1
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Acute Genetic Damage Induced by Ethanol and Corticosterone Seems to Modulate Hippocampal Astrocyte Signaling. Int J Cell Biol 2024; 2024:5524487. [PMID: 38439918 PMCID: PMC10911912 DOI: 10.1155/2024/5524487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Astrocytes maintain CNS homeostasis but also critically contribute to neurological and psychiatric disorders. Such functional diversity implies an extensive signaling repertoire including extracellular vesicles (EVs) and nanotubes (NTs) that could be involved in protection or damage, as widely shown in various experimental paradigms. However, there is no information associating primary damage to the astrocyte genome, the DNA damage response (DDR), and the EV and NT repertoire. Furthermore, similar studies were not performed on hippocampal astrocytes despite their involvement in memory and learning processes, as well as in the development and maintenance of alcohol addiction. By exposing murine hippocampal astrocytes to 400 mM ethanol (EtOH) and/or 1 μM corticosterone (CTS) for 1 h, we tested whether the induced DNA damage and DDR could elicit significant changes in NTs and surface-attached EVs. Genetic damage and initial DDR were assessed by immunolabeling against the phosphorylated histone variant H2AX (γH2AX), DDR-dependent apoptosis by BAX immunoreactivity, and astrocyte activation by the glial acidic fibrillary protein (GFAP) and phalloidin staining. Surface-attached EVs and NTs were examined via scanning electron microscopy, and labeled proteins were analyzed via confocal microscopy. Relative to controls, astrocytes exposed to EtOH, CTS, or EtOH+CTS showed significant increases in nuclear γlH2AX foci, nuclear and cytoplasmic BAX signals, and EV frequency at the expense of the NT amount, mainly upon EtOH, without detectable signs of morphological reactivity. Furthermore, the largest and most complex EVs originated only in DNA-damaged astrocytes. Obtained results revealed that astrocytes exposed to acute EtOH and/or CTS preserved their typical morphology but presented severe DNA damage, triggered canonical DDR pathways, and early changes in the cell signaling mediated by EVs and NTs. Further deepening of this initial morphological and quantitative analysis is necessary to identify the mechanistic links between genetic damage, DDR, cell-cell communication, and their possible impact on hippocampal neural cells.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
- Unidad de Microscopía Electrónica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
2
|
Murphy-Royal C, Ching S, Papouin T. A conceptual framework for astrocyte function. Nat Neurosci 2023; 26:1848-1856. [PMID: 37857773 PMCID: PMC10990637 DOI: 10.1038/s41593-023-01448-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
The participation of astrocytes in brain computation was hypothesized in 1992, coinciding with the discovery that these cells display a form of intracellular Ca2+ signaling sensitive to neuroactive molecules. This finding fostered conceptual leaps crystalized around the idea that astrocytes, once thought to be passive, participate actively in brain signaling and outputs. A multitude of disparate roles of astrocytes has since emerged, but their meaningful integration has been muddied by the lack of consensus and models of how we conceive the functional position of these cells in brain circuitry. In this Perspective, we propose an intuitive, data-driven and transferable conceptual framework we coin 'contextual guidance'. It describes astrocytes as 'contextual gates' that shape neural circuitry in an adaptive, state-dependent fashion. This paradigm provides fresh perspectives on principles of astrocyte signaling and its relevance to brain function, which could spur new experimental avenues, including in computational space.
Collapse
Affiliation(s)
- Ciaran Murphy-Royal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) & Département de Neurosciences, Université de Montréal, Montréal, Quebec, Canada
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
4
|
Lim D, Tapella L, Dematteis G, Talmon M, Genazzani AA. Calcineurin Signalling in Astrocytes: From Pathology to Physiology and Control of Neuronal Functions. Neurochem Res 2023; 48:1077-1090. [PMID: 36083398 PMCID: PMC10030417 DOI: 10.1007/s11064-022-03744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 07/31/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Calcineurin (CaN), a Ca2+/calmodulin-activated serine/threonine phosphatase, acts as a Ca2+-sensitive switch regulating cellular functions through protein dephosphorylation and activation of gene transcription. In astrocytes, the principal homeostatic cells in the CNS, over-activation of CaN is known to drive pathological transcriptional remodelling, associated with neuroinflammation in diseases such as Alzheimer's disease, epilepsy and brain trauma. Recent reports suggest that, in physiological conditions, the activity of CaN in astrocytes is transcription-independent and is required for maintenance of basal protein synthesis rate and activation of astrocytic Na+/K+ pump thereby contributing to neuronal functions such as neuronal excitability and memory formation. In this contribution we overview the role of Ca2+ and CaN signalling in astroglial pathophysiology focusing on the emerging physiological role of CaN in astrocytes. We propose a model for the context-dependent switch of CaN activity from the post-transcriptional regulation of cell proteostasis in healthy astrocytes to the CaN-dependent transcriptional activation in neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Maria Talmon
- Department of Health Sciences, School of Medicine, Università del Piemonte Orientale "Amedeo Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| |
Collapse
|
5
|
Coexistence of chronic hyperalgesia and multilevel neuroinflammatory responses after experimental SCI: a systematic approach to profiling neuropathic pain. J Neuroinflammation 2022; 19:264. [PMID: 36309729 PMCID: PMC9617391 DOI: 10.1186/s12974-022-02628-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background People with spinal cord injury (SCI) frequently develop neuropathic pain (NP) that worsens disability and diminishes rehabilitation efficacy. Chronic NP is presently incurable due to poor understanding of underlying mechanisms. We hypothesized that multilocus neuroinflammation (NIF) might be a driver of SCI NP, and tested it by investigating whether NP coexisted with central NIF, neurotransmission (NTM), neuromodulation (NML) and neuroplasticity (NPL) changes post-SCI. Methods Female Sprague–Dawley rats (230–250 g) with T10 compression or laminectomy were evaluated for physical conditions, coordinated hindlimb functions, neurological reflexes, and mechanical/thermal sensitivity thresholds at 1 day post-injury (p.i.) and weekly thereafter. Eight weeks p.i., central nervous system tissues were histochemically and immunohistochemically characterized for parameters/markers of histopathology and NIF/NTM/NML/NPL. Also analyzed was the correlative relationship between levels of selected biomarkers and thermosensitivity thresholds via statistical linear regression. Results SCI impaired sensorimotor functions, altered reflexes, and produced spontaneous pain signs and hypersensitivity to evoked nociceptive, mechanical, and thermal inputs. Only injured spinal cords exhibited neural lesion, microglia/astrocyte activation, and abnormal expression of proinflammatory cytokines, as well as NIF/NTM/NML/NPL markers. Brains of SCI animals displayed similar pathophysiological signs in the gracile and parabrachial nuclei (GrN and PBN: sensory relay), raphe magnus nucleus and periaqueduct gray (RMN and PAG: pain modulation), basolateral amygdala (BLA: emotional-affective dimension of pain), and hippocampus (HPC: memory/mood/neurogenesis). SCI augmented sensory NTM/NPL (GrN and PBN); increased GAD67 (PAG) level; reduced serotonin (RMN) and fear-off neuronal NTR2 (BLA) expressions; and perturbed neurogenesis (HPC). Conclusion T10 compression caused chronic hyperalgesia that coexisted with NIF/NTM/NML/NPL responses at multilevel neuroaxis centers. The data have provided multidimensional biomarkers as new mechanistic leads to profile SCI NP for therapeutic/therapy development. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02628-2.
Collapse
|
6
|
Dias L, Madeira D, Dias R, Tomé ÂR, Cunha RA, Agostinho P. Aβ 1-42 peptides blunt the adenosine A 2A receptor-mediated control of the interplay between P 2X 7 and P 2Y 1 receptors mediated calcium responses in astrocytes. Cell Mol Life Sci 2022; 79:457. [PMID: 35907034 PMCID: PMC11071907 DOI: 10.1007/s00018-022-04492-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 12/21/2022]
Abstract
The contribution of astrocytes to Alzheimer's disease (AD) is still ill defined. AD involves an abnormal accumulation of amyloid-β peptides (Aβ) and increased production of danger signals such as ATP. ATP can direct or indirectly, through its metabolism into adenosine, trigger adaptive astrocytic responses resulting from intracellular Ca2+ oscillations. AD also triggers an upregulation of astrocytic adenosine A2A receptors (A2AR), which blockade prevents memory dysfunction in AD. We now investigated how Aβ peptides affect ATP-mediated Ca2+ responses in astrocytes measured by fluorescence live-cell imaging and whether A2AR control astrocytic Ca2+ responses mediated by ATP receptors, mainly P2X7R and P2Y1R. In primary cultures of rat astrocytes exposed to Aβ1-42, ATP-evoked Ca2+ responses had a lower amplitude but a longer duration than in control astrocytes and involved P2X7R and P2Y1R, the former potentiating the later. Moreover, Aβ1-42 exposure increased protein levels of P2Y1R in astrocytes. A2AR antagonism with SCH58261 controlled in a protein kinase A-dependent manner both P2X7R- and P2Y1R-mediated Ca2+ responses in astrocytes. The interplay between these purinoceptors in astrocytes was blunted upon exposure to Aβ1-42. These findings uncover the ability of A2AR to regulate the inter-twinned P2X7R- and P2Y1R-mediated Ca2+ dynamics in astrocytes, which is disrupted in conditions of early AD.
Collapse
Affiliation(s)
- Liliana Dias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
| | - Daniela Madeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
| | - Rafael Dias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
| | - Ângelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Rua Larga, Polo I FMUC, 1st Floor, 3004-504, Coimbra, Portugal.
| |
Collapse
|
7
|
Rituper B, Guček A, Lisjak M, Gorska U, Šakanović A, Bobnar ST, Lasič E, Božić M, Abbineni PS, Jorgačevski J, Kreft M, Verkhratsky A, Platt FM, Anderluh G, Stenovec M, Božič B, Coorssen JR, Zorec R. Vesicle cholesterol controls exocytotic fusion pore. Cell Calcium 2021; 101:102503. [PMID: 34844123 DOI: 10.1016/j.ceca.2021.102503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
In some lysosomal storage diseases (LSD) cholesterol accumulates in vesicles. Whether increased vesicle cholesterol affects vesicle fusion with the plasmalemma, where the fusion pore, a channel between the vesicle lumen and the extracellular space, is formed, is unknown. Super-resolution microscopy revealed that after stimulation of exocytosis, pituitary lactotroph vesicles discharge cholesterol which transfers to the plasmalemma. Cholesterol depletion in lactotrophs and astrocytes, both exhibiting Ca2+-dependent exocytosis regulated by distinct Ca2+sources, evokes vesicle secretion. Although this treatment enhanced cytosolic levels of Ca2+ in lactotrophs but decreased it in astrocytes, this indicates that cholesterol may well directly define the fusion pore. In an attempt to explain this mechanism, a new model of cholesterol-dependent fusion pore regulation is proposed. High-resolution membrane capacitance measurements, used to monitor fusion pore conductance, a parameter related to fusion pore diameter, confirm that at resting conditions reducing cholesterol increases, while enrichment with cholesterol decreases the conductance of the fusion pore. In resting fibroblasts, lacking the Npc1 protein, a cellular model of LSD in which cholesterol accumulates in vesicles, the fusion pore conductance is smaller than in controls, showing that vesicle cholesterol controls fusion pore and is relevant for pathophysiology of LSD.
Collapse
Affiliation(s)
- Boštjan Rituper
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alenka Guček
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Marjeta Lisjak
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Urszula Gorska
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Aleksandra Šakanović
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Saša Trkov Bobnar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Eva Lasič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Mićo Božić
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Prabhodh S Abbineni
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, United States of America
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Celica Biomedical, 1000, Ljubljana, Slovenia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, United Kingdom
| | - Gregor Anderluh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Bojan Božič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences and Department of Biological Sciences, Faculty of Mathematics & Science, Brock University, St Catherine's, Ontario, Canada
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia.
| |
Collapse
|
8
|
van Putten MJ, Fahlke C, Kafitz KW, Hofmeijer J, Rose CR. Dysregulation of Astrocyte Ion Homeostasis and Its Relevance for Stroke-Induced Brain Damage. Int J Mol Sci 2021; 22:5679. [PMID: 34073593 PMCID: PMC8198632 DOI: 10.3390/ijms22115679] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and chronic disability. Either recovery or progression towards irreversible failure of neurons and astrocytes occurs within minutes to days, depending on remaining perfusion levels. Initial damage arises from energy depletion resulting in a failure to maintain homeostasis and ion gradients between extra- and intracellular spaces. Astrocytes play a key role in these processes and are thus central players in the dynamics towards recovery or progression of stroke-induced brain damage. Here, we present a synopsis of the pivotal functions of astrocytes at the tripartite synapse, which form the basis of physiological brain functioning. We summarize the evidence of astrocytic failure and its consequences under ischemic conditions. Special emphasis is put on the homeostasis and stroke-induced dysregulation of the major monovalent ions, namely Na+, K+, H+, and Cl-, and their involvement in maintenance of cellular volume and generation of cerebral edema.
Collapse
Affiliation(s)
- Michel J.A.M. van Putten
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christoph Fahlke
- Institut für Biologische Informationsprozesse, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Karl W. Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
9
|
Lim D, Semyanov A, Genazzani A, Verkhratsky A. Calcium signaling in neuroglia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:1-53. [PMID: 34253292 DOI: 10.1016/bs.ircmb.2021.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glial cells exploit calcium (Ca2+) signals to perceive the information about the activity of the nervous tissue and the tissue environment to translate this information into an array of homeostatic, signaling and defensive reactions. Astrocytes, the best studied glial cells, use several Ca2+ signaling generation pathways that include Ca2+ entry through plasma membrane, release from endoplasmic reticulum (ER) and from mitochondria. Activation of metabotropic receptors on the plasma membrane of glial cells is coupled to an enzymatic cascade in which a second messenger, InsP3 is generated thus activating intracellular Ca2+ release channels in the ER endomembrane. Astrocytes also possess store-operated Ca2+ entry and express several ligand-gated Ca2+ channels. In vivo astrocytes generate heterogeneous Ca2+ signals, which are short and frequent in distal processes, but large and relatively rare in soma. In response to neuronal activity intracellular and inter-cellular astrocytic Ca2+ waves can be produced. Astrocytic Ca2+ signals are involved in secretion, they regulate ion transport across cell membranes, and are contributing to cell morphological plasticity. Therefore, astrocytic Ca2+ signals are linked to fundamental functions of the central nervous system ranging from synaptic transmission to behavior. In oligodendrocytes, Ca2+ signals are generated by plasmalemmal Ca2+ influx, or by release from intracellular stores, or by combination of both. Microglial cells exploit Ca2+ permeable ionotropic purinergic receptors and transient receptor potential channels as well as ER Ca2+ release. In this contribution, basic morphology of glial cells, glial Ca2+ signaling toolkit, intracellular Ca2+ signals and Ca2+-regulated functions are discussed with focus on astrocytes.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Moscow State University, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia
| | - Armando Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Alexei Verkhratsky
- Sechenov First Moscow State Medical University, Moscow, Russia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
10
|
Wang SC, Parpura V, Wang YF. Astroglial Regulation of Magnocellular Neuroendocrine Cell Activities in the Supraoptic Nucleus. Neurochem Res 2020; 46:2586-2600. [PMID: 33216313 DOI: 10.1007/s11064-020-03172-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
Studies on the interactions between astrocytes and neurons in the hypothalamo-neurohypophysial system have significantly facilitated our understanding of the regulation of neural activities. This has been exemplified in the interactions between astrocytes and magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON), specifically during osmotic stimulation and lactation. In response to changes in neurochemical environment in the SON, astrocytic morphology and functions change significantly, which further modulates MNC activity and the secretion of vasopressin and oxytocin. In osmotic regulation, short-term dehydration or water overload causes transient retraction or expansion of astrocytic processes, which increases or decreases the activity of SON neurons, respectively. Prolonged osmotic stimulation causes adaptive change in astrocytic plasticity in the SON, which allows osmosensory neurons to reserve osmosensitivity at new levels. During lactation, changes in neurochemical environment cause retraction of astrocytic processes around oxytocin neurons, which increases MNC's ability to secrete oxytocin. During suckling by a baby/pup, astrocytic processes in the mother/dams exhibit alternative retraction and expansion around oxytocin neurons, which mirrors intermittently synchronized activation of oxytocin neurons and the post-excitation inhibition, respectively. The morphological and functional plasticities of astrocytes depend on a series of cellular events involving glial fibrillary acidic protein, aquaporin 4, volume regulated anion channels, transporters and other astrocytic functional molecules. This review further explores mechanisms underlying astroglial regulation of the neuroendocrine neuronal activities in acute processes based on the knowledge from studies on the SON.
Collapse
Affiliation(s)
- Stephani C Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, CA, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35242, USA.
| | - Yu-Feng Wang
- Department of Physiology School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150086, China.
| |
Collapse
|
11
|
Montes de Oca Balderas P, Matus Núñez M, Picones A, Hernández-Cruz A. NMDAR in cultured astrocytes: Flux-independent pH sensor and flux-dependent regulator of mitochondria and plasma membrane-mitochondria bridging. FASEB J 2020; 34:16622-16644. [PMID: 33131132 DOI: 10.1096/fj.202001300r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023]
Abstract
Glutamate N-methyl-D-aspartate (NMDA) receptor (NMDAR) is critical for neurotransmission as a Ca2+ channel. Nonetheless, flux-independent signaling has also been demonstrated. Astrocytes express NMDAR distinct from its neuronal counterpart, but cultured astrocytes have no electrophysiological response to NMDA. We recently demonstrated that in cultured astrocytes, NMDA at pH6 (NMDA/pH6) acting through the NMDAR elicits flux-independent Ca2+ release from the Endoplasmic Reticulum (ER) and depletes mitochondrial membrane potential (mΔΨ). Here we show that Ca2+ release is due to pH6 sensing by NMDAR, whereas mΔΨ depletion requires both: pH6 and flux-dependent NMDAR signaling. Plasma membrane (PM) NMDAR guard a non-random distribution relative to the ER and mitochondria. Also, NMDA/pH6 induces ER stress, endocytosis, PM electrical capacitance reduction, mitochondria-ER, and -nuclear contacts. Strikingly, it also produces the formation of PM invaginations near mitochondria along with structures referred to here as PM-mitochondrial bridges (PM-m-br). These and earlier data strongly suggest PM-mitochondria communication. As proof of the concept of mass transfer, we found that NMDA/pH6 provoked mitochondria labeling by the PM dye FM-4-64FX. NMDA/pH6 caused PM depolarization, cell acidification, and Ca2+ release from most mitochondria. Finally, the MCU and microtubules were not involved in mΔΨ depletion, while actin cytoskeleton was partially involved. These findings demonstrate that NMDAR has concomitant flux-independent and flux-dependent actions in cultured astrocytes.
Collapse
Affiliation(s)
- Pavel Montes de Oca Balderas
- Unidad de Neurobiología Dinámica, Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía, México City, México.,Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Mauricio Matus Núñez
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Arturo Picones
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Arturo Hernández-Cruz
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
12
|
Transcriptomic and proteomic profiling of glial versus neuronal Dube3a overexpression reveals common molecular changes in gliopathic epilepsies. Neurobiol Dis 2020; 141:104879. [PMID: 32344153 DOI: 10.1016/j.nbd.2020.104879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/04/2020] [Accepted: 04/23/2020] [Indexed: 01/05/2023] Open
Abstract
Epilepsy affects millions of individuals worldwide and many cases are pharmacoresistant. Duplication 15q syndrome (Dup15q) is a genetic disorder caused by duplications of the 15q11.2-q13.1 region. Phenotypes include a high rate of pharmacoresistant epilepsy. We developed a Dup15q model in Drosophila melanogaster that recapitulates seizures in Dup15q by over-expressing fly Dube3a or human UBE3A in glial cells, but not neurons, implicating glia in the Dup15q epilepsy phenotype. We compared Dube3a overexpression in glia (repo>Dube3a) versus neurons (elav>Dube3a) using transcriptomics and proteomics of whole fly head extracts. We identified 851 transcripts differentially regulated in repo>Dube3a, including an upregulation of glutathione S-transferase (GST) genes that occurred cell autonomously within glial cells. We reliably measured approximately 2,500 proteins by proteomics, most of which were also quantified at the transcript level. Combined transcriptomic and proteomic analysis revealed an enrichment of 21 synaptic transmission genes downregulated at the transcript and protein in repo>Dube3a indicating synaptic proteins change in a cell non-autonomous manner in repo>Dube3a flies. We identified 6 additional glia originating bang-sensitive seizure lines and found upregulation of GSTs in 4 out of these 6 lines. These data suggest GST upregulation is common among gliopathic seizures and may ultimately provide insight for treating epilepsy.
Collapse
|
13
|
Abstract
Working memory is characterized by neural activity that persists during the retention interval of delay tasks. Despite the ubiquity of this delay activity across tasks, species and experimental techniques, our understanding of this phenomenon remains incomplete. Although initially there was a narrow focus on sustained activation in a small number of brain regions, methodological and analytical advances have allowed researchers to uncover previously unobserved forms of delay activity various parts of the brain. In light of these new findings, this Review reconsiders what delay activity is, where in the brain it is found, what roles it serves and how it may be generated.
Collapse
Affiliation(s)
- Kartik K Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, USA.
| |
Collapse
|
14
|
Raitiere MN. Does photoperiodism involve a seasonal and non-pathological Warburg effect? Med Hypotheses 2020; 135:109447. [DOI: 10.1016/j.mehy.2019.109447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022]
|
15
|
NCX activity generates spontaneous Ca 2+ oscillations in the astrocytic leaflet microdomain. Cell Calcium 2019; 86:102137. [PMID: 31838438 DOI: 10.1016/j.ceca.2019.102137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022]
Abstract
The synergy between synaptic Glu release and astrocytic Glu-Na+ symport is essential to the signalling function of the tripartite synapse. Here we used kinetic data of astrocytic Glu transporters (EAAT) and the Na+/Ca2+ exchanger (NCX) to simulate Glu release, Glu uptake and subsequent Na+ and Ca2+ dynamics in the astrocytic leaflet microdomain following single release event. Model simulations show that Glu-Na+ symport differently affect intracellular [Na+] in synapses with different extent of astrocytic coverage. Surprisingly, NCX activity alone has been shown to generate markedly stable, spontaneous Ca2+ oscillation in the astrocytic leaflet. These on-going oscillations appear when NCX operates either in the forward or reverse direction. We conjecture that intrinsic NCX activity may play a prominent role in the generation of astrocytic Ca2+ oscillations.
Collapse
|
16
|
Calcium Signaling in Neurons and Glial Cells: Role of Cav1 channels. Neuroscience 2019; 421:95-111. [DOI: 10.1016/j.neuroscience.2019.09.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 11/18/2022]
|
17
|
Vardjan N, Parpura V, Verkhratsky A, Zorec R. Gliocrine System: Astroglia as Secretory Cells of the CNS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:93-115. [PMID: 31583585 DOI: 10.1007/978-981-13-9913-8_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Astrocytes are secretory cells, actively participating in cell-to-cell communication in the central nervous system (CNS). They sense signaling molecules in the extracellular space, around the nearby synapses and also those released at much farther locations in the CNS, by their cell surface receptors, get excited to then release their own signaling molecules. This contributes to the brain information processing, based on diffusion within the extracellular space around the synapses and on convection when locales relatively far away from the release sites are involved. These functions resemble secretion from endocrine cells, therefore astrocytes were termed to be a part of the gliocrine system in 2015. An important mechanism, by which astrocytes release signaling molecules is the merger of the vesicle membrane with the plasmalemma, i.e., exocytosis. Signaling molecules stored in astroglial secretory vesicles can be discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This leads to a fusion pore formation, a channel that must widen to allow the exit of the Vesiclal cargo. Upon complete vesicle membrane fusion, this process also integrates other proteins, such as receptors, transporters and channels into the plasma membrane, determining astroglial surface signaling landscape. Vesiclal cargo, together with the whole vesicle can also exit astrocytes by the fusion of multivesicular bodies with the plasma membrane (exosomes) or by budding of vesicles (ectosomes) from the plasma membrane into the extracellular space. These astroglia-derived extracellular vesicles can later interact with various target cells. Here, the characteristics of four types of astroglial secretory vesicles: synaptic-like microvesicles, dense-core vesicles, secretory lysosomes, and extracellular vesicles, are discussed. Then machinery for vesicle-based exocytosis, second messenger regulation and the kinetics of exocytotic vesicle content discharge or release of extracellular vesicles are considered. In comparison to rapidly responsive, electrically excitable neurons, the receptor-mediated cytosolic excitability-mediated astroglial exocytotic vesicle-based transmitter release is a relatively slow process.
Collapse
Affiliation(s)
- Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia. .,Celica Biomedical, 1000, Ljubljana, Slovenia.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.,Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia. .,Celica Biomedical, 1000, Ljubljana, Slovenia.
| |
Collapse
|
18
|
Semyanov A. Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium 2019; 78:15-25. [DOI: 10.1016/j.ceca.2018.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/16/2018] [Accepted: 12/16/2018] [Indexed: 12/22/2022]
|
19
|
Ishii T, Warabi E, Mann GE. Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopaminergic neurons from ferroptosis. Free Radic Biol Med 2019; 133:169-178. [PMID: 30189266 DOI: 10.1016/j.freeradbiomed.2018.09.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/20/2018] [Accepted: 09/01/2018] [Indexed: 01/19/2023]
Abstract
Astrocyte-neuron interactions protect neurons from iron-mediated toxicity. As dopamine can be metabolized to reactive quinones, dopaminergic neurons are susceptible to oxidative damage and ferroptosis-like induced cell death. Detoxification enzymes are required to protect neurons. Brain-derived neurotrophic factor (BDNF) plays a key role in the regulation of redox sensitive transcription factor Nrf2 in astrocytes and metabolic cooperation between astrocytes and neurons. This article reviews the importance of BDNF and astrocyte-neuron interactions in the protection of neurons against oxidative damages in rodent brains. We previously proposed that BDNF activates Nrf2 via the truncated TrkB.T1 and p75NTR receptor complex in astrocytes. Stimulation by BDNF generates the signaling molecule ceramide, which activates PKCζ leading to induction of the CK2-Nrf2 signaling axis. As a cell clock regulates p75NTR expression, we suggested that BDNF effectively activates Nrf2 in astrocytes during the rest phase. In contrast, neurons express both TrkB.FL and TrkB.T1, and TrkB.FL tyrosine kinase activity inhibits p75NTR-dependent ceramide generation and internalizes p75NTR. Therefore, BDNF may not effectively activate Nrf2 in neurons. Notably, neurons only weakly activate detoxification and antioxidant enzymes/proteins via the Nrf2-ARE signaling axis. Thus, astrocytes may provide relevant transcripts and/or proteins to neurons via microparticles/exosomes increasing neuronal resistance to oxidative stress. Circadian increases in the levels of circulating glucocorticoids may further facilitate material transfer from astrocytes to neurons via the stimulation of pannexin 1 channels-P2X7R signaling pathway in astrocytes at the beginning of the active phase. Dysregulation of astrocyte-neuron interactions could therefore contribute to the pathogenesis of neurodegenerative diseases including Parkinson's disease.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Giovanni E Mann
- School of Cardiovascular Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| |
Collapse
|
20
|
Stenovec M, Božić M, Pirnat S, Zorec R. Astroglial Mechanisms of Ketamine Action Include Reduced Mobility of Kir4.1-Carrying Vesicles. Neurochem Res 2019; 45:109-121. [PMID: 30793220 DOI: 10.1007/s11064-019-02744-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
The finding that ketamine, an anaesthetic, can elicit a rapid antidepressant effect at low doses that lasts for weeks in patients with depression is arguably a major achievement in psychiatry in the last decades. However, the mechanisms of action are unclear. The glutamatergic hypothesis of ketamine action posits that ketamine is a N-methyl-D-aspartate receptor (NMDAR) antagonist modulating downstream cytoplasmic events in neurons. In addition to targeting NMDARs in synaptic transmission, ketamine may modulate the function of astroglia, key homeostasis-providing cells in the central nervous system, also playing a role in many neurologic diseases including depression, which affects to 20% of the population globally. We first review studies on astroglia revealing that (sub)anaesthetic doses of ketamine attenuate stimulus-evoked calcium signalling, a process of astroglial cytoplasmic excitability, regulating the exocytotic release of gliosignalling molecules. Then we address how ketamine alters the fusion pore activity of secretory vesicles, and how ketamine affects extracellular glutamate and K+ homeostasis, both considered pivotal in depression. Finally, we also provide evidence indicating reduced cytoplasmic mobility of astroglial vesicles carrying the inward rectifying potassium channel (Kir4.1), which may regulate the density of Kir4.1 at the plasma membrane. These results indicate that the astroglial capacity to control extracellular K+ concentration may be altered by ketamine and thus indirectly affect the action potential firing of neurons, as is the case in lateral habenula in a rat disease model of depression. Hence, ketamine-altered functions of astroglia extend beyond neuronal NMDAR antagonism and provide a basis for its antidepressant action through glia.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica BIOMEDICAL, Tehnološki park 24, 1000, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Mićo Božić
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Samo Pirnat
- Celica BIOMEDICAL, Tehnološki park 24, 1000, Ljubljana, Slovenia
| | - Robert Zorec
- Celica BIOMEDICAL, Tehnološki park 24, 1000, Ljubljana, Slovenia. .,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
21
|
Zhou Z, Ikegaya Y, Koyama R. The Astrocytic cAMP Pathway in Health and Disease. Int J Mol Sci 2019; 20:E779. [PMID: 30759771 PMCID: PMC6386894 DOI: 10.3390/ijms20030779] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are major glial cells that play critical roles in brain homeostasis. Abnormalities in astrocytic functions can lead to brain disorders. Astrocytes also respond to injury and disease through gliosis and immune activation, which can be both protective and detrimental. Thus, it is essential to elucidate the function of astrocytes in order to understand the physiology of the brain to develop therapeutic strategies against brain diseases. Cyclic adenosine monophosphate (cAMP) is a major second messenger that triggers various downstream cellular machinery in a wide variety of cells. The functions of astrocytes have also been suggested as being regulated by cAMP. Here, we summarize the possible roles of cAMP signaling in regulating the functions of astrocytes. Specifically, we introduce the ways in which cAMP pathways are involved in astrocyte functions, including (1) energy supply, (2) maintenance of the extracellular environment, (3) immune response, and (4) a potential role as a provider of trophic factors, and we discuss how these cAMP-regulated processes can affect brain functions in health and disease.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
- Center for Information and Neural Networks, Suita City, Osaka 565-0871, Japan.
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
22
|
Fingolimod Suppresses the Proinflammatory Status of Interferon-γ-Activated Cultured Rat Astrocytes. Mol Neurobiol 2019; 56:5971-5986. [PMID: 30701416 DOI: 10.1007/s12035-019-1481-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Astroglia, the primary homeostatic cells of the central nervous system, play an important role in neuroinflammation. They act as facultative immunocompetent antigen-presenting cells (APCs), expressing major histocompatibility complex (MHC) class II antigens upon activation with interferon (IFN)-γ and possibly other proinflammatory cytokines that are upregulated in disease states, including multiple sclerosis (MS). We characterized the anti-inflammatory effects of fingolimod (FTY720), an established drug for MS, and its phosphorylated metabolite (FTY720-P) in IFN-γ-activated cultured rat astrocytes. The expression of MHC class II compartments, β2 adrenergic receptor (ADR-β2), and nuclear factor kappa-light-chain enhancer of activated B cells subunit p65 (NF-κB p65) was quantified in immunofluorescence images acquired by laser scanning confocal microscopy. In addition, MHC class II-enriched endocytotic vesicles were labeled by fluorescent dextran and their mobility analyzed in astrocytes subjected to different treatments. FTY720 and FTY720-P treatment significantly reduced the number of IFN-γ-induced MHC class II compartments and substantially increased ADR-β2 expression, which is otherwise small or absent in astrocytes in MS. These effects could be partially attributed to the observed decrease in NF-κB p65 expression, because the NF-κB signaling cascade is activated in inflammatory processes. We also found attenuated trafficking and secretion from dextran-labeled endo-/lysosomes that may hinder efficient delivery of MHC class II molecules to the plasma membrane. Our data suggest that FTY720 and FTY720-P at submicromolar concentrations mediate anti-inflammatory effects on astrocytes by suppressing their action as APCs, which may further downregulate the inflammatory process in the brain, constituting the therapeutic effect of fingolimod in MS.
Collapse
|
23
|
Scofield MD. Exploring the Role of Astroglial Glutamate Release and Association With Synapses in Neuronal Function and Behavior. Biol Psychiatry 2018; 84:778-786. [PMID: 29258653 PMCID: PMC5948108 DOI: 10.1016/j.biopsych.2017.10.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 12/25/2022]
Abstract
Astrocytes are stellate cells whose appearance can resemble a pointed star, especially when visualizing glial fibrillary acidic protein, a canonical marker for astrocytes. Accordingly, there is a commonly made connection between the points of light that shine in the night sky and the diffuse and abundant cells that buffer ions and provide support for neurons. An exceptional amount of function has been attributed to, negated for, and potentially reaffirmed for these cells, especially regarding their ability to release neuroactive molecules and influence synaptic plasticity. This makes the precise role of astrocytes in tuning neural communication seem difficult to grasp. However, data from animal models of addiction demonstrate that a variety of drug-induced molecular adaptations responsible for relapse vulnerability take place in astrocyte systems that regulate glutamate uptake and release. These findings highlight astrocytes as a critical component of the neural systems responsible for addiction, serving as a key component of the plasticity responsible for relapse and drug seeking. Here I assemble recent findings that utilize genetic tools to selectively manipulate or measure flux of internal calcium in astrocytes, focusing on G protein-coupled receptor-mediated mobilization of calcium and the induction of glutamate release. Further, I compile evidence regarding astrocyte glutamate release as well as astrocyte association with synapses with respect to the impact of these cellular phenomena in shaping synaptic transmission. I also place these findings in the context of the previous studies of Scofield et al., who explored the role of astrocytes in the nucleus accumbens in the neural mechanisms underlying cocaine seeking.
Collapse
Affiliation(s)
- Michael D. Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425 USA,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425 USA
| |
Collapse
|
24
|
Abstract
Astrocytes, the neural homeostatic cells, play a key role in the information processing in the central nervous system. They express multiple receptors which respond to a number of chemical messengers and get excited as evidenced by an increase in second messengers in short and delayed time domains. Astrocytes secrete numerous neuroactive agents and mount various homeostatic responses. These signal integrating functions are key factors of neuropathology (better termed astroneuropathology): they provide for neuroprotection through both homeostatic support and astroglial reactivity; failure in astroglial defensive or supporting capabilities facilitates evolution of neurological disorders.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia.
| | - Robert Zorec
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Zaloška cesta 4, SI-1000, Ljubljana, Slovenia; Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
25
|
Horvat A, Vardjan N. Astroglial cAMP signalling in space and time. Neurosci Lett 2018; 689:5-10. [PMID: 29908259 DOI: 10.1016/j.neulet.2018.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 01/14/2023]
Abstract
To maintain a high level of specificity and normal cell function, the cyclic adenosine monophosphate (cAMP) pathway is tightly regulated in space and time. Recent advances in cAMP reporter technology have provided insights into spatio-temporal characteristics of cAMP signalling in individual living cells, including astrocytes. Astrocytes are glial cells in the central nervous system with many homeostatic functions. In contrast to neurons, astrocytes are electrically silent, but, in response to extracellular stimuli through activation of surface receptors, they can increase intracellular levels of secondary messengers, e.g. Ca2+ and cAMP. This enables them to communicate with neighbouring cells, such as neurons and endothelial cells of blood vessels. The dynamics of receptor-mediated Ca2+ signalling in astrocytes has been extensively studied in the past in contrast to cAMP signalling. Here, we present the first insights into the temporal dynamics of cAMP signalling in living astrocytes, which revealed that cAMP signals in astrocytes exhibit tonic dynamics and are slower than Ca2+ signals with phasic dynamics. We debate on the heterogeneity of basal cAMP levels in astrocytes and how hypotonicity-induced astrocyte swelling affects temporal dynamics of cAMP signalling. Understanding the spatio-temporal characteristics of cAMP signalling in astrocytes is of extreme importance because cAMP governs many important cellular processes and any malfunctions may lead to pathology.
Collapse
Affiliation(s)
- Anemari Horvat
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
26
|
Kreft M, Jorgačevski J, Stenovec M, Zorec R. Ångstrom-size exocytotic fusion pore: Implications for pituitary hormone secretion. Mol Cell Endocrinol 2018; 463:65-71. [PMID: 28457949 DOI: 10.1016/j.mce.2017.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023]
Abstract
In the past, vesicle content release was thought to occur immediately and completely after triggering of exocytosis. However, vesicles may merge with the plasma membrane to form an Ångstrom diameter fusion pore that prevents the exit of secretions from the vesicle lumen. The advantage of such a narrow pore is to minimize the delay between the trigger and the release. Instead of stimulating a sequence of processes, leading to vesicle merger with the plasma membrane and a formation of a fusion pore, the stimulus only widens the pre-established fusion pore. The fusion pore may be stable and may exhibit repetitive opening of the vesicle lumen to the cell exterior accompanied by a content discharge. Such release of vesicle content is partial (subquantal), and depends on fusion pore open time, diameter and the diffusibility of the cargo. Such transient mode of fusion pore opening was not confirmed until the development of the membrane capacitance patch-clamp technique, which enables high-resolution measurement of changes in membrane surface area. It allows millisecond dwell-time measurements of fusion pores with subnanometer diameters. Currently, the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) proteins are considered to be key entities in end-stage exocytosis, and the SNARE complex assembly/disassembly may regulate the fusion pore. Moreover, lipids or other membrane constituents with anisotropic (non-axisymmetric) geometry may also favour the establishment of stable narrow fusion pores, if positioned in the neck of the fusion pore.
Collapse
Affiliation(s)
- Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia; Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
27
|
Montes de Oca Balderas P, Montes de Oca Balderas H. Synaptic neuron-astrocyte communication is supported by an order of magnitude analysis of inositol tris-phosphate diffusion at the nanoscale in a model of peri-synaptic astrocyte projection. BMC BIOPHYSICS 2018; 11:3. [PMID: 29456837 PMCID: PMC5809920 DOI: 10.1186/s13628-018-0043-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/30/2018] [Indexed: 12/13/2022]
Abstract
Background Astrocytes were conceived for decades only as supporting cells of the brain. However, the observation of Ca2+ waves in astrocyte synctitia, their neurotransmitter receptor expression and gliotransmitter secretion suggested a role in information handling, conception that has some controversies. Synaptic Neuron-Astrocyte metabotropic communication mediated by Inositol tris-phosphate (SN-AmcIP3) is supported by different reports. However, some models contradict this idea and Ca2+ stores are 1000 ± 325 nm apart from the Postsynaptic Density in the Perisynaptic Astrocyte Projections (PAP’s), suggesting that SN-AmcIP3 is extrasynaptic. However, this assumption does not consider IP3 Diffusion Coefficient (Dab), that activates IP3 Receptor (IP3R) releasing Ca2+ from intracellular stores. Results In this work we idealized a model of a PAP (PAPm) to perform an order of magnitude analysis of IP3 diffusion using a transient mass diffusion model. This model shows that IP3 forms a concentration gradient along the PAPm that reaches the steady state in milliseconds, three orders of magnitude before IP3 degradation. The model predicts that IP3 concentration near the Ca2+ stores may activate IP3R, depending upon Phospholipase C (PLC) number and activity. Moreover, the PAPm supports that IP3 and extracellular Ca2+ entry synergize to promote global Ca2+ transients. Conclusion The model presented here indicates that Ca2+ stores position in PAP’s does not limit SN-AmcIP3. Electronic supplementary material The online version of this article (10.1186/s13628-018-0043-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pavel Montes de Oca Balderas
- Unit of Dynamic Neurobiology, Neurochemistry Deprtment Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur #3877, Col. La Fama, C.P. 14269 Ciudad de México, Mexico
| | - Horacio Montes de Oca Balderas
- Unit of Dynamic Neurobiology, Neurochemistry Deprtment Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur #3877, Col. La Fama, C.P. 14269 Ciudad de México, Mexico
| |
Collapse
|
28
|
Papouin T, Dunphy J, Tolman M, Foley JC, Haydon PG. Astrocytic control of synaptic function. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0154. [PMID: 28093548 DOI: 10.1098/rstb.2016.0154] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2016] [Indexed: 12/19/2022] Open
Abstract
Astrocytes intimately interact with synapses, both morphologically and, as evidenced in the past 20 years, at the functional level. Ultrathin astrocytic processes contact and sometimes enwrap the synaptic elements, sense synaptic transmission and shape or alter the synaptic signal by releasing signalling molecules. Yet, the consequences of such interactions in terms of information processing in the brain remain very elusive. This is largely due to two major constraints: (i) the exquisitely complex, dynamic and ultrathin nature of distal astrocytic processes that renders their investigation highly challenging and (ii) our lack of understanding of how information is encoded by local and global fluctuations of intracellular calcium concentrations in astrocytes. Here, we will review the existing anatomical and functional evidence of local interactions between astrocytes and synapses, and how it underlies a role for astrocytes in the computation of synaptic information.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Thomas Papouin
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| | - Jaclyn Dunphy
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| | - Michaela Tolman
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| | - Jeannine C Foley
- Neurobiology Department, Harvard Medical School, Boston, MA 02115, USA
| | - Philip G Haydon
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
29
|
Bilodeau MS, Leiter JC. Angiotensin 1-7 in the rostro-ventrolateral medulla increases blood pressure and splanchnic sympathetic nerve activity in anesthetized rats. Respir Physiol Neurobiol 2017; 247:103-111. [PMID: 28993263 DOI: 10.1016/j.resp.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/05/2023]
Abstract
Angiotensin 1-7 (ANG-(1-7)), a derivative of angiotensin I or II, is involved in the propagation of sympathetic output to the heart and vasculature, and the receptor for ANG-(1-7), the Mas receptor, is expressed on astrocytes in the rostral ventrolateral medulla (RVLM). We recorded blood pressure (BP) and splanchnic sympathetic nerve activity (SSNA) before and after focal injection of ANG-(1-7) into the RVLM of rats. Unilateral injection of ANG-(1-7) into the RVLM, acting through the Mas receptor, increased SSNA and BP, and glutamate receptor antagonists, CNQX and D-AP5, partially reduced the ANG-(1-7) effect. ATP is often co-released with glutamate, and blocking ATP with PPADS also reduced the pressor response to microinjection of ANG-(1-7) within the RVLM. The effects of ANG-(1-7) were blocked by the MAS receptor antagonist, A-779 (which had no consistent effect on blood pressure or sympathetic nerve activity when injected on its own). We conclude that astrocytes in the RVLM participate in central, angiotensin-dependent regulation of blood pressure and sympathetic nerve activity, and the Mas receptor, when activated by ANG-(1-7), elicits the release of the gliotransmitters, glutamate and ATP. These gliotransmitters then cause an increase in sympathetic nerve activity and blood pressure by interacting with AMPA/kainate and P2X receptors in the RVLM.
Collapse
Affiliation(s)
- Mark S Bilodeau
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, United States
| | - J C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, United States.
| |
Collapse
|
30
|
Sardinha VM, Guerra-Gomes S, Caetano I, Tavares G, Martins M, Reis JS, Correia JS, Teixeira-Castro A, Pinto L, Sousa N, Oliveira JF. Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function. Glia 2017; 65:1944-1960. [PMID: 28885722 DOI: 10.1002/glia.23205] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/14/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
Abstract
Astrocytes interact with neurons at the cellular level through modulation of synaptic formation, maturation, and function, but the impact of such interaction into behavior remains unclear. Here, we studied the dominant negative SNARE (dnSNARE) mouse model to dissect the role of astrocyte-derived signaling in corticolimbic circuits, with implications for cognitive processing. We found that the blockade of gliotransmitter release in astrocytes triggers a critical desynchronization of neural theta oscillations between dorsal hippocampus and prefrontal cortex. Moreover, we found a strong cognitive impairment in tasks depending on this network. Importantly, the supplementation with d-serine completely restores hippocampal-prefrontal theta synchronization and rescues the spatial memory and long-term memory of dnSNARE mice. We provide here novel evidence of long distance network modulation by astrocytes, with direct implications to cognitive function.
Collapse
Affiliation(s)
- Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Guerra-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Caetano
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gabriela Tavares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuella Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Santos Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,DIGARC, Polytechnic Institute of Cávado and Ave, Barcelos 4750-810, Portugal
| |
Collapse
|
31
|
Papouin T, Dunphy JM, Tolman M, Dineley KT, Haydon PG. Septal Cholinergic Neuromodulation Tunes the Astrocyte-Dependent Gating of Hippocampal NMDA Receptors to Wakefulness. Neuron 2017; 94:840-854.e7. [PMID: 28479102 PMCID: PMC5484087 DOI: 10.1016/j.neuron.2017.04.021] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022]
Abstract
The activation of the N-methyl D-aspartate receptor (NMDAR) is controlled by a glutamate-binding site and a distinct, independently regulated, co-agonist-binding site. In most brain regions, the NMDAR co-agonist is the astrocyte-derived gliotransmitter D-serine. We found that D-serine levels oscillate in mouse hippocampus as a function of wakefulness, in vitro and in vivo. This causes a full saturation of the NMDAR co-agonist site in the dark (active) phase that dissipates to sub-saturating levels during the light (sleep) phase, and influences learning performance throughout the day. We demonstrate that hippocampal astrocytes sense the wakefulness-dependent activity of septal cholinergic fibers through the α7-nicotinic acetylcholine receptor (α7nAChR), whose activation drives D-serine release. We conclude that astrocytes tune the gating of synaptic NMDARs to the vigilance state and demonstrate that this is directly relevant to schizophrenia, a disorder characterized by NMDAR and cholinergic hypofunctions. Indeed, bypassing cholinergic activity with a clinically tested α7nAChR agonist successfully enhances NMDAR activation. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Thomas Papouin
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jaclyn M Dunphy
- Neuroscience Program, Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Michaela Tolman
- Neuroscience Program, Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Kelly T Dineley
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
32
|
Jorgačevski J, Potokar M, Kreft M, Guček A, Mothet JP, Zorec R. Astrocytic Vesicle-based Exocytosis in Cultures and Acutely Isolated Hippocampal Rodent Slices. J Neurosci Res 2017; 95:2152-2158. [PMID: 28370180 DOI: 10.1002/jnr.24051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/02/2017] [Accepted: 02/22/2017] [Indexed: 01/05/2023]
Abstract
Astrocytes are excitable neural cells that contribute to brain information processing via bidirectional communication with neurons. This involves the release of gliosignaling molecules that affect synapses patterning and activity. Mechanisms mediating the release of these molecules likely consist of non-vesicular and vesicular-based mechanisms. It is the vesicle-based regulated exocytosis that is an evolutionary more complex process. It is well established that the release of gliosignaling molecules has profound effects on information processing in different brain regions (e.g., hippocampal astrocytes contribute to long-term potentiation [LTP]), which has traditionally been considered as one of the cellular mechanisms underlying learning and memory. However, the paradigm of vesicle-based regulated release of gliosignaling molecules from astrocytes is still far from being unanimously accepted. One of the most important questions is to what extent can the conclusions obtained from cultured astrocytes be translated to in vivo conditions. Here, we overview the properties of vesicle mobility and their fusion with the plasma membrane in cultured astrocytes and compare these parameters to those recorded in astrocytes from acute brain hippocampal slices. The results from both experimental models are similar, which validates experiments on isolated astrocytes and further supports arguments in favor of in vivo vesicle-based exocytotic release of gliosignaling molecules. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.,Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.,Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.,Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia.,Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Alenka Guček
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Jean-Pierre Mothet
- Team Gliotransmission and Synaptopathies, Aix-Marseille Université, CNRS, CRN2M UMR7286, Marseille, France
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.,Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia
| |
Collapse
|
33
|
Astrocytic Pathological Calcium Homeostasis and Impaired Vesicle Trafficking in Neurodegeneration. Int J Mol Sci 2017; 18:ijms18020358. [PMID: 28208745 PMCID: PMC5343893 DOI: 10.3390/ijms18020358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 02/08/2023] Open
Abstract
Although the central nervous system (CNS) consists of highly heterogeneous populations of neurones and glial cells, clustered into diverse anatomical regions with specific functions, there are some conditions, including alertness, awareness and attention that require simultaneous, coordinated and spatially homogeneous activity within a large area of the brain. During such events, the brain, representing only about two percent of body mass, but consuming one fifth of body glucose at rest, needs additional energy to be produced. How simultaneous energy procurement in a relatively extended area of the brain takes place is poorly understood. This mechanism is likely to be impaired in neurodegeneration, for example in Alzheimer’s disease, the hallmark of which is brain hypometabolism. Astrocytes, the main neural cell type producing and storing glycogen, a form of energy in the brain, also hold the key to metabolic and homeostatic support in the central nervous system and are impaired in neurodegeneration, contributing to the slow decline of excitation-energy coupling in the brain. Many mechanisms are affected, including cell-to-cell signalling. An important question is how changes in cellular signalling, a process taking place in a rather short time domain, contribute to the neurodegeneration that develops over decades. In this review we focus initially on the slow dynamics of Alzheimer’s disease, and on the activity of locus coeruleus, a brainstem nucleus involved in arousal. Subsequently, we overview much faster processes of vesicle traffic and cytosolic calcium dynamics, both of which shape the signalling landscape of astrocyte-neurone communication in health and neurodegeneration.
Collapse
|
34
|
Heller JP, Michaluk P, Sugao K, Rusakov DA. Probing nano-organization of astroglia with multi-color super-resolution microscopy. J Neurosci Res 2017; 95:2159-2171. [PMID: 28151556 DOI: 10.1002/jnr.24026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/12/2016] [Accepted: 12/28/2016] [Indexed: 01/04/2023]
Abstract
Astroglia are essential for brain development, homeostasis, and metabolic support. They also contribute actively to the formation and regulation of synaptic circuits, by successfully handling, integrating, and propagating physiological signals of neural networks. The latter occurs mainly by engaging a versatile mechanism of internal Ca2+ fluctuations and regenerative waves prompting targeted release of signaling molecules into the extracellular space. Astroglia also show substantial structural plasticity associated with age- and use-dependent changes in neural circuitry. However, the underlying cellular mechanisms are poorly understood, mainly because of the extraordinary complex morphology of astroglial compartments on the nanoscopic scale. This complexity largely prevents direct experimental access to astroglial processes, most of which are beyond the diffraction limit of optical microscopy. Here we employed super-resolution microscopy (direct stochastic optical reconstruction microscopy; dSTORM), to visualize astroglial organization on the nanoscale, in culture and in thin brain slices, as an initial step to understand the structural basis of astrocytic nano-physiology. We were able to follow nanoscopic morphology of GFAP-enriched astrocytes, which adapt a flattened shape in culture and a sponge-like structure in situ, with GFAP fibers of varied diameters. We also visualized nanoscopic astrocytic processes using the ubiquitous cytosolic astrocyte marker proteins S100β and glutamine synthetase. Finally, we overexpressed and imaged membrane-targeted pHluorin and lymphocyte-specific protein tyrosine kinase (N-terminal domain) -green fluorescent protein (lck-GFP), to better understand the molecular cascades underlying some common astroglia-targeted fluorescence imaging techniques. The results provide novel, albeit initial, insights into the cellular organization of astroglia on the nanoscale, paving the way for function-specific studies. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Janosch P Heller
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Queen Square House, London WC1N 3BG, United Kingdom
| | - Piotr Michaluk
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Queen Square House, London WC1N 3BG, United Kingdom
| | - Kohtaroh Sugao
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Queen Square House, London WC1N 3BG, United Kingdom.,Molecular Pathophysiology Research, Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Tokyo, 104-8356, Japan
| | - Dmitri A Rusakov
- UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, Queen Square House, London WC1N 3BG, United Kingdom
| |
Collapse
|
35
|
Bohmbach K, Schwarz MK, Schoch S, Henneberger C. The structural and functional evidence for vesicular release from astrocytes in situ. Brain Res Bull 2017; 136:65-75. [PMID: 28122264 DOI: 10.1016/j.brainresbull.2017.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
The concept of the tripartite synapse states that bi-directional signalling between perisynaptic astrocyte processes, presynaptic axonal boutons and postsynaptic neuronal structures defines the properties of synaptic information processing. Ca2+-dependent vesicular release from astrocytes, as one of the mechanisms of astrocyte-neuron communication, has attracted particular attention but has also been the subject of intense debate. In neurons, regulated vesicular release is a strongly coordinated process. It requires a complex release machinery comprised of many individual components ranging from vesicular neurotransmitter transporters and soluble NSF attachment protein receptors (SNARE) proteins to Ca2+-sensors and the proteins that spatially and temporally control exocytosis of synaptic vesicles. If astrocytes employ similar mechanisms to release neurotransmitters is less well understood. The aim of this review is therefore to discuss recent experimental evidence that sheds light on the central structural components responsible for vesicular release from astrocytes in situ.
Collapse
Affiliation(s)
- Kirsten Bohmbach
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.
| | - Martin K Schwarz
- Department of Epileptology, University of Bonn Medical School, Bonn, Germany
| | - Susanne Schoch
- Institute of Neuropathology, University of Bonn Medical School, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
36
|
Sherwood MW, Arizono M, Hisatsune C, Bannai H, Ebisui E, Sherwood JL, Panatier A, Oliet SHR, Mikoshiba K. Astrocytic IP 3 Rs: Contribution to Ca 2+ signalling and hippocampal LTP. Glia 2017; 65:502-513. [PMID: 28063222 DOI: 10.1002/glia.23107] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022]
Abstract
Astrocytes regulate hippocampal synaptic plasticity by the Ca2+ dependent release of the N-methyl d-aspartate receptor (NMDAR) co-agonist d-serine. Previous evidence indicated that d-serine release would be regulated by the intracellular Ca2+ release channel IP3 receptor (IP3 R), however, genetic deletion of IP3 R2, the putative astrocytic IP3 R subtype, had no impact on synaptic plasticity or transmission. Although IP3 R2 is widely believed to be the only functional IP3 R in astrocytes, three IP3 R subtypes (1, 2, and 3) have been identified in vertebrates. Therefore, to better understand gliotransmission, we investigated the functionality of IP3 R and the contribution of the three IP3 R subtypes to Ca2+ signalling. As a proxy for gliotransmission, we found that long-term potentiation (LTP) was impaired by dialyzing astrocytes with the broad IP3 R blocker heparin, and rescued by exogenous d-serine, indicating that astrocytic IP3 Rs regulate d-serine release. To explore which IP3 R subtypes are functional in astrocytes, we used pharmacology and two-photon Ca2+ imaging of hippocampal slices from transgenic mice (IP3 R2-/- and IP3 R2-/- ;3-/- ). This approach revealed that underneath IP3 R2-mediated global Ca2+ events are an overlooked class of IP3 R-mediated local events, occurring in astroglial processes. Notably, multiple IP3 Rs were recruited by high frequency stimulation of the Schaffer collaterals, a classical LTP induction protocol. Together, these findings show the dependence of LTP and gliotransmission on Ca2+ release by astrocytic IP3 Rs. GLIA 2017;65:502-513.
Collapse
Affiliation(s)
- Mark William Sherwood
- INSERM U1215, Neurocentre Magendie, Bordeaux, 33077, France.,Université de Bordeaux, Bordeaux, 33077, France.,Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Misa Arizono
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Chihiro Hisatsune
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroko Bannai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602, Japan
| | - Etsuko Ebisui
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - John Lawrence Sherwood
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Aude Panatier
- INSERM U1215, Neurocentre Magendie, Bordeaux, 33077, France.,Université de Bordeaux, Bordeaux, 33077, France
| | | | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
37
|
Guček A, Jorgačevski J, Singh P, Geisler C, Lisjak M, Vardjan N, Kreft M, Egner A, Zorec R. Dominant negative SNARE peptides stabilize the fusion pore in a narrow, release-unproductive state. Cell Mol Life Sci 2016; 73:3719-31. [PMID: 27056575 PMCID: PMC11108528 DOI: 10.1007/s00018-016-2213-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/05/2016] [Accepted: 03/29/2016] [Indexed: 01/18/2023]
Abstract
Key support for vesicle-based release of gliotransmitters comes from studies of transgenic mice with astrocyte-specific expression of a dominant-negative domain of synaptobrevin 2 protein (dnSNARE). To determine how this peptide affects exocytosis, we used super-resolution stimulated emission depletion microscopy and structured illumination microscopy to study the anatomy of single vesicles in astrocytes. Smaller vesicles contained amino acid and peptidergic transmitters and larger vesicles contained ATP. Discrete increases in membrane capacitance, indicating single-vesicle fusion, revealed that astrocyte stimulation increases the frequency of predominantly transient fusion events in smaller vesicles, whereas larger vesicles transitioned to full fusion. To determine whether this reflects a lower density of SNARE proteins in larger vesicles, we treated astrocytes with botulinum neurotoxins D and E, which reduced exocytotic events of both vesicle types. dnSNARE peptide stabilized the fusion-pore diameter to narrow, release-unproductive diameters in both vesicle types, regardless of vesicle diameter.
Collapse
Affiliation(s)
- Alenka Guček
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
- Celica BIOMEDICAL, 1000, Ljubljana, Slovenia
| | - Priyanka Singh
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Claudia Geisler
- Department of Optical Nanoscopy, Laser-Laboratory Göttingen e.V., 37077, Göttingen, Germany
| | - Marjeta Lisjak
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
- Celica BIOMEDICAL, 1000, Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
- Celica BIOMEDICAL, 1000, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Alexander Egner
- Department of Optical Nanoscopy, Laser-Laboratory Göttingen e.V., 37077, Göttingen, Germany
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia.
- Celica BIOMEDICAL, 1000, Ljubljana, Slovenia.
| |
Collapse
|
38
|
Terni B, López-Murcia FJ, Llobet A. Role of neuron-glia interactions in developmental synapse elimination. Brain Res Bull 2016; 129:74-81. [PMID: 27601093 DOI: 10.1016/j.brainresbull.2016.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 11/16/2022]
Abstract
During the embryonic development of the nervous system there is a massive formation of synapses. However, the exuberant connectivity present after birth must be pruned during postnatal growth to optimize the function of neuronal circuits. Whilst glial cells play a fundamental role in the formation of early synaptic contacts, their contribution to developmental modifications of established synapses is not well understood. The present review aims to highlight the various roles of glia in the developmental refinement of embryonic synaptic connectivity. We summarize recent evidences linking secretory abilities of glial cells to the disassembly of synaptic contacts that are complementary of a well-established phagocytic role. Considering a theoretical framework, it is discussed how release of glial molecules could be relevant to the developmental refinement of synaptic connectivity. Finally, we propose a three-stage model of synapse elimination in which neurons and glia are functionally associated to timely eliminate synapses.
Collapse
Affiliation(s)
- Beatrice Terni
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francisco José López-Murcia
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Artur Llobet
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
39
|
Parpura V, Sekler I, Fern R. Plasmalemmal and mitochondrial Na+-Ca2+exchange in neuroglia. Glia 2016; 64:1646-54. [DOI: 10.1002/glia.22975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/07/2016] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology; Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham; Birmingham Alabama
| | - Israel Sekler
- Department of Physiology, Faculty of Health Science; Ben-Gurion University; Ben-Guion Av 84105 POB 653
| | - Robert Fern
- Peninsular School of Medicine and Dentistry; University of Plymouth; Plymouth PL6 8BU United Kingdom
| |
Collapse
|
40
|
Thorn P, Zorec R, Rettig J, Keating DJ. Exocytosis in non-neuronal cells. J Neurochem 2016; 137:849-59. [PMID: 26938142 DOI: 10.1111/jnc.13602] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/02/2016] [Accepted: 03/01/2016] [Indexed: 12/18/2022]
Abstract
Exocytosis is the process by which stored neurotransmitters and hormones are released via the fusion of secretory vesicles with the plasma membrane. It is a dynamic, rapid and spatially restricted process involving multiple steps including vesicle trafficking, tethering, docking, priming and fusion. For many years great steps have been undertaken in our understanding of how exocytosis occurs in different cell types, with significant focus being placed on synaptic release and neurotransmission. However, this process of exocytosis is an essential component of cell signalling throughout the body and underpins a diverse array of essential physiological pathways. Many similarities exist between different cell types with regard to key aspects of the exocytosis pathway, such as the need for Ca(2+) to trigger it or the involvement of members of the N-ethyl maleimide-sensitive fusion protein attachment protein receptor protein families. However, it is also equally clear that non-neuronal cells have acquired highly specialized mechanisms to control the release of their own unique chemical messengers. This review will focus on several important non-neuronal cell types and discuss what we know about the mechanisms they use to control exocytosis and how their specialized output is relevant to the physiological role of each individual cell type. These include enteroendocrine cells, pancreatic β cells, astrocytes, lactotrophs and cytotoxic T lymphocytes. Non-neuronal cells have acquired highly specialized mechanisms to control the release of unique chemical messengers, such as polarised fusion of insulin granules in pancreatic β cells targeted towards the vasculature (top). This review discusses mechanisms used in several important non-neuronal cell types to control exocytosis, and the relevance of intermediate vesicle fusion pore states (bottom) and their specialized output to the physiological role of each cell type. These include enteroendocrine cells, pancreatic β cells, astrocytes, lactotrophs and cytotoxic T lymphocytes. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015).
Collapse
Affiliation(s)
- Peter Thorn
- Charles Perkins Centre, John Hopkins Drive, The University of Sydney, Camperdown, NSW, Australia
| | - Robert Zorec
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| |
Collapse
|
41
|
Kreft M, Jorgačevski J, Vardjan N, Zorec R. Unproductive exocytosis. J Neurochem 2016; 137:880-9. [DOI: 10.1111/jnc.13561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
- Department of Biology; Biotechnical Faculty; University of Ljubljana; Ljubljana Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
| |
Collapse
|
42
|
Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R. Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 2016; 35:239-57. [PMID: 26758544 DOI: 10.15252/embj.201592705] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022] Open
Abstract
Astrocytes are housekeepers of the central nervous system (CNS) and are important for CNS development, homeostasis and defence. They communicate with neurones and other glial cells through the release of signalling molecules. Astrocytes secrete a wide array of classic neurotransmitters, neuromodulators and hormones, as well as metabolic, trophic and plastic factors, all of which contribute to the gliocrine system. The release of neuroactive substances from astrocytes occurs through several distinct pathways that include diffusion through plasmalemmal channels, translocation by multiple transporters and regulated exocytosis. As in other eukaryotic cells, exocytotic secretion from astrocytes involves divergent secretory organelles (synaptic-like microvesicles, dense-core vesicles, lysosomes, exosomes and ectosomes), which differ in size, origin, cargo, membrane composition, dynamics and functions. In this review, we summarize the features and functions of secretory organelles in astrocytes. We focus on the biogenesis and trafficking of secretory organelles and on the regulation of the exocytotic secretory system in the context of healthy and diseased astrocytes.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE Basque Foundation for Science, Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny Novgorod, Russia Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Michela Matteoli
- CNR Institute of Neuroscience, Milano, Italy Humanitas Research Hospital, Rozzano, Italy
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jean-Pierre Mothet
- Team Gliotransmission & Synaptopathies, Aix-Marseille University CNRS, CRN2M UMR7286, Marseille, France
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia Celica BIOMEDICAL, Ljubljana, Slovenia
| |
Collapse
|