1
|
Ling LJ, Zhou Q, Zhang F, Lei WJ, Li MD, Lu JW, Wang WS, Sun K, Ying H. The dual role of glucocorticoid regeneration in inflammation at parturition. Front Immunol 2024; 15:1459489. [PMID: 39290694 PMCID: PMC11405189 DOI: 10.3389/fimmu.2024.1459489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Fetal membrane inflammation is an integral event of parturition. However, excessive pro-inflammatory cytokines can impose threats to the fetus. Coincidentally, the fetal membranes express abundant 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), which generates biologically active cortisol to promote labor through induction of prostaglandin synthesis. Given the well-recognized anti-inflammatory actions of glucocorticoids, we hypothesized that cortisol regenerated in the fetal membranes might be engaged in restraining fetus-hazardous pro-inflammatory cytokine production for the safety of the fetus, while reserving pro-labor effect on prostaglandin synthesis to ensure safe delivery of the fetus. Methods The hypothesis was examined in human amnion tissue and cultured primary human amnion fibroblasts as well as a mouse model. Results 11β-HSD1 was significantly increased in the human amnion in infection-induced preterm birth. Studies in human amnion fibroblasts showed that lipopolysaccharide (LPS) induced 11β-HSD1 expression synergistically with cortisol. Cortisol completely blocked NF-κB-mediated pro-inflammatory cytokine expression by LPS, but STAT3-mediated cyclooxygenase 2 expression, a crucial prostaglandin synthetic enzyme, remained. Further studies in pregnant mice showed that corticosterone did not delay LPS-induced preterm birth, but alleviated LPS-induced fetal organ damages, along with increased 11β-HSD1, cyclooxygenase 2, and decreased pro-inflammatory cytokine in the fetal membranes. Discussion There is a feed-forward cortisol regeneration in the fetal membranes in infection, and cortisol regenerated restrains pro-inflammatory cytokine expression, while reserves pro-labor effect on prostaglandin synthesis. This dual role of cortisol regeneration can prevent excessive pro-inflammatory cytokine production, while ensure in-time delivery for the safety of the fetus.
Collapse
Affiliation(s)
- Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Qiong Zhou
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| |
Collapse
|
2
|
Niemeyer CS, Frietze S, Coughlan C, Lewis SWR, Bustos Lopez S, Saviola AJ, Hansen KC, Medina EM, Hassell JE, Kogut S, Traina-Dorge V, Nagel MA, Bruce KD, Restrepo D, Mahalingam R, Bubak AN. Suppression of the host antiviral response by non-infectious varicella zoster virus extracellular vesicles. J Virol 2024; 98:e0084824. [PMID: 39051773 PMCID: PMC11334484 DOI: 10.1128/jvi.00848-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Varicella zoster virus (VZV) reactivates from ganglionic sensory neurons to produce herpes zoster (shingles) in a unilateral dermatomal distribution, typically in the thoracic region. Reactivation not only heightens the risk of stroke and other neurological complications but also increases susceptibility to co-infections with various viral and bacterial pathogens at sites distant from the original infection. The mechanism by which VZV results in complications remote from the initial foci remains unclear. Small extracellular vesicles (sEVs) are membranous signaling structures that can deliver proteins and nucleic acids to modify the function of distal cells and tissues during normal physiological conditions. Although viruses have been documented to exploit the sEV machinery to propagate infection, the role of non-infectious sEVs released from VZV-infected neurons in viral spread and disease has not been studied. Using multi-omic approaches, we characterized the content of sEVs released from VZV-infected human sensory neurons (VZV sEVs). One viral protein was detected (immediate-early 62), as well as numerous immunosuppressive and vascular disease-associated host proteins and miRNAs that were absent in sEVs from uninfected neurons. Notably, VZV sEVs are non-infectious yet transcriptionally altered primary human cells, suppressing the antiviral type 1 interferon response and promoting neuroinvasion of a secondary pathogen in vivo. These results challenge our understanding of VZV infection, proposing that the virus may contribute to distant pathologies through non-infectious sEVs beyond the primary infection site. Furthermore, this study provides a previously undescribed immune-evasion mechanism induced by VZV that highlights the significance of non-infectious sEVs in early VZV pathogenesis. IMPORTANCE Varicella zoster virus (VZV) is a ubiquitous human virus that predominantly spreads by direct cell-cell contact and requires efficient and immediate host immune evasion strategies to spread. The mechanisms of immune evasion prior to virion entry have not been fully elucidated and represent a critical gap in our complete understanding of VZV pathogenesis. This study describes a previously unreported antiviral evasion strategy employed by VZV through the exploitation of the infected host cell's small extracellular vesicle (sEV) machinery. These findings suggest that non-infectious VZV sEVs could travel throughout the body, affecting cells remote from the site of infection and challenging the current understanding of VZV clinical disease, which has focused on local effects and direct infection. The significance of these sEVs in early VZV pathogenesis highlights the importance of further investigating their role in viral spread and secondary disease development to reduce systemic complications following VZV infections.
Collapse
Affiliation(s)
- Christy S. Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Serena W. R. Lewis
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sara Bustos Lopez
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eva M. Medina
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James E. Hassell
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sophie Kogut
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Vicki Traina-Dorge
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Maria A. Nagel
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew N. Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Yassaghi Y, Nazerian Y, Ghasemi M, Nazerian A, Sayehmiri F, Perry G, Gholami Pourbadie H. Microglial modulation as a therapeutic strategy in Alzheimer's disease: Focus on microglial preconditioning approaches. J Cell Mol Med 2024; 28:e18554. [PMID: 39103747 DOI: 10.1111/jcmm.18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive disease that causes an impairment of learning and memory. Despite the highly complex pathogenesis of AD, amyloid beta (Aβ) deposition and neurofibrillary tangles (NFTs) formation are the main hallmarks of AD. Neuroinflammation also has a crucial role in the development of AD. As the central nervous system's innate immune cells, microglial cells are activated in AD and induce inflammation by producing pro-inflammatory mediators. However, microglial activation is not always deleterious. M2-activated microglial cells are considered anti-inflammatory cells, which develop neuroprotection. Various approaches are proposed for managing AD, yet no effective therapy is available for this disorder. Considering the potential protective role of M2 microglia in neurodegenerative disorders and the improvement of these disorders by preconditioning approaches, it can be suggested that preconditioning of microglial cells may be beneficial for managing AD progression. Therefore, this study review microglial preconditioning approaches for preventing and improving AD.
Collapse
Affiliation(s)
- Younes Yassaghi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Ghasemi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - George Perry
- Department of Neuroscience, Development, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
4
|
Shui X, Chen J, Fu Z, Zhu H, Tao H, Li Z. Microglia in Ischemic Stroke: Pathogenesis Insights and Therapeutic Challenges. J Inflamm Res 2024; 17:3335-3352. [PMID: 38800598 PMCID: PMC11128258 DOI: 10.2147/jir.s461795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemic stroke is the most common type of stroke, which is the main cause of death and disability on a global scale. As the primary immune cells in the brain that are crucial for preserving homeostasis of the central nervous system microenvironment, microglia have been found to exhibit dual or even multiple effects at different stages of ischemic stroke. The anti-inflammatory polarization of microglia and release of neurotrophic factors may provide benefits by promoting neurological recovery at the lesion in the early phase after ischemic stroke. However, the pro-inflammatory polarization of microglia and secretion of inflammatory factors in the later phase of injury may exacerbate the ischemic lesion, suggesting the therapeutic potential of modulating the balance of microglial polarization to predispose them to anti-inflammatory transformation in ischemic stroke. Microglia-mediated signaling crosstalk with other cells may also be key to improving functional outcomes following ischemic stroke. Thus, this review provides an overview of microglial functions and responses under physiological and ischemic stroke conditions, including microglial activation, polarization, and interactions with other cells. We focus on approaches that promote anti-inflammatory polarization of microglia, inhibit microglial activation, and enhance beneficial cell-to-cell interactions. These targets may hold promise for the creation of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xinyao Shui
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jingsong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Ziyue Fu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Haoyue Zhu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Hualin Tao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
5
|
Malerba F, Florio R, Arisi I, Zecca C, Dell’Abate MT, Logroscino G, Cattaneo A. Cerebrospinal fluid level of proNGF as potential diagnostic biomarker in patients with frontotemporal dementia. Front Aging Neurosci 2024; 15:1298307. [PMID: 38332808 PMCID: PMC10850263 DOI: 10.3389/fnagi.2023.1298307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
Introduction Frontotemporal dementia (FTD) is an extremely heterogeneous and complex neurodegenerative disease, exhibiting different phenotypes, genetic backgrounds, and pathological states. Due to these characteristics, and to the fact that clinical symptoms overlap with those of other neurodegenerative diseases or psychiatric disorders, the diagnosis based only on the clinical evaluation is very difficult. The currently used biomarkers help in the clinical diagnosis, but are insufficient and do not cover all the clinical needs. Methods By the means of a new immunoassay, we have measured and analyzed the proNGF levels in 43 cerebrospinal fluids (CSF) from FTD patients, and compared the results to those obtained in CSF from 84 Alzheimer's disease (AD), 15 subjective memory complaints (SMC) and 13 control subjects. Results A statistically significant difference between proNGF levels in FTD compared to AD, SMC and controls subjects was found. The statistical models reveal that proNGF determination increases the accuracy of FTD diagnosis, if added to the clinically validated CSF biomarkers. Discussion These results suggest that proNGF could be included in a panel of biomarkers to improve the FTD diagnosis.
Collapse
Affiliation(s)
- Francesca Malerba
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | - Rita Florio
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | - Ivan Arisi
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
- Institute of Translational Pharmacology – National Research Council (IFT-CNR), Rome, Italy
| | - Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari “Aldo Moro” at “Pia Fondazione Card G. Panico” Hospital Tricase, Lecce, Italy
| | - Maria Teresa Dell’Abate
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari “Aldo Moro” at “Pia Fondazione Card G. Panico” Hospital Tricase, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari “Aldo Moro” at “Pia Fondazione Card G. Panico” Hospital Tricase, Lecce, Italy
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonino Cattaneo
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
- BIO@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
6
|
Malvaso A, Gatti A, Negro G, Calatozzolo C, Medici V, Poloni TE. Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells 2023; 12:2824. [PMID: 38132144 PMCID: PMC10742050 DOI: 10.3390/cells12242824] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the "sentinels" of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer's disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aβ, pTAU, and damaged synapses, being pivotal in AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Malvaso
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Alberto Gatti
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Giulia Negro
- Department of Neurology, University of Milano Bicocca, 20126 Milan, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Valentina Medici
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| |
Collapse
|
7
|
Eugenín J, Eugenín-von Bernhardi L, von Bernhardi R. Age-dependent changes on fractalkine forms and their contribution to neurodegenerative diseases. Front Mol Neurosci 2023; 16:1249320. [PMID: 37818457 PMCID: PMC10561274 DOI: 10.3389/fnmol.2023.1249320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The chemokine fractalkine (FKN, CX3CL1), a member of the CX3C subfamily, contributes to neuron-glia interaction and the regulation of microglial cell activation. Fractalkine is expressed by neurons as a membrane-bound protein (mCX3CL1) that can be cleaved by extracellular proteases generating several sCX3CL1 forms. sCX3CL1, containing the chemokine domain, and mCX3CL1 have high affinity by their unique receptor (CX3CR1) which, physiologically, is only found in microglia, a resident immune cell of the CNS. The activation of CX3CR1contributes to survival and maturation of the neural network during development, glutamatergic synaptic transmission, synaptic plasticity, cognition, neuropathic pain, and inflammatory regulation in the adult brain. Indeed, the various CX3CL1 forms appear in some cases to serve an anti-inflammatory role of microglia, whereas in others, they have a pro-inflammatory role, aggravating neurological disorders. In the last decade, evidence points to the fact that sCX3CL1 and mCX3CL1 exhibit selective and differential effects on their targets. Thus, the balance in their level and activity will impact on neuron-microglia interaction. This review is focused on the description of factors determining the emergence of distinct fractalkine forms, their age-dependent changes, and how they contribute to neuroinflammation and neurodegenerative diseases. Changes in the balance among various fractalkine forms may be one of the mechanisms on which converge aging, chronic CNS inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | | | - Rommy von Bernhardi
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
8
|
Zhang X, Chen F, Sun M, Wu N, Liu B, Yi X, Ge R, Fan X. Microglia in the context of multiple sclerosis. Front Neurol 2023; 14:1157287. [PMID: 37360338 PMCID: PMC10287974 DOI: 10.3389/fneur.2023.1157287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease that commonly results in nontraumatic disability in young adults. The characteristic pathological hallmark of MS is damage to myelin, oligodendrocytes, and axons. Microglia provide continuous surveillance in the CNS microenvironment and initiate defensive mechanisms to protect CNS tissue. Additionally, microglia participate in neurogenesis, synaptic refinement, and myelin pruning through the expression and release of different signaling factors. Continuous activation of microglia has been implicated in neurodegenerative disorders. We first review the lifetime of microglia, including the origin, differentiation, development, and function of microglia. We then discuss microglia participate in the whole processes of remyelination and demyelination, microglial phenotypes in MS, and the NF-κB/PI3K-AKT signaling pathway in microglia. The damage to regulatory signaling pathways may change the homeostasis of microglia, which would accelerate the progression of MS.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Fang Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Mingyue Sun
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Nan Wu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Xiangming Yi
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Ruli Ge
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
9
|
Lau V, Ramer L, Tremblay MÈ. An aging, pathology burden, and glial senescence build-up hypothesis for late onset Alzheimer's disease. Nat Commun 2023; 14:1670. [PMID: 36966157 PMCID: PMC10039917 DOI: 10.1038/s41467-023-37304-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/07/2023] [Indexed: 03/27/2023] Open
Abstract
Alzheimer's disease (AD) predominantly occurs as a late onset (LOAD) form involving neurodegeneration and cognitive decline with progressive memory loss. Risk factors that include aging promote accumulation of AD pathologies, such as amyloid-beta and tau aggregates, as well as inflammation and oxidative stress. Homeostatic glial states regulate and suppress pathology buildup; inflammatory states exacerbate pathology by releasing pro-inflammatory cytokines. Multiple stresses likely induce glial senescence, which could decrease supportive functions and reinforce inflammation. In this perspective, we hypothesize that aging first drives AD pathology burden, whereafter AD pathology putatively induces glial senescence in LOAD. We hypothesize that increasing glial senescence, particularly local senescent microglia accumulation, sustains and drives perpetuating buildup and spread of AD pathologies, glial aging, and further senescence. We predict that increasing glial senescence, particularly local senescent microglia accumulation, also transitions individuals from healthy cognition into mild cognitive impairment and LOAD diagnosis. These pathophysiological underpinnings may centrally contribute to LOAD onset, but require further mechanistic investigation.
Collapse
Affiliation(s)
- Victor Lau
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Leanne Ramer
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada.
- The Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
| |
Collapse
|
10
|
Neumann P, Lenz DE, Streit WJ, Bechmann I. Is microglial dystrophy a form of cellular senescence? An analysis of senescence markers in the aged human brain. Glia 2023; 71:377-390. [PMID: 36286188 DOI: 10.1002/glia.24282] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 01/08/2023]
Abstract
Aging can cause morphological transformation in human microglia indicative of cell senescence, termed microglial dystrophy. However, cellular senescence is characterized by additional changes, such as an irregular cell cycle arrest, and a variety of metabolic and molecular changes including a senescence-associated secretory phenotype, dysfunction of degradation mechanisms, and altered DNA damage response. Here, we tested whether dystrophic microglia display customary markers of cell senescence by performing double and triple staining in sections of the temporal lobe and brain stem from 14 humans. We found that markers related to oxidative damage, such as upregulation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), hemeoxygenase-1 (HO-1), and y-H2AX, as well as inclusion of lipofuscin, do not or only exceptionally colocalize with dystrophic microglia. Further, we did not observe a decline in lamin B1 around nuclear laminae in either dystrophic or ramified microglia within the same microscopic field. Only ferritin expression, which is known to increase with aging in CNS microglia, was frequently observed in dystrophic, but rarely in ramified microglial cells. We conclude that neither dystrophic nor ramified microglia in human brain exhibit significant expression of conventional senescence markers associated with oxidative stress, and that ferritin is the dominant immunophenotypic change related to microglial aging. We suggest that multiple pathogenic mechanisms other than those driving cellular senescence contribute to dystrophic transformation of microglia.
Collapse
Affiliation(s)
| | - Dana E Lenz
- Institute of Anatomy, Universität Leipzig, Leipzig, Germany
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ingo Bechmann
- Institute of Anatomy, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
St-Pierre MK, Šimončičová E, Carrier M, Tremblay MÈ. Microglia in Human Postmortem Brain Samples: Quantitative Ultrastructural Analysis of Scanning Electron Microscopy Images. Methods Mol Biol 2023; 2561:63-85. [PMID: 36399265 DOI: 10.1007/978-1-0716-2655-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this protocol, we describe the specific steps required to prepare human postmortem brain samples for ultrastructural microglial analysis. A detailed procedure is provided to improve the ultrastructural quality of the samples, using aldehyde fixatives followed by immunoperoxidase staining of allograft inflammatory factor 1 (AIF1, also known as IBA1), a marker of myeloid cells, and cluster of differentiation 68 (CD68), a marker of phagolysosomal activity. Additionally, we describe an osmium-thiocarbohydrazide-osmium (OTO) post-fixation method that preserves and increases the contrast of cellular membranes in human postmortem brain samples, as well as the steps necessary to acquire scanning electron microscopy (SEM) images of microglial cell bodies. In the last section, we cover the quantitative analysis of various microglial cytoplasmic organelles and their interactions with other parenchymal elements.
Collapse
Affiliation(s)
- Marie-Kim St-Pierre
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Neuroscience Graduate Program, University of Victoria, Victoria, Canada
| | - Micaël Carrier
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, Canada.
| |
Collapse
|
12
|
Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis. Cells 2022; 11:cells11233768. [PMID: 36497029 PMCID: PMC9737582 DOI: 10.3390/cells11233768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Current therapeutics targeting chronic phases of multiple sclerosis (MS) are considerably limited in reversing the neural damage resulting from repeated inflammation and demyelination insults in the multi-focal lesions. This inflammation is propagated by the activation of microglia, the endogenous immune cell aiding in the central nervous system homeostasis. Activated microglia may transition into polarized phenotypes; namely, the classically activated proinflammatory phenotype (previously categorized as M1) and the alternatively activated anti-inflammatory phenotype (previously, M2). These transitional microglial phenotypes are dynamic states, existing as a continuum. Shifting microglial polarization to an anti-inflammatory status may be a potential therapeutic strategy that can be harnessed to limit neuroinflammation and further neurodegeneration in MS. Our research has observed that the obstruction of signaling by inhibitory myelin proteins such as myelin-associated inhibitory factor, Nogo-A, with its receptor (NgR), can regulate microglial cell function and activity in pre-clinical animal studies. Our review explores the microglial role and polarization in MS pathology. Additionally, the potential therapeutics of targeting Nogo-A/NgR cellular mechanisms on microglia migration, polarization and phagocytosis for neurorepair in MS and other demyelination diseases will be discussed.
Collapse
|
13
|
Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, Amit I, Audinat E, Bechmann I, Bennett M, Bennett F, Bessis A, Biber K, Bilbo S, Blurton-Jones M, Boddeke E, Brites D, Brône B, Brown GC, Butovsky O, Carson MJ, Castellano B, Colonna M, Cowley SA, Cunningham C, Davalos D, De Jager PL, de Strooper B, Denes A, Eggen BJL, Eyo U, Galea E, Garel S, Ginhoux F, Glass CK, Gokce O, Gomez-Nicola D, González B, Gordon S, Graeber MB, Greenhalgh AD, Gressens P, Greter M, Gutmann DH, Haass C, Heneka MT, Heppner FL, Hong S, Hume DA, Jung S, Kettenmann H, Kipnis J, Koyama R, Lemke G, Lynch M, Majewska A, Malcangio M, Malm T, Mancuso R, Masuda T, Matteoli M, McColl BW, Miron VE, Molofsky AV, Monje M, Mracsko E, Nadjar A, Neher JJ, Neniskyte U, Neumann H, Noda M, Peng B, Peri F, Perry VH, Popovich PG, Pridans C, Priller J, Prinz M, Ragozzino D, Ransohoff RM, Salter MW, Schaefer A, Schafer DP, Schwartz M, Simons M, Smith CJ, Streit WJ, Tay TL, Tsai LH, Verkhratsky A, von Bernhardi R, Wake H, Wittamer V, Wolf SA, Wu LJ, Wyss-Coray T. Microglia states and nomenclature: A field at its crossroads. Neuron 2022; 110:3458-3483. [PMID: 36327895 PMCID: PMC9999291 DOI: 10.1016/j.neuron.2022.10.020] [Citation(s) in RCA: 619] [Impact Index Per Article: 309.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper.
Collapse
Affiliation(s)
- Rosa C Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Lab, Leioa, Spain; Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain; Ikerbasque Foundation, Bilbao, Spain.
| | - Beth Stevens
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, (HHMI), MD, USA; Boston Children's Hospital, Boston, MA, USA.
| | - Marie-Eve Tremblay
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Bahareh Ajami
- Department of Molecular Microbiology & Immunology, Department of Behavioral and Systems Neuroscience, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Etienne Audinat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Mariko Bennett
- Children's Hospital of Philadelphia, Department of Psychiatry, Department of Pediatrics, Division of Child Neurology, Philadelphia, PA, USA
| | - Frederick Bennett
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Alain Bessis
- École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Knut Biber
- Neuroscience Discovery, AbbVie Deutschland GmbH, Ludwigshafen, Germany
| | - Staci Bilbo
- Departments of Psychology & Neuroscience, Neurobiology, and Cell Biology, Duke University, Durham, NC, USA
| | - Mathew Blurton-Jones
- Center for the Neurobiology of Learning and Memory, UCI MIND, University of California, Irvine, CA, USA
| | - Erik Boddeke
- Department Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Bert Brône
- BIOMED Research Institute, University of Hasselt, Hasselt, Belgium
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Monica J Carson
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Bernardo Castellano
- Unidad de Histología Medica, Depto. Biología Celular, Fisiología e Inmunología, Barcelona, Spain; Instituto de Neurociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Republic of Ireland; Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Bart de Strooper
- UK Dementia Research Institute at University College London, London, UK; Vlaams Instituut voor Biotechnologie at Katholieke Universiteit Leuven, Leuven, Belgium
| | - Adam Denes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, University of Groningen, Groningen, the Netherlands; University Medical Center Groningen, Groningen, the Netherlands
| | - Ukpong Eyo
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica, Unitat de Bioquímica, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Sonia Garel
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Paris, France; College de France, Paris, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | | | - Ozgun Gokce
- Institute for Stroke and Dementia Research, Ludwig Maximillian's University of Munich, Munich, Germany
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Berta González
- Unidad de Histología Medica, Depto. Biología Celular, Fisiología e Inmunología and Instituto de Neurociencias, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Siamon Gordon
- Chang Gung University, Taoyuan City, Taiwan (ROC); Sir William Dunn School of Pathology, Oxford, UK
| | - Manuel B Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew D Greenhalgh
- Lydia Becker Institute of Immunology and Inflammation, Geoffrey Jefferson Brain Research Centre, Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian Haass
- Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität Munchen, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy); Munich, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Soyon Hong
- UK Dementia Research Institute at University College London, London, UK
| | - David A Hume
- Mater Research Institute-University of Queensland, Brisbane, QLD, Australia
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Helmut Kettenmann
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Greg Lemke
- MNL-L, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marina Lynch
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Ania Majewska
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tarja Malm
- University of Eastern Finland, Kuopio, Finland
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Takahiro Masuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | - Michela Matteoli
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - Barry W McColl
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Veronique E Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | | | - Michelle Monje
- Howard Hughes Medical Institute, (HHMI), MD, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Agnes Nadjar
- Neurocentre Magendie, University of Bordeaux, Bordeaux, France; Institut Universitaire de France (IUF), Paris, France
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Urte Neniskyte
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania; Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Institute of Mitochondrial Biology and Medicine of Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Francesca Peri
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - V Hugh Perry
- UK Dementia Research Institute, University College London, London, UK; School of Biological Sciences, University of Southampton, Southampton, UK
| | - Phillip G Popovich
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Clare Pridans
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, UK
| | - Josef Priller
- Department of Psychiatry & Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; Charité - Universitätsmedizin Berlin and DZNE, Berlin, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Michael W Salter
- Hospital for Sick Children, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Anne Schaefer
- Nash Family Department of Neuroscience, Center for Glial Biology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Max Planck Institute for Biology of Ageing, Koeln, Germany
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Cody J Smith
- Galvin Life Science Center, University of Notre Dame, Indianapolis, IN, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Tuan Leng Tay
- Faculty of Biology, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, Germany; Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany; Department of Biology, Boston University, Boston, MA, USA; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Li-Huei Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexei Verkhratsky
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Lab, Leioa, Spain; Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Valérie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Susanne A Wolf
- Charité Universitätsmedizin, Experimental Ophthalmology and Neuroimmunology, Berlin, Germany
| | - Long-Jun Wu
- Department of Neurology and Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Song L, Sun Q, Zheng H, Zhang Y, Wang Y, Liu S, Duan L. Roseburia hominis Alleviates Neuroinflammation via Short-Chain Fatty Acids through Histone Deacetylase Inhibition. Mol Nutr Food Res 2022; 66:e2200164. [PMID: 35819092 PMCID: PMC9787297 DOI: 10.1002/mnfr.202200164] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/04/2022] [Indexed: 12/30/2022]
Abstract
SCOPE The gut microbiota plays a prominent role in gut-brain interactions and gut dysbiosis is involved in neuroinflammation. However, specific probiotics targeting neuroinflammation need to be explored. In this study, the antineuroinflammatory effect of the potential probiotic Roseburia hominis (R. hominis) and its underlying mechanisms is investigated. METHODS AND RESULTS First, germ-free (GF) rats are orally treated with R. hominis. Microglial activation, proinflammatory cytokines, levels of short-chain fatty acids, depressive behaviors, and visceral sensitivity are assessed. Second, GF rats are treated with propionate or butyrate, and microglial activation, proinflammatory cytokines, histone deacetylase 1 (HDAC1), and histone H3 acetyl K9 (Ac-H3K9) are analyzed. The results show that R. hominis administration inhibits microglial activation, reduces the levels of IL-1α, INF-γ, and MCP-1 in the brain, and alleviates depressive behaviors and visceral hypersensitivity in GF rats. Moreover, the serum levels of propionate and butyrate are increased significantly in the R. hominis-treated group. Propionate or butyrate treatment reduces microglial activation, the levels of proinflammatory cytokines and HDAC1, and promotes the expression of Ac-H3K9 in the brain. CONCLUSION These findings suggest that R. hominis alleviates neuroinflammation by producing propionate and butyrate, which serve as HDAC inhibitors. This study provides a potential psychoprobiotic to reduce neuroinflammation.
Collapse
Affiliation(s)
- Lijin Song
- Department of GastroenterologyPeking University Third HospitalBeijing100191China
| | - Qinghua Sun
- Department of GastroenterologyPeking University Third HospitalBeijing100191China
| | - Haonan Zheng
- Department of GastroenterologyPeking University Third HospitalBeijing100191China
| | - Yiming Zhang
- Department of GastroenterologyPeking University Third HospitalBeijing100191China
| | - Yujing Wang
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Liping Duan
- Department of GastroenterologyPeking University Third HospitalBeijing100191China
| |
Collapse
|
15
|
Targeting Microglia in Alzheimer’s Disease: From Molecular Mechanisms to Potential Therapeutic Targets for Small Molecules. Molecules 2022; 27:molecules27134124. [PMID: 35807370 PMCID: PMC9268715 DOI: 10.3390/molecules27134124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a common, progressive, and devastating neurodegenerative disorder that mainly affects the elderly. Microglial dysregulation, amyloid-beta (Aβ) plaques, and intracellular neurofibrillary tangles play crucial roles in the pathogenesis of AD. In the brain, microglia play roles as immune cells to provide protection against virus injuries and diseases. They have significant contributions in the development of the brain, cognition, homeostasis of the brain, and plasticity. Multiple studies have confirmed that uncontrolled microglial function can result in impaired microglial mitophagy, induced Aβ accumulation and tau pathology, and a chronic neuroinflammatory environment. In the brain, most of the genes that are associated with AD risk are highly expressed by microglia. Although it was initially regarded that microglia reaction is incidental and induced by dystrophic neurites and Aβ plaques. Nonetheless, it has been reported by genome-wide association studies that most of the risk loci for AD are located in genes that are occasionally uniquely and highly expressed in microglia. This finding further suggests that microglia play significant roles in early AD stages and they be targeted for the development of novel therapeutics. In this review, we have summarized the molecular pathogenesis of AD, microglial activities in the adult brain, the role of microglia in the aging brain, and the role of microglia in AD. We have also particularly focused on the significance of targeting microglia for the treatment of AD.
Collapse
|
16
|
Yang Y, Wang L, Zhang C, Guo Y, Li J, Wu C, Jiao J, Zheng H. Ginsenoside Rg1 improves Alzheimer's disease by regulating oxidative stress, apoptosis, and neuroinflammation through Wnt/GSK-3β/β-catenin signaling pathway. Chem Biol Drug Des 2022; 99:884-896. [PMID: 35313087 DOI: 10.1111/cbdd.14041] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/11/2022] [Accepted: 03/05/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that can cause cognitive impairment. Ginsenoside Rg1 (Rg1) has a significant neuroprotective effect on animals with memory impairment. However, the mechanism of how Rg1 mediates the Wnt signaling pathway and improves cognitive function by regulating oxidative stress, apoptosis, and neuroinflammation is still unclear. In this study, the spatial memory ability of tree shrews was tested by Morris water maze, the expression levels of amyloid protein (Aβ1-42), ionized calcium-binding adapter molecule 1 (iba-1), nitrotyrosine (NT), and 8-hydroxyguanine (8-OHG) were detected by immunohistochemistry. Subsequently, the activity of catalase (CAT) and the glutathione peroxidase (GSH-Px) was, respectively, measured by the ammonium molybdate method and the 5,5'-dithiobis (2-nitrobenzoic acid). Furthermore, the malondialdehyde (MDA) concentration was determined by the thiobarbituric acid test. Finally, the expression levels of Beta-secretase (BACE1), superoxide dismutase (SOD), BCL2-Associated X (Bax), B-cell lymphoma-2 (Bcl-2), caspase-anti-apoptotic factor Cleaved-caspase-3 (Caspase-3), microtubule-associated proteins 2 (MAP2), Neuronal nuclear antigen (NeuN), as well as the phosphorylation of GSK-3β and β-catenin were detected by Western blot. This study implied that Rg1 reduced the phosphorylation of Tau protein, the deposition of Aβ1-42, and the expression of BACE1. It also showed that Rg1 increased the antioxidant activity of SOD, CAT, GPx, and instead reduced the oxidation products of NT, 8-OHG, and MDA, as wells as the inflammatory factor interleukin-1 and iba-1. It further showed that Rg1 increased the ratio of Bcl-2 to Bax and expression of neuronal markers MAP2 and NeuN, but instead reduced the expression of Caspase-3, GSK-3β, and β-catenin. In conclusion, by regulating the Wnt/GSK-3β/β-catenin signaling pathway, Rg1 of moderate and high dose could alleviate oxidative stress damage, improve neuroinflammation, protect neurons, finally improve the cognitive impairment of the AD tree shrew. This study provides theoretical basis for the Rg1 clinical application in AD.
Collapse
Affiliation(s)
- Yi Yang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Limei Wang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Caijun Zhang
- Experiment Center of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yuqian Guo
- Affiliated Hospital of Medical Sergeant School, Army Medical University, Shijiazhuang, China
| | - Jintao Li
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Chao Wu
- Department of Pharmacy, Hefei Ion Medical Center, Hefei, China
| | - Jianlin Jiao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hong Zheng
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| |
Collapse
|
17
|
Zhang Q, Li J, Weng L. Identification and Validation of Aging-Related Genes in Alzheimer’s Disease. Front Neurosci 2022; 16:905722. [PMID: 35615282 PMCID: PMC9124812 DOI: 10.3389/fnins.2022.905722] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
Aging is recognized as the key risk factor for Alzheimer’s disease (AD). This study aimed to identify and verify potential aging-related genes associated with AD using bioinformatics analysis. Aging-related differential expression genes (ARDEGs) were determined by the intersection of limma test, weighted correlation network analysis (WGCNA), and 1153 aging and senescence-associated genes. Potential biological functions and pathways of ARDEGs were determined by GO, KEGG, GSEA, and GSVA. Then, LASSO algorithm was used to identify the hub genes and the diagnostic ability of the five ARDEGs in discriminating AD from the healthy control samples. Further, the correlation between hub ARDEGs and clinical characteristics was explored. Finally, the expression level of the five ARDEGs was validated using other four GEO datasets and blood samples of patients with AD and healthy individuals. Five ARDEGs (GFAP, PDGFRB, PLOD1, MAP4K4, and NFKBIA) were obtained. For biological function analysis, aging, cellular senescence, and Ras protein signal transduction regulation were enriched. Diagnostic ability of the five ARDEGs in discriminating AD from the control samples demonstrated a favorable diagnostic value. Eventually, quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) validation test revealed that compared with healthy controls, the mRNA expression level of PDGFRB, PLOD1, MAP4K4, and NFKBIA were elevated in AD patients. In conclusion, this study identified four ARDEGs (PDGFRB, PLOD1, MAP4K4, and NFKBIA) associated with AD. They provide an insight into potential novel biomarkers for diagnosing AD and monitoring progression.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- *Correspondence: Ling Weng,
| |
Collapse
|
18
|
Zhou R, Qian S, Cho WCS, Zhou J, Jin C, Zhong Y, Wang J, Zhang X, Xu Z, Tian M, Chan LWC, Zhang H. Microbiota-microglia connections in age-related cognition decline. Aging Cell 2022; 21:e13599. [PMID: 35349746 PMCID: PMC9124309 DOI: 10.1111/acel.13599] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable process that all individuals experience, of which the extent differs among individuals. It has been recognized as the risk factor of neurodegenerative diseases by affecting gut microbiota compositions, microglia, and cognition abilities. Aging‐induced changes in gut microbiota compositions have a critical role in orchestrating the morphology and functions of microglia through the gut‐brain axis. Gut microbiota communicates with microglia by its secreted metabolites and neurotransmitters. This is highly associated with age‐related cognitive declines. Here, we review the main composition of microbiota in the aged individuals, outline the changes of the brain in age‐related cognitive decline from a neuroinflammation perspective, especially the changes of morphology and functions of microglia, discuss the crosstalk between microbiota and microglia in the aged brain and further highlight the role of microbiota‐microglia connections in neurodegenerative diseases (Alzheimer's disease and Parkinson's disease).
Collapse
Affiliation(s)
- Rui Zhou
- Department of Nuclear Medicine and Medical PET Center The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Shufang Qian
- Department of Nuclear Medicine and Medical PET Center The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China
| | - William C. S. Cho
- Department of Clinical Oncology Queen Elizabeth Hospital Hong Kong SAR China
| | - Jinyun Zhou
- Department of Nuclear Medicine and Medical PET Center The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China
| | - Chentao Jin
- Department of Nuclear Medicine and Medical PET Center The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China
| | - Yan Zhong
- Department of Nuclear Medicine and Medical PET Center The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China
| | - Jing Wang
- Department of Nuclear Medicine and Medical PET Center The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China
| | - Xiaohui Zhang
- Department of Nuclear Medicine and Medical PET Center The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China
| | - Zhoujiao Xu
- Department of Nuclear Medicine and Medical PET Center The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China
| | - Lawrence W. C. Chan
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China
- Key Laboratory for Biomedical Engineering of Ministry of Education Zhejiang University Hangzhou China
- The College of Biomedical Engineering and Instrument Science of Zhejiang University Hangzhou China
| |
Collapse
|
19
|
Rosmus DD, Lange C, Ludwig F, Ajami B, Wieghofer P. The Role of Osteopontin in Microglia Biology: Current Concepts and Future Perspectives. Biomedicines 2022; 10:biomedicines10040840. [PMID: 35453590 PMCID: PMC9027630 DOI: 10.3390/biomedicines10040840] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 12/14/2022] Open
Abstract
The innate immune landscape of the central nervous system (CNS), including the brain and the retina, consists of different myeloid cell populations with distinct tasks to fulfill. Whereas the CNS borders harbor extraparenchymal CNS-associated macrophages whose main duty is to build up a defense against invading pathogens and other damaging factors from the periphery, the resident immune cells of the CNS parenchyma and the retina, microglia, are highly dynamic cells with a plethora of functions during homeostasis and disease. Therefore, microglia are constantly sensing their environment and closely interacting with surrounding cells, which is in part mediated by soluble factors. One of these factors is Osteopontin (OPN), a multifunctional protein that is produced by different cell types in the CNS, including microglia, and is upregulated in neurodegenerative and neuroinflammatory conditions. In this review, we discuss the current literature about the interaction between microglia and OPN in homeostasis and several disease entities, including multiple sclerosis (MS), Alzheimer’s and cerebrovascular diseases (AD, CVD), amyotrophic lateral sclerosis (ALS), age-related macular degeneration (AMD) and diabetic retinopathy (DR), in the context of the molecular pathways involved in OPN signaling shaping the function of microglia. As nearly all CNS diseases are characterized by pathological alterations in microglial cells, accompanied by the disturbance of the homeostatic microglia phenotype, the emergence of disease-associated microglia (DAM) states and their interplay with factors shaping the DAM-signature, such as OPN, is of great interest for therapeutical interventions in the future.
Collapse
Affiliation(s)
| | - Clemens Lange
- Eye Center, Freiburg Medical Center, University of Freiburg, 79106 Freiburg, Germany; (C.L.); (F.L.)
- Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital, 48145 Muenster, Germany
| | - Franziska Ludwig
- Eye Center, Freiburg Medical Center, University of Freiburg, 79106 Freiburg, Germany; (C.L.); (F.L.)
| | - Bahareh Ajami
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Peter Wieghofer
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany;
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, Augsburg University, 86159 Augsburg, Germany
- Correspondence:
| |
Collapse
|
20
|
Qureshi YH, Berman DE, Marsh SE, Klein RL, Patel VM, Simoes S, Kannan S, Petsko GA, Stevens B, Small SA. The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's disease. Cell Rep 2022; 38:110262. [PMID: 35045281 PMCID: PMC8830374 DOI: 10.1016/j.celrep.2021.110262] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/14/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023] Open
Abstract
Disruption of retromer-dependent endosomal trafficking is considered pathogenic in late-onset Alzheimer's disease (AD). Here, to investigate this disruption in the intact brain, we turn to a genetic mouse model where the retromer core protein VPS35 is depleted in hippocampal neurons, and then we replete VPS35 using an optimized viral vector protocol. The VPS35 depletion-repletion studies strengthen the causal link between the neuronal retromer and AD-associated neuronal phenotypes, including the acceleration of amyloid precursor protein cleavage and the loss of synaptic glutamate receptors. Moreover, the studies show that the neuronal retromer can regulate a distinct, dystrophic, microglia morphology, phenotypic of hippocampal microglia in AD. Finally, the neuronal and, in part, the microglia responses to VPS35 depletion were found to occur independent of tau. Showing that the neuronal retromer can regulate AD-associated pathologies in two of AD's principal cell types strengthens the link, and clarifies the mechanism, between endosomal trafficking and late-onset sporadic AD.
Collapse
Affiliation(s)
- Yasir H Qureshi
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Diego E Berman
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Samuel E Marsh
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ronald L Klein
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Vivek M Patel
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Sabrina Simoes
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Suvarnambiga Kannan
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Gregory A Petsko
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Beth Stevens
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| | - Scott A Small
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| |
Collapse
|
21
|
Saeger HN, Olson DE. Psychedelic-inspired approaches for treating neurodegenerative disorders. J Neurochem 2021; 162:109-127. [PMID: 34816433 DOI: 10.1111/jnc.15544] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Psychedelics are increasingly being recognized for their potential to treat a wide range of brain disorders including depression, post-traumatic stress disorder (PTSD), and substance use disorder. Their broad therapeutic potential might result from an ability to rescue cortical atrophy common to many neuropsychiatric and neurodegenerative diseases by impacting neurotrophic factor gene expression, activating neuronal growth and survival mechanisms, and modulating the immune system. While the therapeutic potential of psychedelics has not yet been extended to neurodegenerative disorders, we provide evidence suggesting that approaches based on psychedelic science might prove useful for treating these diseases. The primary target of psychedelics, the 5-HT2A receptor, plays key roles in cortical neuron health and is dysregulated in Alzheimer's disease. Moreover, evidence suggests that psychedelics and related compounds could prove useful for treating the behavioral and psychological symptoms of dementia (BPSD). While more research is needed to probe the effects of psychedelics in models of neurodegenerative diseases, the robust effects of these compounds on structural and functional neuroplasticity and inflammation clearly warrant further investigation.
Collapse
Affiliation(s)
- Hannah N Saeger
- Pharmacology and Toxicology Graduate Group, University of California, Davis, Davis, California, USA
| | - David E Olson
- Department of Chemistry, University of California, Davis, Davis, California, USA.,Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA.,Center for Neuroscience, University of California, Davis, Davis, California, USA
| |
Collapse
|
22
|
Ackermans NL, Varghese M, Wicinski B, Torres J, De Gasperi R, Pryor D, Elder GA, Gama Sosa MA, Reidenberg JS, Williams TM, Hof PR. Unconventional animal models for traumatic brain injury and chronic traumatic encephalopathy. J Neurosci Res 2021; 99:2463-2477. [PMID: 34255876 PMCID: PMC8596618 DOI: 10.1002/jnr.24920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is one of the main causes of death worldwide. It is a complex injury that influences cellular physiology, causes neuronal cell death, and affects molecular pathways in the brain. This in turn can result in sensory, motor, and behavioral alterations that deeply impact the quality of life. Repetitive mild TBI can progress into chronic traumatic encephalopathy (CTE), a neurodegenerative condition linked to severe behavioral changes. While current animal models of TBI and CTE such as rodents, are useful to explore affected pathways, clinical findings therein have rarely translated into clinical applications, possibly because of the many morphofunctional differences between the model animals and humans. It is therefore important to complement these studies with alternative animal models that may better replicate the individuality of human TBI. Comparative studies in animals with naturally evolved brain protection such as bighorn sheep, woodpeckers, and whales, may provide preventive applications in humans. The advantages of an in-depth study of these unconventional animals are threefold. First, to increase knowledge of the often-understudied species in question; second, to improve common animal models based on the study of their extreme counterparts; and finally, to tap into a source of biological inspiration for comparative studies and translational applications in humans.
Collapse
Affiliation(s)
- Nicole L Ackermans
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Torres
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita De Gasperi
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Dylan Pryor
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Gregory A Elder
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Miguel A Gama Sosa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Joy S Reidenberg
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Terrie M Williams
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Augusto-Oliveira M, Arrifano GP, Delage CI, Tremblay MÈ, Crespo-Lopez ME, Verkhratsky A. Plasticity of microglia. Biol Rev Camb Philos Soc 2021; 97:217-250. [PMID: 34549510 DOI: 10.1111/brv.12797] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
Microglial cells are the scions of foetal macrophages which invade the neural tube early during embryogenesis. The nervous tissue environment instigates the phenotypic metamorphosis of foetal macrophages into idiosyncratic surveilling microglia, which are generally characterised by a small cell body and highly ramified motile processes that constantly scan the nervous tissue for signs of changes in homeostasis and allow microglia to perform crucial homeostatic functions. The surveilling microglial phenotype is evolutionarily conserved from early invertebrates to humans. Despite this evolutionary conservation, microglia show substantial heterogeneity in their gene and protein expression, as well as morphological appearance. These differences are age, region and context specific and reflect a high degree of plasticity underlying the life-long adaptation of microglia, supporting the exceptional adaptive capacity of the central nervous system. Microgliocytes are essential elements of cellular network formation and refinement in the developing nervous tissue. Several distinct patrolling modes of microglial processes contribute to the formation, modification, and pruning of synapses; to the support and protection of neurones through microglial-somatic junctions; and to the control of neuronal and axonal excitability by specific microglia-axonal contacts. In pathology, microglia undergo proliferation and reactive remodelling known as microgliosis, which is context dependent, yet represents an evolutionarily conserved defence response. Microgliosis results in the emergence of multiple disease and context-specific reactive states; in addition, neuropathology is associated with the appearance of specific protective or recovery microglial forms. In summary, the plasticity of microglia supports the development and functional activity of healthy nervous tissue and provides highly sophisticated defences against disease.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Charlotte Isabelle Delage
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec City, QC, G1V 4G2, Canada.,Neurology and Neurosurgery Department, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Bureau 4835, 1050 Avenue de la Médecine, Québec City, QC, G1V 0A6, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, U.K.,Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| |
Collapse
|
24
|
Lier J, Streit WJ, Bechmann I. Beyond Activation: Characterizing Microglial Functional Phenotypes. Cells 2021; 10:cells10092236. [PMID: 34571885 PMCID: PMC8464670 DOI: 10.3390/cells10092236] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Classically, the following three morphological states of microglia have been defined: ramified, amoeboid and phagocytic. While ramified cells were long regarded as “resting”, amoeboid and phagocytic microglia were viewed as “activated”. In aged human brains, a fourth, morphologically novel state has been described, i.e., dystrophic microglia, which are thought to be senescent cells. Since microglia are not replenished by blood-borne mononuclear cells under physiological circumstances, they seem to have an “expiration date” limiting their capacity to phagocytose and support neurons. Identifying factors that drive microglial aging may thus be helpful to delay the onset of neurodegenerative diseases, such as Alzheimer’s disease (AD). Recent progress in single-cell deep sequencing methods allowed for more refined differentiation and revealed regional-, age- and sex-dependent differences of the microglial population, and a growing number of studies demonstrate various expression profiles defining microglial subpopulations. Given the heterogeneity of pathologic states in the central nervous system, the need for accurately describing microglial morphology and expression patterns becomes increasingly important. Here, we review commonly used microglial markers and their fluctuations in expression in health and disease, with a focus on IBA1 low/negative microglia, which can be found in individuals with liver disease.
Collapse
Affiliation(s)
- Julia Lier
- Institute of Anatomy, University of Leipzig, 04109 Leipzig, Germany;
- Department of Neurology, University of Leipzig, 04109 Leipzig, Germany
- Correspondence:
| | - Wolfgang J. Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32611, USA;
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, 04109 Leipzig, Germany;
| |
Collapse
|
25
|
Tang W, Zhang L, Li Z. Long noncoding RNA LOC100911498 is a novel regulator of neuropathic pain in rats. Brain Behav 2021; 11:e01966. [PMID: 33949153 PMCID: PMC8413752 DOI: 10.1002/brb3.1966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Neuropathic pain (NP) is the most debilitating of all clinical pain syndromes and may be a consequence of dysfunction in the somatosensory nervous system. Unfortunately, the pathogenesis of NP is not fully understood yet and it cannot be cured totally. Long noncoding RNA (lncRNA) is a type of RNA molecule greater than 200 nucleotides, and dysregulated expression of lncRNAs play a critical role in the facilitation of NP. Previous study showed the expression level of LOC100911498 in the spinal cords of spared nerve injury (SNI) rats were increased. This research was aimed at exploring what role LOC100911498 plays in the pathophysiological process of NP. METHODS The mechanical withdrawal threshold (MWT) of rats was measured by the von Frey test. The expression levels of P2X4 receptor (P2X4R), ionized calcium-binding adaptor molecule 1 (Iba-1), p-p38 and brain-derived neurotrophic factor (BDNF) in spinal cords were detected, respectively. RESULTS Our results suggested that the level of LOC100911498 in SNI rats was markedly higher than that in the sham group; the MWT values in rats were treated with LOC100911498siRNA were increased, and the expression levels of P2X4R, Iba-1, p-p38 and BDNF in SNI+ LOC100911498siRNA group were reduced compared with those in the SNI group. CONCLUSION Our study indicated the effects lncRNA LOC100911498 siRNA exerted on NP were mediated by P2X4R on microglia in the spinal cords of rats. Further, LOC100911498 may be a novel positive regulator of NP by regulating the expression and function of the P2X4R.
Collapse
Affiliation(s)
- Wenxin Tang
- Department of Anaesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lufeng Zhang
- Department of Anaesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhisong Li
- Department of Anaesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Annexin A3 as a Marker Protein for Microglia in the Central Nervous System of Rats. Neural Plast 2021; 2021:5575090. [PMID: 34221002 PMCID: PMC8211522 DOI: 10.1155/2021/5575090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/21/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023] Open
Abstract
The parenchymal microglia possess different morphological characteristics in cerebral physiological and pathological conditions; thus, visualizing these cells is useful as a means of further investigating parenchymal microglial function. Annexin A3 (ANXA3) is expressed in microglia, but it is unknown whether it can be used as a marker protein for microglia and its physiological function. Here, we compared the distribution and morphology of parenchymal microglia labeled by ANXA3, cluster of differentiation 11b (CD11b), and ionized calcium-binding adaptor molecule 1 (Iba1) and measured the expression of ANXA3 in nonparenchymal macrophages (meningeal and perivascular macrophages). We also investigated the spatiotemporal expression of ANXA3, CD11b, and Iba1 in vivo and in vitro and the cellular function of ANXA3 in microglia. We demonstrated that ANXA3-positive cells were abundant and evenly distributed throughout the whole brain tissue and spinal cord of adult rats. The morphology and distribution of ANXA3-labeled microglia were quite similar to those labeled by the microglial-specific markers CD11b and Iba1 in the central nervous system (CNS). ANXA3 was expressed in the cytoplasm of microglia, and its expression was significantly increased in activated microglia. ANXA3 was almost undetectable in the nonparenchymal macrophages. Meanwhile, the protein and mRNA expression levels of ANXA3 in different regions of the CNS were different from those of CD11b and Iba1. Moreover, knockdown of ANXA3 inhibited the proliferation and migration of microglia, while overexpression of ANXA3 enhanced these activities. This study confirms that ANXA3 may be a novel marker for parenchymal microglia in the CNS of adult rats and enriches our understanding of ANXA3 from expression patterns to physiological function.
Collapse
|
27
|
Süß P, Schlachetzki JCM. Microglia in Alzheimer's Disease. Curr Alzheimer Res 2021; 17:29-43. [PMID: 32048973 DOI: 10.2174/1567205017666200212155234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is the most frequent neurodegenerative disorder. Although proteinaceous aggregates of extracellular Amyloid-β (Aβ) and intracellular hyperphosphorylated microtubule- associated tau have long been identified as characteristic neuropathological hallmarks of AD, a disease- modifying therapy against these targets has not been successful. An emerging concept is that microglia, the innate immune cells of the brain, are major players in AD pathogenesis. Microglia are longlived tissue-resident professional phagocytes that survey and rapidly respond to changes in their microenvironment. Subpopulations of microglia cluster around Aβ plaques and adopt a transcriptomic signature specifically linked to neurodegeneration. A plethora of molecules and pathways associated with microglia function and dysfunction has been identified as important players in mediating neurodegeneration. However, whether microglia exert either beneficial or detrimental effects in AD pathology may depend on the disease stage. In this review, we summarize the current knowledge about the stage-dependent role of microglia in AD, including recent insights from genetic and gene expression profiling studies as well as novel imaging techniques focusing on microglia in human AD pathology and AD mouse models.
Collapse
Affiliation(s)
- Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universitat, Erlangen- Nürnberg, Germany
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, United States
| |
Collapse
|
28
|
Paasila PJ, Fok SYY, Flores‐Rodriguez N, Sajjan S, Svahn AJ, Dennis CV, Holsinger RMD, Kril JJ, Becker TS, Banati RB, Sutherland GT, Graeber MB. Ground state depletion microscopy as a tool for studying microglia-synapse interactions. J Neurosci Res 2021; 99:1515-1532. [PMID: 33682204 PMCID: PMC8251743 DOI: 10.1002/jnr.24819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 01/09/2023]
Abstract
Ground state depletion followed by individual molecule return microscopy (GSDIM) has been used in the past to study the nanoscale distribution of protein co-localization in living cells. We now demonstrate the successful application of GSDIM to archival human brain tissue sections including from Alzheimer's disease cases as well as experimental tissue samples from mouse and zebrafish larvae. Presynaptic terminals and microglia and their cell processes were visualized at a resolution beyond diffraction-limited light microscopy, allowing clearer insights into their interactions in situ. The procedure described here offers time and cost savings compared to electron microscopy and opens the spectrum of molecular imaging using antibodies and super-resolution microscopy to the analysis of routine formalin-fixed paraffin sections of archival human brain. The investigation of microglia-synapse interactions in dementia will be of special interest in this context.
Collapse
Affiliation(s)
- Patrick Jarmo Paasila
- Faculty of Medicine and HealthCharles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Sandra Y. Y. Fok
- Biomedical Imaging FacilityMark Wainwright Analytical CentreUniversity of New South Wales SydneyKensingtonNSWAustralia
| | - Neftali Flores‐Rodriguez
- Charles Perkins CentreSydney Microscopy and MicroanalysisThe University of SydneyCamperdownNSWAustralia
| | - Sujata Sajjan
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| | - Adam J. Svahn
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| | - Claude V. Dennis
- Faculty of Medicine and HealthCharles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - R. M. Damian Holsinger
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| | - Jillian J. Kril
- Faculty of Medicine and HealthCharles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Thomas S. Becker
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| | - Richard B. Banati
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
- Life SciencesAustralian Nuclear Science and Technology OrganisationKirraweeNSWAustralia
| | - Greg T. Sutherland
- Faculty of Medicine and HealthCharles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Manuel B. Graeber
- Faculty of Medicine and HealthBrain and Mind CentreThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
29
|
Galán-Salinas A, Corral-Ruíz G, Pérez-Vega MJ, Fabila-Castillo L, Silva-García R, Marquina-Castillo B, León-Contreras JC, Barrios-Payán J, Francisco-Cruz A, Montecillo-Aguado M, Huerta-Yepez S, Calderón-Amador J, Flores-Romo L, Hernández-Pando R, Sánchez-Torres LE. Monocyte Locomotion Inhibitory Factor confers neuroprotection and prevents the development of murine cerebral malaria. Int Immunopharmacol 2021; 97:107674. [PMID: 34044183 DOI: 10.1016/j.intimp.2021.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
Cerebral malaria (CM) is a neurological complication derived from the Plasmodium falciparum infection in humans. The mechanisms involved in the disease progression are still not fully understood, but both the sequestration of infected red blood cells (iRBC) and leukocytes and an exacerbated host inflammatory immune response are significant factors. In this study, we investigated the effect of Monocyte Locomotion Inhibitory Factor (MLIF), an anti-inflammatory peptide, in a well-characterized murine model of CM. Our data showed that the administration of MLIF increased the survival and avoided the neurological signs of CM in Plasmodium berghei ANKA (PbA) infected C57BL/6 mice. MLIF administration down-regulated systemic inflammatory mediators such as IFN-γ, TNF-α, IL-6, CXCL2, and CCL2, as well as the in situ expression of TNF-α in the brain. In the same way, MLIF reduced the expression of CD31, CD36, CD54, and CD106 in the cerebral endothelium of infected animals and prevented the sequestration of iRBC and leucocytes in the brain microvasculature. Furthermore, MLIF inhibited the activation of astrocytes and microglia and preserved the integrity of the blood-brain barrier (BBB). In conclusion, our results demonstrated that the administration of MLIF increased survival and conferred neuroprotection by decreasing neuroinflammation in murine CM.
Collapse
Affiliation(s)
- A Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - G Corral-Ruíz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - M J Pérez-Vega
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - L Fabila-Castillo
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico; Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - R Silva-García
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, CMN-Siglo XXI, IMSS, México City, Mexico
| | - B Marquina-Castillo
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - J C León-Contreras
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - J Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - A Francisco-Cruz
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Montecillo-Aguado
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, México City, Mexico
| | - S Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, México City, Mexico
| | - J Calderón-Amador
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico; Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Instituto Politécnico Nacional, México City, Mexico
| | - L Flores-Romo
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Instituto Politécnico Nacional, México City, Mexico
| | - R Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico.
| | - L E Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico.
| |
Collapse
|
30
|
Candlish M, Hefendehl JK. Microglia Phenotypes Converge in Aging and Neurodegenerative Disease. Front Neurol 2021; 12:660720. [PMID: 34025562 PMCID: PMC8133315 DOI: 10.3389/fneur.2021.660720] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/19/2021] [Indexed: 01/22/2023] Open
Abstract
Microglia, the primary immune cells of the central nervous system, hold a multitude of tasks in order to ensure brain homeostasis and are one of the best predictors of biological age on a cellular level. We and others have shown that these long-lived cells undergo an aging process that impedes their ability to perform some of the most vital homeostatic functions such as immune surveillance, acute injury response, and clearance of debris. Microglia have been described as gradually transitioning from a homeostatic state to an activated state in response to various insults, as well as aging. However, microglia show diverse responses to presented stimuli in the form of acute injury or chronic disease. This complexity is potentially further compounded by the distinct alterations that globally occur in the aging process. In this review, we discuss factors that may contribute to microglial aging, as well as transcriptional microglia alterations that occur in old age. We then compare these distinct phenotypic changes with microglial phenotype in neurodegenerative disease.
Collapse
Affiliation(s)
- Michael Candlish
- Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jasmin K Hefendehl
- Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
31
|
Graneri L, Lam V, D'Alonzo Z, Nesbit M, Mamo JCL, Takechi R. The Consumption of Energy Drinks Induces Blood-Brain Barrier Dysfunction in Wild-Type Mice. Front Nutr 2021; 8:668514. [PMID: 34012975 PMCID: PMC8126614 DOI: 10.3389/fnut.2021.668514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
Energy drinks containing significant quantities of caffeine and sugar are increasingly consumed, particularly by adolescents and young adults. Chronic ingestion of energy drinks may potentially regulate vascular risk factors. This study investigated the effects of chronic ingestion of energy drinks on blood-brain barrier (BBB) integrity and neuroinflammation. Male C57BL/6J mice were maintained on water (control), MotherTM (ED), sugar-free MotherTM (sfED), or Coca ColaTM soft drink (SD) for 13 weeks. The BBB integrity and neuroinflammation were analyzed with semi-quantitative immunofluorescent microscopy. Blood pressure, plasma inflammatory cytokine levels and blood glucose were also considered. Following 13 weeks of intervention, mice treated with ED, sfED, and SD showed significant disruption of BBB. However, marked neuroinflammation was observed only in sfED group mice. The consumption of ED and sfED significantly altered the blood pressure and plasma concentrations of inflammatory cytokines, TNF-a, IL-4, IL-6, and IL-10, and both increased plasma glucose. Correlation analyses showed significant associations between BBB dysfunction and hypotension, hyperglycaemia and cytokine dyshomeostasis. The intake of energy drink, particularly the sugar free formulation, may compromise the integrity of BBB and induce neuroinflammation via hypotension, hyperglycaemia and inflammatory pathways.
Collapse
Affiliation(s)
- Liam Graneri
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,School of Population Health, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Zachary D'Alonzo
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - John C L Mamo
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| |
Collapse
|
32
|
Greenwood EK, Brown DR. Senescent Microglia: The Key to the Ageing Brain? Int J Mol Sci 2021; 22:4402. [PMID: 33922383 PMCID: PMC8122783 DOI: 10.3390/ijms22094402] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ageing represents the single biggest risk factor for development of neurodegenerative disease. Despite being such long-lived cells, microglia have been relatively understudied for their role in the ageing process. Reliably identifying aged microglia has proven challenging, not least due to the diversity of cell populations, and the limitations of available models, further complicated by differences between human and rodent cells. Consequently, the literature contains multiple descriptions and categorisations of microglia with neurotoxic phenotypes, including senescence, without any unifying markers. The role of microglia in brain homeostasis, particularly iron storage and metabolism, may provide a key to reliable identification.
Collapse
Affiliation(s)
| | - David R. Brown
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK;
| |
Collapse
|
33
|
Microglial heterogeneity in aging and Alzheimer's disease: Is sex relevant? J Pharmacol Sci 2021; 146:169-181. [PMID: 34030799 DOI: 10.1016/j.jphs.2021.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases and their associated cognitive decline are known to be more prevalent during aging. Recent evidence has uncovered the role of microglia, the immunocompetent cells of the brain, in dysfunctions linked to neurodegenerative diseases such as is Alzheimer's disease (AD). Similar to other pathologies, AD is shown to be sex-biased, with females being more at risk compared to males. While the mechanisms driving this prevalence are still unclear, emerging data suggest the sex differences present in microglia throughout life might lead to different responses of these cells in both health and disease. Furthermore, microglial cells have recently been recognized as a deeply heterogeneous population, with multiple subsets and/or phenotypes stemming from diverse parameters such as age, sex or state of health. Therefore, this review discusses microglial heterogeneity during aging in both basal conditions and AD with a focus on existing sex differences in this process.
Collapse
|
34
|
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 2021; 17:157-172. [PMID: 33318676 DOI: 10.1038/s41582-020-00435-y] [Citation(s) in RCA: 1363] [Impact Index Per Article: 454.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer disease (AD) is the most common form of neurodegenerative disease, estimated to contribute 60-70% of all cases of dementia worldwide. According to the prevailing amyloid cascade hypothesis, amyloid-β (Aβ) deposition in the brain is the initiating event in AD, although evidence is accumulating that this hypothesis is insufficient to explain many aspects of AD pathogenesis. The discovery of increased levels of inflammatory markers in patients with AD and the identification of AD risk genes associated with innate immune functions suggest that neuroinflammation has a prominent role in the pathogenesis of AD. In this Review, we discuss the interrelationships between neuroinflammation and amyloid and tau pathologies as well as the effect of neuroinflammation on the disease trajectory in AD. We specifically focus on microglia as major players in neuroinflammation and discuss the spatial and temporal variations in microglial phenotypes that are observed under different conditions. We also consider how these cells could be modulated as a therapeutic strategy for AD.
Collapse
Affiliation(s)
- Fangda Leng
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
35
|
Potassium Channels Kv1.3 and Kir2.1 But Not Kv1.5 Contribute to BV2 Cell Line and Primary Microglial Migration. Int J Mol Sci 2021; 22:ijms22042081. [PMID: 33669857 PMCID: PMC7923211 DOI: 10.3390/ijms22042081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: As membrane channels contribute to different cell functions, understanding the underlying mechanisms becomes extremely important. A large number of neuronal channels have been investigated, however, less studied are the channels expressed in the glia population, particularly in microglia. In the present study, we focused on the function of the Kv1.3, Kv1.5 and Kir2.1 potassium channels expressed in both BV2 cells and primary microglia cultures, which may impact the cellular migration process. (2) Methods: Using an immunocytochemical approach, we were able to show the presence of the investigated channels in BV2 microglial cells, record their currents using a patch clamp and their role in cell migration using the scratch assay. The migration of the primary microglial cells in culture was assessed using cell culture inserts. (3) Results: By blocking each potassium channel, we showed that Kv1.3 and Kir2.1 but not Kv1.5 are essential for BV2 cell migration. Further, primary microglial cultures were obtained from a line of transgenic CX3CR1-eGFP mice that express fluorescent labeled microglia. The mice were subjected to a spared nerve injury model of pain and we found that microglia motility in an 8 µm insert was reduced 2 days after spared nerve injury (SNI) compared with sham conditions. Additional investigations showed a further impact on cell motility by specifically blocking Kv1.3 and Kir2.1 but not Kv1.5; (4) Conclusions: Our study highlights the importance of the Kv1.3 and Kir2.1 but not Kv1.5 potassium channels on microglia migration both in BV2 and primary cell cultures.
Collapse
|
36
|
Safaiyan S, Besson-Girard S, Kaya T, Cantuti-Castelvetri L, Liu L, Ji H, Schifferer M, Gouna G, Usifo F, Kannaiyan N, Fitzner D, Xiang X, Rossner MJ, Brendel M, Gokce O, Simons M. White matter aging drives microglial diversity. Neuron 2021; 109:1100-1117.e10. [PMID: 33606969 DOI: 10.1016/j.neuron.2021.01.027] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Aging results in gray and white matter degeneration, but the specific microglial responses are unknown. Using single-cell RNA sequencing from white and gray matter separately, we identified white matter-associated microglia (WAMs), which share parts of the disease-associated microglia (DAM) gene signature and are characterized by activation of genes implicated in phagocytic activity and lipid metabolism. WAMs depend on triggering receptor expressed on myeloid cells 2 (TREM2) signaling and are aging dependent. In the aged brain, WAMs form independent of apolipoprotein E (APOE), in contrast to mouse models of Alzheimer's disease, in which microglia with the WAM gene signature are generated prematurely and in an APOE-dependent pathway similar to DAMs. Within the white matter, microglia frequently cluster in nodules, where they are engaged in clearing degenerated myelin. Thus, WAMs may represent a potentially protective response required to clear degenerated myelin accumulating during white matter aging and disease.
Collapse
Affiliation(s)
- Shima Safaiyan
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Simon Besson-Girard
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Tuğberk Kaya
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Ludovico Cantuti-Castelvetri
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Lu Liu
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Hao Ji
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Garyfallia Gouna
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Fumere Usifo
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Nirmal Kannaiyan
- Department of Psychiatry, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Dirk Fitzner
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| | - Xianyuan Xiang
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, 81377 Munich, Germany
| | - Moritz J Rossner
- Department of Psychiatry, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany.
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
37
|
Spatial memory deficiency early in 6xTg Alzheimer's disease mouse model. Sci Rep 2021; 11:1334. [PMID: 33446720 PMCID: PMC7809274 DOI: 10.1038/s41598-020-79344-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/08/2020] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is mainly characterized by the deposition of extracellular amyloid plaques and intracellular accumulation of neurofibrillary tangles (NFTs). While the recent 5xFAD AD mouse model exhibits many AD-related phenotypes and a relatively early and aggressive amyloid β production, it does not show NFTs. Here, we developed and evaluated a novel AD mouse model (6xTg-AD, 6xTg) by crossbreeding 5xFAD mice with mice expressing mutant (P301L) tau protein (MAPT). Through behavioral and histopathological tests, we analyzed cognitive changes and neuropathology in 6xTg mice compared to their respective parental strains according to age. Spatial memory deficits occurred in 6xTg mice at 2 months of age, earlier than they occurred in 5xFAD mice. Histopathological data revealed aggressive Aβ42 and p-tau accumulation in 6xTg mice. Microglial activation occurred in the cortex and hippocampus of 6xTg mice beginning at 2 months. In 6xTg model mice, the synaptic loss was observed in the cortex from 4 months of age and in the hippocampus from 6 months of age, and neuronal loss appeared in the cortex from 4 months of age and in the hippocampus 6 months of age, earlier than it is observed in the 5xFAD and JNPL3 models. These results showed that each pathological symptom appeared much faster than in their parental animal models. In conclusion, these novel 6xTg-AD mice might be an advanced animal model for studying AD, representing a promising approach to developing effective therapy.
Collapse
|
38
|
Shahidehpour RK, Higdon RE, Crawford NG, Neltner JH, Ighodaro ET, Patel E, Price D, Nelson PT, Bachstetter AD. Dystrophic microglia are associated with neurodegenerative disease and not healthy aging in the human brain. Neurobiol Aging 2021; 99:19-27. [PMID: 33422891 PMCID: PMC8293930 DOI: 10.1016/j.neurobiolaging.2020.12.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/31/2020] [Accepted: 12/02/2020] [Indexed: 01/26/2023]
Abstract
Loss of physiological microglial function may increase the propagation of neurodegenerative diseases. Cellular senescence is a hallmark of aging; thus, we hypothesized age could be a cause of dystrophic microglia. Stereological counts were performed for total microglia, 2 microglia morphologies (hypertrophic and dystrophic) across the human lifespan. An age-associated increase in the number of dystrophic microglia was found in the hippocampus and frontal cortex. However, the increase in dystrophic microglia was proportional to the age-related increase in the total number of microglia. Thus, aging alone does not explain the presence of dystrophic microglia. We next tested if dystrophic microglia could be a disease-associated microglia morphology. Compared with controls, the number of dystrophic microglia was greater in cases with either Alzheimer's disease, dementia with Lewy bodies, or limbic-predominant age-related TDP-43 encephalopathy. These results demonstrate that microglia dystrophy, and not hypertrophic microglia, are the disease-associated microglia morphology. Finally, we found strong evidence for iron homeostasis changes in dystrophic microglia, providing a possible molecular mechanism driving the degeneration of microglia in neurodegenerative disease.
Collapse
Affiliation(s)
- Ryan K Shahidehpour
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA; Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Rebecca E Higdon
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA; Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Nicole G Crawford
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA; Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Janna H Neltner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| | - Eseosa T Ighodaro
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Ela Patel
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Douglas Price
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| | - Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA; Department of Neuroscience, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
39
|
Woollacott IOC, Toomey CE, Strand C, Courtney R, Benson BC, Rohrer JD, Lashley T. Microglial burden, activation and dystrophy patterns in frontotemporal lobar degeneration. J Neuroinflammation 2020; 17:234. [PMID: 32778130 PMCID: PMC7418403 DOI: 10.1186/s12974-020-01907-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Microglial dysfunction is implicated in frontotemporal lobar degeneration (FTLD). Although studies have reported excessive microglial activation or senescence (dystrophy) in Alzheimer’s disease (AD), few have explored this in FTLD. We examined regional patterns of microglial burden, activation and dystrophy in sporadic and genetic FTLD, sporadic AD and controls. Methods Immunohistochemistry was performed in frontal and temporal grey and white matter from 50 pathologically confirmed FTLD cases (31 sporadic, 19 genetic: 20 FTLD-tau, 26 FTLD-TDP, four FTLD-FUS), five AD cases and five controls, using markers to detect phagocytic (CD68-positive) and antigen-presenting (CR3/43-positive) microglia, and microglia in general (Iba1-positive). Microglial burden and activation (morphology) were assessed quantitatively for each microglial phenotype. Iba1-positive microglia were assessed semi-quantitatively for dystrophy severity and qualitatively for rod-shaped and hypertrophic morphology. Microglia were compared in each region between FTLD, AD and controls, and between different pathological subtypes of FTLD, including its main subtypes (FTLD-tau, FTLD-TDP, FTLD-FUS), and subtypes of FTLD-tau, FTLD-TDP and genetic FTLD. Microglia were also compared between grey and white matter within each lobe for each group. Results There was a higher burden of phagocytic and antigen-presenting microglia in FTLD and AD cases than controls, but activation was often not increased. Burden was generally higher in white matter than grey matter, but activation was greater in grey matter. However, microglia varied regionally according to FTLD subtype and disease mechanism. Dystrophy was more severe in FTLD and AD than controls, and more severe in white than grey matter, but this also varied regionally and was particularly extensive in FTLD due to progranulin (GRN) mutations. Presence of rod-shaped and hypertrophic microglia also varied by FTLD subtype. Conclusions This study demonstrates regionally variable microglial involvement in FTLD and links this to underlying disease mechanisms. This supports investigation of microglial dysfunction in disease models and consideration of anti-senescence therapies in clinical trials.
Collapse
Affiliation(s)
- Ione O C Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Christina E Toomey
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine Strand
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Robert Courtney
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Bridget C Benson
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK. .,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
40
|
Paasila PJ, Davies DS, Sutherland GT, Goldsbury C. Clustering of activated microglia occurs before the formation of dystrophic neurites in the evolution of Aβ plaques in Alzheimer's disease. FREE NEUROPATHOLOGY 2020; 1. [PMID: 34396367 DOI: 10.17879/freeneuropathology-2020-2845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a late-onset disease that has proved difficult to model. Microglia are implicated in AD, but reports vary on precisely when and how in the sequence of pathological changes they become involved. Here, post-mortem human tissue from two differentially affected regions of the AD brain and from non-demented individuals with a high load of AD-type pathology (high pathology controls) was used to model the disease time course in order to determine how microglial activation relates temporally to the deposition of hallmark amyloid-β (Aβ) and hyperphosphorylated microtubule associated protein tau pathology. Immunofluorescence against the pan-microglial marker, ionised calcium-binding adapter molecule 1 (IBA1), Aβ and tau, was performed in the primary motor cortex (PMC), a region relatively spared of AD pathological changes, and compared to the severely affected inferior temporal cortex (ITC) in the same cases. Unlike the ITC, the PMC in the AD cases was spared of any degenerative changes in cortical thickness and the density of Betz cells and total neurons. The clustering of activated microglia was greatest in the PMC of AD cases and high pathology controls compared to the ITC. This suggests microglial activation is most prominent in the early phases of AD pathophysiology. Nascent tau inclusions were found in neuritic plaques in the PMC but were more numerous in the ITC of the same case. This shows that tau positive neuritic plaques begin early in AD which is likely of pathogenic importance, however major tau deposition follows the accumulation of Aβ and clustering of activated microglia. Importantly, findings presented here demonstrate that different states of microglial activation, corresponding to regional accumulations of Aβ and tau, are present simultaneously in the same individual; an important factor for consideration if targeting these cells for therapeutic intervention.
Collapse
Affiliation(s)
- Patrick Jarmo Paasila
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Danielle Suzanne Davies
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Greg Trevor Sutherland
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Claire Goldsbury
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
41
|
Ashford BA, Boche D, Cooper-Knock J, Heath PR, Simpson JE, Highley JR. Review: Microglia in motor neuron disease. Neuropathol Appl Neurobiol 2020; 47:179-197. [PMID: 32594542 DOI: 10.1111/nan.12640] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
Motor Neuron Disease (MND) is a fatal neurodegenerative condition, which is characterized by the selective loss of the upper and lower motor neurons. At the sites of motor neuron injury, accumulation of activated microglia, the primary immune cells of the central nervous system, is commonly observed in both human post mortem studies and animal models of MND. Microglial activation has been found to correlate with many clinical features and importantly, the speed of disease progression in humans. Both anti-inflammatory and pro-inflammatory microglial responses have been shown to influence disease progression in humans and models of MND. As such, microglia could both contribute to and protect against inflammatory mechanisms of pathogenesis in MND. While murine models have characterized the microglial response to MND, these studies have painted a complex and often contradictory picture, indicating a need for further characterization in humans. This review examines the potential role microglia play in MND in human and animal studies. Both the pro-inflammatory and anti-inflammatory responses will be addressed, throughout the course of disease, followed by the potential of microglia as a target in the development of disease-modifying treatments for MND.
Collapse
Affiliation(s)
| | - D Boche
- University of Southampton, Southampton, UK
| | | | - P R Heath
- University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
42
|
Cheng S, Zhang Y, Chen S, Zhou Y. LncRNA HOTAIR Participates in Microglia Activation and Inflammatory Factor Release by Regulating the Ubiquitination of MYD88 in Traumatic Brain Injury. J Mol Neurosci 2020; 71:169-177. [PMID: 32602030 DOI: 10.1007/s12031-020-01623-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death worldwide. Long non-coding RNAs (LncRNAs) have been reported to be closely associated with various diseases, but their roles in TBI has not been fully elucidated. The purpose of this study was to elucidate the underlying mechanism of LncRNA HOTAIR in TBI-induced microglial activation and inflammatory factor release. In vivo mouse TBI model and in vitro microglia activation model were established by Feeney's free-fall impact method and by LPS stimulation, respectively. The expression of LncRNA HOTAIR in activated microglia was detected by qRT-PCR. After shRNA knocked down, the expressions of LncRNA HOTAIR and microglia activation marker Iba-1 in microglia were detected by qRT-PCR and Western blot and by ELISA that detected the concentration of inflammatory factor in cell culture supernatants. The relationship between LncRNA HOTAIR and MYD88 in mouse microglia BV2 cells was observed by RNA pull-down assay. Furthermore, the effect of LncRNA HOTAIR on MYD88 stability was assessed by cycloheximide (CHX)-chase and by immunoprecipitation and ubiquitination assays that analyzed MYD88 ubiquitination. LncRNA HOTAIR was abnormally highly expressed in activated microglia. By Western blot and ELISA, the knockdown of LncRNA HOTAIR in microglia significantly repressed microglia activation and inflammatory factor release. By RNA pull-down assay, LncRNA HOTAIR could bind to MYD88 protein. Besides, by cycloheximide (CHX)-chase and immunoprecipitation and ubiquitination assays, the overexpression of the LncRNA HOTAIR enhanced the stability of MYD88 protein and inhibited Nrdp1-mediated ubiquitination of MYD88 protein. After the transfection of shRNA-HOTAIR and shRNA-HOTAIR+pcDNA-MYD88 into microglia, shRNA-HOTAIR could significantly inhibit the activation of microglia and the release of inflammatory factors, while these effects were reversed after the transfection of pcDNA-MYD88. Our experimental data indicated that LncRNA HOTAIR was highly expressed in activated microglia, and our further studies had found that the interference with LncRNA HOTAIR could repress microglia activation and inflammatory factor release via promoting Nrdp1-mediated ubiquitination of MYD88 protein.
Collapse
Affiliation(s)
- Shiqi Cheng
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No.92, Aiguo Road, Nanchang, 330006, Jiangxi Province, China
| | - Yan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Shuzhen Chen
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No.92, Aiguo Road, Nanchang, 330006, Jiangxi Province, China
| | - Yongliang Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No.92, Aiguo Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
43
|
Ham S, Lima LG, Lek E, Möller A. The Impact of the Cancer Microenvironment on Macrophage Phenotypes. Front Immunol 2020; 11:1308. [PMID: 32655574 PMCID: PMC7324670 DOI: 10.3389/fimmu.2020.01308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Within the tumor microenvironment, there is an intricate communication happening between tumor and stromal cells. This information exchange, in the form of cytokines, growth factors, extracellular vesicles, danger molecules, cell debris, and other factors, is capable of modulating the function of immune cells. The triggering of specific responses, including phenotypic alterations, can ultimately result in either immune surveillance or tumor cell survival. Macrophages are a well-studied cell lineage illustrating the different cellular phenotypes possible, depending on the tumor microenvironmental context. While our understanding of macrophage responses is well documented in vitro, surprisingly, little work has been done to confirm these observations in the cancer microenvironment. In fact, there are examples of opposing reactions of macrophages to cytokines in cell culture and in vivo tumor settings. Additionally, it seems that different macrophage lineages, for example tissue-resident and monocyte-derived macrophages, respond differently to cytokines and other cancer-derived signals. In this review article, we will describe and discuss the diverging reports on how cancer cells influence monocyte-derived and tissue-resident macrophage traits in vivo.
Collapse
Affiliation(s)
- Sunyoung Ham
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luize G Lima
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Erica Lek
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Andreas Möller
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
44
|
Chen JX, Wang YP, Zhang X, Li GX, Zheng K, Duan CZ. lncRNA Mtss1 promotes inflammatory responses and secondary brain injury after intracerebral hemorrhage by targeting miR-709 in mice. Brain Res Bull 2020; 162:20-29. [PMID: 32442560 DOI: 10.1016/j.brainresbull.2020.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 01/17/2023]
Abstract
Secondary brain injuries following intracerebral hemorrhage (ICH) are mediated by inflammatory pathway activation. The present study aimed to characterize long noncoding RNAs (lncRNAs) that are differentially expressed in cerebral tissues during ICH pathogenesis and to investigate their pathogenic functions. An ICH mouse model established by collagenase injection was used to obtain differentially expressed lncRNAs for deep sequencing. A cellular inflammation model was established by treating mouse microglia with lipopolysaccharide. Expression of lncRNA and miRNA was assessed by quantitative RT-PCR, and protein abundance was measured by western blot. Cytokine levels in mouse serum and cell culture supernatants were analyzed using enzyme-linked immunosorbent assay. Cerebral injury was evaluated by hematoxylin-eosin and Nissl staining, the ratio of brain dry weight/brain wet weight, and neurobehavior scoring. Ionized calcium-binding adaptor molecule 1 (IBA1) expression in the brain sections was assessed using immunohistochemistry. A total of 3681 lncRNAs were differentially expressed in the brain tissue of the ICH mice group compared with the Sham group. Of these, lncRNA metastasis suppressor-1 (Mtss1) expression was increased. Mtss1 knockdown by siRNA in the cellular model strongly suppressed TIR-domain-containing adapter-inducing interferon-β (TRIF) expression, P65 phosphorylation, and tumor necrosis factor (TNF)-α and interleukin (IL)-1β secretion. Mtss1 knockdown in ICH mice inhibited secondary brain injury and decreased IBA1, TNF-α, and IL-1β. Mtss1 was predicted to bind miR-709, and Mtss1 knockdown elevated miR-709 expression in the cellular inflammation model and ICH mice. High expression of Mtss1 promoted inflammatory brain injuries after ICH by enhancing inflammatory cytokine secretion and targeting miR-709 expression.
Collapse
Affiliation(s)
- Jia-Xiang Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China; The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China; Department of Neurosurgery, Guangzhou Red Cross Hospital, The Fourth Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi-Ping Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Xin Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China; The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Guo-Xiong Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China; The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Kuang Zheng
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China; The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Chuan-Zhi Duan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China; The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China.
| |
Collapse
|
45
|
Shaerzadeh F, Phan L, Miller D, Dacquel M, Hachmeister W, Hansen C, Bechtle A, Tu D, Martcheva M, Foster TC, Kumar A, Streit WJ, Khoshbouei H. Microglia senescence occurs in both substantia nigra and ventral tegmental area. Glia 2020; 68:2228-2245. [PMID: 32275335 DOI: 10.1002/glia.23834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
During aging humans lose midbrain dopamine neurons, but not all dopamine regions exhibit vulnerability to neurodegeneration. Microglia maintain tissue homeostasis and neuronal support, but microglia become senescent and likely lose some of their functional abilities. Since aging is the greatest risk factor for Parkinson's disease, we hypothesized that aging-related changes in microglia and neurons occur in the vulnerable substantia nigra pars compacta (SNc) but not the ventral tegmental area (VTA). We conducted stereological analyses to enumerate microglia and dopaminergic neurons in the SNc and VTA of 1-, 6-, 9-, 18-, and 24-month-old C57BL/J6 mice using sections double-stained with tyrosine hydroxylase (TH) and Iba1. Both brain regions show an increase in microglia with aging, whereas numbers of TH+ cells show no significant change after 9 months of age in SNc and 6 months in VTA. Morphometric analyses reveal reduced microglial complexity and projection area while cell body size increases with aging. Contact sites between microglia and dopaminergic neurons in both regions increase with aging, suggesting increased microglial support/surveillance of dopamine neurons. To assess neurotrophin expression in dopaminergic neurons, BDNF and TH mRNA were quantified. Results show that the ratio of BDNF to TH decreases in the SNc, but not the VTA. Gait analysis indicates subtle, aging-dependent changes in gait indices. In conclusion, increases in microglial cell number, ratio of microglia to dopamine neurons, and contact sites suggest that innate biological mechanisms compensate for the aging-dependent decline in microglia morphological complexity (senescence) to ensure continued neuronal support in the SNc and VTA.
Collapse
Affiliation(s)
- Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Leah Phan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Douglas Miller
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Maxwell Dacquel
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - William Hachmeister
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Carissa Hansen
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alexandra Bechtle
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Duan Tu
- Department of Mathematics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Maia Martcheva
- Department of Mathematics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Thomas C Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ashok Kumar
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
46
|
Honig MG, Dorian CC, Worthen JD, Micetich AC, Mulder IA, Sanchez KB, Pierce WF, Del Mar NA, Reiner A. Progressive long-term spatial memory loss following repeat concussive and subconcussive brain injury in mice, associated with dorsal hippocampal neuron loss, microglial phenotype shift, and vascular abnormalities. Eur J Neurosci 2020; 54:5844-5879. [PMID: 32090401 PMCID: PMC7483557 DOI: 10.1111/ejn.14711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
There is considerable concern about the long‐term deleterious effects of repeat head trauma on cognition, but little is known about underlying mechanisms and pathology. To examine this, we delivered four air blasts to the left side of the mouse cranium, a week apart, with an intensity that causes deficits when delivered singly and considered “concussive,” or an intensity that does not yield significant deficits when delivered singly and considered “subconcussive.” Neither repeat concussive nor subconcussive blast produced spatial memory deficits at 4 months, but both yielded deficits at 14 months, and dorsal hippocampal neuron loss. Hierarchical cluster analysis of dorsal hippocampal microglia across the three groups based on morphology and expression of MHCII, CX3CR1, CD68 and IBA1 revealed five distinct phenotypes. Types 1A and 1B microglia were more common in sham mice, linked to better neuron survival and memory, and appeared mildly activated. By contrast, 2B and 2C microglia were more common in repeat concussive and subconcussive mice, linked to poorer neuron survival and memory, and characterized by low expression levels and attenuated processes, suggesting they were de‐activated and dysfunctional. In addition, endothelial cells in repeat concussive mice exhibited reduced CD31 and eNOS expression, which was correlated with the prevalence of type 2B and 2C microglia. Our findings suggest that both repeat concussive and subconcussive head injury engender progressive pathogenic processes, possibly through sustained effects on microglia that over time lead to increased prevalence of dysfunctional microglia, adversely affecting neurons and blood vessels, and thereby driving neurodegeneration and memory decline.
Collapse
Affiliation(s)
- Marcia G Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Conor C Dorian
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - John D Worthen
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anthony C Micetich
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Isabelle A Mulder
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katelyn B Sanchez
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - William F Pierce
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nobel A Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
47
|
Rodriguez-Callejas JD, Fuchs E, Perez-Cruz C. Increased oxidative stress, hyperphosphorylation of tau, and dystrophic microglia in the hippocampus of aged Tupaia belangeri. Glia 2020; 68:1775-1793. [PMID: 32096580 DOI: 10.1002/glia.23804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022]
Abstract
Aging is a major risk factor for the development of neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases are characterized by abnormal and prominent protein aggregation in the brain, partially due to deficiency in protein clearance. It has been proposed that alterations in microglia phagocytosis and debris clearance hasten the onset of neurodegeneration. Dystrophic microglia are abundant in aged humans, and it has been associated with the onset of disease. Furthermore, alterations in microglia containing ferritin are associated with neurodegenerative conditions. To further understand the process of microglia dysfunction during the aging process, we used hippocampal sections from Tupaia belangeri (tree shrews). Adult (mean age 3.8 years), old (mean age 6 years), and aged (mean age 7.5 years) tree shrews were used for histochemical and immunostaining techniques to determine ferritin and Iba1 positive microglia, iron tissue content, tau hyperphosphorylation and oxidized-RNA in dentate gyrus, subiculum, and CA1-CA3 hippocampal regions. Our results indicated that aged tree shrews presented an increased number of activated microglia containing ferritin, but microglia labeled with Iba1 with a dystrophic phenotype was more abundant in aged individuals. With aging, oxidative damage to RNA (8OHG) increased significantly in all hippocampal regions, while tau hyperphosphorylation (AT100) was enhanced in DG, CA3, and SUB in aged animals. Phagocytic inclusions of 8OHG- and AT100-damaged cells were observed in activated M2 microglia in old and aged animals. These data indicate that aged tree shrew may be a suitable model for translational research to study brain and microglia alterations during the aging process.
Collapse
Affiliation(s)
| | - Eberhard Fuchs
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | | |
Collapse
|
48
|
Streit WJ, Khoshbouei H, Bechmann I. Dystrophic microglia in late-onset Alzheimer's disease. Glia 2020; 68:845-854. [PMID: 31922322 DOI: 10.1002/glia.23782] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 01/08/2023]
Abstract
Here, we summarize current understanding of functional involvement of microglial cells in the most common neurodegenerative disease to affect humans, which is sporadic or late-onset Alzheimer's disease (LOAD). Our review narrowly focuses on insights obtained from post-mortem neuropathological examinations of human brains paying particular attention to microglia as these cells have long been implicated as pivotal players in the cellular processes that lead to AD-type neurodegeneration. Although complete understanding of the roles played by microglia in AD neurodegeneration remains elusive, our studies thus far have illuminated microglial involvement in LOAD, showing that microglial dystrophy, the morphological manifestation of senescence, can be integrated with other hallmark pathological features of AD, such as intraneuronal neurofibrillary degeneration (NFD) and extracellular deposits of amyloid-beta (Aβ) protein. We have demonstrated an in situ correlation between microglial dystrophy and presence of NFD suggesting that neurodegeneration is secondary to aging-related microglial deterioration, a concept founded on the notion that proper neuronal function is dependent on presence of healthy microglia. Diseased or weakened glia are detrimental for neuronal well-being because their ability to provide neuronal support may be impaired. Our most recent work also links microglial dystrophy with Aβ deposits by showing that there is a chronic, yet futile microglial reaction to insoluble amyloid deposits. This inability of microglia to remove aggregated amyloid (a foreign body) causes microglial exhaustion and thereby exacerbates already ongoing aging-dependent microglial deterioration. An eventual total loss of functional microglia in advanced LOAD promotes widespread NFD, dementia, and brain failure.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
| | - Ingo Bechmann
- Anatomical Institute, University of Leipzig, Leipzig, Germany
| |
Collapse
|
49
|
Wu B, Song Q, Zhang Y, Wang C, Yang M, Zhang J, Han W, Jiang P. Antidepressant activity of ω-3 polyunsaturated fatty acids in ovariectomized rats: role of neuroinflammation and microglial polarization. Lipids Health Dis 2020; 19:4. [PMID: 31915015 PMCID: PMC6950787 DOI: 10.1186/s12944-020-1185-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Menopause predisposes individuals to affective disorders, such as depression, which is tightly related to neuroinflammation. While the neuroinflammatory condition has been demonstrated in ovariectomized (OVX) rodents, there is limited evidence concerning microglial polarization, a key process in brain immune activation, in menopause-related brain. METHODS Therefore, the present study aims to evaluate the polarized microglia in long-term OVX rats and we further explored whether supplementation of ω-3 polyunsaturated fatty acids (PUFA), the pleiotropic bioactive nutrient, is effective in the neurobehavioral changes caused by OVX. RESULTS Our data showed that OVX-induced anxiety and depression-like behaviors in rats, accompanied with increased neural apoptosis and microglial activation in the hippocampus. Additionally, OVX enhanced proinflammatory cytokines expression and suppressed the expression of anti-inflammatory cytokine, IL-10. Correspondingly, OVX reinforced NFκB signaling and shifted the microglia from immunoregulatory M2 phenotype to proinflammatory M1 phenotype. Meanwhile, daily supplementation with PUFA suppressed microglial M1 polarization and potentiated M2 polarization in OVX rats. In parallel, PUFA also exerted antidepressant and neuroprotective activities, accompanied with neuroimmune-modulating actions. CONCLUSION Collectively, the present study firstly demonstrated the disturbed microglial polarization in the OVX brain and provide novel evidence showing the association between the antidepressant actions of PUFA and the restraint neuroinflammatory progression.
Collapse
Affiliation(s)
- Bin Wu
- Department of Gynecology, Taian City Central Hospital, Taian, China
| | - Qingen Song
- Jinxiang People's Hospital, Jining Medical University, Jining, China
| | - Yongkang Zhang
- Jinxiang People's Hospital, Jining Medical University, Jining, China
| | - Changshui Wang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Mengqi Yang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Jun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenxiu Han
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, 272000, China.
| |
Collapse
|
50
|
Lyu Q, Pang X, Zhang Z, Wei Y, Hong J, Chen H. Microglial V-set and immunoglobulin domain-containing 4 protects against ischemic stroke in mice by suppressing TLR4-regulated inflammatory response. Biochem Biophys Res Commun 2019; 522:560-567. [PMID: 31784084 DOI: 10.1016/j.bbrc.2019.11.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 01/09/2023]
Abstract
Ischemic stroke is a leading cause of death among human in the world, and a critical cause for long-term disability. Accumulating studies have indicated that inflammatory response regulated by microglia contributes a lot to neuronal death, but the molecular mechanism still remains unclear. V-set and immunoglobulin domain-containing 4 (Vsig4), a complement receptor of the immunoglobulin superfamily (CRIg) that specifically expresses in resting tissue-resident macrophages, plays a critical role in regulating various inflammatory diseases via multiple signaling pathways. However, the effects of Vsig4 on ischemic stroke have not been investigated. In this study, we identified that Vsig4 expression was decreased after cerebral ischemic injury induced by middle cerebral artery occlusion (MCAO). Immunofluorescence staining showed that Vsig4 was co-localized with Iba1 in microglial cells from the infarct region of MCAO-operated mice. After over-expressing Vsig4 in mice, MCAO-induced infarction area and neurological deficits score were markedly attenuated. In addition, neurological dysfunction due to MCAO surgery was improved by Vsig4 over-expression. Microglial M1 polarization was detected in mice with MCAO surgery, which was markedly inhibited by Vsig4 over-expression, as evidenced by the markedly reduced expression of CD16, CD11b, inducible nitric oxide synthase (iNOS) and interleukin 6 (IL-6); however, the expression of M2-like phenotype hallmarks such as arginase 1 (Arg1), CD206, IL-10 and Ym-1 was significantly up-regulated. Mechanistically, the anti-inflammatory role of Vsig4 was mainly through the blockage of toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB) signaling via the in vivo and in vitro experiments. Also, we found that microglial TLR4 expression in the cerebral infarct area of MCAO mice was highly suppressed by Vsig4 over-expression. In vitro, the neuron-glial mixed culture by fluorescent staining showed that oxygen glucose deprivation (OGD) treatment led to significant cell death, while being attenuated by Vsig4 over-expression in primary microglial cells. Finally, we showed that Vsig4 could interact with TLR4 and repress its expression, subsequently alleviating ischemic stroke. Collectively, our findings demonstrated that microglial Vsig4 protected against post-stroke neuro-inflammation mainly through interacting with TLR4.
Collapse
Affiliation(s)
- Qingping Lyu
- Department of Neurosurgery, Hangzhou Red Cross Hospital/Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, 208 Huancheng Road East, HangZhou 310003, Zhejiang, China
| | - Xiaojun Pang
- Department of Neurosurgery, Hangzhou Red Cross Hospital/Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, 208 Huancheng Road East, HangZhou 310003, Zhejiang, China
| | - Zibin Zhang
- Department of Neurosurgery, Hangzhou Red Cross Hospital/Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, 208 Huancheng Road East, HangZhou 310003, Zhejiang, China
| | - Yuyu Wei
- Department of Neurosurgery, Hangzhou Red Cross Hospital/Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, 208 Huancheng Road East, HangZhou 310003, Zhejiang, China
| | - Jinxu Hong
- Department of Neurosurgery, Hangzhou Red Cross Hospital/Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, 208 Huancheng Road East, HangZhou 310003, Zhejiang, China
| | - Huai Chen
- Department of Neurosurgery, Hangzhou Red Cross Hospital/Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, 208 Huancheng Road East, HangZhou 310003, Zhejiang, China.
| |
Collapse
|