 h after a severe controlled cortical impact injury. Six days after transplantation, brain tissues were collected for Western blot and immunohistochemical analyses. Observations included indicators of microglia/macrophage activation, M1 and M2 phenotypes, axonal injury detected by amyloid precursor protein (APP), lesion size, and the fate of grafted hNSCs. Animals receiving hNSC transplantation did not show significant decreases of brain lesion volumes compared to transplantation procedures with vehicle alone, but did show significantly reduced injury-dependent accumulation of APP. Furthermore, intracerebral transplantation of hNSCs reduced microglial activation as shown by a diminished intensity of Iba1 immunostaining and a transition of microglia/macrophages toward the M2 anti-inflammatory phenotype. The latter was represented by an increase in the brain M2/M1 ratio and increases of M2 microglial proteins. These phenotypic switches were accompanied by the increased expression of anti-inflammatory interleukin-4 receptor α and decreased proinflammatory interferon-γ receptor β. Finally, grafted hNSCs mainly differentiated into neurons and were phagocytized by either M1 or M2 microglia/macrophages. Thus, intracerebral transplantation of primed hNSCs efficiently leads host microglia/macrophages toward an anti-inflammatory phenotype that presumably contributes to stem cell-mediated neuroprotective effects after severe TBI in mice.
Collapse
Affiliation(s)
- Junling Gao
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Raymond J Grill
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tiffany J Dunn
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Supinder Bedi
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, TX, USA
| | - Javier Allende Labastida
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Robert A Hetz
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, TX, USA
| | - Hasen Xue
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, TX, USA
| | - Jason R Thonhoff
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Douglas S DeWitt
- Department of Anesthesiology, University of Texas Medical Branch at Galveston, TX, USA
| | - Donald S Prough
- Department of Anesthesiology, University of Texas Medical Branch at Galveston, TX, USA
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, TX, USA
| | - Ping Wu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Beijing Institute for Brain Disorders, Beijing, P.R. China
| |
Collapse
|
48
|
Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders. Pediatr Res 2018; 83:214-222. [PMID: 28972960 DOI: 10.1038/pr.2017.249] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation represents the next breakthrough in the treatment of currently intractable and devastating neonatal disorders with complex multifactorial etiologies, including bronchopulmonary dysplasia, hypoxic ischemic encephalopathy, and intraventricular hemorrhage. Absent engraftment and direct differentiation of transplanted MSCs, and the "hit-and-run" therapeutic effects of these MSCs suggest that their pleiotropic protection might be attributable to paracrine activity via the secretion of various biologic factors rather than to regenerative activity. The transplanted MSCs, therefore, exert their therapeutic effects not by acting as "stem cells," but rather by acting as "paracrine factors factory." The MSCs sense the microenvironment of the injury site and secrete various paracrine factors that serve several reparative functions, including antiapoptotic, anti-inflammatory, antioxidative, antifibrotic, and/or antibacterial effects in response to environmental cues to enhance regeneration of the damaged tissue. Therefore, the therapeutic efficacy of MSCs might be dependent on their paracrine potency. In this review, we focus on recent investigations that elucidate the specifically regulated paracrine mechanisms of MSCs by injury type and discuss potential strategies to enhance paracrine potency, and thus therapeutic efficacy, of transplanted MSCs, including determining the appropriate source and preconditioning strategy for MSCs and the route and timing of their administration.
Collapse
|
49
|
Guo X, Zhang G, Chen L, Khan AA, Gu B, Li B. Newborn Neurons Are Damaged In Vitro by a Low Concentration of Silver Nanoparticles Through the Inflammatory Oxidative Stress Pathway. DNA Cell Biol 2017; 36:1062-1070. [PMID: 29058455 DOI: 10.1089/dna.2017.3795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With increasing applications of nanomaterials, including silver nanoparticles (AgNPs), unknown potential risks are present against humans and the environment, especially to the fetus and neonates, which are more sensitive to the cytotoxicity of such agents. This study focused on the effects of AgNP exposure on newborn neurons differentiated from neural stem cells (NSCs) in vitro. We isolated NSCs from fetal rat hippocampus and incubated them in neural differentiation medium for 3-7 days to form newborn neurons and networks. After exposure to 2 μg/mL AgNPs, cell viability was reduced, and early neuronal processes and extensions were fragmented. Furthermore, AgNP treatment increased cellular superoxide dismutase activity and decreased the mitochondrial membrane potential, leading to neuronal death. AgNPs also increased the expression of FOXO3 and decreased nuclear factor-erythroid 2-related factor-2, as well as stimulated the formation of autophagosomes. Therefore, even a low concentration of AgNPs can interrupt early neuronal processes, and facilitate neuron apoptosis by increased cellular oxidative stress and mitochondrial disruption. Thus, it is necessary to note the daily exposure of nanomaterials (e.g., AgNPs) to pregnant women and infants, which may cause neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaoyuan Guo
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Guilong Zhang
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Lukui Chen
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Ahsan Ali Khan
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Bin Gu
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| | - Bingqian Li
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, China
| |
Collapse
|
50
|
Mueller M, Kramer BW. Stem cells and Bronchopulmonary Dysplasia - The five questions: Which cells, when, in which dose, to which patients via which route? Paediatr Respir Rev 2017; 24:54-59. [PMID: 28162941 DOI: 10.1016/j.prrv.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022]
Abstract
Preterm birth is the leading cause of death in newborns and children. Despite advances in perinatology, immature infants continue to face serious risks such chronic respiratory impairment from bronchopulmonary dysplasia (BPD). Current treatment options are insufficient and novel approaches are desperately needed. In recent years stem cells have emerged as potential candidates to treat BPD with mesenchymal stem/stromal cells (MSCs) being particularly promising. MSCs originate from several stem cell niches including bone marrow, skin, or adipose, umbilical cord, and placental tissues. Although the first MSCs clinical trials in BPD are ongoing, multiple questions remain open. In this review, we discuss the question of the optimal cell source (live cells or cell products), route and timing of the transplantation. Furthermore, we discuss MSCs possible capacities including migration, homing, pro-angiogenesis, anti-inflammatory, and tissue-regenerative potential as well.
Collapse
Affiliation(s)
- Martin Mueller
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; School of Oncology and Developmental Biology (GROW), Maastricht, The Netherlands.
| |
Collapse
|